CN107607881A - A kind of evaluation method of lithium-ion-power cell self discharge uniformity - Google Patents
A kind of evaluation method of lithium-ion-power cell self discharge uniformity Download PDFInfo
- Publication number
- CN107607881A CN107607881A CN201710854834.2A CN201710854834A CN107607881A CN 107607881 A CN107607881 A CN 107607881A CN 201710854834 A CN201710854834 A CN 201710854834A CN 107607881 A CN107607881 A CN 107607881A
- Authority
- CN
- China
- Prior art keywords
- battery
- discharge
- soc
- voltage
- batteries
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011156 evaluation Methods 0.000 title claims 4
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000007600 charging Methods 0.000 claims description 13
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 238000012417 linear regression Methods 0.000 claims description 4
- 238000010281 constant-current constant-voltage charging Methods 0.000 claims description 2
- 239000005955 Ferric phosphate Substances 0.000 claims 6
- 229940032958 ferric phosphate Drugs 0.000 claims 6
- 229910000399 iron(III) phosphate Inorganic materials 0.000 claims 6
- 230000005611 electricity Effects 0.000 claims 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 1
- 240000002853 Nelumbo nucifera Species 0.000 claims 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 claims 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 claims 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 abstract description 21
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 5
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 5
- 238000010280 constant potential charging Methods 0.000 abstract description 4
- 238000012216 screening Methods 0.000 abstract description 4
- 238000010277 constant-current charging Methods 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种锂离子动力电池自放电一致性的评价方法,包括:步骤1、在同一生产批次、同一规格型号、相同材料体系的磷酸铁锂电池中,挑选容量和内阻一致性较好的多个电池,室温下采用恒流恒压充电制度和恒流放电制度循环充放电多次;步骤2、室温下将电池调整到空电态;步骤3、将月自放电率大于3%的电池筛除;步骤4、将电池SOC调整至10%SOC‑30%SOC的荷电状态;步骤5、测量电池高温搁置后的开路电压,计算电池的电压降△V或单位时间内的电压降K;步骤6、计算所有电池的△V或K值的平均值X和标准差σ,筛选出在[X‑2σ,X+2σ]置信区间内的电池。本发明的筛选方法可以提高电池的自放电率、缩短搁置周期,降低生产成本。A method for evaluating the self-discharge consistency of a lithium-ion power battery, comprising: step 1, among lithium iron phosphate batteries of the same production batch, the same specification model, and the same material system, select more batteries with better consistency in capacity and internal resistance At room temperature, use the constant current and constant voltage charging system and constant current discharge system to cycle charge and discharge multiple times; step 2, adjust the battery to an empty state at room temperature; step 3, screen the battery with a monthly self-discharge rate greater than 3%. Step 4, adjust the battery SOC to a state of charge of 10% SOC-30% SOC; Step 5, measure the open circuit voltage of the battery after shelving at high temperature, and calculate the voltage drop △V of the battery or the voltage drop K per unit time; Step 6. Calculate the average value X and standard deviation σ of the ΔV or K values of all batteries, and select the batteries within the confidence interval of [X‑2σ, X+2σ]. The screening method of the invention can improve the self-discharge rate of the battery, shorten the storage period and reduce the production cost.
Description
技术领域technical field
本申请涉及动力电池领域,具体涉及一种锂离子动力电池自放电一致性的评价方法。The present application relates to the field of power batteries, in particular to a method for evaluating the self-discharge consistency of lithium-ion power batteries.
背景技术Background technique
动力电池作为电动汽车核心能源部件,其发展成为左右电动汽车发展的关键因素,而磷酸铁锂动力电池因其优越的安全性能、超长的循环寿命和稳定的电压平台等优异性能占据了电动汽车动力电池的主要市场。但在现有的动力电池技术水平下,电动汽车必须使用多块单体电池构成的电池组来满足使用要求,这就对磷酸铁锂动力电池的一致性提出了很高的要求。As the core energy component of electric vehicles, the development of power batteries has become a key factor in the development of electric vehicles, and lithium iron phosphate power batteries occupy the leading position in electric vehicles due to their superior safety performance, long cycle life and stable voltage platform. The main market for power batteries. However, under the current level of power battery technology, electric vehicles must use a battery pack composed of multiple single cells to meet the requirements of use, which puts forward high requirements on the consistency of lithium iron phosphate power batteries.
目前,磷酸铁锂动力电池在成组之前都需要对单体电池进行性能一致性筛选,将一致性好的电池组合成电池组使用。现有判断电池一致性的方法主要为采用静态参数(如电压、内阻、批次等)和动态参数(如自放电、充电恒流比等)相结合的方式进行配组。其中,由于磷酸铁锂材料的结构及电池制造工艺等原因,导致磷酸铁锂离子电池的自放电率较高。目前磷酸铁锂电池的自放电率筛选方法主要以单位时间内的电压差来表征,该方法需记录自放电测试前后电压和时间,用以计算单体电池的自放电率,再将自放电相近或相同的单体电池进行配组。该方法需要较多的人力、电力,不仅增加了生产成本,还延长了生产周期。并且,此方法大多采用放电态搁置对磷酸铁锂电池进行自放电筛选,但是由于电池的极化作用,电池放电后电压都存在反弹,而不同电池间电压反弹的程度和速率都不一样,导致电池放电态搁置前的电压一致性很差,而搁置后电压甚至有比搁置前电压还大,即出现电压差为负值的现象,因此这种利用放电态电压差来筛选电池一致性的方法存在一定的弊端;还有一种方法是条码管理方法,通过自动化生产线来达到电池组自放电的一致,但目前国内电池行业自动化生产线较少,整个行业仍处于半自动化向自动化转变的初级阶段,短时间内此方法很难在国内实现。At present, lithium iron phosphate power batteries need to be screened for performance consistency of single batteries before being assembled into groups, and batteries with good consistency are combined into battery packs for use. The existing method for judging the consistency of batteries is mainly to combine static parameters (such as voltage, internal resistance, batch, etc.) and dynamic parameters (such as self-discharge, charging constant current ratio, etc.) for grouping. Among them, due to the structure of the lithium iron phosphate material and the battery manufacturing process, etc., the self-discharge rate of the lithium iron phosphate battery is relatively high. At present, the self-discharge rate screening method of lithium iron phosphate battery is mainly characterized by the voltage difference per unit time. This method needs to record the voltage and time before and after the self-discharge test to calculate the self-discharge rate of the single battery, and then compare the self-discharge Or the same single battery for matching group. This method requires more manpower and electric power, which not only increases the production cost, but also prolongs the production cycle. Moreover, most of this method adopts the self-discharge screening of lithium iron phosphate batteries in the discharge state. However, due to the polarization of the battery, the voltage rebounds after the battery is discharged, and the degree and rate of voltage rebound between different batteries are different, resulting in The voltage consistency of the battery discharge state before shelving is very poor, and the voltage after shelving is even greater than the voltage before shelving, that is, the voltage difference is negative, so this method of using the discharge state voltage difference to screen the consistency of the battery There are certain disadvantages; another method is the barcode management method, which achieves the consistency of self-discharge of battery packs through automated production lines. This method is difficult to realize in China within a short period of time.
因此,有必要提供一种锂离子动力电池自放电一致性的评价方法,以进行低成本、易于操作的自放电一致性筛选。Therefore, it is necessary to provide a method for evaluating the self-discharge consistency of lithium-ion power batteries for low-cost, easy-to-operate self-discharge consistency screening.
发明内容Contents of the invention
本发明的目的在于,改变现有技术中磷酸铁锂电池利用放电态的电压差筛选自放电存在的不足,提供一种锂离子动力电池自放电一致性的评价方法。以提高电池的自放电率,有效缩短搁置周期,降低生产成本。The purpose of the present invention is to change the existing deficiency of using the voltage difference in the discharge state to screen the self-discharge of the lithium iron phosphate battery in the prior art, and to provide a method for evaluating the self-discharge consistency of the lithium-ion power battery. In order to improve the self-discharge rate of the battery, effectively shorten the shelf life and reduce production costs.
本发明的技术方案为:Technical scheme of the present invention is:
一种锂离子动力电池自放电一致性的评价方法,包括:A method for evaluating the self-discharge consistency of a lithium-ion power battery, comprising:
步骤1、在同一生产批次、同一规格型号、相同材料体系的磷酸铁锂电池中,挑选容量和内阻一致性较好的多个电池;在室温(20±2)℃下,采用恒流恒压充电制度和恒流放电制度,即将待测电池在室温下以0.02C电流放电,至生产商规定的电池最低放电电压,静置1h,然后以0.2C恒流充电,至生产商规定的电池最高充电电压时转恒压充电,至充电电流降至0.02C时停止充电,如此循环充放电多次;Step 1. Among the lithium iron phosphate batteries of the same production batch, the same specification and model, and the same material system, select multiple batteries with good consistency in capacity and internal resistance; at room temperature (20±2)°C, use constant current Constant voltage charging system and constant current discharging system, that is, discharge the battery under test at room temperature with a current of 0.02C to the minimum discharge voltage specified by the manufacturer, let it stand for 1 hour, and then charge it with a constant current of 0.2C to the minimum discharge voltage specified by the manufacturer. Switch to constant voltage charging at the highest charging voltage of the battery, and stop charging when the charging current drops to 0.02C, and cycle charging and discharging many times in this way;
步骤2、在室温(20±2)℃条件下,调整上述磷酸铁锂电池SOC(荷电状态)至空电态,即0%SOC(荷电状态);Step 2. At room temperature (20±2)°C, adjust the SOC (state of charge) of the above-mentioned lithium iron phosphate battery to an empty state, that is, 0% SOC (state of charge);
步骤3、室温(20±2)℃条件下,将上述磷酸铁锂电池搁置7天,每隔24小时用万用表测量各单体电池的开路电压,计算相邻24小时的开路电压差值△OCU_1,并对7天的开路电压差值△OCU_1进行线性回归Y=A+BX,其中Y为开路电压差值△OCU_1,X为个数,即开路电压差值△OCU_1的个数,A为斜率,B为截距;选取B>0的单体电池,此时磷酸铁锂电池电压记为OCU_t1;以此,将月自放电率大于3%的电池筛除;Step 3. At room temperature (20±2)°C, put the above-mentioned lithium iron phosphate battery on hold for 7 days, measure the open circuit voltage of each single battery with a multimeter every 24 hours, and calculate the open circuit voltage difference △OCU_1 of adjacent 24 hours , and perform linear regression Y=A+BX on the 7-day open circuit voltage difference △OCU_1, where Y is the open circuit voltage difference △OCU_1, X is the number, that is, the number of open circuit voltage difference △OCU_1, and A is the slope , B is the intercept; select a single battery with B>0, at this time, the voltage of the lithium iron phosphate battery is recorded as OCU_t1; in this way, the battery with a monthly self-discharge rate greater than 3% is screened out;
步骤4、对上述磷酸铁锂电池进行充电处理,即将电池SOC调整至10%SOC-30%SOC的荷电状态;Step 4, charging the above-mentioned lithium iron phosphate battery, that is, adjusting the SOC of the battery to a state of charge of 10% SOC-30% SOC;
步骤5、在30℃-45℃的高温下,将上述具有10%SOC-30%SOC荷电状态的磷酸铁锂电池搁置7天,测量电池高温搁置后的开路电压OCV_t2;计算电池的电压降△V=OCV_t1-OCV_t2或单位时间内的电压降K=(OCV_t1-OCV_t2)/t,其中t为单位时间,可设为天或小时;Step 5. At a high temperature of 30°C-45°C, put the lithium iron phosphate battery with a state of charge of 10%SOC-30%SOC on hold for 7 days, measure the open circuit voltage OCV_t2 of the battery after being put on hold at high temperature; calculate the voltage drop of the battery △V=OCV_t1-OCV_t2 or the voltage drop K=(OCV_t1-OCV_t2)/t per unit time, where t is the unit time, which can be set as days or hours;
步骤6、计算所有电池的△V或K值的平均值X和标准差σ,筛选出在[X-2σ,X+2σ]置信区间的电池。Step 6. Calculate the average value X and standard deviation σ of the ΔV or K values of all batteries, and screen out the batteries within the [X-2σ, X+2σ] confidence interval.
通过采用本发明,可以改变现有技术中磷酸铁锂电池利用放电态的电压差筛选自放电存在的不足,通过先利用较低荷电状态下的电压差初步筛选出自放电率大于3%磷酸铁锂电池,再在高温下搁置筛选自放电率相近的电池,采用高温搁置可以提高电池的自放电率,有效缩短搁置周期,降低生产成本,具有相当的实用意义。By adopting the present invention, it is possible to change the deficiency that the lithium iron phosphate battery uses the voltage difference in the discharge state to screen the self-discharge in the prior art, and initially screen the iron phosphate with a self-discharge rate greater than 3% by using the voltage difference in the lower state of charge. For lithium batteries, put them aside at high temperature to screen batteries with similar self-discharge rates. Using high-temperature shelving can improve the self-discharge rate of batteries, effectively shorten the shelf life, and reduce production costs, which has considerable practical significance.
具体实施方式detailed description
实验装置:MACCOR电池测试仪(美国,model 4200:5V,10A,8通道和10V,5A,8通道),万用表(美国fulke,17B),CSZ高温防爆箱(美国CSZ)、巨孚高低温防爆箱(中国台湾,ETH-1000-40-CP-AR)和数据采集器(日本横河,MX100);Experimental equipment: MACCOR battery tester (US, model 4200: 5V, 10A, 8 channels and 10V, 5A, 8 channels), multimeter (US fulke, 17B), CSZ high temperature explosion-proof box ( US CSZ ), Jufu high and low temperature explosion-proof Box (China Taiwan, ETH-1000-40-CP-AR) and data collector (Japan Yokogawa, MX100);
实验动力电池样品:1)标称电压3.2V,标称容量10Ah;2)电池的组成:正极活性材料 为LiFePO4,负极活性材料为人造石墨,电解液的主要成分为LiPF6/EC+DMC+VC+PS,以及celgard隔膜;3)尺寸:23mm(厚)x68mm(宽)x88mm(高)。Experimental power battery samples: 1) nominal voltage 3.2V, nominal capacity 10Ah; 2) composition of the battery: the positive active material is LiFePO 4 , the negative active material is artificial graphite, and the main component of the electrolyte is LiPF 6 /EC+DMC +VC+PS, and celgard diaphragm; 3) Dimensions: 23mm (thickness) x68mm (width) x88mm (height).
筛选上述电池自放电的一致性,具体步骤如下:To screen the consistency of self-discharge of the above batteries, the specific steps are as follows:
1、挑选容量(10Ah±5mAh)和内阻(<4mΩ)一致性较好的10个电池,进行实验。在室温(20±2)℃下,采用恒流恒压充电制度和恒流放电制度,即将待测电池在试验温度条件下以0.02C电流放电,至电池电压达到2.1V,静置1h,然后以0.2C恒流充电,至电池电压达3.65V时转恒压充电,至充电电流降至0.02C时停止充电,如此循环充放电10次;1. Select 10 batteries with good consistency of capacity (10Ah±5mAh) and internal resistance (<4mΩ) for experiment. At room temperature (20±2)°C, adopt the constant current and constant voltage charging system and constant current discharging system, that is, the battery to be tested is discharged at a current of 0.02C under the test temperature condition, until the battery voltage reaches 2.1V, stand for 1h, and then Charge with a constant current of 0.2C, turn to constant voltage charging when the battery voltage reaches 3.65V, stop charging when the charging current drops to 0.02C, and cycle charging and discharging 10 times in this way;
2、在室温(20±2)℃条件下,调整上述磷酸铁锂电池SOC(荷电状态)至空电态,即0%SOC(荷电状态);2. At room temperature (20±2)°C, adjust the SOC (state of charge) of the above-mentioned lithium iron phosphate battery to an empty state, that is, 0% SOC (state of charge);
3、室温(20±2)℃条件下,将上述磷酸铁锂电池搁置7天,每隔24小时用万用表测量各单体电池的开路电压,计算相邻24小时的开路电压差值△OCU_1,并对7天的开路电压差值△OCU_1进行线性回归Y=A+BX,选取B>0的单体电池(电池1、2、3、5、6、7、8),结果如表所示,此时磷酸铁锂电池电压记为OCU_t1;3. At room temperature (20±2)°C, put the above-mentioned lithium iron phosphate battery on hold for 7 days, measure the open circuit voltage of each single battery with a multimeter every 24 hours, and calculate the open circuit voltage difference △OCU_1 of adjacent 24 hours, And perform linear regression Y=A+BX on the 7-day open circuit voltage difference △OCU_1, and select single batteries with B>0 (batteries 1, 2, 3, 5, 6, 7, 8), and the results are shown in the table , at this time, the voltage of the lithium iron phosphate battery is recorded as OCU_t1;
4、将上述磷酸铁锂电池进行充电处理,即将电池SOC调整至10%SOC(荷电状态);4. Charge the above-mentioned lithium iron phosphate battery, that is, adjust the battery SOC to 10% SOC (state of charge);
5、30℃高温下,将上述磷酸铁锂电池(10%SOC)搁置7天,测量电池高温搁置后的开路电压OCV_t2;计算电池的电压降△V=OCV_t1-OCV_t2,如表所示;5. At a high temperature of 30°C, the above-mentioned lithium iron phosphate battery (10% SOC) was left for 7 days, and the open circuit voltage OCV_t2 of the battery after being left at high temperature was measured; the voltage drop of the battery was calculated △V=OCV_t1-OCV_t2, as shown in the table;
6、计算所有电池的△V的平均值X=-0.01和标准差σ=0.004,选择在[-0.018,-0.002]置信区间的电池,即选择电池2、3、5、6、7、8,这些电池自放电率一致性较好。6. Calculate the average value of △V of all batteries X=-0.01 and standard deviation σ=0.004, select the battery within the [-0.018, -0.002] confidence interval, that is, select batteries 2, 3, 5, 6, 7, 8 , these batteries have better self-discharge rate consistency.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710854834.2A CN107607881A (en) | 2017-09-20 | 2017-09-20 | A kind of evaluation method of lithium-ion-power cell self discharge uniformity |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710854834.2A CN107607881A (en) | 2017-09-20 | 2017-09-20 | A kind of evaluation method of lithium-ion-power cell self discharge uniformity |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107607881A true CN107607881A (en) | 2018-01-19 |
Family
ID=61061279
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710854834.2A Pending CN107607881A (en) | 2017-09-20 | 2017-09-20 | A kind of evaluation method of lithium-ion-power cell self discharge uniformity |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107607881A (en) |
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108196204A (en) * | 2018-03-08 | 2018-06-22 | 珠海格力电器股份有限公司 | Method and testing device for rapidly detecting self-discharge consistency of lithium ion battery |
| CN108287318A (en) * | 2018-01-30 | 2018-07-17 | 上海华普汽车有限公司 | A kind of detection method and detecting system based on power cell of vehicle packet |
| CN108459273A (en) * | 2018-02-28 | 2018-08-28 | 河南国能电池有限公司 | Battery core manufacture test method and device |
| CN108663627A (en) * | 2018-03-28 | 2018-10-16 | 维沃移动通信有限公司 | A kind of self-discharge of battery detection method and self-discharge of battery detection device |
| CN108732481A (en) * | 2018-05-30 | 2018-11-02 | 四川蓝彩电子科技有限公司 | A kind of electric current detecting method of high-power IGBT module |
| CN108896921A (en) * | 2018-06-19 | 2018-11-27 | 合肥国轩高科动力能源有限公司 | Method for screening consistency of lithium ion batteries |
| CN109212429A (en) * | 2018-08-14 | 2019-01-15 | 国网冀北电力有限公司秦皇岛供电公司 | The method that multi-parameter weighting determines accumulator property |
| CN109301362A (en) * | 2018-08-22 | 2019-02-01 | 合肥国轩高科动力能源有限公司 | Grading screening method for lithium batteries |
| CN109459703A (en) * | 2018-12-25 | 2019-03-12 | 山东精工电子科技有限公司 | A kind of self discharge of lithium iron phosphate battery conformity classification method |
| CN109494412A (en) * | 2018-10-31 | 2019-03-19 | 合肥国轩高科动力能源有限公司 | LFP lithium ion battery cell capacity grading screening method |
| CN109821775A (en) * | 2019-01-09 | 2019-05-31 | 中兴高能技术有限责任公司 | A kind of method, terminal and storage medium screening battery |
| CN110297191A (en) * | 2019-08-07 | 2019-10-01 | 深圳市思商科技有限公司 | A kind of self-discharge of battery test method |
| CN110501649A (en) * | 2019-07-26 | 2019-11-26 | 苏州安靠电源有限公司 | A kind of lithium battery Conformance Assessment test method |
| CN110632529A (en) * | 2019-10-08 | 2019-12-31 | 湖南华兴新能源科技有限公司 | Lithium battery self-discharge testing process |
| CN110639844A (en) * | 2019-08-26 | 2020-01-03 | 上海空间电源研究所 | Lithium ion storage battery consistency screening method for space aircraft |
| CN110729798A (en) * | 2019-11-18 | 2020-01-24 | 溧阳中科海钠科技有限责任公司 | Control method and control system for voltage consistency of sodium-ion battery pack |
| CN110988699A (en) * | 2019-12-31 | 2020-04-10 | 三峡大学 | State diagnosis method and device for echelon utilization of lithium battery energy storage unit |
| CN111215355A (en) * | 2019-11-22 | 2020-06-02 | 昆山聚创新能源科技有限公司 | Method for screening lithium batteries for discharge |
| CN111679219A (en) * | 2020-06-10 | 2020-09-18 | 江苏开沃汽车有限公司 | Self-discharge screening method for lithium ion power battery |
| CN111781510A (en) * | 2020-06-09 | 2020-10-16 | 合肥国轩高科动力能源有限公司 | A method for screening abnormal self-discharge batteries |
| CN112354897A (en) * | 2020-07-22 | 2021-02-12 | 万向一二三股份公司 | Screening method for cell consistency in practical application process of lithium ion battery |
| CN112666478A (en) * | 2019-11-20 | 2021-04-16 | 华中科技大学 | Method for monitoring health state of power battery by gradient utilization |
| CN112871759A (en) * | 2021-01-12 | 2021-06-01 | 苏州领湃新能源科技有限公司 | Lithium battery voltage drop evaluation method and system |
| CN112986839A (en) * | 2021-02-25 | 2021-06-18 | 北京理工大学 | Confidence interval-based fault diagnosis method and system for lithium ion power battery pack |
| CN113064094A (en) * | 2021-03-22 | 2021-07-02 | 中国人民解放军国防科技大学 | Method and system for screening single batteries of cell type spacecraft lithium battery |
| CN113075564A (en) * | 2021-03-24 | 2021-07-06 | 骆驼集团新能源电池有限公司 | Screening method for self-discharge of lithium iron phosphate battery |
| CN113219361A (en) * | 2021-03-16 | 2021-08-06 | 上海派能能源科技股份有限公司 | Lithium ion battery pack abnormal self-discharge diagnosis method and system based on time-sharing regression distribution |
| CN113238152A (en) * | 2021-05-10 | 2021-08-10 | 昆山聚创新能源科技有限公司 | Lithium battery self-discharge detection method |
| CN113285513A (en) * | 2021-06-11 | 2021-08-20 | 湖北亿纬动力有限公司 | Method, device, equipment and storage medium for evaluating self-discharge consistency of battery |
| CN113466708A (en) * | 2021-07-27 | 2021-10-01 | 上海纳米技术及应用国家工程研究中心有限公司 | Method for evaluating low-temperature performance of lithium battery |
| CN113466727A (en) * | 2021-07-07 | 2021-10-01 | 广州鹏辉能源科技股份有限公司 | Battery self-discharge screening method and device, terminal equipment and readable storage medium |
| CN113484773A (en) * | 2021-08-03 | 2021-10-08 | 湖北亿纬动力有限公司 | Screening method for self-discharge of lithium ion battery |
| CN113540581A (en) * | 2020-04-21 | 2021-10-22 | 北京新能源汽车股份有限公司 | Method and system for determining consistency of lithium ion cells |
| CN114035093A (en) * | 2022-01-07 | 2022-02-11 | 荣耀终端有限公司 | Battery internal resistance test method and electronic equipment |
| CN114441967A (en) * | 2021-12-25 | 2022-05-06 | 中天储能科技有限公司 | Battery self-discharge screening method |
| CN114879074A (en) * | 2022-06-09 | 2022-08-09 | 华鼎国联四川电池材料有限公司 | Lithium ion battery self-discharge screening method and device |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6639385B2 (en) * | 2001-08-07 | 2003-10-28 | General Motors Corporation | State of charge method and apparatus |
| JP2005156352A (en) * | 2003-11-26 | 2005-06-16 | Nissan Motor Co Ltd | Battery open voltage calculation method and charge amount calculation method |
| CN102364353A (en) * | 2011-11-14 | 2012-02-29 | 北京理工大学 | A Consistency Evaluation Method for Secondary Batteries Based on Thermal Effect |
| CN102508165A (en) * | 2011-10-20 | 2012-06-20 | 合肥国轩高科动力能源有限公司 | Method for evaluating self-discharge consistency of lithium iron phosphate battery |
| CN104237802A (en) * | 2014-09-23 | 2014-12-24 | 中国检验检疫科学研究院 | Detection method for low-temperature performance uniformity of lithium ion batteries |
| CN104795857A (en) * | 2015-03-23 | 2015-07-22 | 上海交通大学 | Lithium ion battery energy balance system and implementation method thereof |
-
2017
- 2017-09-20 CN CN201710854834.2A patent/CN107607881A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6639385B2 (en) * | 2001-08-07 | 2003-10-28 | General Motors Corporation | State of charge method and apparatus |
| JP2005156352A (en) * | 2003-11-26 | 2005-06-16 | Nissan Motor Co Ltd | Battery open voltage calculation method and charge amount calculation method |
| CN102508165A (en) * | 2011-10-20 | 2012-06-20 | 合肥国轩高科动力能源有限公司 | Method for evaluating self-discharge consistency of lithium iron phosphate battery |
| CN102508165B (en) * | 2011-10-20 | 2013-11-20 | 合肥国轩高科动力能源股份公司 | Method for evaluating self-discharge consistency of lithium iron phosphate battery |
| CN102364353A (en) * | 2011-11-14 | 2012-02-29 | 北京理工大学 | A Consistency Evaluation Method for Secondary Batteries Based on Thermal Effect |
| CN104237802A (en) * | 2014-09-23 | 2014-12-24 | 中国检验检疫科学研究院 | Detection method for low-temperature performance uniformity of lithium ion batteries |
| CN104795857A (en) * | 2015-03-23 | 2015-07-22 | 上海交通大学 | Lithium ion battery energy balance system and implementation method thereof |
Non-Patent Citations (1)
| Title |
|---|
| 黄凯: "锂离子电池成组应用技术及性能状态估计策略研究", 《中国博士学位论文全文数据库 工程科技II辑》 * |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108287318A (en) * | 2018-01-30 | 2018-07-17 | 上海华普汽车有限公司 | A kind of detection method and detecting system based on power cell of vehicle packet |
| CN108459273A (en) * | 2018-02-28 | 2018-08-28 | 河南国能电池有限公司 | Battery core manufacture test method and device |
| CN108459273B (en) * | 2018-02-28 | 2020-05-19 | 河南国能电池有限公司 | Cell factory test method and device |
| CN108196204A (en) * | 2018-03-08 | 2018-06-22 | 珠海格力电器股份有限公司 | Method and testing device for rapidly detecting self-discharge consistency of lithium ion battery |
| CN108663627B (en) * | 2018-03-28 | 2020-03-24 | 维沃移动通信有限公司 | Battery self-discharge detection method and battery self-discharge detection device |
| CN108663627A (en) * | 2018-03-28 | 2018-10-16 | 维沃移动通信有限公司 | A kind of self-discharge of battery detection method and self-discharge of battery detection device |
| CN108732481A (en) * | 2018-05-30 | 2018-11-02 | 四川蓝彩电子科技有限公司 | A kind of electric current detecting method of high-power IGBT module |
| CN108896921A (en) * | 2018-06-19 | 2018-11-27 | 合肥国轩高科动力能源有限公司 | Method for screening consistency of lithium ion batteries |
| CN109212429A (en) * | 2018-08-14 | 2019-01-15 | 国网冀北电力有限公司秦皇岛供电公司 | The method that multi-parameter weighting determines accumulator property |
| CN109212429B (en) * | 2018-08-14 | 2021-02-09 | 国网冀北电力有限公司秦皇岛供电公司 | Method for judging performance of storage battery through multi-parameter weighting |
| CN109301362B (en) * | 2018-08-22 | 2020-09-11 | 合肥国轩高科动力能源有限公司 | Grading screening method for lithium batteries |
| CN109301362A (en) * | 2018-08-22 | 2019-02-01 | 合肥国轩高科动力能源有限公司 | Grading screening method for lithium batteries |
| CN109494412A (en) * | 2018-10-31 | 2019-03-19 | 合肥国轩高科动力能源有限公司 | LFP lithium ion battery cell capacity grading screening method |
| CN109459703A (en) * | 2018-12-25 | 2019-03-12 | 山东精工电子科技有限公司 | A kind of self discharge of lithium iron phosphate battery conformity classification method |
| CN109821775A (en) * | 2019-01-09 | 2019-05-31 | 中兴高能技术有限责任公司 | A kind of method, terminal and storage medium screening battery |
| CN110501649A (en) * | 2019-07-26 | 2019-11-26 | 苏州安靠电源有限公司 | A kind of lithium battery Conformance Assessment test method |
| CN110297191A (en) * | 2019-08-07 | 2019-10-01 | 深圳市思商科技有限公司 | A kind of self-discharge of battery test method |
| CN110639844A (en) * | 2019-08-26 | 2020-01-03 | 上海空间电源研究所 | Lithium ion storage battery consistency screening method for space aircraft |
| CN110639844B (en) * | 2019-08-26 | 2022-02-01 | 上海空间电源研究所 | Lithium ion storage battery consistency screening method for space aircraft |
| CN110632529A (en) * | 2019-10-08 | 2019-12-31 | 湖南华兴新能源科技有限公司 | Lithium battery self-discharge testing process |
| CN110729798A (en) * | 2019-11-18 | 2020-01-24 | 溧阳中科海钠科技有限责任公司 | Control method and control system for voltage consistency of sodium-ion battery pack |
| CN110729798B (en) * | 2019-11-18 | 2021-01-29 | 溧阳中科海钠科技有限责任公司 | Control method and control system for voltage consistency of sodium ion battery pack |
| CN112666478A (en) * | 2019-11-20 | 2021-04-16 | 华中科技大学 | Method for monitoring health state of power battery by gradient utilization |
| CN111215355A (en) * | 2019-11-22 | 2020-06-02 | 昆山聚创新能源科技有限公司 | Method for screening lithium batteries for discharge |
| CN110988699A (en) * | 2019-12-31 | 2020-04-10 | 三峡大学 | State diagnosis method and device for echelon utilization of lithium battery energy storage unit |
| CN113540581A (en) * | 2020-04-21 | 2021-10-22 | 北京新能源汽车股份有限公司 | Method and system for determining consistency of lithium ion cells |
| CN113540581B (en) * | 2020-04-21 | 2022-11-18 | 北京新能源汽车股份有限公司 | Method and system for determining consistency of lithium ion cells |
| CN111781510A (en) * | 2020-06-09 | 2020-10-16 | 合肥国轩高科动力能源有限公司 | A method for screening abnormal self-discharge batteries |
| CN111679219A (en) * | 2020-06-10 | 2020-09-18 | 江苏开沃汽车有限公司 | Self-discharge screening method for lithium ion power battery |
| CN111679219B (en) * | 2020-06-10 | 2022-06-14 | 江苏开沃汽车有限公司 | Self-discharge screening method for lithium ion power battery |
| CN112354897B (en) * | 2020-07-22 | 2022-04-12 | 万向一二三股份公司 | Screening method for cell consistency in practical application process of lithium ion battery |
| CN112354897A (en) * | 2020-07-22 | 2021-02-12 | 万向一二三股份公司 | Screening method for cell consistency in practical application process of lithium ion battery |
| CN112871759A (en) * | 2021-01-12 | 2021-06-01 | 苏州领湃新能源科技有限公司 | Lithium battery voltage drop evaluation method and system |
| CN112986839A (en) * | 2021-02-25 | 2021-06-18 | 北京理工大学 | Confidence interval-based fault diagnosis method and system for lithium ion power battery pack |
| CN113219361A (en) * | 2021-03-16 | 2021-08-06 | 上海派能能源科技股份有限公司 | Lithium ion battery pack abnormal self-discharge diagnosis method and system based on time-sharing regression distribution |
| CN113219361B (en) * | 2021-03-16 | 2024-02-27 | 上海派能能源科技股份有限公司 | Abnormal self-discharge diagnosis method and system for lithium ion battery pack |
| CN113064094A (en) * | 2021-03-22 | 2021-07-02 | 中国人民解放军国防科技大学 | Method and system for screening single batteries of cell type spacecraft lithium battery |
| CN113075564A (en) * | 2021-03-24 | 2021-07-06 | 骆驼集团新能源电池有限公司 | Screening method for self-discharge of lithium iron phosphate battery |
| CN113075564B (en) * | 2021-03-24 | 2024-02-06 | 骆驼集团新能源电池有限公司 | A screening method for self-discharge of lithium iron phosphate batteries |
| CN113238152A (en) * | 2021-05-10 | 2021-08-10 | 昆山聚创新能源科技有限公司 | Lithium battery self-discharge detection method |
| CN113285513A (en) * | 2021-06-11 | 2021-08-20 | 湖北亿纬动力有限公司 | Method, device, equipment and storage medium for evaluating self-discharge consistency of battery |
| CN113466727A (en) * | 2021-07-07 | 2021-10-01 | 广州鹏辉能源科技股份有限公司 | Battery self-discharge screening method and device, terminal equipment and readable storage medium |
| CN113466708A (en) * | 2021-07-27 | 2021-10-01 | 上海纳米技术及应用国家工程研究中心有限公司 | Method for evaluating low-temperature performance of lithium battery |
| CN113484773A (en) * | 2021-08-03 | 2021-10-08 | 湖北亿纬动力有限公司 | Screening method for self-discharge of lithium ion battery |
| CN114441967A (en) * | 2021-12-25 | 2022-05-06 | 中天储能科技有限公司 | Battery self-discharge screening method |
| CN114035093A (en) * | 2022-01-07 | 2022-02-11 | 荣耀终端有限公司 | Battery internal resistance test method and electronic equipment |
| CN114879074A (en) * | 2022-06-09 | 2022-08-09 | 华鼎国联四川电池材料有限公司 | Lithium ion battery self-discharge screening method and device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107607881A (en) | A kind of evaluation method of lithium-ion-power cell self discharge uniformity | |
| CN107658511B (en) | Power lithium battery combination method and dynamic lithium battery method for group matching | |
| CN108923080B (en) | Lithium ion battery matching method | |
| CN104062594B (en) | Lithium-ion-power cell method for group matching | |
| CN105903692B (en) | Lithium ion battery conformity classification method | |
| CN207852740U (en) | A screening system for self-discharge consistency of lithium iron phosphate power battery packs | |
| CN104617339B (en) | Lithium ion battery matching method | |
| CN204269787U (en) | A detection system for low-temperature performance consistency of lithium-ion batteries | |
| CN107607874B (en) | The bikini screening technique of quick charge/discharge lithium ion battery | |
| CN110165319A (en) | A kind of method for separating of high-capacity lithium battery self-discharge performance | |
| CN106824831A (en) | A kind of manufacture method of the motive-power battery for improving lithium ion battery uniformity | |
| CN103594742B (en) | A kind of sorting method for group matching of power lead-acid storage battery group | |
| CN104577226B (en) | A kind of method for group matching improving power battery pack service life cycle | |
| CN103884991A (en) | Test method for single body cell DC internal resistance | |
| CN103048623B (en) | A kind of method of quick detection self discharge rate of lithium iron phosphate lithium-ion battery | |
| CN102508165A (en) | Method for evaluating self-discharge consistency of lithium iron phosphate battery | |
| CN111036575B (en) | A Lithium-ion Battery Sorting Method Based on Temperature Change Analysis | |
| CN102901931A (en) | Method for screening lithium battery with abnormal self-discharge | |
| CN112684356A (en) | Cycle test method of lithium ion battery | |
| CN104979597A (en) | Lithium ion battery self-discharge method | |
| CN104237802A (en) | Detection method for low-temperature performance uniformity of lithium ion batteries | |
| CN108511823A (en) | A kind of lithium ion battery self discharge SOC state screening techniques | |
| CN112103570A (en) | Power battery matching process | |
| CN101614793B (en) | Method for evaluating consistency of batteries | |
| CN116559695A (en) | Self-discharge testing method for lithium ion battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180119 |