CN107478629A - A kind of large area digital pcr droplet fluorescence high pass amount detecting device and method - Google Patents
A kind of large area digital pcr droplet fluorescence high pass amount detecting device and method Download PDFInfo
- Publication number
- CN107478629A CN107478629A CN201710783914.3A CN201710783914A CN107478629A CN 107478629 A CN107478629 A CN 107478629A CN 201710783914 A CN201710783914 A CN 201710783914A CN 107478629 A CN107478629 A CN 107478629A
- Authority
- CN
- China
- Prior art keywords
- fluorescence
- digital pcr
- light
- detection
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 21
- 238000007847 digital PCR Methods 0.000 description 111
- 238000001514 detection method Methods 0.000 description 82
- 230000003287 optical effect Effects 0.000 description 54
- 230000005284 excitation Effects 0.000 description 50
- 239000007850 fluorescent dye Substances 0.000 description 37
- 238000003384 imaging method Methods 0.000 description 34
- 230000005540 biological transmission Effects 0.000 description 24
- 238000010586 diagram Methods 0.000 description 17
- 238000001917 fluorescence detection Methods 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 239000000975 dye Substances 0.000 description 13
- 238000000799 fluorescence microscopy Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- 230000003321 amplification Effects 0.000 description 10
- 238000002073 fluorescence micrograph Methods 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000002356 single layer Substances 0.000 description 9
- 238000011529 RT qPCR Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000011304 droplet digital PCR Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003793 prenatal diagnosis Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000011895 specific detection Methods 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 239000012807 PCR reagent Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000012409 standard PCR amplification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6402—Atomic fluorescence; Laser induced fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种大面积数字PCR微滴荧光高通量检测装置,其包括荧光激发光路和荧光检测光路;沿荧光激发光路,光源装置发射的激发光依次经聚焦装置和物镜装置入射至置于载物台的数字PCR芯片上;沿荧光检测光路,数字PCR芯片受激发光产生的荧光依次经物镜装置、聚焦装置和成像装置成像后传输至图像采集传感器;其中,载物台还设有温控装置,温控装置实时控制数字PCR芯片反应的循环温度。本发明公开了一种大面积数字PCR微滴荧光高通量检测方法,可获得更高的检测效率和大面积高通量检测的准确性。本发明可以实现高通量、高灵敏度、高特异性的实时数字qPCR检测,对于提高数字PCR检测仪器性能、精度和通量具有重要意义。
The invention discloses a large-area digital PCR droplet fluorescence high-throughput detection device, which includes a fluorescence excitation light path and a fluorescence detection light path; On the digital PCR chip on the stage; along the fluorescence detection optical path, the fluorescence generated by the excited light of the digital PCR chip is sequentially imaged by the objective lens device, focusing device and imaging device and then transmitted to the image acquisition sensor; wherein, the stage is also equipped with The temperature control device controls the circulation temperature of the digital PCR chip reaction in real time. The invention discloses a large-area digital PCR droplet fluorescence high-throughput detection method, which can obtain higher detection efficiency and accuracy of large-area high-throughput detection. The invention can realize real-time digital qPCR detection with high throughput, high sensitivity and high specificity, and has great significance for improving the performance, precision and throughput of digital PCR detection instruments.
Description
技术领域technical field
本发明涉及生物医学检验领域核酸检测领域,特别涉及一种能够实现大面积数字PCR微滴荧光高通量检测装置和方法。The invention relates to the field of nucleic acid detection in the field of biomedical testing, in particular to a device and method capable of realizing large-area digital PCR droplet fluorescence high-throughput detection.
背景技术Background technique
在肿瘤早期诊断筛查、血液病毒分型及载量分析、无创产前诊断等领域,都需要对超低浓度的核酸进行高速高灵敏度高特异性的检测,常规的PCR已越来越无法满足需求。为实现此功能,人们在PCR基础上,发展了一种数字PCR技术,将检测灵敏度提高了1~2个数量级。In fields such as early diagnosis and screening of tumors, blood virus typing and load analysis, and noninvasive prenatal diagnosis, high-speed, high-sensitivity, and high-specificity detection of ultra-low-concentration nucleic acids is required, and conventional PCR is increasingly unable to meet the requirements. need. In order to achieve this function, people have developed a digital PCR technology on the basis of PCR, which improves the detection sensitivity by 1 to 2 orders of magnitude.
微滴式数字PCR采用的“分而治之”(divide and conquer)的检测策略,将样品、PCR试剂混合物作为分散相,将油作为连续相,利用微流控技术,将样品混合物形成一个个液滴悬浮于连续相中。进而,将一个标准PCR扩增分配至大量微滴(纳升至皮升)中,每个微滴中仅包含0个或1个拷贝的目标分子(DNA模板)。对每个微滴进行独立PCR扩增,扩增结束后,检测每个微滴的荧光,对阳性信号的微滴进行计数,从而得到样品模板的绝对拷贝数和核酸浓度。微滴的尺寸和数量决定了数字PCR的检测灵敏度和下限,现有的数字PCR微滴数在2万~1000万之间。The "divide and conquer" detection strategy adopted by droplet digital PCR uses the sample and PCR reagent mixture as the dispersed phase, oil as the continuous phase, and uses microfluidic technology to suspend the sample mixture into droplets in the continuous phase. Furthermore, a standard PCR amplification is distributed into a large number of micro-droplets (nanoliters to picoliters), each containing only 0 or 1 copy of the target molecule (DNA template). Each droplet is independently amplified by PCR. After the amplification, the fluorescence of each droplet is detected, and the droplets with positive signals are counted to obtain the absolute copy number and nucleic acid concentration of the sample template. The size and number of droplets determine the detection sensitivity and lower limit of digital PCR. The number of existing digital PCR droplets is between 20,000 and 10 million.
现有的商用微滴式数字PCR技术操作如下:在专用的微滴制备芯片上制备液滴;通过移液器将微滴转移至离心管中,使用常规的PCR仪进行温度循环扩增;扩增完成后,利用流式技术依次对每个微滴进行荧光激发与探测,计算结果。这样的检测方式存在以下问题:The existing commercial droplet digital PCR technology is operated as follows: droplets are prepared on a dedicated droplet preparation chip; droplets are transferred to a centrifuge tube by a pipette, and a conventional PCR instrument is used for temperature cycle amplification; After the addition is completed, the fluorescence excitation and detection of each droplet are performed sequentially by flow cytometry, and the results are calculated. This detection method has the following problems:
(1)流式检测速度较慢,检测速度在200~500个/s,检测过程耗时久,通量低;(1) The flow detection speed is slow, the detection speed is 200-500 pieces/s, the detection process takes a long time, and the throughput is low;
(2)只能对单个微滴进行终点法检测,不能实时qPCR,降低了特异性和灵敏度;(2) End-point detection can only be performed on a single droplet, and real-time qPCR is not possible, which reduces specificity and sensitivity;
(3)光路硬件复杂,难以实现多重数字PCR检测(4重以上);(3) The optical path hardware is complicated, and it is difficult to realize multiple digital PCR detection (more than 4);
(4)两次液滴的转移过程将导致微滴损失,以及可能引来的外界污染;(4) The transfer process of the two droplets will result in the loss of droplets and possible external pollution;
(5)常规PCR扩增仪的加热块热惯量大,热循环时间长(2小时左右)。(5) The thermal inertia of the heating block of the conventional PCR amplification instrument is large, and the thermal cycle time is long (about 2 hours).
为解决上述五个问题,申请人已提出了一体式数字PCR芯片,并已申请发明专利(申请号201510961967.0)。参见附图1,一体式数字PCR芯片包括本体1,位于其上的连续相注入孔11、样品注入孔12、单层微滴平铺腔体15、真空接入孔16、用于生成微滴的“+字型”微结构13,以及用于连接连续相注入孔11和“+字型”微结构13的液路14、用于连接样品注入孔12和“+字型”微结构13的第一液路17、用于连接“+字型”微结构13和单层微滴平铺腔体15的第二液路18。通过MEMS工艺将所述所有微结构制作于一片聚合物基板上,随后与另一块聚合物平板相键合而形成封闭的微流道系统,在连续相注入孔11、样品注入孔12、真空接入孔16三处开孔,用于注入样品和施加负压。In order to solve the above five problems, the applicant has proposed an integrated digital PCR chip, and has applied for an invention patent (application number 201510961967.0). Referring to accompanying drawing 1, integrated digital PCR chip comprises body 1, is positioned at continuous phase injection hole 11, sample injection hole 12, single-layer droplet tiling chamber 15, vacuum access hole 16, is used to generate droplet The "+-shaped" microstructure 13, and the liquid path 14 for connecting the continuous phase injection hole 11 and the "+-shaped" microstructure 13, and the liquid path 14 for connecting the sample injection hole 12 and the "+-shaped" microstructure 13 The first liquid path 17 and the second liquid path 18 for connecting the “+”-shaped microstructure 13 and the single-layer droplet tiling cavity 15 . All the microstructures are fabricated on a polymer substrate by MEMS technology, and then bonded with another polymer plate to form a closed microfluidic channel system. In the continuous phase injection hole 11, sample injection hole 12, vacuum interface The inlet hole 16 has three openings for injecting samples and applying negative pressure.
参照图2,其基本原理为:在连续相注入孔11注入油、样品注入孔12注入样品后,在真空接入孔16施加真空负压,样品、连续相将在负压的作用下,通过流道14和17到达“+字型”微结构13。在此处,样品将因连续相的剪切而形成一个个纳升级微滴20,随后经过流道18进入单层微滴平铺腔体15,平铺成微滴单层19。Referring to Fig. 2, the basic principle is: after the oil is injected into the continuous phase injection hole 11 and the sample is injected into the sample injection hole 12, a vacuum negative pressure is applied to the vacuum access hole 16, and the sample and the continuous phase will pass through under the action of negative pressure. Runners 14 and 17 reach the “+” microstructure 13 . Here, the sample will form nanoliter droplets 20 one by one due to the shearing of the continuous phase, and then enter the single-layer droplet flattening chamber 15 through the flow channel 18 to be flattened into a single layer 19 of droplets.
该技术方法具有以下优势:微滴单层19适用于使用CCD进行图像化荧光拍照检测,具有较高的通量和速度;通过连续荧光图像检测可以获得微滴荧光随循环此时的变化曲线,进行单液滴qPCR检测,具有较高灵敏度和特异性;通过增加激发光源和滤光片,可轻易实现多重数字PCR;整个过程一体化完成,不存在微滴损失和外界的污染。最后,单层微滴将具有较大的温控面积和较小的热惯量,可以将PCR循环扩增时间降低至半小时以内。This technical method has the following advantages: the droplet monolayer 19 is suitable for using CCD to carry out image fluorescence photography detection, and has high throughput and speed; through continuous fluorescence image detection, the change curve of droplet fluorescence with circulation at this time can be obtained, Single droplet qPCR detection has high sensitivity and specificity; multiple digital PCR can be easily realized by adding excitation light sources and filters; the whole process is integrated, and there is no droplet loss and external pollution. Finally, the single-layer microdroplet will have a larger temperature control area and a smaller thermal inertia, which can reduce the PCR cycle amplification time to less than half an hour.
为了利用该数字PCR芯片进行核酸检测,一方面需要对该数字PCR微流控芯片进行温度循环扩增,另一方面需要对数字PCR液滴单层进行实时激光激发和荧光成像探测。每温度循环一次,便进行一次液滴荧光图像检测,以获得每个液滴的荧光连续变化曲线。为提高通量,在一块芯片上,可集成多个一体式数字PCR微流控结构,形成32个、48个甚至96个样品的同时检测(参照图3),以便提高通量,这样便需要芯片可以进行一维或二维的运动,以便可以通过扫描方式进行大面积图像采集。另外,为提高检测效率,采用一种新算法,先通过小倍率进行粗略大视场观看,发现可能存在液滴荧光点后,切换成高倍率精细小视场观测的方式,以提高效率。但现有的检测装置如荧光显微镜等,无法满足上述检测要求。In order to use the digital PCR chip for nucleic acid detection, on the one hand, it is necessary to perform temperature cycle amplification on the digital PCR microfluidic chip, and on the other hand, it is necessary to perform real-time laser excitation and fluorescence imaging detection on the digital PCR droplet monolayer. Every time the temperature is cycled, the droplet fluorescence image detection is carried out to obtain the continuous change curve of the fluorescence of each droplet. In order to improve throughput, multiple integrated digital PCR microfluidic structures can be integrated on one chip to form simultaneous detection of 32, 48 or even 96 samples (see Figure 3) in order to improve throughput, which requires The chip can move in one or two dimensions, so that large-area image acquisition can be performed by scanning. In addition, in order to improve the detection efficiency, a new algorithm is adopted. Firstly, a small magnification is used to observe a rough large field of view. After finding that there may be liquid droplet fluorescent spots, it is switched to a high magnification fine small field of view observation method to improve efficiency. However, existing detection devices such as fluorescence microscopes cannot meet the above detection requirements.
发明内容Contents of the invention
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。An object of the present invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages as will be described hereinafter.
本发明还有一个目的是提供一种大面积数字PCR微滴荧光高通量检测装置,其通过系统光路的设计以及分割检测区域的连续扫描,能够实现数字PCR的高通量、实时和精准定量检测,此外,通过大小扫面视场的切换可实现液滴荧光点的快速定位和检测。Another purpose of the present invention is to provide a large-area digital PCR droplet fluorescence high-throughput detection device, which can realize high-throughput, real-time and accurate quantification of digital PCR through the design of the system optical path and continuous scanning of the divided detection area Detection, in addition, the rapid positioning and detection of droplet fluorescent spots can be realized by switching the large and small scanning fields of view.
本发明还有一个目的是通过一种大面积数字PCR微滴荧光高通量检测方法,可获得更高的检测效率和大面积高通量检测的准确性。Another object of the present invention is to obtain higher detection efficiency and accuracy of large-area high-throughput detection through a large-area digital PCR droplet fluorescent high-throughput detection method.
为了实现根据本发明的这些目的和其它优点,提供了一种大面积数字PCR微滴荧光高通量检测装置,包括荧光激发光路和荧光检测光路;In order to achieve these objects and other advantages according to the present invention, a large-area digital PCR droplet fluorescence high-throughput detection device is provided, including a fluorescence excitation light path and a fluorescence detection light path;
沿所述荧光激发光路,光源装置发射的激发光依次经聚焦装置和物镜装置入射至置于载物台的数字PCR芯片上;Along the fluorescent excitation optical path, the excitation light emitted by the light source device is incident on the digital PCR chip placed on the stage through the focusing device and the objective lens device in sequence;
沿所述荧光检测光路,所述数字PCR芯片受所述激发光产生的荧光依次经所述物镜装置、所述聚焦装置和成像装置成像后传输至图像采集传感器;Along the fluorescence detection optical path, the fluorescence generated by the digital PCR chip by the excitation light is sequentially imaged by the objective lens device, the focusing device and the imaging device, and then transmitted to the image acquisition sensor;
其中,其中所述载物台还设有温控装置,所述温控装置实时控制所述数字PCR芯片反应的循环温度。Wherein, the stage is further provided with a temperature control device, and the temperature control device controls the cycle temperature of the reaction of the digital PCR chip in real time.
优选的是,其中,所述载物台固定设于光路路径上,或至少具有一个平移自由度,以满足大面积图像采集的需要。Preferably, the object stage is fixedly arranged on the optical path, or has at least one translational degree of freedom, so as to meet the needs of large-area image acquisition.
优选的是,其中,所述物镜装置包括:Preferably, wherein, the objective lens device comprises:
一个物镜,其固定设于光路中;An objective lens, which is fixedly arranged in the optical path;
或若干个不同倍率的物镜,其以可切换的形式分别被配置至光路中,从而实现不同倍率的数字PCR微滴荧光成像。Or several objective lenses with different magnifications, which are respectively arranged in the optical path in a switchable form, so as to realize digital PCR droplet fluorescence imaging with different magnifications.
优选的是,其中,所述物镜的倍率选自2X、4X、5X或10X。Preferably, wherein, the magnification of the objective lens is selected from 2X, 4X, 5X or 10X.
优选的是,其中,所述光源装置包括:Preferably, wherein, the light source device includes:
光源组件,其提供平行混合光源;a light source assembly providing a parallel mixed light source;
光源滤光片组件,其具有:A light source filter assembly having:
一个光源滤光片,其固定设于所述荧光激发光路中,或A light source filter, which is fixedly arranged in the fluorescence excitation light path, or
若干个光源滤光片,其以可切换的形式分别被配置至所述荧光激发光路中。Several light source filters are respectively arranged in the fluorescence excitation light path in a switchable manner.
光源滤光片可用于对混合光源进行滤光处理,以提供可用于激发PCR微滴染料所需的单色光源。本方案中采用混合光源和滤光片来产生单色光源,可以以较低的成本提供多个波长的单色激发光源,实现多重数字PCR功能。Light source filters can be used to filter mixed light sources to provide the monochromatic light needed to excite PCR droplet dyes. In this solution, a mixed light source and a filter are used to generate a monochromatic light source, which can provide multiple wavelengths of monochromatic excitation light sources at a lower cost, and realize multiple digital PCR functions.
优选的是,其中,所述光源装置包括若干个单色光源组;Preferably, wherein, the light source device includes several monochromatic light source groups;
沿光路前进方向,所述单色光源组依次包括:单色光源、快门和光源透镜;其中,所述快门通断控制所述荧光激发光路。Along the forward direction of the optical path, the monochromatic light source group includes in sequence: a monochromatic light source, a shutter, and a light source lens; wherein, the shutter controls the fluorescent excitation optical path on and off.
优选的是,其中,所述光源装置包括:Preferably, wherein, the light source device includes:
至少两个单色光源组,以提供较强的激发光源;;At least two groups of monochromatic light sources to provide a strong excitation light source;
若干个第一分色镜,其将所述单色光源组的发射光路合束并导入所述荧光激发光路。Several first dichroic mirrors combine the emission light paths of the monochromatic light source groups and lead them into the fluorescence excitation light path.
分色镜可用于将两路激发光源合并成一束,利用多个二色镜可以将所有的激发光源合并成一束,从而提供多个不同波长的激发光源,实现多重数字PCR功能。Dichroic mirrors can be used to combine two excitation light sources into one beam, and multiple dichroic mirrors can be used to combine all excitation light sources into one beam, thereby providing multiple excitation light sources with different wavelengths and realizing multiple digital PCR functions.
优选的是,其中,聚焦装置包括:Preferably, wherein the focusing device includes:
第二分色镜,其反射光源装置发射的激发光同时透过所述数字PCR芯片受激产生的荧光。The second dichroic mirror reflects the excitation light emitted by the light source device and simultaneously transmits the fluorescent light generated by the digital PCR chip.
优选的是,其中,聚焦装置还包括:Preferably, wherein, the focusing device also includes:
第一聚焦透镜组件,其设于所述光源装置与所述第二分色镜之间,用于整形和扩束所述激光,从而获得较好的激发光。The first focusing lens assembly, which is arranged between the light source device and the second dichroic mirror, is used for shaping and expanding the beam of the laser light, so as to obtain better excitation light.
优选的是,其中,聚焦装置还包括:Preferably, wherein, the focusing device also includes:
第二聚焦透镜组件,其设于所述第二分色镜与所述成像装置之间,用于整形和扩束所述荧光,从而获得较好的成像质量。The second focusing lens assembly, which is arranged between the second dichroic mirror and the imaging device, is used for shaping and expanding the fluorescent light, so as to obtain better imaging quality.
优选的是,其中,沿所述荧光检测光路,所述成像装置依次包括荧光滤除组件和荧光成像透镜;Preferably, wherein, along the fluorescence detection optical path, the imaging device sequentially includes a fluorescence filter assembly and a fluorescence imaging lens;
优选的是,沿所述荧光检测光路,所述成像装置依次包括单个荧光滤光组件和荧光成像透镜;Preferably, along the fluorescence detection optical path, the imaging device sequentially includes a single fluorescence filter assembly and a fluorescence imaging lens;
其中,所述荧光滤光组件固设于所述荧光检测光路,所述荧光滤光组件具有:Wherein, the fluorescence filter assembly is fixed in the fluorescence detection optical path, and the fluorescence filter assembly has:
光源阻光片,其滤除所述光源装置发射的激发光;以及,a light source light blocking sheet, which filters out the excitation light emitted by the light source device; and,
荧光滤光片,其滤除非所述荧光波长的杂散光。A fluorescence filter that filters out stray light at wavelengths other than the stated fluorescence.
优选的是,其中,沿所述荧光检测光路,所述成像装置依次包括若干个荧光滤光组件和荧光成像透镜;Preferably, wherein, along the fluorescence detection optical path, the imaging device sequentially includes several fluorescence filter assemblies and fluorescence imaging lenses;
其中,若干个所述荧光滤光组件包括:Wherein, several described fluorescence filter assemblies include:
若干个不同波长的光源阻光片,其以可切换的形式分别配置至所述荧光检测光路,以分别滤除所述光源装置发射的激发光;以及,Several light source light blocking plates with different wavelengths are respectively arranged in the fluorescence detection optical path in a switchable form, so as to respectively filter out the excitation light emitted by the light source device; and,
若干个不同波长的荧光滤光片,其以可切换的形式分别配置至所述荧光检测光路,以分别滤除非所述荧光波长的杂散光。Fluorescence filters of different wavelengths are switchably arranged in the fluorescence detection light path respectively, so as to filter stray light of non-fluorescence wavelengths respectively.
本技术方案通过光源装置激发光和非所述荧光波长杂散光的滤除,可提高系统的信噪比,通过若干个不同波长的光源阻光片和荧光滤光片之间的组合切换,可采集PCR微滴散发的不同波长的荧光图像,实现多重数字PCR功能。This technical solution can improve the signal-to-noise ratio of the system by filtering out the excitation light of the light source device and the stray light of non-fluorescence wavelengths, and can improve the signal-to-noise ratio of the system through the combined switching between light blocking sheets and fluorescent filters of several different wavelengths. Collect fluorescence images of different wavelengths emitted by PCR droplets to realize multiple digital PCR functions.
本发明的目的还可以进一步由大面积数字PCR微滴荧光高通量检测的方法来实现,该方法包括如下步骤:The purpose of the present invention can also be further realized by the method of large-area digital PCR droplet fluorescence high-throughput detection, which method comprises the following steps:
步骤1:将已完成微滴处理的数字PCR芯片放置在载物台,所述数字PCR芯片与温控装置相接;Step 1: placing the digital PCR chip that has completed the droplet processing on the stage, and the digital PCR chip is connected to the temperature control device;
步骤2:进行一次PCR温度循环,过程为:升温至92~96度,停留25~40s,降温至53~57度,停留25~35s,升温至70~74度,停留35~45s;Step 2: Carry out a PCR temperature cycle, the process is: heat up to 92-96 degrees, stay for 25-40s, cool down to 53-57 degrees, stay for 25-35s, heat up to 70-74 degrees, stay for 35-45s;
步骤3:将物镜装置切换至最低倍率物镜;Step 3: Switch the objective lens device to the lowest magnification objective lens;
步骤4:将光源装置、成像装置切换至第一荧光染料或探针对应的光路;Step 4: switch the light source device and imaging device to the optical path corresponding to the first fluorescent dye or probe;
步骤5:对所述数字PCR芯片的水平两维度进行等分,得到若干矩形或长方形区域,每个区域面积为S,并对每个区域进行微滴荧光图像获取,其中所述S为1mm2~16mm2;Step 5: Equally divide the two horizontal dimensions of the digital PCR chip to obtain a number of rectangles or rectangular areas, each area is S, and perform microdroplet fluorescence image acquisition on each area, wherein S is 1mm 2 ~16mm 2 ;
步骤6:将光源装置、成像装置切换至第二荧光染料或探针对应的光路,再次执行所述步骤5,完成第二荧光染料的图像的检测;Step 6: switch the light source device and the imaging device to the optical path corresponding to the second fluorescent dye or the probe, and perform the step 5 again to complete the detection of the image of the second fluorescent dye;
步骤7:重复所述步骤6,直至所有荧光染料或探针均已探测完毕;Step 7: Repeat the step 6 until all fluorescent dyes or probes have been detected;
步骤8:将物镜装置切换至次低倍率物镜,重复所述步骤4、步骤5、步骤6和步骤7;Step 8: Switch the objective lens device to the second-lowest magnification objective lens, and repeat the steps 4, 5, 6 and 7;
步骤9:重复所述步骤8,直至物镜的所有倍率的切换完毕,所有荧光染料探测完毕;Step 9: Repeat the step 8 until the switching of all magnifications of the objective lens is completed, and the detection of all fluorescent dyes is completed;
步骤10:重复步骤2~步骤9,并计数,每重复一次,计数一次,直至计数大于N,其中N代表扩增循环次数,所述N为30~40次;Step 10: Repeat steps 2 to 9, and count, and count once each time it is repeated, until the count is greater than N, where N represents the number of amplification cycles, and N is 30 to 40 times;
步骤11:完成测试,进行后续图像处理和每个数字PCR液滴的qPCR计算,统计阴性阳性微滴个数,并计算浓度。Step 11: Complete the test, perform subsequent image processing and qPCR calculation of each digital PCR droplet, count the number of negative and positive droplets, and calculate the concentration.
优选的是,其中,在所述步骤5中,Preferably, wherein, in the step 5,
将所述数字PCR芯片在水平方向上的任一维度进行等分,得到若干宽度为W的长条状检测区域,连续扫描所述长条状检测区域,获取每一条检测区域的连续图像,对数字PCR微流控芯片图像进行连续获取,其中,所述宽度W为1mm~3mm。Divide the digital PCR chip equally in any dimension in the horizontal direction to obtain several strip-shaped detection areas with a width of W, continuously scan the strip-shaped detection areas, and obtain continuous images of each detection area. The images of the digital PCR microfluidic chip are continuously acquired, wherein the width W is 1 mm to 3 mm.
本发明至少包括以下有益效果:The present invention at least includes the following beneficial effects:
本发明可以实现高通量、高灵敏度、高特异性的实时数字qPCR检测,对于提高数字PCR检测仪器性能和精度、通量具有重要意义。利用本发明技术方案,可以对低浓度的核酸样本进行快速高精度检测,对于癌症肿瘤、传染疾病、产前诊断等具有重要的意义,对于改善人们检测精度和期限、提高医疗检测技术、改进临床检测方法具有很重要的意义。The invention can realize real-time digital qPCR detection with high throughput, high sensitivity and high specificity, and has great significance for improving the performance, precision and throughput of digital PCR detection instruments. Utilizing the technical scheme of the present invention, low-concentration nucleic acid samples can be detected quickly and with high precision, which is of great significance for cancer tumors, infectious diseases, prenatal diagnosis, etc. The detection method is of great significance.
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。Other advantages, objectives and features of the present invention will partly be embodied through the following descriptions, and partly will be understood by those skilled in the art through the study and practice of the present invention.
附图说明Description of drawings
图1为一实例中一体化数字PCR芯片的结构示意图;Fig. 1 is a structural representation of an integrated digital PCR chip in an example;
图2为另一实例中一体化数字PCR芯片的结构示意图;Fig. 2 is a structural representation of an integrated digital PCR chip in another example;
图3为另一实例中高通量一体化数字PCR芯片结构示意图(48阵列);Fig. 3 is a structural schematic diagram of a high-throughput integrated digital PCR chip (48 arrays) in another example;
图4为另一实例中大面积数字PCR微滴荧光高通量检测装置结构框图;Fig. 4 is a structural block diagram of a large-area digital PCR droplet fluorescent high-throughput detection device in another example;
图5为另一实例中大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 5 is a structural schematic diagram of a large-area digital PCR droplet fluorescence high-throughput detection device in another example;
图6为另一实例中具有一维运动机构载物台装置的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 6 is a structural schematic diagram of a large-area digital PCR droplet fluorescence high-throughput detection device with a one-dimensional motion mechanism stage device in another example;
图7为另一实例中具有两维运动机构载物台装置的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 7 is a structural schematic diagram of a large-area digital PCR droplet fluorescence high-throughput detection device with a two-dimensional motion mechanism stage device in another example;
图8为另一实例中具有多个不同倍率物镜切换装置的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 8 is a structural schematic diagram of a large-area digital PCR droplet fluorescence high-throughput detection device with multiple different magnification objective lens switching devices in another example;
图9为具有光源滤光片切换机构的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 9 is a schematic structural diagram of a large-area digital PCR droplet fluorescence high-throughput detection device with a light source filter switching mechanism;
图10具有多个单色光源组的的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 10 is a schematic structural diagram of a large-area digital PCR droplet fluorescence high-throughput detection device with multiple monochromatic light source groups;
图11为另一实例中具有激发光聚焦透镜组件的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 11 is a structural schematic diagram of a large-area digital PCR droplet fluorescence high-throughput detection device with an excitation light focusing lens assembly in another example;
图12为另一实例中具有荧光聚焦透镜组件的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 12 is a structural schematic diagram of a large-area digital PCR droplet fluorescent high-throughput detection device with a fluorescent focusing lens assembly in another example;
图13为另一实例中同时具有激发光和荧光聚焦透镜组件的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 13 is a structural schematic diagram of a large-area digital PCR droplet fluorescence high-throughput detection device with both excitation light and fluorescence focusing lens assemblies in another example;
图14为另一实例中具有荧光滤光组件切换机构的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 14 is a structural schematic diagram of a large-area digital PCR droplet fluorescent high-throughput detection device with a fluorescent filter assembly switching mechanism in another example;
图15为另一实例中数字PCR芯片被两维等分成矩形检测区域的示意图;Fig. 15 is a schematic diagram of a digital PCR chip being divided into rectangular detection areas in two dimensions in another example;
图16为另一实例中数字PCR芯片被一维等分成长条状检测区域的示意图;Fig. 16 is a schematic diagram of a digital PCR chip being one-dimensionally divided into strip-shaped detection areas in another example;
图17为另一实例中用于两重数字PCR的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 17 is a structural schematic diagram of a large-area digital PCR microdroplet fluorescence high-throughput detection device for double digital PCR in another example;
图18为另一实例中用于六重数字PCR的大面积数字PCR微滴荧光高通量检测装置结构示意图;Fig. 18 is a structural schematic diagram of a large-area digital PCR droplet fluorescent high-throughput detection device for six-fold digital PCR in another example;
图19为另一实例中光源滤光片固定装置的结构示意图;Fig. 19 is a schematic structural view of a light source filter fixing device in another example;
图20为另一实例中成像装置中荧光滤光片固定装置的结构示意图。Fig. 20 is a schematic structural diagram of a fluorescence filter fixing device in an imaging device in another example.
具体实施方式detailed description
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。The present invention will be further described in detail below in conjunction with the accompanying drawings, so that those skilled in the art can implement it with reference to the description.
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。It should be understood that terms such as "having", "comprising" and "including" as used herein do not entail the presence or addition of one or more other elements or combinations thereof.
参照图4和图5,作为本发明的一种实现形式,大面积数字PCR微滴荧光高通量检测装置包括:Referring to Figure 4 and Figure 5, as an implementation form of the present invention, the large-area digital PCR droplet fluorescence high-throughput detection device includes:
物镜装置200,其位于数字PCR芯片正上方,用于整个数字PCR荧光图像采集的最前端;The objective lens device 200, which is located directly above the digital PCR chip, is used for the front end of the entire digital PCR fluorescence image acquisition;
光源装置300,用于数字PCR微滴的荧光激发;A light source device 300, used for fluorescence excitation of digital PCR micro-droplets;
聚焦装置400,其一方面将光源装置300发来的光汇聚到数字PCR芯片1上,另一方面将数字PCR芯片1产生的荧光收集,并传向成像光路装置500和图像采集传感器600,从而用于光源照明与荧光成像的耦合;The focusing device 400, on the one hand, converges the light from the light source device 300 onto the digital PCR chip 1, and on the other hand collects the fluorescence generated by the digital PCR chip 1, and transmits it to the imaging optical path device 500 and the image acquisition sensor 600, thereby Used for the coupling of light source illumination and fluorescence imaging;
成像光路装置500,其用于将荧光图像进行整形和滤光,并将之成像与图像采集传感器上600,从而用于数字PCR微滴的荧光成像;Imaging optical path device 500, which is used to shape and filter the fluorescence image, and image it on the image acquisition sensor 600, so as to be used for fluorescence imaging of digital PCR microdroplets;
图像采集传感器600,其用于对荧光图像的获取和转换成数字化图像,对数字PCR微滴的荧光图像实时采集。The image acquisition sensor 600 is used for acquiring and converting the fluorescent image into a digital image, and collecting the fluorescent image of the digital PCR droplet in real time.
PCR温控装置700,其用于对数字PCR芯片1进行精确的温度循环控制,实现微滴数字PCR的扩增过程;以及,A PCR temperature control device 700, which is used to precisely control the temperature cycle of the digital PCR chip 1 to realize the amplification process of the micro-droplet digital PCR; and,
载物台装置800,其用于承载数字PCR微滴微流控芯片及其温控装置。The stage device 800 is used to carry the digital PCR droplet microfluidic chip and its temperature control device.
在这种技术方案中,包括荧光激发光路和荧光检测光路;In this technical solution, it includes a fluorescence excitation light path and a fluorescence detection light path;
沿所述荧光激发光路,光源装置发射的激发光依次经聚焦装置和物镜装置入射至置于载物台的数字PCR芯片上;Along the fluorescent excitation optical path, the excitation light emitted by the light source device is incident on the digital PCR chip placed on the stage through the focusing device and the objective lens device in sequence;
沿所述荧光检测光路,所述数字PCR芯片受所述激发光产生的荧光依次经所述物镜装置、所述聚焦装置和成像装置成像后传输至图像采集传感器;Along the fluorescence detection optical path, the fluorescence generated by the digital PCR chip by the excitation light is sequentially imaged by the objective lens device, the focusing device and the imaging device, and then transmitted to the image acquisition sensor;
其中,其中所述载物台还设有温控装置,所述温控装置实时控制所述数字PCR芯片反应的循环温度。Wherein, the stage is further provided with a temperature control device, and the temperature control device controls the cycle temperature of the reaction of the digital PCR chip in real time.
通过向数字PCR反应体系添加多种荧光染料或探针,配合不同mix、引物,可以实现多重数字PCR。其中,PCR重数与添加的荧光染料或探针的种类相同,譬如,两重PCR,则需要两个荧光染料或探针。Multiplex digital PCR can be realized by adding a variety of fluorescent dyes or probes to the digital PCR reaction system with different mixes and primers. Wherein, the number of PCR multiplexes is the same as that of the added fluorescent dyes or probes, for example, two fluorescent dyes or probes are required for double PCR.
另一种实例中,所述载物台固定设于光路路径上,或至少具有一个平移自由度,以实现一维或二维扫描方式进行图像采集,从而扩大检测区域。In another example, the object stage is fixed on the optical path, or has at least one translational degree of freedom, so as to realize image acquisition in a one-dimensional or two-dimensional scanning manner, thereby enlarging the detection area.
参照图6,在实现载物台一维自由度的一种实施方式中,载物台装置800包括伺服电机803、传动装置802、位置检测装置806,以实现对载物台801的水平X方向上一维精密运动控制。通过对载物台的一维运动,来实现成像系统对数字PCR芯片的一维扫描检测,以提高检测范围,实现大面积高通量检测。其中,伺服电机803可以为步进伺服电机、直流伺服电机、交流伺服电机,传动装置802可以为滚珠丝杆传动装置,位置传感器可以为直线光栅编码器、电阻式位移传感器。Referring to FIG. 6 , in an embodiment for realizing the one-dimensional degree of freedom of the stage, the stage device 800 includes a servo motor 803, a transmission device 802, and a position detection device 806 to realize the horizontal X direction of the stage 801. One-dimensional precision motion control. Through the one-dimensional movement of the stage, the one-dimensional scanning detection of the digital PCR chip by the imaging system is realized, so as to improve the detection range and realize large-area high-throughput detection. Wherein, the servo motor 803 may be a stepping servo motor, a DC servo motor, or an AC servo motor, the transmission device 802 may be a ball screw transmission device, and the position sensor may be a linear grating encoder or a resistive displacement sensor.
参照图7,在实现载物台二维自由度的一种实施方式中,载物台装置800包括一对伺服电机803和805,一对传动装置802和804,一对位置检测装置806和807,以实现对载物台801的水平方向上X、Y两维精密运动控制。通过对载物台的两维运动,来实现成像系统对数字PCR芯片的两维扫描检测,以提高检测范围,实现大面积高通量检测。Referring to FIG. 7 , in an embodiment for realizing the two-dimensional freedom of the stage, the stage device 800 includes a pair of servo motors 803 and 805, a pair of transmission devices 802 and 804, and a pair of position detection devices 806 and 807. , so as to realize the X, Y two-dimensional precise motion control of the stage 801 in the horizontal direction. Through the two-dimensional movement of the stage, the two-dimensional scanning detection of the digital PCR chip by the imaging system is realized, so as to improve the detection range and realize large-area high-throughput detection.
另一种实例中,所述物镜装置包括一个物镜,其固定设于光路中。In another example, the objective lens device includes an objective lens fixedly arranged in the optical path.
另一种实例中,所述物镜装置包括若干个不同倍率的物镜,其以可切换的形式分别被配置至光路中。In another example, the objective lens device includes several objective lenses with different magnifications, which are respectively arranged in the optical path in a switchable manner.
参照图8,可实现不同倍率物镜自动切换的一种实施方式为:物镜装置200包含伺服电机205、传动装置204、转动铰链203、物镜固定板202、一组物镜201和图中没有绘出的控制单元。其中,物镜201在物镜固定板202上以转动铰链203为中心等径分布。伺服电机205通过传动装置204、转动铰链203,可以带动物镜固定板202进行旋转运动,进而可以将所需要的放大倍率物镜切换至光路中聚焦装置400前端。其中,伺服电机205可以为步进伺服电机、直流伺服电机、交流伺服电机,传动装置204可以为带轮传动装置、齿轮传动装置等,转动铰链203可以为旋转轴承。采用这种方案可通过自动化切换实现不同放大倍率的微滴荧光图像获取。并且,这种方式只是一种较佳实例的说明,但并不局限于此。在实施本发明时,可以根据使用者需求实施物镜不同的切换态样。With reference to Fig. 8, a kind of embodiment that can realize the automatic switching of objective lens of different magnifications is: objective lens device 200 comprises servo motor 205, transmission device 204, rotating hinge 203, objective lens fixed plate 202, a group of objective lens 201 and not drawn in the figure control unit. Wherein, the objective lenses 201 are equidiametrically distributed on the objective lens fixing plate 202 with the rotating hinge 203 as the center. The servo motor 205 can drive the objective lens fixed plate 202 to rotate through the transmission device 204 and the rotating hinge 203, and then can switch the required magnification objective lens to the front end of the focusing device 400 in the optical path. Wherein, the servo motor 205 can be a stepping servo motor, a DC servo motor, an AC servo motor, the transmission device 204 can be a pulley transmission device, a gear transmission device, etc., and the rotating hinge 203 can be a rotary bearing. With this scheme, the acquisition of microdroplet fluorescence images with different magnifications can be realized through automatic switching. Moreover, this manner is only an illustration of a preferred example, but is not limited thereto. When implementing the present invention, different switching modes of the objective lens can be implemented according to user requirements.
另一种实例中,所述物镜的倍率选自2X、4X、5X或10X。In another example, the magnification of the objective lens is selected from 2X, 4X, 5X or 10X.
另一种实例中,参照图9,所述光源装置300包括:In another example, referring to FIG. 9, the light source device 300 includes:
光源组件,其通过混合光源发射部件301和凸镜302,提供平行混合光源;A light source component, which provides a parallel mixed light source by mixing the light source emitting part 301 and the convex mirror 302;
光源滤光片组件,其具有:A light source filter assembly having:
一个光源滤光片303,其固定设于所述荧光激发光路中,或A light source filter 303, which is fixedly arranged in the fluorescence excitation optical path, or
若干个光源滤光片303,其以可切换的形式分别配置至所述荧光激发光路中。Several light source filters 303 are respectively arranged in the fluorescence excitation optical path in a switchable manner.
在该技术方案中,实现不同波长光源滤光片自动切换的实施方式为:光源装置300由卤素灯301、透镜302、一系列滤光片303、滤光片固定板305、转动铰链304、传动装置306、伺服电机307和控制单元(图中未画出)组成。透镜302用于将光源301发出的光进行准直,形成平行光束。伺服电机307通过传动装置306和转动铰链304带动滤光片固定板305做旋转运动,将不同波长的滤光片303切换至透镜302前端,实现光源装置300不同波长的单色光输出。其中,传动装置306可以为带轮传动、齿轮传动,转动铰链304可以为旋转动铰链承。伺服电机可以为步进伺服电机、直流伺服电机或交流伺服电机。并且,这种方式只是一种较佳实例的说明,但并不局限于此。在实施本发明时,可以根据使用者需求实施光源滤光片的不同切换态样。In this technical solution, the implementation mode to realize the automatic switching of different wavelength light source filters is as follows: the light source device 300 is composed of a halogen lamp 301, a lens 302, a series of filters 303, a filter fixing plate 305, a rotating hinge 304, a transmission Device 306, servo motor 307 and control unit (not shown in the figure). The lens 302 is used to collimate the light emitted by the light source 301 to form a parallel light beam. The servo motor 307 drives the filter fixing plate 305 to rotate through the transmission device 306 and the rotating hinge 304, and switches the filters 303 of different wavelengths to the front end of the lens 302 to realize the monochromatic light output of the light source device 300 with different wavelengths. Wherein, the transmission device 306 may be a pulley transmission or a gear transmission, and the rotating hinge 304 may be a rotating dynamic hinge bearing. The servo motor can be a stepping servo motor, a DC servo motor or an AC servo motor. Moreover, this manner is only an illustration of a preferred example, but is not limited thereto. When implementing the present invention, different switching modes of the light source filter can be implemented according to user requirements.
另一种实例中,参照图10,所述光源装置300包括若干个单色光源组;In another example, referring to FIG. 10, the light source device 300 includes several monochromatic light source groups;
沿光路前进方向,所述单色光源组依次包括:单色光源301、快门308和光源透镜302;其中,所述快门308通断控制所述荧光激发光路。Along the forward direction of the optical path, the monochromatic light source group includes in sequence: a monochromatic light source 301 , a shutter 308 and a light source lens 302 ; wherein the shutter 308 controls the fluorescence excitation optical path on and off.
另一实例中,所述光源装置300包括:In another example, the light source device 300 includes:
两个及以上单色光源组;Two or more monochromatic light source groups;
若干个第一分色镜309,其将所述单色光源组的发射光路合束并导入所述荧光激发光路。Several first dichroic mirrors 309 combine the emission light paths of the monochromatic light source groups and lead them into the fluorescence excitation light path.
在该实施方式中,光源装置300由多个单色光源301、透镜302、快门308、第一分色镜309组成。其中,每个光源301都对应一个快门308,用于控制该光源的通断。第一分色镜309用于实现两束光的合束,第一分色镜309的数量为光源301数量减1,实现所有光源发出的光的合束。通过快门308控制哪路单色光输出和引入系统。光源可以为激光源、LED等,但不限于此。In this embodiment, the light source device 300 is composed of a plurality of monochromatic light sources 301 , a lens 302 , a shutter 308 , and a first dichroic mirror 309 . Wherein, each light source 301 corresponds to a shutter 308 for controlling the light source to be turned on and off. The first dichroic mirror 309 is used to combine the two beams of light, and the number of the first dichroic mirrors 309 is the number of the light sources 301 minus 1, so as to realize the beam combining of the light emitted by all the light sources. The shutter 308 controls which monochromatic light is output and introduced into the system. The light source may be a laser source, LED, etc., but is not limited thereto.
另一实例中,参照图5,聚焦装置包括:In another example, referring to Fig. 5, the focusing device includes:
第二分色镜,其反射光源装置发射的激发光同时透过所述数字PCR芯片受激产生的荧光。The second dichroic mirror reflects the excitation light emitted by the light source device and simultaneously transmits the fluorescent light generated by the digital PCR chip.
在该实施方式中,聚焦装置400仅包含一个第二分色镜401,第二分色镜401一方面用于将光源系统300发来的光反射至数字PCR芯片1上,对数字PCR液滴进行激发;另一方面用于透过数字PCR芯片上液滴产生的荧光,并使之进入成像装置500。In this embodiment, the focusing device 400 only includes a second dichroic mirror 401. On the one hand, the second dichroic mirror 401 is used to reflect the light from the light source system 300 onto the digital PCR chip 1, and the digital PCR droplet For excitation; on the other hand, it is used to pass through the fluorescence generated by the liquid droplets on the digital PCR chip, and make it enter the imaging device 500 .
另一实例中,参见图11,聚焦装置400还包括:In another example, referring to FIG. 11 , the focusing device 400 further includes:
第一聚焦透镜组件,其包含透镜402和透镜403,第一聚焦透镜组件设于所述光源装置300与所述第二分色镜401之间,用于将光源装置300发来的光进行准直和扩束,以改变激发光斑尺寸和质量。The first focusing lens assembly includes a lens 402 and a lens 403, the first focusing lens assembly is arranged between the light source device 300 and the second dichroic mirror 401, and is used to collimate the light from the light source device 300 Straighten and expand beams to vary excitation spot size and quality.
另一实例中,参见图12,聚焦装置还包括:In another example, referring to Fig. 12, the focusing device further includes:
第二聚焦透镜组件,其包含透镜404和透镜405,第二聚焦透镜组件对经过物镜装置200发来的荧光进行准直和扩束,与成像透镜501配合,提高成像质量。The second focusing lens assembly includes a lens 404 and a lens 405. The second focusing lens assembly collimates and expands the fluorescence emitted by the objective lens device 200, and cooperates with the imaging lens 501 to improve imaging quality.
另一实例中,参见图13,聚焦装置还同时包含透镜402、透镜403、透镜404和405,改变激发光斑尺寸,提高成像质量。In another example, referring to FIG. 13 , the focusing device also includes a lens 402 , a lens 403 , and lenses 404 and 405 to change the size of the excitation spot and improve the imaging quality.
另一实例中,沿所述荧光检测光路,所述成像装置500依次包括单个荧光滤光组件和荧光成像透镜501;In another example, along the fluorescence detection optical path, the imaging device 500 sequentially includes a single fluorescence filter assembly and a fluorescence imaging lens 501;
其中,所述荧光滤光组件固设于所述荧光检测光路,所述荧光滤光组件具有:Wherein, the fluorescence filter assembly is fixed in the fluorescence detection optical path, and the fluorescence filter assembly has:
光源阻光片,其滤除所述光源装置发射的激发光;以及,a light source light blocking sheet, which filters out the excitation light emitted by the light source device; and,
荧光滤光片,其滤除非所述荧光波长的杂散光。A fluorescence filter that filters out stray light at wavelengths other than the stated fluorescence.
另一实例中,参照图14,沿所述荧光检测光路,所述成像装置依次包括荧光滤光组件和荧光成像透镜501;In another example, referring to FIG. 14 , along the fluorescence detection optical path, the imaging device sequentially includes a fluorescence filter assembly and a fluorescence imaging lens 501;
其中,所述荧光滤光组件包括:Wherein, the fluorescent filter assembly includes:
若干个不同波长的光源阻光片,其以可切换的形式分别配置至所述荧光检测光路,以分别滤除所述光源装置发射的激发光;以及,Several light source light blocking plates with different wavelengths are respectively arranged in the fluorescence detection optical path in a switchable form, so as to respectively filter out the excitation light emitted by the light source device; and,
若干个不同波长的荧光滤光片,其以可切换的形式分别配置至所述荧光检测光路,以分别滤除非所述荧光波长的杂散光。Fluorescence filters of different wavelengths are switchably arranged in the fluorescence detection light path respectively, so as to filter stray light of non-fluorescence wavelengths respectively.
在该实施方式中,成像装置500包含多组滤光片(每组滤光片包括一个光源阻光片和一个荧光滤光片),和用于各组滤光片之间切换的滤光片固定板505、转动铰链504、传动装置506、伺服电机507,和控制单元(图中未画出)。伺服电机507通过传动装置506和转动铰链505带动位于滤光片固定板505上的滤光片502和滤光片503做旋转运动,将所需的任一组滤光片502和滤光片503切换至图像采集传感器700前端,实现激发光的滤除和所需荧光波段的采集。所述的成像装置中各组滤光片502和滤光片503与激发光源发出的各单色光相集合,可以实现不同染料的数字PCR荧光激发与探测,进而实现多重数字PCR。In this embodiment, the imaging device 500 includes multiple sets of filters (each set of filters includes a light source block and a fluorescence filter), and filters for switching between the sets of filters Fixed plate 505, rotating hinge 504, transmission device 506, servo motor 507, and control unit (not shown in the figure). The servo motor 507 drives the optical filter 502 and the optical filter 503 on the optical filter fixing plate 505 to rotate through the transmission device 506 and the rotating hinge 505, and any desired set of optical filters 502 and optical filters 503 Switch to the front end of the image acquisition sensor 700 to achieve filtering of excitation light and acquisition of required fluorescence wavelength bands. Each set of filters 502 and 503 in the imaging device are combined with the monochromatic lights emitted by the excitation light source, which can realize digital PCR fluorescence excitation and detection of different dyes, and then realize multiple digital PCR.
另一实例中,一种实现大面积数字PCR微滴荧光高通量检测的方法,包括如下步骤:In another example, a method for realizing large-area digital PCR droplet fluorescence high-throughput detection includes the following steps:
步骤1),放置已经完成数字PCR微滴生成的微流控芯片1至载物台801,与PCR温控装置700相接。Step 1), place the microfluidic chip 1 that has completed the digital PCR droplet generation on the stage 801, and connect with the PCR temperature control device 700.
步骤2),进行一次PCR温度循环,过程为:升温至92~96度,停留25~40s,降温至53~57度,停留25~35s,升温至70~74度,停留35~45s;Step 2), perform a PCR temperature cycle, the process is as follows: heat up to 92-96 degrees, stay for 25-40s, cool down to 53-57 degrees, stay for 25-35s, heat up to 70-74 degrees, stay for 35-45s;
步骤3),物镜装置200切换至最低倍率物镜;Step 3), the objective lens device 200 is switched to the lowest magnification objective lens;
步骤4),光源装置、成像装置切换至第一染料或探针对应的光路。Step 4), the light source device and the imaging device are switched to the optical path corresponding to the first dye or probe.
步骤5),参见图15,将数字PCR微流控芯片1在水平两垂直方向上X、Y进行等分,为若干矩形或长方形区域101,每个区域具有长L和宽W,并对每个区域进行微滴荧光图像获取。所述长L为1mm~4mm,所述宽W为1mm~4mm;Step 5), referring to FIG. 15 , the digital PCR microfluidic chip 1 is equally divided into horizontal and vertical directions X and Y to form several rectangular or rectangular areas 101, each area has a length L and a width W, and each Fluorescent images of microdroplets were acquired in each area. The length L is 1 mm to 4 mm, and the width W is 1 mm to 4 mm;
步骤6),光源装置300、成像装置500切换至下一染料对应的光路。再次执行步骤5),完成下一荧光染料或探针的图像的检测;Step 6), the light source device 300 and the imaging device 500 switch to the optical path corresponding to the next dye. Perform step 5) again to complete the detection of the image of the next fluorescent dye or probe;
步骤7),重复步骤6),直至所有荧光染料或探针探测完毕;Step 7), repeat step 6), until all fluorescent dyes or probes are detected;
步骤8),物镜装置200切换至次低倍率物镜;重复步骤4)、步骤5)、步骤6)、步骤7);Step 8), the objective lens device 200 switches to the second low magnification objective lens; repeat step 4), step 5), step 6), step 7);
步骤9),重复步骤8),直至所有倍率的物镜切换完毕,所有荧光染料或探针探测完毕;Step 9), repeat step 8), until the objective lenses of all magnifications are switched, and all fluorescent dyes or probes are detected;
步骤10),重复步骤2)~步骤9),并计数,每重复一次,计数一次,直至计数大于N;所述N代表扩增循环次数,为30~40;Step 10), repeat steps 2) to 9), and count, and count once each time it is repeated, until the count is greater than N; said N represents the number of amplification cycles, which is 30 to 40;
步骤11),完成全部测试,进行后续图像处理和每个数字PCR液滴的qPCR计算,统计阴性阳性微滴个数,并计算浓度。Step 11), complete all tests, perform subsequent image processing and qPCR calculation of each digital PCR droplet, count the number of negative and positive droplets, and calculate the concentration.
另一实例中,一种实现大面积数字PCR微滴荧光高通量检测的方法,包括如下步骤:In another example, a method for realizing large-area digital PCR droplet fluorescence high-throughput detection includes the following steps:
步骤1),放置已经完成数字PCR微滴生成的微流控芯片1至载物台801,与PCR温控装置700相接。Step 1), place the microfluidic chip 1 that has completed the digital PCR droplet generation on the stage 801, and connect with the PCR temperature control device 700.
步骤2),进行一次PCR温度循环,过程为:升温至92~96度,停留25~40s,降温至53~57度,停留25~35s,升温至70~74度,停留35~45s;Step 2), perform a PCR temperature cycle, the process is as follows: heat up to 92-96 degrees, stay for 25-40s, cool down to 53-57 degrees, stay for 25-35s, heat up to 70-74 degrees, stay for 35-45s;
步骤3),物镜装置200切换至最低倍率物镜;Step 3), the objective lens device 200 is switched to the lowest magnification objective lens;
步骤4),光源装置、成像装置切换至第一染料或探针对应的光路。Step 4), the light source device and the imaging device are switched to the optical path corresponding to the first dye or probe.
步骤5),参见图16,将数字PCR芯片在水平方向上的一个维度进行等分,等分为一系列宽度为W的长条状检测区域,通过连续扫描方式,获取每一条检测区域的连续图像,对数字PCR微流控芯片图像进行连续获取,所述宽度W为1mm~3mm;Step 5), referring to Figure 16, divide the digital PCR chip into equal parts in one dimension in the horizontal direction, and divide it into a series of strip-shaped detection areas with a width of W, and obtain the continuous detection area of each detection area through continuous scanning. Images, continuously acquiring images of the digital PCR microfluidic chip, the width W is 1 mm to 3 mm;
步骤6),光源装置300、成像装置500切换至下一染料对应的光路。再次执行步骤5),完成下一荧光染料或探针的图像的检测;Step 6), the light source device 300 and the imaging device 500 switch to the optical path corresponding to the next dye. Perform step 5) again to complete the detection of the image of the next fluorescent dye or probe;
步骤7),重复步骤6),直至所有荧光染料或探针探测完毕;Step 7), repeat step 6), until all fluorescent dyes or probes are detected;
步骤8)物镜装置200切换至次低倍率物镜;重复步骤4)、步骤5)、步骤6)、步骤7);Step 8) The objective lens device 200 is switched to the next low magnification objective lens; Step 4), step 5), step 6), step 7) are repeated;
步骤9),重复步骤8),直至所有倍率的物镜切换完毕,所有荧光染料或探针探测完毕;Step 9), repeat step 8), until the objective lenses of all magnifications are switched, and all fluorescent dyes or probes are detected;
步骤10),重复步骤2)~步骤9),并计数,每重复一次,计数一次,直至计数大于N;所述N代表扩增循环次数,为30~40;Step 10), repeat steps 2) to 9), and count, and count once each time it is repeated, until the count is greater than N; said N represents the number of amplification cycles, which is 30 to 40;
步骤11),完成全部测试,进行后续图像处理和每个数字PCR液滴的qPCR计算,统计阴性阳性微滴个数,并计算浓度。Step 11), complete all tests, perform subsequent image processing and qPCR calculation of each digital PCR droplet, count the number of negative and positive droplets, and calculate the concentration.
下面结合具体实施例对本发明做进一步的详细说明:Below in conjunction with specific embodiment the present invention is described in further detail:
<实例1><Example 1>
所需检测的数字PCR微流控芯片参数为:实现两重数字PCR,使用第一染料和第二染料,激发波长分别为488nm、532nm,荧光波长分别为515nm和560nm,微滴数字PCR微流控芯片集成有48个单样品检测结构,整体芯片长150mm,宽100mm。The parameters of the digital PCR microfluidic chip to be detected are: to achieve double digital PCR, use the first dye and the second dye, the excitation wavelengths are 488nm and 532nm, the fluorescence wavelengths are 515nm and 560nm, respectively, and the droplet digital PCR microfluidic The control chip integrates 48 single-sample detection structures, and the overall chip is 150mm long and 100mm wide.
参见图17,针对此芯片,提出一种用于单层平铺的数字PCR液滴的实时荧光图像获取装置,包括:Referring to Figure 17, for this chip, a real-time fluorescent image acquisition device for digital PCR droplets tiled on a single layer is proposed, including:
物镜装置200,包含4X和10X放大倍率的两个物镜2011、2012;Objective lens device 200, including two objective lenses 2011, 2012 with magnifications of 4X and 10X;
光源装置300,用于数字PCR微滴的荧光激发,包括两个激光器3011、3012,两组快门3081、3082,两组透镜3021、3022,和一二色镜3091;其中,激光器3011波长为488nm,激光器3012波长为532nm,透镜3021、3022具有前端焦距50mm,后端焦距47mm。The light source device 300 is used for fluorescence excitation of digital PCR microdroplets, including two lasers 3011, 3012, two sets of shutters 3081, 3082, two sets of lenses 3021, 3022, and a dichromatic mirror 3091; wherein, the wavelength of the laser 3011 is 488nm , the laser 3012 has a wavelength of 532nm, the lenses 3021 and 3022 have a front focal length of 50mm, and a rear focal length of 47mm.
聚焦装置400,用于光源照明与荧光成像的耦合,包括二色镜401、两组透镜402、403、404、405;透镜402、403将光源发来的光进行扩束,使之形成直径3mm圆光斑照射至数字PCR微滴微流控芯片上;透镜404、405将从数字PCR微滴微流控芯片上散发的荧光整形,与成像光路相结合,使之成为直径2mm图像照射至图像采集传感器700上。The focusing device 400 is used for the coupling of light source illumination and fluorescence imaging, including a dichromatic mirror 401, two sets of lenses 402, 403, 404, and 405; the lenses 402, 403 expand the light beam from the light source to form a beam with a diameter of 3mm The circular light spot is irradiated onto the digital PCR droplet microfluidic chip; the lenses 404 and 405 shape the fluorescence emitted from the digital PCR droplet microfluidic chip, and combine it with the imaging optical path to make an image with a diameter of 2mm irradiated to the image acquisition sensor 700 on.
成像光路装置500,用于数字PCR微滴的荧光成像,包括两组滤光片5021、5031、5022、5032;和汇聚透镜501、滤光片固定板505、转动铰链504、传动装置506、伺服电机507组成。其中,滤除光源波长的滤光片5031、5032分别为长波通滤光片,截止频率分别为500nm、540nm,荧光滤光片5021、5022分别为中心波长515nm、560nm,带宽30nm滤光片,透镜501具有前端焦距50mm,后端焦距47mm;Imaging optical path device 500, used for fluorescence imaging of digital PCR microdroplets, includes two sets of optical filters 5021, 5031, 5022, 5032; The motor 507 is composed. Among them, the filters 5031 and 5032 for filtering the wavelength of the light source are long-wave pass filters respectively, and the cut-off frequencies are 500nm and 540nm respectively, and the fluorescence filters 5021 and 5022 are filters with a central wavelength of 515nm and 560nm and a bandwidth of 30nm, respectively. The lens 501 has a front focal length of 50 mm and a rear focal length of 47 mm;
图像采集传感器600,用于数字PCR微滴的荧光图像实时采集,为面阵CCD图像传感器;Image acquisition sensor 600, used for real-time acquisition of fluorescence images of digital PCR droplets, is an area array CCD image sensor;
PCR温控装置700,用于数字PCR微滴的温度循环控制,包括温度传感器702、加热的采用帕尔贴作为加热执行器704和降温执行器703、传热快701;其中,701为通过机加工形成的铝合金件,加热执行器704为加热电阻丝、降温执行器703为风扇,温度传感器702为热电偶传感器。The PCR temperature control device 700 is used for temperature cycle control of digital PCR microdroplets, including a temperature sensor 702, a Peltier for heating as a heating actuator 704, a cooling actuator 703, and a heat transfer fast 701; wherein, 701 is a passing machine The processed aluminum alloy parts, the heating actuator 704 is a heating resistance wire, the cooling actuator 703 is a fan, and the temperature sensor 702 is a thermocouple sensor.
载物台装置,用于承载数字PCR微滴微流控芯片及其温控装置,包括载物台801,伺服电机803、805,传动装置802、804,位置传感器806、807。其中,伺服电机803、805为两相四线步进伺服电机,传动装置802、804为滚珠丝杆结构,行程分别为200mm和150mm,位置传感器806、807为直线光栅编码器,量程为200mm和150mm,精度0.01mm。The stage device is used to carry the digital PCR droplet microfluidic chip and its temperature control device, including a stage 801, servo motors 803, 805, transmission devices 802, 804, and position sensors 806, 807. Among them, the servo motors 803 and 805 are two-phase four-wire stepping servo motors, the transmission devices 802 and 804 are ball screw structures, and the strokes are 200 mm and 150 mm respectively, and the position sensors 806 and 807 are linear grating encoders with a measuring range of 200 mm and 150mm, precision 0.01mm.
具体检测过程如下:The specific detection process is as follows:
步骤1),放置已经完成数字PCR微滴生成的微流控芯片至载物台,与PCR温控装置相接。Step 1), place the microfluidic chip that has completed the generation of digital PCR droplets on the stage, and connect with the PCR temperature control device.
步骤2),进行一次PCR温度循环,过程为:升温至92~96度,停留25~40s,降温至53~57度,停留25~35s,升温至70~74度,停留35~45s;Step 2), perform a PCR temperature cycle, the process is as follows: heat up to 92-96 degrees, stay for 25-40s, cool down to 53-57 degrees, stay for 25-35s, heat up to 70-74 degrees, stay for 35-45s;
步骤3),物镜装置切换至最低倍率物镜;Step 3), the objective lens device is switched to the lowest magnification objective lens;
步骤4),光源装置、成像装置切换至第一染料对应的光路。Step 4), the light source device and the imaging device are switched to the optical path corresponding to the first dye.
步骤5),将数字PCR微流控芯片在水平两垂直方向上进行等分,为若干矩形或长方形区域,每个区域面积为S,并对每个区域进行微滴荧光图像获取。所述矩形区域为宽2mm的正方形;In step 5), the digital PCR microfluidic chip is equally divided in the horizontal and vertical directions into several rectangular or rectangular areas, each area is S, and microdroplet fluorescence images are acquired for each area. The rectangular area is a square with a width of 2 mm;
步骤6),光源装置、成像装置切换至下一染料对应的光路。再次执行步骤5),完成下一荧光染料的图像的检测;Step 6), the light source device and the imaging device switch to the optical path corresponding to the next dye. Perform step 5) again to complete the detection of the image of the next fluorescent dye;
步骤7),重复步骤6),直至所有荧光染料均已探测完毕;Step 7), repeat step 6), until all fluorescent dyes have been detected;
步骤8),物镜装置切换至次低倍率物镜;重复步骤4)、步骤5)、步骤6)、步骤7);Step 8), the objective lens device is switched to the next low magnification objective lens; repeat step 4), step 5), step 6), step 7);
步骤9),重复步骤8),直至所有倍率的物镜切换完毕,所有荧光染料探测完毕;Step 9), repeat step 8), until the switching of objective lenses of all magnifications is completed, and the detection of all fluorescent dyes is completed;
步骤10),重复步骤2)~步骤9),并计数,每重复一次,计数一次,直至计数大于N;所述N代表扩增循环次数,为30~40;Step 10), repeat steps 2) to 9), and count, and count once each time it is repeated, until the count is greater than N; said N represents the number of amplification cycles, which is 30 to 40;
步骤11),完成全部测试,进行后续图像处理和每个数字PCR液滴的qPCR计算,统计阴性阳性微滴个数,并计算浓度。Step 11), complete all tests, perform subsequent image processing and qPCR calculation of each digital PCR droplet, count the number of negative and positive droplets, and calculate the concentration.
<实例2><Example 2>
所需检测的数字PCR微流控芯片参数为:六重数字PCR,所用染料分别为:The parameters of the digital PCR microfluidic chip to be detected are: six-fold digital PCR, and the dyes used are:
荧光染料1:激发波长390nm,荧光波长420nm;Fluorescent dye 1: excitation wavelength 390nm, fluorescence wavelength 420nm;
荧光染料2:激发波长475nm,荧光波长522nm;Fluorescent dye 2: excitation wavelength 475nm, fluorescence wavelength 522nm;
荧光染料3:激发波长525nm,荧光波长577nm;Fluorescent dye 3: excitation wavelength 525nm, fluorescence wavelength 577nm;
荧光染料4:激发波长572nm,荧光波长628nm;Fluorescent dye 4: excitation wavelength 572nm, fluorescence wavelength 628nm;
荧光染料5:激发波长630nm,荧光波长675nm;Fluorescent dye 5: excitation wavelength 630nm, fluorescence wavelength 675nm;
荧光染料6:激发波长650nm,荧光波长710nm;Fluorescent dye 6: excitation wavelength 650nm, fluorescence wavelength 710nm;
微滴数字PCR微流控芯片集成有48个单样品检测结构,整体芯片长150mm,宽100mm。针对此芯片,参见图18,提出一种用于单层平铺的数字PCR液滴的实时荧光图像获取装置,包括:The droplet digital PCR microfluidic chip integrates 48 single-sample detection structures, and the overall chip is 150mm long and 100mm wide. For this chip, see Figure 18, a real-time fluorescent image acquisition device for digital PCR droplets tiled on a single layer is proposed, including:
物镜装置200,包含4X和10X放大倍率的两个物镜2011、2012;Objective lens device 200, including two objective lenses 2011, 2012 with magnifications of 4X and 10X;
光源装置300,用于数字PCR微滴的荧光激发,包括卤钨灯光源301,透镜302,滤光片固定板305、转动铰链3041、传动装置306、伺服电机307,和位于滤光片固定板305上的滤光片3031、3032、3033、3034、3035、3036,见图19。滤光片中心波长分别为390nm、475nm、525nm、572nm、630nm、650nm,带宽20nm;其中,透镜302具有前端焦距50mm,后端焦距47mm。伺服电机307为两相四线步进伺服电机,传动装置306为带轮传动机构,转动铰链为转动轴承;The light source device 300 is used for the fluorescence excitation of the digital PCR droplet, including a tungsten-halogen light source 301, a lens 302, an optical filter fixing plate 305, a rotating hinge 3041, a transmission device 306, a servo motor 307, and an optical filter fixing plate The optical filters 3031, 3032, 3033, 3034, 3035, 3036 on the 305 are shown in FIG. 19 . The central wavelengths of the filters are 390nm, 475nm, 525nm, 572nm, 630nm, 650nm respectively, and the bandwidth is 20nm; wherein, the lens 302 has a front focal length of 50mm and a rear focal length of 47mm. The servo motor 307 is a two-phase four-wire stepping servo motor, the transmission device 306 is a pulley transmission mechanism, and the rotating hinge is a rotating bearing;
聚焦装置400,用于光源照明与荧光成像的耦合,包括二色镜401、两组透镜402、403、404、405;透镜402、403将光源发来的光进行扩束,使之形成直径3mm圆光斑照射至数字PCR微滴微流控芯片上;透镜404、405将从数字PCR微滴微流控芯片上散发的荧光整形,与成像光路相结合,使之成为直径2mm图像照射至图像采集传感器700上。The focusing device 400 is used for the coupling of light source illumination and fluorescence imaging, including a dichromatic mirror 401, two sets of lenses 402, 403, 404, and 405; the lenses 402, 403 expand the light beam from the light source to form a beam with a diameter of 3mm The circular light spot is irradiated onto the digital PCR droplet microfluidic chip; the lenses 404 and 405 shape the fluorescence emitted from the digital PCR droplet microfluidic chip, and combine it with the imaging optical path to make an image with a diameter of 2mm irradiated to the image acquisition sensor 700 on.
成像光路装置500,用于数字PCR微滴的荧光成像,参见图20包括滤除光源波长的带阻滤光片5021、5022、5053、5024、5025、5026,和透过微滴荧光的荧光滤光片5031、5032、5033、5034、5035、5036,汇聚透镜501、滤光片固定板505、转动铰链504、传动装置506、伺服电机507组成。其中,滤除光源波长的带阻滤光片5021、5022、5053、5024、5025、5026中心波长分别为390nm、475nm、525nm、572nm、630nm、650nm,带宽20nm,荧光滤光片5031、5032、5033、5034、5035、5036中心波长分别为420nm、522nm、577nm、628nm、675nm、710nm,带宽20nm滤光片,透镜501具有前端焦距50mm,后端焦距47mm;The imaging optical path device 500 is used for fluorescence imaging of digital PCR microdroplets, referring to FIG. Optical sheets 5031, 5032, 5033, 5034, 5035, 5036, converging lens 501, filter fixing plate 505, rotating hinge 504, transmission device 506, and servo motor 507 are formed. Among them, the band-stop filters 5021, 5022, 5053, 5024, 5025, and 5026 that filter out the wavelength of the light source are respectively 390nm, 475nm, 525nm, 572nm, 630nm, and 650nm, with a bandwidth of 20nm, and the fluorescence filters 5031, 5032, 5033, 5034, 5035, and 5036 have central wavelengths of 420nm, 522nm, 577nm, 628nm, 675nm, and 710nm, respectively, and filters with a bandwidth of 20nm. The lens 501 has a front focal length of 50mm and a rear focal length of 47mm;
图像采集传感器700,用于数字PCR微滴的荧光图像实时采集,为面阵CCD图像传感器;Image acquisition sensor 700, used for real-time acquisition of fluorescence images of digital PCR droplets, is an area array CCD image sensor;
PCR温控装置700,用于数字PCR微滴的温度循环控制,包括温度传感器702、加热的采用帕尔贴作为加热执行器704和降温执行器703、传热快701;其中,701为通过机加工形成的铝合金件,加热执行器704为加热电阻丝、降温执行器703为风扇,温度传感器702为热电偶传感器。The PCR temperature control device 700 is used for temperature cycle control of digital PCR microdroplets, including a temperature sensor 702, a Peltier for heating as a heating actuator 704, a cooling actuator 703, and a heat transfer fast 701; wherein, 701 is a passing machine The processed aluminum alloy parts, the heating actuator 704 is a heating resistance wire, the cooling actuator 703 is a fan, and the temperature sensor 702 is a thermocouple sensor.
载物台装置,用于承载数字PCR微滴微流控芯片及其温控装置,包括载物台801,伺服电机803、805,传动装置802、804,位置传感器806、807。其中,伺服电机803、805为两相四线步进伺服电机,传动装置802、804为滚珠丝杆结构,行程分别为200mm和150mm,位置传感器806、807为直线光栅编码器,量程为200mm和150mm,精度0.01mm。The stage device is used to carry the digital PCR droplet microfluidic chip and its temperature control device, including a stage 801, servo motors 803, 805, transmission devices 802, 804, and position sensors 806, 807. Among them, the servo motors 803 and 805 are two-phase four-wire stepping servo motors, the transmission devices 802 and 804 are ball screw structures, and the strokes are 200 mm and 150 mm respectively, and the position sensors 806 and 807 are linear grating encoders with a measuring range of 200 mm and 150mm, precision 0.01mm.
具体检测过程如下:The specific detection process is as follows:
步骤1),放置已经完成数字PCR微滴生成的微流控芯片至载物台,与PCR温控装置相接。Step 1), place the microfluidic chip that has completed the generation of digital PCR droplets on the stage, and connect with the PCR temperature control device.
步骤2),进行一次PCR温度循环,过程为:升温至92~96度,停留25~40s,降温至53~57度,停留25~35s,升温至70~74度,停留35~45s;Step 2), perform a PCR temperature cycle, the process is as follows: heat up to 92-96 degrees, stay for 25-40s, cool down to 53-57 degrees, stay for 25-35s, heat up to 70-74 degrees, stay for 35-45s;
步骤3),物镜装置切换至最低倍率物镜;Step 3), the objective lens device is switched to the lowest magnification objective lens;
步骤4),光源装置、成像装置切换至第一染料对应的光路。Step 4), the light source device and the imaging device are switched to the optical path corresponding to the first dye.
步骤5),将数字PCR芯片在水平方向上的一个维度进行等分,等分为一系列宽度为W的长条状检测区域,通过连续扫描方式,获取每一条检测区域的连续图像,对数字PCR微流控芯片图像进行连续获取。所述宽度W为2mm;Step 5), the digital PCR chip is equally divided into one dimension in the horizontal direction, and is equally divided into a series of strip-shaped detection areas with a width of W, and the continuous images of each detection area are obtained by continuous scanning. PCR microfluidic chip images were acquired continuously. The width W is 2mm;
步骤6),光源装置、成像装置切换至下一染料对应的光路。再次执行步骤5),完成下一荧光染料的图像的检测;Step 6), the light source device and the imaging device switch to the optical path corresponding to the next dye. Perform step 5) again to complete the detection of the image of the next fluorescent dye;
步骤7),重复步骤6),直至所有荧光染料均已探测完毕;Step 7), repeat step 6), until all fluorescent dyes have been detected;
步骤8),物镜装置切换至次低倍率物镜;重复步骤4)、步骤5)、步骤6)、步骤7);Step 8), the objective lens device is switched to the next low magnification objective lens; repeat step 4), step 5), step 6), step 7);
步骤9),重复步骤8),直至所有倍率的物镜切换完毕,所有荧光染料探测完毕;Step 9), repeat step 8), until the switching of objective lenses of all magnifications is completed, and the detection of all fluorescent dyes is completed;
步骤10),重复步骤2)~步骤9),并计数,每重复一次,计数一次,直至计数大于N;所述N代表扩增循环次数,为30~40;Step 10), repeat steps 2) to 9), and count, and count once each time it is repeated, until the count is greater than N; said N represents the number of amplification cycles, which is 30 to 40;
步骤11),完成全部测试,进行后续图像处理和每个数字PCR液滴的qPCR计算,统计阴性阳性微滴个数,并计算浓度。Step 11), complete all tests, perform subsequent image processing and qPCR calculation of each digital PCR droplet, count the number of negative and positive droplets, and calculate the concentration.
这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的大面积数字PCR微滴荧光高通量检测装置及方法的应用、修改和变化对本领域的技术人员来说是显而易见的。The number of devices and processing scales described here are used to simplify the description of the present invention. The application, modification and change of the large-area digital PCR microdroplet fluorescence high-throughput detection device and method of the present invention will be obvious to those skilled in the art.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。Although embodiments of the present invention have been disclosed above, it is not limited to the applications set forth in the specification and examples. It can be fully applied to various fields suitable for the present invention. Additional modifications can readily be made by those skilled in the art. Therefore, the invention should not be limited to the specific details and examples shown and described herein, without departing from the general concept defined by the claims and their equivalents.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710783914.3A CN107478629A (en) | 2017-09-04 | 2017-09-04 | A kind of large area digital pcr droplet fluorescence high pass amount detecting device and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710783914.3A CN107478629A (en) | 2017-09-04 | 2017-09-04 | A kind of large area digital pcr droplet fluorescence high pass amount detecting device and method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107478629A true CN107478629A (en) | 2017-12-15 |
Family
ID=60603567
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710783914.3A Pending CN107478629A (en) | 2017-09-04 | 2017-09-04 | A kind of large area digital pcr droplet fluorescence high pass amount detecting device and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107478629A (en) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108830039A (en) * | 2018-03-19 | 2018-11-16 | 青岛理工大学 | Control node calculation method of PCR control system |
| CN109358026A (en) * | 2018-09-13 | 2019-02-19 | 中国科学院苏州生物医学工程技术研究所 | Fluorescent droplet detection method, device and server |
| CN109406479A (en) * | 2019-01-02 | 2019-03-01 | 苏州昊通仪器科技有限公司 | A kind of the real-time fluorescence detection device and its operating method of microreactor |
| CN109652298A (en) * | 2018-12-29 | 2019-04-19 | 北京化工大学 | A kind of drop PCR amplification detection device based on micro-fluidic chip |
| CN110069084A (en) * | 2018-01-24 | 2019-07-30 | 思纳福(北京)医疗科技有限公司 | Temperature control device |
| CN110066859A (en) * | 2018-01-24 | 2019-07-30 | 思纳福(北京)医疗科技有限公司 | Digital pcr detector |
| WO2019144907A1 (en) * | 2018-01-24 | 2019-08-01 | 北京光阱管理咨询合伙企业(有限合伙) | Detection instrument for digital pcr, quantitative detection method for digital pcr, quantitative analysis method for digital pcr having different volume, detection method for digital pcr, microsphere for nucleic acid test, preparation method for microsphere for nucleic acid test, kit for microsphere for nucleic acid test, and detection method for high-throughput nucleic acid |
| CN110331088A (en) * | 2019-08-17 | 2019-10-15 | 新羿制造科技(北京)有限公司 | Microlayer model fluorescence detecting system and method |
| CN110376171A (en) * | 2019-07-15 | 2019-10-25 | 上海理工大学 | Transmission-type fluorescence detection imaging system applied to dPCR detector |
| CN110616144A (en) * | 2018-08-24 | 2019-12-27 | 北京中科生仪科技有限公司 | Liquid drop digital PCR chip and use method thereof |
| CN110975960A (en) * | 2019-12-24 | 2020-04-10 | 中国科学院长春光学精密机械与物理研究所 | A composite PCR system and control method with dPCR and qPCR functions |
| CN111215161A (en) * | 2020-01-15 | 2020-06-02 | 北京中科生仪科技有限公司 | Optical detection system for nucleic acid amplification instrument |
| CN111589478A (en) * | 2020-06-05 | 2020-08-28 | 深圳市尚维高科有限公司 | Optical path system and detection method of dual-channel real-time fluorescence quantitative PCR instrument |
| CN111642130A (en) * | 2019-01-02 | 2020-09-08 | 京东方科技集团股份有限公司 | Chip, operation method thereof and detection equipment |
| CN112525870A (en) * | 2019-09-17 | 2021-03-19 | 北京达微生物科技有限公司 | Large-area fluorescence imaging detection device |
| CN112630148A (en) * | 2020-12-16 | 2021-04-09 | 海南大学 | Integrated liquid drop digital PCR detection platform |
| CN112911105A (en) * | 2021-01-19 | 2021-06-04 | 中国计量科学研究院 | Digital PCR result reading device |
| CN113275048A (en) * | 2021-05-11 | 2021-08-20 | 广东顺德工业设计研究院(广东顺德创新设计研究院) | Microfluidic chip and application method thereof |
| CN113670877A (en) * | 2021-08-25 | 2021-11-19 | 华中科技大学 | Inclined top-mounted Gaussian light sheet imaging system for high-throughput digital PCR detection |
| WO2021232186A1 (en) * | 2020-05-18 | 2021-11-25 | 深圳华大生命科学研究院 | Digital micro-fluidic platform-based nucleic acid enrichment and sequencing library construction methods |
| WO2022052363A1 (en) * | 2020-09-11 | 2022-03-17 | 广州万孚生物技术股份有限公司 | In vitro diagnostic analysis system, and optical detection apparatus |
| CN115807061A (en) * | 2022-08-19 | 2023-03-17 | 国科温州研究院(温州生物材料与工程研究所) | A microdroplet-based real-time digital LAMP nucleic acid detection method |
| US11666900B2 (en) | 2018-01-24 | 2023-06-06 | Sniper (Suzhou) Life Technology Co. | Motion controlling mechanism, liquid discharging nozzle, microdroplet generating device and method, liquid driving mechanism and method, microdroplet generating method, and surface processing method of liquid discharging nozzle |
| CN116297378A (en) * | 2023-05-24 | 2023-06-23 | 科美诊断技术股份有限公司 | Light detection measuring system |
| US11946100B2 (en) | 2018-01-24 | 2024-04-02 | Sniper (Suzhou) Life Technology Co., Ltd. | Microdroplet container and method for manufacturing the same, method for spreading microdroplets, microdroplet-generating kit, temperature-controlling device, oil phase composition for microdroplet generating and method for treating the same |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1793863A (en) * | 2004-10-29 | 2006-06-28 | 阿菲梅特里克斯公司 | System, method, and product for multiple wavelength detection using single source excitation |
| CN101126715A (en) * | 2007-09-21 | 2008-02-20 | 博奥生物有限公司 | A detection system and detection method for a micro-nanoliter system fluid chip |
| CN101251486A (en) * | 2007-02-21 | 2008-08-27 | 霍夫曼-拉罗奇有限公司 | Devices for emitting and detecting light beams |
| CN101923045A (en) * | 2010-05-07 | 2010-12-22 | 重庆大学 | Microfluidic chip observation platform and dual-view microfluidic chip observation system |
| CN105505761A (en) * | 2015-12-21 | 2016-04-20 | 中国科学院苏州生物医学工程技术研究所 | Digital isothermal nucleic acid detecting device and detecting method thereof |
| CN207457068U (en) * | 2017-09-04 | 2018-06-05 | 中国科学院苏州生物医学工程技术研究所 | A kind of large area digital pcr droplet fluorescence high pass amount detecting device |
-
2017
- 2017-09-04 CN CN201710783914.3A patent/CN107478629A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1793863A (en) * | 2004-10-29 | 2006-06-28 | 阿菲梅特里克斯公司 | System, method, and product for multiple wavelength detection using single source excitation |
| CN101251486A (en) * | 2007-02-21 | 2008-08-27 | 霍夫曼-拉罗奇有限公司 | Devices for emitting and detecting light beams |
| CN101126715A (en) * | 2007-09-21 | 2008-02-20 | 博奥生物有限公司 | A detection system and detection method for a micro-nanoliter system fluid chip |
| CN101923045A (en) * | 2010-05-07 | 2010-12-22 | 重庆大学 | Microfluidic chip observation platform and dual-view microfluidic chip observation system |
| CN105505761A (en) * | 2015-12-21 | 2016-04-20 | 中国科学院苏州生物医学工程技术研究所 | Digital isothermal nucleic acid detecting device and detecting method thereof |
| CN207457068U (en) * | 2017-09-04 | 2018-06-05 | 中国科学院苏州生物医学工程技术研究所 | A kind of large area digital pcr droplet fluorescence high pass amount detecting device |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019144907A1 (en) * | 2018-01-24 | 2019-08-01 | 北京光阱管理咨询合伙企业(有限合伙) | Detection instrument for digital pcr, quantitative detection method for digital pcr, quantitative analysis method for digital pcr having different volume, detection method for digital pcr, microsphere for nucleic acid test, preparation method for microsphere for nucleic acid test, kit for microsphere for nucleic acid test, and detection method for high-throughput nucleic acid |
| US11946100B2 (en) | 2018-01-24 | 2024-04-02 | Sniper (Suzhou) Life Technology Co., Ltd. | Microdroplet container and method for manufacturing the same, method for spreading microdroplets, microdroplet-generating kit, temperature-controlling device, oil phase composition for microdroplet generating and method for treating the same |
| US11666900B2 (en) | 2018-01-24 | 2023-06-06 | Sniper (Suzhou) Life Technology Co. | Motion controlling mechanism, liquid discharging nozzle, microdroplet generating device and method, liquid driving mechanism and method, microdroplet generating method, and surface processing method of liquid discharging nozzle |
| CN110069084A (en) * | 2018-01-24 | 2019-07-30 | 思纳福(北京)医疗科技有限公司 | Temperature control device |
| CN110066859A (en) * | 2018-01-24 | 2019-07-30 | 思纳福(北京)医疗科技有限公司 | Digital pcr detector |
| CN108830039A (en) * | 2018-03-19 | 2018-11-16 | 青岛理工大学 | Control node calculation method of PCR control system |
| CN110616144A (en) * | 2018-08-24 | 2019-12-27 | 北京中科生仪科技有限公司 | Liquid drop digital PCR chip and use method thereof |
| CN109358026B (en) * | 2018-09-13 | 2021-04-06 | 中国科学院苏州生物医学工程技术研究所 | Fluorescent droplet detection method, device and server |
| CN109358026A (en) * | 2018-09-13 | 2019-02-19 | 中国科学院苏州生物医学工程技术研究所 | Fluorescent droplet detection method, device and server |
| CN109652298A (en) * | 2018-12-29 | 2019-04-19 | 北京化工大学 | A kind of drop PCR amplification detection device based on micro-fluidic chip |
| CN109652298B (en) * | 2018-12-29 | 2022-03-22 | 北京化工大学 | Droplet PCR amplification detection device based on micro-fluidic chip |
| CN109406479A (en) * | 2019-01-02 | 2019-03-01 | 苏州昊通仪器科技有限公司 | A kind of the real-time fluorescence detection device and its operating method of microreactor |
| CN111642130A (en) * | 2019-01-02 | 2020-09-08 | 京东方科技集团股份有限公司 | Chip, operation method thereof and detection equipment |
| CN110376171A (en) * | 2019-07-15 | 2019-10-25 | 上海理工大学 | Transmission-type fluorescence detection imaging system applied to dPCR detector |
| CN110376171B (en) * | 2019-07-15 | 2021-11-19 | 上海理工大学 | Transmission type fluorescence detection imaging system applied to dPCR detector |
| CN110331088B (en) * | 2019-08-17 | 2023-09-22 | 新羿制造科技(北京)有限公司 | Micro-droplet fluorescence detection system and method |
| CN110331088A (en) * | 2019-08-17 | 2019-10-15 | 新羿制造科技(北京)有限公司 | Microlayer model fluorescence detecting system and method |
| CN112525870A (en) * | 2019-09-17 | 2021-03-19 | 北京达微生物科技有限公司 | Large-area fluorescence imaging detection device |
| CN112525870B (en) * | 2019-09-17 | 2023-07-04 | 北京达微生物科技有限公司 | Large-area fluorescence imaging detection device |
| CN110975960B (en) * | 2019-12-24 | 2022-05-24 | 中国科学院长春光学精密机械与物理研究所 | Composite PCR system with dPCR and qPCR functions and control method |
| CN110975960A (en) * | 2019-12-24 | 2020-04-10 | 中国科学院长春光学精密机械与物理研究所 | A composite PCR system and control method with dPCR and qPCR functions |
| CN111215161A (en) * | 2020-01-15 | 2020-06-02 | 北京中科生仪科技有限公司 | Optical detection system for nucleic acid amplification instrument |
| WO2021232186A1 (en) * | 2020-05-18 | 2021-11-25 | 深圳华大生命科学研究院 | Digital micro-fluidic platform-based nucleic acid enrichment and sequencing library construction methods |
| CN111589478A (en) * | 2020-06-05 | 2020-08-28 | 深圳市尚维高科有限公司 | Optical path system and detection method of dual-channel real-time fluorescence quantitative PCR instrument |
| WO2022052363A1 (en) * | 2020-09-11 | 2022-03-17 | 广州万孚生物技术股份有限公司 | In vitro diagnostic analysis system, and optical detection apparatus |
| CN112630148A (en) * | 2020-12-16 | 2021-04-09 | 海南大学 | Integrated liquid drop digital PCR detection platform |
| CN112911105B (en) * | 2021-01-19 | 2022-03-29 | 中国计量科学研究院 | A digital PCR result reading device and reading method |
| CN112911105A (en) * | 2021-01-19 | 2021-06-04 | 中国计量科学研究院 | Digital PCR result reading device |
| CN113275048B (en) * | 2021-05-11 | 2022-10-18 | 广东顺德工业设计研究院(广东顺德创新设计研究院) | Microfluidic chip and method of using the same |
| CN113275048A (en) * | 2021-05-11 | 2021-08-20 | 广东顺德工业设计研究院(广东顺德创新设计研究院) | Microfluidic chip and application method thereof |
| CN113670877B (en) * | 2021-08-25 | 2022-05-10 | 华中科技大学 | Oblique top-mounted Gaussian light sheet imaging system for high-throughput digital PCR detection |
| CN113670877A (en) * | 2021-08-25 | 2021-11-19 | 华中科技大学 | Inclined top-mounted Gaussian light sheet imaging system for high-throughput digital PCR detection |
| CN115807061A (en) * | 2022-08-19 | 2023-03-17 | 国科温州研究院(温州生物材料与工程研究所) | A microdroplet-based real-time digital LAMP nucleic acid detection method |
| CN116297378A (en) * | 2023-05-24 | 2023-06-23 | 科美诊断技术股份有限公司 | Light detection measuring system |
| CN116297378B (en) * | 2023-05-24 | 2023-09-15 | 科美诊断技术股份有限公司 | Light detection measuring system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107478629A (en) | A kind of large area digital pcr droplet fluorescence high pass amount detecting device and method | |
| CN207457068U (en) | A kind of large area digital pcr droplet fluorescence high pass amount detecting device | |
| JP7641319B2 (en) | Systems and methods for evaluating biological samples - Patents.com | |
| US11084039B2 (en) | Microfluidic analysis system | |
| CN110687089B (en) | High-flux parallel Raman spectrometer based on single cell detection | |
| CN112525870B (en) | Large-area fluorescence imaging detection device | |
| US6741344B1 (en) | Method and apparatus for detection of fluorescently labeled materials | |
| JP2023541449A (en) | Methods and systems for multidimensional imaging | |
| JP2021113806A (en) | A device for thermodynamically cycling a biological sample, a monitoring device including it, and a method for thermodynamically cycling a biological sample using such a device. | |
| US20090010524A1 (en) | Methods and apparatus for detection of fluorescently labeled materials | |
| CN101013136B (en) | Laser-induction fluorescence co-focusing scanning device and method | |
| CN105039147A (en) | Base fluorescence image capturing system device and method for high-flux genome sequencing | |
| CN103033493B (en) | A kind of tunable fluorescence quantitative PCR detection system | |
| CN101126715A (en) | A detection system and detection method for a micro-nanoliter system fluid chip | |
| CN109406479A (en) | A kind of the real-time fluorescence detection device and its operating method of microreactor | |
| CN111778156A (en) | High-flux PCR microdroplet fluorescence detection device and method | |
| JP2013516650A (en) | Method and apparatus for high-speed focus imaging of biological specimen | |
| JP2017533447A (en) | Rotary sample positioning device | |
| CN210128918U (en) | Small fluorescent inverted microscopic imaging system | |
| JP4163301B2 (en) | Scanning cytometer | |
| CN205280574U (en) | Multi -functional optoacoustic, fluorescence is micro - and fluorescence spectra formation of image analytical equipment | |
| CN219689716U (en) | Gene sequencer | |
| CN101903761B (en) | Detection system and method | |
| US20230221178A1 (en) | Apparatus and a method for fluorescence imaging | |
| US20230125059A1 (en) | Fluorescence detection system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171215 |