CN107503714A - A kind of parallel sea-bottom shallow gas hydrates in-situ separating device - Google Patents
A kind of parallel sea-bottom shallow gas hydrates in-situ separating device Download PDFInfo
- Publication number
- CN107503714A CN107503714A CN201710965018.9A CN201710965018A CN107503714A CN 107503714 A CN107503714 A CN 107503714A CN 201710965018 A CN201710965018 A CN 201710965018A CN 107503714 A CN107503714 A CN 107503714A
- Authority
- CN
- China
- Prior art keywords
- separation
- channel
- sand discharge
- pipe nipple
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 20
- 150000004677 hydrates Chemical class 0.000 title abstract description 3
- 238000000926 separation method Methods 0.000 claims abstract description 78
- 239000007788 liquid Substances 0.000 claims abstract description 58
- 210000002445 nipple Anatomy 0.000 claims abstract description 19
- 239000004576 sand Substances 0.000 claims description 31
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 claims description 25
- 238000009434 installation Methods 0.000 claims description 10
- 239000013049 sediment Substances 0.000 abstract 5
- 230000001737 promoting effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 9
- 238000005065 mining Methods 0.000 description 7
- 239000011268 mixed slurry Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- -1 natural gas hydrates Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0099—Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
- E21B43/36—Underwater separating arrangements
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Description
技术领域technical field
本发明涉及海底天然气水合物开采技术领域,涉及一种并联式海底浅层天然气水合物原位分离装置。The invention relates to the technical field of seabed natural gas hydrate exploitation, and relates to a parallel-connected seabed shallow natural gas hydrate in-situ separation device.
背景技术Background technique
天然气水合物又称为可燃冰,是由甲烷为主的烃类气体和水在一定的温度压力条件下形成的类冰固体化合物。全球天然气水合物储量巨大,并且是清洁、优质的能源,在未来的能源战略中占有重要的地位。Natural gas hydrate, also known as combustible ice, is an ice-like solid compound formed by methane-based hydrocarbon gas and water under certain temperature and pressure conditions. The global natural gas hydrate reserves are huge, and it is a clean and high-quality energy, which occupies an important position in the future energy strategy.
目前传统的开采方法主要有热刺激法,减压法,化学试剂法,二氧化碳置换法,这些方法只适用于天然气水合物藏具有良好的盖层,具有一定的局限性。“固态流化”开采方法是一种针对海底非成岩天然气水合物的全新开采思路,其现有核心思想是在不改变海底温度和压力的情况下,直接利用机械或采掘天然气水合物矿体,通过密闭管道将破碎后的天然气水合物固体颗粒、砂进行分离、分解气化等处理。At present, the traditional mining methods mainly include thermal stimulation method, decompression method, chemical reagent method, and carbon dioxide replacement method. These methods are only suitable for natural gas hydrate reservoirs with good cap rocks, and have certain limitations. The "solid-state fluidization" mining method is a new mining idea for non-diagenetic natural gas hydrates on the seabed. Its existing core idea is to directly use machinery or mine natural gas hydrate ore bodies without changing the temperature and pressure of the seabed. The crushed natural gas hydrate solid particles and sand are separated, decomposed and gasified through closed pipelines.
由于混合浆体抽走后无回填物将导致地层空洞,容易引发海底垮塌等地质灾害,最后导致海底环境受污染。现有技术中虽然提到一些分离装置,但是几乎都是将水合物混合浆体提升至海底井口进行分离,装置体积庞大,安装非常不方便,费时费力。并且在应用“固态流化”方法开采海底浅层水合物时,开采井筒空间有限,井筒径向空间小,单个分离器处理量小,往往达不到开采处理量的要求。Since there is no backfill after the mixed slurry is pumped away, the stratum will be void, which will easily lead to geological disasters such as seabed collapse, and finally lead to pollution of the seabed environment. Although some separation devices are mentioned in the prior art, almost all of them lift the hydrate mixed slurry to the subsea wellhead for separation. The devices are bulky, and the installation is very inconvenient, time-consuming and labor-intensive. Moreover, when using the "solid fluidization" method to mine shallow hydrates on the seabed, the wellbore space is limited, the radial space of the wellbore is small, and the processing capacity of a single separator is small, which often fails to meet the requirements of the mining processing capacity.
针对以上问题,本发明提出一种并联式海底浅层天然气水合物原位分离装置。In view of the above problems, the present invention proposes a parallel subsea shallow natural gas hydrate in-situ separation device.
发明内容Contents of the invention
本发明针对现有开采海底浅层天然气水合物技术的不足,为了提高分离器处理量、达到水合物绿色开采特提供一种并联式海底浅层天然气水合物原位分离装置。The invention aims at the deficiency of the existing shallow seabed natural gas hydrate mining technology, and provides a parallel seabed shallow natural gas hydrate in-situ separation device in order to increase the processing capacity of the separator and achieve green hydrate mining.
一种并联式海底浅层天然气水合物原位分离装置,其特征在于:包括分离短节A,设置在分离短节A内的进液流道A,设置在进液流道A下端的堵头A设置在分离短节A内的排砂流道A,设置在分离短节A内的出液流道A,设置在出液流道A上端的堵头B,设置在分离短节A上端的连接环A,设置在连接环A中心的出液通过孔A,设置在连接环A内的连接管安装孔A,设置在连接环A上端的分离短节B,设置在分离短节B 内的进液流道B,设置在分离短节B内的排砂流道B,设置在分离短节B内的出液流道B,设置在分离短节B上端用于连接分离短节或其他装置的连接环B,设置在分离短节B下端的用于连接其他装置的连接螺纹。分离短节之间相互并联,在管柱长度无限制的情况下,处理量五上限。A parallel subsea shallow natural gas hydrate in-situ separation device, characterized in that it includes a separation sub-joint A, a liquid inlet channel A arranged in the separation sub-joint A, and a plug arranged at the lower end of the liquid inlet channel A A The sand discharge flow channel A set in the separation sub-joint A, the liquid outlet flow channel A set in the separation sub-joint A, the plug B set at the upper end of the liquid outlet flow channel A, the connection set at the upper end of the separation sub-joint A Ring A, the liquid outlet passage hole A set in the center of the connecting ring A, the connecting pipe installation hole A set in the connecting ring A, the separation nipple B set on the upper end of the connection ring A, the inlet joint B set in the separation nipple B Liquid channel B, the sand discharge channel B set in the separation sub-joint B, the liquid outlet channel B set in the separation sub-joint B, set on the upper end of the separation sub-joint B for connecting the separation sub-joint or other devices Ring B, the connecting thread set at the lower end of the separation sub-joint B for connecting other devices. The separation sub-joints are connected in parallel with each other, and the processing capacity is up to five when the length of the pipe string is unlimited.
进一步技术方案中,所述分离短节A和分离短节B中安装有分离器。In a further technical solution, separators are installed in the separating sub-joint A and separating sub-joint B.
进一步技术方案中,所述进液流道A与进液流道B通过进液连接管连接,排砂流道A与排砂流道B通过排砂连接管连接,出液流道A与出液流道B通过出液通过孔A连通,分离器顶部出口与出液流道B通过出液通过孔A连通,分离器底端出口与排砂流道A、排砂流道B通过排砂孔连通。In a further technical solution, the liquid inlet channel A is connected to the liquid inlet channel B through a liquid inlet connecting pipe, the sand discharge channel A is connected to the sand discharge channel B through a sand discharge connecting pipe, and the liquid outlet channel A is connected to the liquid outlet The channel B is connected through the liquid outlet hole A, the top outlet of the separator is connected with the liquid outlet channel B through the liquid outlet hole A, and the bottom outlet of the separator is connected with the sand discharge channel A and the sand discharge channel B through the sand discharge hole.
进一步技术方案中,所述连接环B中心设置有出液通过孔B,连接环B内的设置有连接管安装孔B。In a further technical solution, a liquid outlet hole B is provided in the center of the connecting ring B, and a connecting pipe installation hole B is provided in the connecting ring B.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1) 本发明提出的并联式海底浅层天然气水合物原位分离装置,将多个分离短节并联,也就是将分离短节的处理量叠加,实现在径向空间有限的而轴向空间无限制的条件下,达到处理量不受限制,为后期商业开采奠定了坚实的基础。 (1) The parallel-connected subsea shallow natural gas hydrate in-situ separation device proposed by the present invention connects multiple separation sub-sections in parallel, that is, superimposes the processing capacity of the separation sub-sections, and realizes that the radial space is limited but the axial space is limited. Under unrestricted conditions, the processing capacity is not limited, which has laid a solid foundation for later commercial mining.
(2) 本发明提出的并联式海底浅层天然气水合物原位分离装置可与其他工具配合使用,安装灵活,结构紧凑,可靠性高非常适用于海底恶劣环境。(2) The parallel subsea shallow natural gas hydrate in-situ separation device proposed by the present invention can be used in conjunction with other tools, with flexible installation, compact structure and high reliability, which is very suitable for the harsh environment of the seabed.
附图说明Description of drawings
图1为本发明并联式海底浅层天然气水合物原位分离装置的结构示意图。Fig. 1 is a schematic structural diagram of a parallel subsea shallow natural gas hydrate in-situ separation device of the present invention.
图2为本发明并联式海底浅层天然气水合物原位分离装置A-A剖视图。Fig. 2 is a cross-sectional view A-A of the parallel-connected subsea shallow natural gas hydrate in-situ separation device of the present invention.
图3为本发明并联式海底浅层天然气水合物原位分离装置B-B剖视图。Fig. 3 is a B-B cross-sectional view of the parallel subsea shallow natural gas hydrate in-situ separation device of the present invention.
图4为本发明并联式海底浅层天然气水合物原位分离装置C-C剖视图。Fig. 4 is a C-C sectional view of the parallel subsea shallow natural gas hydrate in-situ separation device of the present invention.
图5为本发明并联式海底浅层天然气水合物原位分离装置D-D剖视图。Fig. 5 is a D-D sectional view of the parallel subsea shallow natural gas hydrate in-situ separation device of the present invention.
图6为本发明并联式海底浅层天然气水合物原位分离装置俯视图。Fig. 6 is a top view of the parallel subsea shallow natural gas hydrate in-situ separation device of the present invention.
图7为本发明并联式海底浅层天然气水合物原位分离装置仰视图。Fig. 7 is a bottom view of the parallel subsea shallow natural gas hydrate in-situ separation device of the present invention.
上述附图中,附图标记对应的部件名称如下:In the above drawings, the names of components corresponding to the reference signs are as follows:
1-分离短节A,2-进液流道A,3-堵头A,4-排砂流道A,5-出液流道A,6-堵头B,7-连接环A,8-出液通过孔A,9-连接管安装孔A,10-分离短节B,11-出液流道B,12-排砂流道B,13-出液流道B,14-连接环B,15-连接螺纹,16-分离器,17-进液连接管,18-排砂连接管,19-分离器顶部出口,20-分离器底端出口,21-排砂孔,22-出液通过孔B,23-连接管安装孔B。1-separation pup joint A, 2-inlet flow channel A, 3-plug A, 4-sand discharge flow channel A, 5-liquid outlet flow channel A, 6-plug B, 7-connecting ring A, 8- Liquid outlet through hole A, 9-connecting pipe installation hole A, 10-separation nipple B, 11-liquid outlet channel B, 12-sand discharge channel B, 13-liquid outlet channel B, 14-connecting ring B, 15-connection thread, 16-separator, 17-inlet connection pipe, 18-sand discharge connection pipe, 19-separator top outlet, 20-separator bottom outlet, 21-sand discharge hole, 22-liquid outlet Hole B, 23-connecting pipe installation hole B.
具体实施方式detailed description
下面结合附图和实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。The present invention will be further described below with reference to the accompanying drawings and examples, and the embodiments of the present invention include but not limited to the following examples.
实施例Example
本发明的并联式海底浅层天然气水合物原位分离装置结构如图1至图7所示,包括分离短节A 1 ,设置在分离短节A 1 内的进液流道A 2 ,设置在进液流道A 2 下端的堵头A3 设置在分离短节A 1 内的排砂流道A 4 ,设置在分离短节A 1 内的出液流道A 5 ,设置在出液流道A 5 上端的堵头B 6 ,设置在分离短节A 1 上端的连接环A 7 ,设置在连接环A7 中心的出液通过孔A 8 ,设置在连接环A 7 内的连接管安装孔A 9 ,设置在连接环A 7上端的分离短节B 10 ,设置在分离短节B 10 内的进液流道B 11 ,设置在分离短节B 10内的排砂流道B 12 ,设置在分离短节B 10 内的出液流道B 13 ,设置在分离短节B 10 上端用于连接分离短节或其他装置的连接环B 14 ,设置在分离短节B 10 下端的用于连接其他装置的连接螺纹 15 。分离短节之间可相互连接,在轴向空间不受限制的情况下,分离短节的数量不受限制,也就是说处理量可以无限增大。The structure of the in-situ separation device for parallel subsea shallow natural gas hydrate of the present invention is shown in Fig. 1 to Fig. 7, including the separation sub-section A 1 , the liquid inlet channel A 2 arranged in the separation sub-section A 1 , and the The plug A3 at the lower end of the liquid inlet channel A 2 is set in the sand discharge channel A 4 in the separation joint A 1 , the liquid discharge channel A 5 in the separation joint A 1 is set in the liquid discharge channel A 5 The plug B 6 at the upper end, the connecting ring A 7 set on the upper end of the separation nipple A 1 , the liquid outlet passage hole A 8 set in the center of the connecting ring A7, the connecting pipe installation hole A 9 set in the connecting ring A 7 , The separation nipple B 10 set on the upper end of the connection ring A 7, the liquid inlet channel B 11 set in the separation nipple B 10, the sand discharge flow channel B 12 set in the separation nipple B 10, and the separation nipple B 12 The outlet channel B 13 in B 10 is set on the upper end of the separation sub-joint B 10 for connecting the connection ring B 14 of the separation sub-joint or other devices, and the connection ring B 14 is set in the lower end of the separation sub-joint B 10 for connecting other devices Thread 15 . The separation pups can be connected to each other, and the number of separation pups is not limited when the axial space is not limited, that is to say, the processing capacity can be increased infinitely.
如图2至图5所示,分离短节A 1 和分离短节B 10 中安装有分离器 16 。As shown in Fig. 2 to Fig. 5, a splitter 16 is installed in the split sub-joint A 1 and the split sub-joint B 10 .
如图2至图4所示,进液流道A 2 与进液流道B 11 通过进液连接管 17 连接,排砂流道A 4 与排砂流道B 12 通过排砂连接管18 连接 ,出液流道A 5 与出液流道B 13 通过出液通过孔A 8 连通,分离器顶部出口 19 与出液流道B 13 通过出液通过孔A 8 连通,分离器底端出口 20 与排砂流道A 5 、排砂流道B 12 通过排砂孔 21 连通。As shown in Figures 2 to 4, the liquid inlet channel A 2 is connected to the liquid inlet channel B 11 through the liquid inlet connecting pipe 17, the sand discharge channel A 4 is connected to the sand discharge channel B 12 through the sand discharge connecting pipe 18, and the outlet The liquid channel A 5 communicates with the liquid outlet channel B 13 through the liquid outlet hole A 8 , the top outlet 19 of the separator communicates with the liquid outlet channel B 13 through the liquid outlet hole A 8 , and the separator bottom outlet 20 communicates with the drain hole A 8 . The sand flow path A 5 and the sand discharge flow path B 12 are connected through the sand discharge hole 21 .
如图2、图3、图4和图6所示,连接环B 14 中心设置有出液通过孔B 22 ,连接环B14 内的设置有连接管安装孔B 23 。As shown in Fig. 2, Fig. 3, Fig. 4 and Fig. 6, the center of the connecting ring B 14 is provided with a liquid outlet hole B 22 , and the inner part of the connecting ring B14 is provided with a connecting pipe installation hole B 23 .
本发明的工作原理:水合物混合浆体从进液连接管进入,通过各分离器短节进入分离器16中,水合物混合浆体在分离器16中分离,分离后得到的砂浆体通过分离器底端出口20排出,然后通过各个分离短节的排砂流道,最后排入回填装置回填,分离后得到的水合物浆体通过分离器顶部出口19排出,经过出液通过孔往上泵送至各分离短节出液流道,各个分离短节出液流道相互连通,最后排入其他装置的流道,然后泵送至井口收集。各分离短节的入口和出口都相互并联,达到增大处理量的效果。The working principle of the present invention: the hydrate mixed slurry enters from the liquid inlet connecting pipe, enters the separator 16 through the short joints of the separators, the hydrate mixed slurry is separated in the separator 16, and the mortar body obtained after separation passes through the separator It is discharged from the outlet 20 at the bottom of the separator, and then passes through the sand discharge channels of each separation sub-joint, and finally discharged into the backfill device for backfilling. The hydrate slurry obtained after separation is discharged through the outlet 19 at the top of the separator, and pumped upward through the discharge hole To each separation sub-joint outlet flow channel, each separation sub-joint outlet liquid flow channel is connected with each other, and finally discharged into the flow channel of other devices, and then pumped to the wellhead for collection. The inlets and outlets of each separation pup joint are connected in parallel to increase the processing capacity.
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明的设计原理,以及在此基础上进行非创造性劳动而做出的变化,均应属于本发明的保护范围之内。The foregoing embodiments are only preferred embodiments of the present invention, and are not limitations on the scope of protection of the present invention. However, all changes made by adopting the design principle of the present invention and performing non-creative work on this basis shall all belong to the protection of the present invention. within range.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710965018.9A CN107503714A (en) | 2017-10-17 | 2017-10-17 | A kind of parallel sea-bottom shallow gas hydrates in-situ separating device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710965018.9A CN107503714A (en) | 2017-10-17 | 2017-10-17 | A kind of parallel sea-bottom shallow gas hydrates in-situ separating device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107503714A true CN107503714A (en) | 2017-12-22 |
Family
ID=60700678
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710965018.9A Pending CN107503714A (en) | 2017-10-17 | 2017-10-17 | A kind of parallel sea-bottom shallow gas hydrates in-situ separating device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107503714A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108222894A (en) * | 2018-03-09 | 2018-06-29 | 西南石油大学 | It is a kind of to melt the silt particle backfilling apparatus adopted for gas hydrates time tractive current |
| CN109184658A (en) * | 2018-11-25 | 2019-01-11 | 西南石油大学 | A kind of biasing symmetric parallel formula sea-bottom shallow gas hydrates in-situ separating device |
| CN109882147A (en) * | 2019-03-16 | 2019-06-14 | 西南石油大学 | A large-capacity integrated hydrate downhole in-situ separation parallel device |
| US10822927B2 (en) | 2018-04-24 | 2020-11-03 | Southwest Petroleum University | Device and method for solid-state fluidized mining of natural gas hydrates in shallow seabed |
| CN114991741A (en) * | 2022-05-16 | 2022-09-02 | 东北石油大学 | Natural gas hydrate separation device and method |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2049229C1 (en) * | 1990-07-02 | 1995-11-27 | Научно-исследовательский и проектный институт "Внедрение" | Downhole device for separation of gas from fluid |
| CA2241419A1 (en) * | 1996-01-12 | 1997-07-17 | Conoco Specialty Products, Inc. | Cyclonic separator assembly and method |
| CA2715906A1 (en) * | 2009-12-17 | 2011-06-17 | Schlumberger Canada Limited | Downhole multi-parallel hydrocyclone separator |
| CN102797447A (en) * | 2012-09-05 | 2012-11-28 | 韩中枢 | Extracting method of land combustible ice and extracting device adopted for same |
| CN103967473A (en) * | 2014-05-06 | 2014-08-06 | 大连理工大学 | Device and method for desanding of submarine natural gas hydrate exploitation well |
| CN207296973U (en) * | 2017-10-17 | 2018-05-01 | 西南石油大学 | A kind of parallel sea-bottom shallow gas hydrates in-situ separating device |
-
2017
- 2017-10-17 CN CN201710965018.9A patent/CN107503714A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2049229C1 (en) * | 1990-07-02 | 1995-11-27 | Научно-исследовательский и проектный институт "Внедрение" | Downhole device for separation of gas from fluid |
| CA2241419A1 (en) * | 1996-01-12 | 1997-07-17 | Conoco Specialty Products, Inc. | Cyclonic separator assembly and method |
| CA2715906A1 (en) * | 2009-12-17 | 2011-06-17 | Schlumberger Canada Limited | Downhole multi-parallel hydrocyclone separator |
| US20110146976A1 (en) * | 2009-12-17 | 2011-06-23 | Schlumberger Technology Corporation | Downhole multi-parallel hydrocyclone separator |
| CN102797447A (en) * | 2012-09-05 | 2012-11-28 | 韩中枢 | Extracting method of land combustible ice and extracting device adopted for same |
| CN103967473A (en) * | 2014-05-06 | 2014-08-06 | 大连理工大学 | Device and method for desanding of submarine natural gas hydrate exploitation well |
| CN207296973U (en) * | 2017-10-17 | 2018-05-01 | 西南石油大学 | A kind of parallel sea-bottom shallow gas hydrates in-situ separating device |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108222894A (en) * | 2018-03-09 | 2018-06-29 | 西南石油大学 | It is a kind of to melt the silt particle backfilling apparatus adopted for gas hydrates time tractive current |
| CN108222894B (en) * | 2018-03-09 | 2023-07-04 | 西南石油大学 | A mud-sand backfill device for dragging and fluidized mining of natural gas hydrate |
| US10822927B2 (en) | 2018-04-24 | 2020-11-03 | Southwest Petroleum University | Device and method for solid-state fluidized mining of natural gas hydrates in shallow seabed |
| CN109184658A (en) * | 2018-11-25 | 2019-01-11 | 西南石油大学 | A kind of biasing symmetric parallel formula sea-bottom shallow gas hydrates in-situ separating device |
| CN109184658B (en) * | 2018-11-25 | 2021-01-22 | 西南石油大学 | A Offset Symmetric Parallel Type Subsea Shallow Gas Hydrate In-situ Separation Device |
| CN109882147A (en) * | 2019-03-16 | 2019-06-14 | 西南石油大学 | A large-capacity integrated hydrate downhole in-situ separation parallel device |
| CN114991741A (en) * | 2022-05-16 | 2022-09-02 | 东北石油大学 | Natural gas hydrate separation device and method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107503714A (en) | A kind of parallel sea-bottom shallow gas hydrates in-situ separating device | |
| CN107489412B (en) | Submarine shallow natural gas hydrate underground in-situ real-time separation backfill system | |
| CN106761588B (en) | The recovery method and quarrying apparatus of jet crushing, reacting cycle conveying slurry ocean gas hydrate | |
| CN107575206A (en) | A kind of modularization sea bed gas hydrate underground separator | |
| CN108868706B (en) | A method of directional drilling supercritical carbon dioxide fracturing replacement to recover natural gas hydrate | |
| CN103055549B (en) | Introduction-type down-hole multilevel oily-water seperating equipment bottom one | |
| CN207315343U (en) | A kind of sea-bottom shallow gas hydrates underground separates backfill system in real time on the spot | |
| WO2013178012A1 (en) | Method for fluid carriage in deep-seam coal hydraulic mining | |
| CN103821494A (en) | Large-flow offshore downhole oil-water separator provided with lifting tubing | |
| CN109415930A (en) | Submarine methane produces component | |
| CN104948143A (en) | Method and device for exploiting seabed surface layer natural gas hydrate | |
| CN103742124A (en) | Method for re-separating produced liquid of underground oil-water separation same-well injection and production well | |
| CN112267854A (en) | A device and process for exploiting deep-sea combustible ice by decompression method | |
| CN110206527A (en) | A kind of high throughput hydrate underground separation shunting means using spiral separator | |
| CN203702122U (en) | Large-flow underground oil-water separator used at sea and equipped with lifting oil tubes | |
| CN102392646B (en) | Marine gas hydrate electronic-spraying pump composite exploitation method and apparatus | |
| CN207315341U (en) | A kind of modularization sea bed gas hydrate underground separator | |
| CN207296973U (en) | A kind of parallel sea-bottom shallow gas hydrates in-situ separating device | |
| CN109882147A (en) | A large-capacity integrated hydrate downhole in-situ separation parallel device | |
| CN112647900B (en) | An unattended fully automatic hydrate depressurization mining system | |
| CN107762479A (en) | A kind of tandem sea-bottom shallow gas hydrates in-situ separating device | |
| CN107630683B (en) | A kind of pipeline structure for exploitation of gas hydrates | |
| CN109184658B (en) | A Offset Symmetric Parallel Type Subsea Shallow Gas Hydrate In-situ Separation Device | |
| CN105545279B (en) | A kind of defeated device of the pipe of gas hydrates | |
| CN203796251U (en) | Upper-layer production and lower-layer injection type offshore mass flow downhole oil-water separator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171222 |