[go: up one dir, main page]

CN107622473B - Image rendering method, device, terminal and computer readable storage medium - Google Patents

Image rendering method, device, terminal and computer readable storage medium Download PDF

Info

Publication number
CN107622473B
CN107622473B CN201710868728.XA CN201710868728A CN107622473B CN 107622473 B CN107622473 B CN 107622473B CN 201710868728 A CN201710868728 A CN 201710868728A CN 107622473 B CN107622473 B CN 107622473B
Authority
CN
China
Prior art keywords
information
image
rendering
target
machine learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710868728.XA
Other languages
Chinese (zh)
Other versions
CN107622473A (en
Inventor
梁昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN201710868728.XA priority Critical patent/CN107622473B/en
Publication of CN107622473A publication Critical patent/CN107622473A/en
Application granted granted Critical
Publication of CN107622473B publication Critical patent/CN107622473B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

The application discloses an image rendering method, an image rendering device, a terminal and a computer readable storage medium. The method comprises the following steps: acquiring a target rendering mode of a target image according to a machine learning model, wherein the target image is an image obtained by a photographing function; rendering the target image according to the target rendering mode; and outputting the rendered target image. According to the image rendering method provided by the embodiment of the application, firstly, a target rendering mode of a target image is obtained according to a machine learning model, and the target image is obtained by a photographing function; then rendering the target image according to the target rendering mode; and finally, outputting the rendered target image, so that the rendering efficiency of the rendering function can be improved, and the utilization rate of the rendering function can be improved.

Description

图像渲染方法、装置、终端及计算机可读存储介质Image rendering method, device, terminal, and computer-readable storage medium

技术领域technical field

本申请实施例涉及电子设备应用技术,尤其涉及一种图像渲染方法、装置、终端及计算机可读存储介质。The embodiments of the present application relate to electronic device application technologies, and in particular, to an image rendering method, apparatus, terminal, and computer-readable storage medium.

背景技术Background technique

随着智能终端的发展,智能终端上的拍照功能被用户广为使用。目前相机的拍照功能中嵌套有渲染功能。渲染功能用于对图片的温色进行调节,进而使照片出现复古、黑白、怀旧等风格。相关技术中图片的渲染功能由用户人工选择,即由用户选择其所需要的渲染色调。但是,对于新用户其并不了解不同名称的渲染功能对应的照片风格,甚至在多测尝试不同风格的渲染后仍然无法找到合适的渲染方式,不仅浪费时间且用户多次无法找到合适的渲染方式将会放弃渲染功能,导致渲染功能的利用率低。With the development of smart terminals, the camera function on the smart terminals is widely used by users. At present, the camera's photographing function is embedded with a rendering function. The rendering function is used to adjust the warm color of the picture, so as to make the photo appear retro, black and white, nostalgic and so on. The rendering function of the picture in the related art is manually selected by the user, that is, the user selects the desired rendering tone. However, for new users, they do not know the photo styles corresponding to the rendering functions with different names, and even after multiple tests to try different styles of rendering, they still cannot find a suitable rendering method. The rendering function will be abandoned, resulting in low utilization of the rendering function.

发明内容SUMMARY OF THE INVENTION

本申请提供一种图像渲染方法、装置、终端及计算机可读存储介质,可以提高渲染功能的渲染效率,提高渲染功能的利用率。The present application provides an image rendering method, device, terminal and computer-readable storage medium, which can improve the rendering efficiency of the rendering function and the utilization rate of the rendering function.

第一方面,本申请实施例提供了一种图像渲染方法,包括:In a first aspect, an embodiment of the present application provides an image rendering method, including:

根据机器学习模型获取目标图像的目标渲染方式,所述目标图像为拍照功能得到的图像;A target rendering method for obtaining a target image according to the machine learning model, where the target image is an image obtained by a photographing function;

根据所述目标渲染方式对所述目标图像进行渲染;rendering the target image according to the target rendering mode;

输出渲染后的目标图像。Output the rendered target image.

第二方面,本申请实施例还提供了一种图像渲染装置,包括:In a second aspect, an embodiment of the present application further provides an image rendering apparatus, including:

机器学习模块,用于根据机器学习模型获取目标图像的目标渲染方式,所述目标图像为拍照功能得到的图像;A machine learning module, configured to obtain a target rendering method of a target image according to the machine learning model, where the target image is an image obtained by a photographing function;

渲染模块,用于根据所述机器学习模块得到的所述目标渲染方式对所述目标图像进行渲染;a rendering module, configured to render the target image according to the target rendering mode obtained by the machine learning module;

输出模块,用于输出所述渲染模块渲染后的目标图像。The output module is configured to output the target image rendered by the rendering module.

第三方面,本申请实施例还提供了一种终端,所述终端包括:In a third aspect, an embodiment of the present application further provides a terminal, where the terminal includes:

一个或多个处理器;one or more processors;

存储装置,用于存储一个或多个程序,storage means for storing one or more programs,

数据收发器,用于与服务器进行数据交互;A data transceiver for data interaction with the server;

当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面所示的图像渲染方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the image rendering method shown in the first aspect.

第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如第一方面所示的图像渲染方法。In a fourth aspect, embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, characterized in that, when the program is executed by a processor, the image rendering method shown in the first aspect is implemented.

本申请实施例提供的图像渲染方法,首先根据机器学习模型获取目标图像的目标渲染方式,所述目标图像为拍照功能得到的图像;然后根据所述目标渲染方式对所述目标图像进行渲染;最后输出渲染后的目标图像,能够提高渲染功能的渲染效率,提高渲染功能的利用率。In the image rendering method provided by the embodiment of the present application, first, a target rendering method of a target image is obtained according to a machine learning model, and the target image is an image obtained by a photographing function; then the target image is rendered according to the target rendering method; finally Outputting the rendered target image can improve the rendering efficiency of the rendering function and improve the utilization rate of the rendering function.

附图说明Description of drawings

图1是本申请实施例中的一种图像渲染方法的流程图;1 is a flowchart of an image rendering method in an embodiment of the present application;

图2是本申请实施例中的另一种图像渲染方法的流程图;2 is a flowchart of another image rendering method in the embodiment of the present application;

图3是本申请实施例中的另一种图像渲染方法的流程图;3 is a flowchart of another image rendering method in an embodiment of the present application;

图4是本申请实施例中的另一种图像渲染方法的流程图;4 is a flowchart of another image rendering method in the embodiment of the present application;

图5是本申请实施例中的另一种图像渲染方法的流程图;5 is a flowchart of another image rendering method in an embodiment of the present application;

图6是本申请实施例中的一种图像渲染装置的结构示意图;6 is a schematic structural diagram of an image rendering apparatus in an embodiment of the present application;

图7是本申请实施例中的另一种图像渲染装置的结构示意图;7 is a schematic structural diagram of another image rendering apparatus in an embodiment of the present application;

图8是本申请实施例中的一种终端的结构示意图。FIG. 8 is a schematic structural diagram of a terminal in an embodiment of the present application.

具体实施方式Detailed ways

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。The present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all the structures related to the present application.

目前,终端中的相机功能或者图像处理应用均能够对图片进行渲染,但是以何种的渲染方式对图像进行渲染需要由用户人工选择。但是用户通常并不清楚当前场景最为合适的渲染方式,因此用户需要多次尝试不同的渲染方式,费时费力。或者用户只使用一种自己习惯的渲染方式,进而忽略了其他更优的渲染方式。本申请提供一中结合机器学习的图像自动渲染方式,为用户提供适合的图像渲染,提高渲染功能的渲染效率和图像渲染功能的利用率。At present, the camera function or the image processing application in the terminal can render the image, but which rendering mode to render the image needs to be manually selected by the user. However, users usually do not know the most suitable rendering method for the current scene, so users need to try different rendering methods many times, which is time-consuming and labor-intensive. Or users only use one rendering method that they are used to, and then ignore other better rendering methods. The present application provides an automatic image rendering method combined with machine learning, which provides suitable image rendering for users, and improves the rendering efficiency of the rendering function and the utilization rate of the image rendering function.

图1为本申请实施例提供的一种图像渲染方法的流程图,该方法应用于终端,终端可以为智能手机、可穿戴设备、平板电脑、笔记本电脑等具有拍照功能或者具有图像处理功能的电子设备。该方法适用于为拍照得到的图像进行渲染的情况,具体包括下述步骤:FIG. 1 is a flowchart of an image rendering method provided by an embodiment of the present application. The method is applied to a terminal, and the terminal may be an electronic device with a photographing function or an image processing function, such as a smart phone, a wearable device, a tablet computer, and a notebook computer. equipment. This method is suitable for rendering images obtained by taking pictures, and specifically includes the following steps:

步骤110、根据机器学习模型获取目标图像的目标渲染方式。Step 110: Obtain the target rendering mode of the target image according to the machine learning model.

其中,目标图像为拍照功能得到的图像。可选的,在用户输入拍照指令时,终端生成目标图像,在得到目标图像时根据机器学习模型获取目标图像的目标渲染方式。可选的,在根据用户输入的拍照指令生成目标图像后,将目标图像存储到相册。当用户浏览相册中的图像或者使用其他包含有图像渲染功能的图像处理应用浏览图像时,可对图像进行渲染操作。当用户启动渲染功能时,根据机器学习模型获取目标图像的目标渲染方式。Wherein, the target image is the image obtained by the photographing function. Optionally, when the user inputs a photographing instruction, the terminal generates a target image, and when obtaining the target image, obtains a target rendering mode of the target image according to a machine learning model. Optionally, after generating the target image according to the photographing instruction input by the user, the target image is stored in the album. When a user browses images in an album or browses images using other image processing applications that include an image rendering function, a rendering operation can be performed on the images. When the user starts the rendering function, the target rendering mode of the target image is obtained according to the machine learning model.

机器学习模型可以选择人工神经网络(Artificial Neural Networks,ANNs)。可以首先获取多个用户对图像进行渲染的方式,然后通过对机器学习对人工神经网络进行优化。Machine learning models can choose Artificial Neural Networks (ANNs). The way the images are rendered by multiple users can be obtained first, and then the artificial neural network can be optimized through machine learning.

在一种实现方式中,对目标图像进行图像分析,得到目标图像的属性信息。将目标图像的属性信息和用户选择的渲染方式输入到人工神经网络。其中,属性信息可以包括下述信息中的一种或多种:图像方向、图像色温、图像亮度、图像像素或图像主体。在对目标图像进行渲染时,对目标图像进行图像分析,得到目标图像的属性信息,然后将目标图像的属性信息输入得到的人工神经网络,得到目标图像的属性信息对应的目标渲染方式。In an implementation manner, image analysis is performed on the target image to obtain attribute information of the target image. The attribute information of the target image and the rendering method selected by the user are input into the artificial neural network. The attribute information may include one or more of the following information: image orientation, image color temperature, image brightness, image pixels, or image main body. When rendering the target image, image analysis is performed on the target image to obtain the attribute information of the target image, and then the attribute information of the target image is input into the obtained artificial neural network to obtain the target rendering method corresponding to the attribute information of the target image.

步骤120、根据所述目标渲染方式对所述目标图像进行渲染。Step 120: Render the target image according to the target rendering mode.

渲染方式包括单色、色调、黑白、褪色、铬黄、冲印、岁月或怀旧等风格,每种风格用于对目标图像进行色彩、饱和度以及色温上的调节。Rendering styles include monochrome, tone, black and white, faded, chrome, print, age, or nostalgia, each of which is used to adjust the color, saturation, and color temperature of the target image.

步骤130、输出渲染后的目标图像。Step 130: Output the rendered target image.

可选的,在拍照得到目标图像时,对图像进行渲染,并将渲染后的目标图像显示给用户。可选的,在拍照得到目标图像时,对图像进行渲染,并将渲染的图片进行存储。当用户通过相册浏览目标图像时,显示渲染后目标图像。Optionally, when the target image is obtained by taking a photo, the image is rendered, and the rendered target image is displayed to the user. Optionally, when the target image is obtained by taking a photo, the image is rendered, and the rendered image is stored. When the user browses the target image through the album, the rendered target image is displayed.

进一步的,在步骤130之后,还包括:接收用户对目标图像的反馈信息;根据反馈信息对机器学习模型进行调整。Further, after step 130, the method further includes: receiving feedback information on the target image from the user; and adjusting the machine learning model according to the feedback information.

在显示渲染后的目标图像后,接收用户对渲染结果的反馈信息。反馈信息可以为保存、删除或更换渲染方式。将反馈信息输入到机器学习模型中,机器学习模型可根据输入的反馈信息调整渲染方式的确定策略。After the rendered target image is displayed, feedback information on the rendering result from the user is received. Feedback information can be save, delete or change the rendering method. The feedback information is input into the machine learning model, and the machine learning model can adjust the determination strategy of the rendering method according to the input feedback information.

本实施例提供的图像渲染方法,根据机器学习模型获取目标图像的目标渲染方式,目标图像为拍照功能得到的图像;根据目标渲染方式对目标图像进行渲染;输出渲染后的目标图像。由于机器学习能够根据当前用户或其他用户的历史渲染方式为确定目标图像的目标渲染方式,避免用户盲目的尝试多种渲染方式,提高渲染功能的渲染效率和图像渲染功能的利用率。In the image rendering method provided in this embodiment, a target rendering method of a target image is obtained according to a machine learning model, and the target image is an image obtained by a photographing function; the target image is rendered according to the target rendering method; and the rendered target image is output. Since machine learning can determine the target rendering method of the target image according to the historical rendering methods of the current user or other users, users can avoid blindly trying multiple rendering methods, and improve the rendering efficiency of the rendering function and the utilization rate of the image rendering function.

图2为本申请实施例提供的一种图像渲染方法的流程图,作为上述实施例的进一步说明,包括:FIG. 2 is a flowchart of an image rendering method provided by an embodiment of the present application. As a further description of the above-mentioned embodiment, the method includes:

步骤210、获取多个第一用户在拍摄第一图像时的第一位置信息以及第一图像的渲染方式。Step 210: Acquire the first position information of the plurality of first users when the first images are taken and the rendering mode of the first images.

其中,第一用户包括当前用户或出当前用户以外的其他用户。第一图像为第一用户拍照得到的任意一张图像。在根据用户输入的拍照指令得到第一图像时,获取第一图像对应的第一位置信息。第一位置信息可以为通过全球定位系统(Global PositioningSystem,GPS)获取的坐标信息。或者,第一位置信息还可以为当前所在景点标识,或者当前所在商铺标识。当第一用用户对第一图像的渲染方式进行反馈时记录第一位置信息与第一图像的对应关系。Wherein, the first user includes the current user or other users other than the current user. The first image is any image obtained by the first user taking a photo. When the first image is obtained according to the photographing instruction input by the user, the first position information corresponding to the first image is obtained. The first location information may be coordinate information obtained through a global positioning system (Global Positioning System, GPS). Alternatively, the first location information may also be the identifier of the current scenic spot or the identifier of the current shop. The correspondence between the first position information and the first image is recorded when the first user provides feedback on the rendering mode of the first image.

进一步的,判断第一图像中是否存在人物特征区域。如果第一图像中存在人物特征区域,则对多个第一用户对应的第一位置信息和渲染方式进行机器学习,得到第一机器学习模型。如果第一图像中不存在人物特征区域,则取消将第一用户对应的第一位置信息和渲染方式进行机器学习。Further, it is determined whether there is a character feature area in the first image. If there is a character feature area in the first image, perform machine learning on the first position information and rendering methods corresponding to the plurality of first users to obtain a first machine learning model. If there is no character feature area in the first image, the machine learning of the first location information and rendering mode corresponding to the first user is canceled.

判断第一图像中是否存在人脸区域,或者人物身体区域,如果存在,则第一图像中存在人物特征区域。将具有人物特征区域的图片的渲染方式进行机器学习,得到第一机器学习模型,使第一机器学习模型能够够对人物图像进行更加精确的渲染推荐。It is judged whether there is a face area or a person body area in the first image, and if so, there is a person feature area in the first image. A first machine learning model is obtained by performing machine learning on the rendering mode of the picture with the character feature area, so that the first machine learning model can perform more accurate rendering recommendation for the character image.

步骤220、对多个第一用户对应的第一位置信息和渲染方式进行机器学习,得到第一机器学习模型。Step 220: Perform machine learning on the first location information and rendering modes corresponding to the plurality of first users to obtain a first machine learning model.

第一用户可以为任意一个其他用户,也可以为与当前用户属性相近的其他用户。用户属性包括年龄、性别或兴趣中的任意一种。将第一用户对应的第一位置信息和渲染方式进行机器学习,得到的第一机器学习模型能够根据位置信息确定合适的渲染方式。The first user may be any other user, or may be another user whose attributes are similar to the current user. User attributes include any of age, gender, or interests. Perform machine learning on the first position information and rendering mode corresponding to the first user, and the obtained first machine learning model can determine an appropriate rendering mode according to the position information.

在一种使用场景中,用户在某个景点进行留念时,对于不同的景点需要进行不同样式的渲染。例如,与远处山峰进行合影时,使用渲染方式A;拍着某件文物或藏品时,使用渲染方式B。因此,通常景区中一个位置可以看到的景点是唯一的,因此该位置使用的渲染方式也是唯一的。通过第一用户在相同位置选择的渲染方式,可确定该位置对应的渲染方式。In a usage scenario, when a user takes a photo at a certain scenic spot, different styles of rendering need to be performed for different scenic spots. For example, when taking a photo with a distant mountain peak, use rendering method A; when taking pictures of a cultural relic or collection, use rendering method B. Therefore, usually the sights that can be seen from one location in the scenic spot are unique, so the rendering method used for that location is also unique. Through the rendering mode selected by the first user at the same position, the rendering mode corresponding to the position can be determined.

步骤230、获取当前位置信息,将当前位置信息代入到第一机器学习模型中,得到当前位置对应的目标渲染方式。Step 230: Obtain current position information, and substitute the current position information into the first machine learning model to obtain a target rendering mode corresponding to the current position.

当当前用户触发拍照指令时,获取当前位置信息。将当前位置信息输入(又称代入)到第一机器学习模型中,得到当前位置信息对应的目标渲染方式。When the current user triggers the photographing instruction, the current location information is obtained. The current position information is input (also referred to as substitution) into the first machine learning model to obtain the target rendering mode corresponding to the current position information.

步骤240、根据目标渲染方式对目标图像进行渲染。Step 240: Render the target image according to the target rendering mode.

步骤240与步骤120相同,可参照步骤120的说明。Step 240 is the same as step 120, and the description of step 120 can be referred to.

步骤250、输出渲染后的目标图像。Step 250: Output the rendered target image.

步骤250与步骤130相同,可参照步骤130的说明。Step 250 is the same as step 130, and the description of step 130 can be referred to.

本实施例提供的图像渲染方法能够根据用户的位置确定当前位置适合的目标渲染方式,并根据该目标渲染方式对目标图像进行渲染,实现根据用户位置和机器学习模型确定渲染方式,使得渲染方式更加准确,提高渲染效率。The image rendering method provided in this embodiment can determine a target rendering mode suitable for the current position according to the user's position, and render the target image according to the target rendering mode, so as to realize the determination of the rendering mode according to the user's position and the machine learning model, so that the rendering mode is more Accurate and improve rendering efficiency.

图3为本申请实施例提供的一种图像渲染方法的流程图,作为上述实施例的进一步说明,包括:FIG. 3 is a flowchart of an image rendering method provided by an embodiment of the present application. As a further description of the above-mentioned embodiment, the method includes:

步骤310、获取多个第一用户在拍摄第一图像时的第一位置信息以及第一图像的渲染方式。Step 310: Acquire the first position information of the plurality of first users when shooting the first image and the rendering mode of the first image.

步骤320、获取多个第一用户在拍摄第一图像时的拍照时间。Step 320: Acquire the photographing time of the plurality of first users when photographing the first image.

拍照时间包括拍照时间段或拍照的具体时间。拍照时间段可以为上午、下午或晚上。拍照的具体时间为年-月-日-时-分-秒。可以通过系统时钟获取拍照时间的具体时间。根据具体时间确定拍照时间段。The photographing time includes a photographing time period or a specific time of photographing. The photo time period can be morning, afternoon or evening. The specific time of taking a photo is year-month-day-hour-minute-second. The specific time of the photographing time can be obtained through the system clock. Determine the shooting time period according to the specific time.

步骤330、对多个第一用户对应的第一位置信息、拍照时间以及渲染方式进行机器学习,得到第二机器学习模型。Step 330: Perform machine learning on the first location information, the photographing time, and the rendering method corresponding to the plurality of first users to obtain a second machine learning model.

第二机器学习模型能够根据拍照位置和拍照时间确定合适的渲染方式。比如同一个景点,上午拍摄时需要用渲染方式A,下午拍摄时需要用渲染方式B。The second machine learning model can determine an appropriate rendering method according to the photographing position and the photographing time. For example, for the same scenic spot, you need to use rendering method A when shooting in the morning, and you need to use rendering mode B when shooting in the afternoon.

步骤340、获取当前位置信息和当前时间信息,将当前位置信息和当前时间信息代入到第二机器学习模型中,得到当前位置和当前时间信息对应的目标渲染方式。Step 340: Obtain current location information and current time information, and substitute the current location information and current time information into the second machine learning model to obtain a target rendering mode corresponding to the current location and current time information.

通过GPS和系统时钟获取当前位置和当前时间信息。然后使用得到的第二机器学习模型得出当前位置信息和当前时间信息对应的目标渲染方式。Get current location and current time information via GPS and system clock. Then, the target rendering mode corresponding to the current position information and the current time information is obtained by using the obtained second machine learning model.

步骤350、根据目标渲染方式对目标图像进行渲染。Step 350: Render the target image according to the target rendering mode.

步骤350与步骤120相同,可参照步骤120的说明。Step 350 is the same as step 120, and the description of step 120 can be referred to.

步骤360、输出渲染后的目标图像。Step 360: Output the rendered target image.

步骤360与步骤130相同,可参照步骤130的说明。Step 360 is the same as step 130 , and the description of step 130 may be referred to.

本实施例提供的图像渲染方法能够将拍摄位置和拍摄时间进行结合,生成第二机器学习模型。当用户拍摄照片时,根据第二机器学习模型确定当前时间和当前位置适用的目标渲染方式,并根据目标渲染方式对目标图像进行渲染,使得渲染方式更加准确,提高渲染效率。The image rendering method provided in this embodiment can combine the shooting position and the shooting time to generate a second machine learning model. When the user takes a photo, the target rendering mode applicable to the current time and the current position is determined according to the second machine learning model, and the target image is rendered according to the target rendering mode, so that the rendering mode is more accurate and the rendering efficiency is improved.

图4为本申请实施例提供的一种图像渲染方法的流程图,作为上述实施例的进一步说明,包括:FIG. 4 is a flowchart of an image rendering method provided by an embodiment of the present application. As a further description of the foregoing embodiment, the method includes:

步骤410、获取多个第一用户在拍摄第一图像时的位置信息以及第一图像的渲染方式。Step 410: Acquire position information of a plurality of first users when shooting the first image and the rendering mode of the first image.

步骤420、获取多个第一用户在拍摄第一图像时的天气信息。Step 420: Acquire the weather information of the plurality of first users when the first images are taken.

天气信息可通过天气应用或网络侧的天气服务器进行获取。天气信息包括气温信息、日照信息或风力信息。温度信息包括最高气温、最低气温以及实时气温。日照信息包括日出时间、日落时间、日照强度。风力信息包括风向信息、风强度信息。天气信息还包括阴天、晴天、多云、阵雨、小雨、中雨、大雨等。Weather information can be obtained through a weather application or a weather server on the network side. The weather information includes temperature information, sunshine information or wind information. Temperature information includes maximum temperature, minimum temperature, and real-time temperature. The sunshine information includes sunrise time, sunset time, and sunshine intensity. The wind information includes wind direction information and wind strength information. Weather information also includes cloudy, sunny, cloudy, showers, light rain, moderate rain, heavy rain, etc.

步骤430、对多个第一用户对应的第一位置信息、天气信息以及渲染方式进行机器学习,得到第三机器学习模型。Step 430: Perform machine learning on the first location information, weather information, and rendering methods corresponding to the plurality of first users to obtain a third machine learning model.

第三机器学习模型能够根据拍照位置和拍照天气确定合适的渲染方式。进一步的,还可以将位置信息、天气信息、时间信息以及渲染方式输入到机器学习模型,得到第三机器学习模型。第三机器学习模型能够基于拍照时间、拍照地点以及拍照时的天气信息,确定合适的渲染方式。The third machine learning model can determine an appropriate rendering method according to the photographing location and photographing weather. Further, the location information, weather information, time information and rendering method may also be input into the machine learning model to obtain a third machine learning model. The third machine learning model can determine an appropriate rendering method based on the photographing time, the photographing location, and the weather information at the time of photographing.

步骤440、获取当前位置信息和当前天气信息,将当前位置信息和当前天气信息代入到第三机器学习模型中,得到当前位置和当前天气信息对应的目标渲染方式。Step 440: Obtain the current location information and the current weather information, and substitute the current location information and the current weather information into the third machine learning model to obtain the target rendering mode corresponding to the current location and the current weather information.

步骤450、根据目标渲染方式对目标图像进行渲染。Step 450: Render the target image according to the target rendering mode.

步骤450与步骤120相同,可参照步骤120的说明。Step 450 is the same as step 120, and the description of step 120 can be referred to.

步骤460、输出渲染后的目标图像。Step 460: Output the rendered target image.

步骤460与步骤130相同,可参照步骤130的说明。Step 460 is the same as step 130, and the description of step 130 can be referred to.

本实施例提供的图像渲染方法,能够根据天气信息以及位置信息确定第三机器学习模型。当用户拍摄照片时,根据第三机器学习模型确定当前天气信息和当前位置适用的目标渲染方式,并根据目标渲染方式对目标图像进行渲染,使得渲染方式更加准确,提高渲染效率。The image rendering method provided in this embodiment can determine a third machine learning model according to weather information and location information. When the user takes a photo, the target rendering method applicable to the current weather information and the current location is determined according to the third machine learning model, and the target image is rendered according to the target rendering method, so that the rendering method is more accurate and the rendering efficiency is improved.

图5为本申请实施例提供的一种图像渲染方法的流程图,作为上述实施例的进一步说明,包括:FIG. 5 is a flowchart of an image rendering method provided by an embodiment of the present application. As a further description of the above-mentioned embodiment, the method includes:

步骤510、获取多个第一用户的人物属性信息和多个第一用户的渲染方式。Step 510: Acquire character attribute information of multiple first users and rendering modes of multiple first users.

其中,人物属性信息包括下述属性信息中的至少一个或多个:年龄信息、性别信息、职业信息或兴趣信息。Wherein, the character attribute information includes at least one or more of the following attribute information: age information, gender information, occupation information or interest information.

第一用户的人物属性可以相同也可以不同。年龄信息可以为具体年龄也可以为年龄段。年龄段可以为少年、青年、成年、中年或老年。性别信息包括男性或女性。职业信息可以为艺术类、文职、户外等。兴趣信息可以包括:运动、文艺或政治等。The personal attributes of the first user may be the same or different. The age information can be a specific age or an age group. Age groups can be teenagers, youth, adults, middle-aged, or old. Gender information includes male or female. Occupation information can be art, clerical, outdoor, etc. Interest information can include: sports, literature or politics, etc.

步骤520、对多个第一用户对应的人物属性信息和渲染方式进行机器学习,得到第四机器学习模型。Step 520: Perform machine learning on the character attribute information and rendering methods corresponding to the plurality of first users to obtain a fourth machine learning model.

第四机器学习模型通过训练,可以根据输入的属性信息确定其对应的渲染方式。After the fourth machine learning model is trained, its corresponding rendering mode can be determined according to the input attribute information.

步骤530、获取当前用户的目标属性信息,将目标属性信息代入到第四机器学习模型中,得到目标属性信息对应的目标渲染方式。Step 530: Obtain the target attribute information of the current user, and substitute the target attribute information into the fourth machine learning model to obtain the target rendering mode corresponding to the target attribute information.

步骤540、根据目标渲染方式对目标图像进行渲染。Step 540: Render the target image according to the target rendering mode.

步骤540与步骤120相同,可参照步骤120的说明。Step 540 is the same as step 120, and the description of step 120 can be referred to.

步骤550、输出渲染后的目标图像。Step 550: Output the rendered target image.

步骤550与步骤130相同,可参照步骤130的说明。Step 550 is the same as step 130, and the description of step 130 can be referred to.

本实施例提供的图像渲染方法能够根据用户自身的属性信息确定渲染方式,使得渲染方式更加准确,提高渲染效率。The image rendering method provided in this embodiment can determine the rendering mode according to the user's own attribute information, so that the rendering mode is more accurate and the rendering efficiency is improved.

图6为本申请实施例提供的一种图像渲染装置的结构示意图,该装置用于实现上述实施例上述的方法,该装置位于移动终端中,包括:6 is a schematic structural diagram of an image rendering apparatus provided by an embodiment of the present application. The apparatus is used to implement the above-mentioned method in the above-mentioned embodiment. The apparatus is located in a mobile terminal and includes:

机器学习模块610,用于根据机器学习模型获取目标图像的目标渲染方式,所述目标图像为拍照功能得到的图像;The machine learning module 610 is used for obtaining the target rendering mode of the target image according to the machine learning model, and the target image is the image obtained by the photographing function;

渲染模块620,用于根据所述机器学习模块610得到的所述目标渲染方式对所述目标图像进行渲染;A rendering module 620, configured to render the target image according to the target rendering method obtained by the machine learning module 610;

输出模块630,用于输出所述渲染模块620渲染后的目标图像。The output module 630 is configured to output the target image rendered by the rendering module 620 .

进一步的,机器学习模块610还用于:Further, the machine learning module 610 is also used for:

获取多个第一用户在拍摄第一图像时的第一位置信息以及所述第一图像的渲染方式;acquiring first position information of a plurality of first users when shooting a first image and a rendering mode of the first image;

对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型;performing machine learning on the first location information and the rendering mode corresponding to the plurality of first users to obtain a first machine learning model;

获取当前位置信息,将所述当前位置信息代入到所述第一机器学习模型中,得到所述当前位置对应的目标渲染方式。Acquire current position information, and substitute the current position information into the first machine learning model to obtain a target rendering mode corresponding to the current position.

进一步的,机器学习模块610还用于:获取多个第一用户在拍摄第一图像时的拍照时间;Further, the machine learning module 610 is further configured to: obtain the photographing time of multiple first users when photographing the first image;

对所述多个第一用户对应的所述第一位置信息、所述拍照时间以及所述渲染方式进行机器学习,得到第二机器学习模型;performing machine learning on the first location information, the photographing time and the rendering method corresponding to the plurality of first users to obtain a second machine learning model;

获取当前位置信息和当前时间信息,将所述当前位置信息和所述当前时间信息代入到所述第二机器学习模型中,得到所述当前位置和所述当前时间信息对应的目标渲染方式。The current location information and the current time information are acquired, and the current location information and the current time information are substituted into the second machine learning model to obtain the target rendering mode corresponding to the current location and the current time information.

进一步的,机器学习模块610还用于:判断所述第一图像中是否存在人物特征区域;Further, the machine learning module 610 is also used for: judging whether there is a character feature area in the first image;

如果第一图像中存在人物特征区域,则对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型。If there is a character feature area in the first image, perform machine learning on the first position information and the rendering manner corresponding to the plurality of first users to obtain a first machine learning model.

进一步的,机器学习模块610还用于:获取多个第一用户在拍摄第一图像时的天气信息;Further, the machine learning module 610 is further configured to: acquire weather information of multiple first users when shooting the first image;

对所述多个第一用户对应的所述第一位置信息、所述天气信息以及所述渲染方式进行机器学习,得到第三机器学习模型;performing machine learning on the first location information, the weather information and the rendering mode corresponding to the plurality of first users to obtain a third machine learning model;

获取当前位置信息和当前天气信息,将所述当前位置信息和所述当前天气信息代入到所述第三机器学习模型中,得到所述当前位置和所述当前天气信息对应的目标渲染方式。The current location information and the current weather information are acquired, and the current location information and the current weather information are substituted into the third machine learning model to obtain the target rendering mode corresponding to the current location and the current weather information.

进一步的,机器学习模块610还用于:获取多个第一用户的人物属性信息和所述多个第一用户的渲染方式,所述人物属性信息包括下述属性信息中的至少一个或多个:年龄信息、性别信息、职业信息或兴趣信息;Further, the machine learning module 610 is further configured to: acquire character attribute information of multiple first users and rendering modes of the multiple first users, where the character attribute information includes at least one or more of the following attribute information : age information, gender information, occupational information or interest information;

对所述多个第一用户对应的人物属性信息和所述渲染方式进行机器学习,得到第四机器学习模型;performing machine learning on the character attribute information corresponding to the plurality of first users and the rendering mode to obtain a fourth machine learning model;

获取当前用户的目标属性信息,将所述目标属性信息代入到所述第四机器学习模型中,得到所述目标属性信息对应的目标渲染方式。The target attribute information of the current user is acquired, the target attribute information is substituted into the fourth machine learning model, and the target rendering mode corresponding to the target attribute information is obtained.

进一步的,如图7所示,还包括反馈模块710,所述反馈模块710用于:Further, as shown in FIG. 7 , a feedback module 710 is also included, and the feedback module 710 is used for:

接收用户对所述目标图像的反馈信息;receiving user feedback information on the target image;

根据所述反馈信息对所述机器学习模型进行调整。The machine learning model is adjusted according to the feedback information.

本实施例提供的图像渲染装置,机器学习模块610根据机器学习模型获取目标图像的目标渲染方式,目标图像为拍照功能得到的图像;渲染模块620根据目标渲染方式对目标图像进行渲染;输出模块630输出渲染后的目标图像。由于机器学习能够根据当前用户或其他用户的历史渲染方式为确定目标图像的目标渲染方式,避免用户盲目的尝试多种渲染方式,提高渲染功能的渲染效率和图像渲染功能的利用率。In the image rendering device provided in this embodiment, the machine learning module 610 obtains the target rendering method of the target image according to the machine learning model, and the target image is an image obtained by the photographing function; the rendering module 620 renders the target image according to the target rendering method; the output module 630 Output the rendered target image. Since machine learning can determine the target rendering method of the target image according to the historical rendering methods of the current user or other users, users can avoid blindly trying multiple rendering methods, and improve the rendering efficiency of the rendering function and the utilization rate of the image rendering function.

上述装置可执行本申请前述所有实施例所提供的方法,具备执行上述方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请前述所有实施例所提供的方法。The above-mentioned apparatus can execute the methods provided by all the foregoing embodiments of the present application, and has corresponding functional modules and beneficial effects for executing the above-mentioned methods. For technical details not described in detail in this embodiment, reference may be made to the methods provided in all the foregoing embodiments of this application.

图8为本申请实施例提供的一种终端的结构示意图。如图4所示,该终端可以包括:壳体(图中未示出)、第一存储器801、第一中央处理器(Central Processing Unit,CPU)802(又称第一处理器,以下简称CPU)、存储在第一存储器801上并可在第一处理器802上运行的计算机程序、电路板(图中未示出)和电源电路(图中未示出)。上述电路板安置在上述壳体围成的空间内部;上述CPU802和上述第一存储器801设置在上述电路板上;上述电源电路,用于为上述终端的各个电路或器件供电;上述第一存储器801,用于存储可执行程序代码;上述CPU802通过读取上述第一存储器801中存储的可执行程序代码来运行与上述可执行程序代码对应的程序,以用于执行:FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application. As shown in FIG. 4 , the terminal may include: a casing (not shown in the figure), a first memory 801 , and a first central processing unit (Central Processing Unit, CPU) 802 (also known as a first processor, hereinafter referred to as CPU for short) ), a computer program stored on the first memory 801 and executable on the first processor 802, a circuit board (not shown in the figure), and a power supply circuit (not shown in the figure). The above-mentioned circuit board is arranged inside the space enclosed by the above-mentioned housing; the above-mentioned CPU 802 and the above-mentioned first memory 801 are arranged on the above-mentioned circuit board; the above-mentioned power supply circuit is used to supply power to each circuit or device of the above-mentioned terminal; the above-mentioned first memory 801 , for storing executable program code; the above-mentioned CPU 802 runs the program corresponding to the above-mentioned executable program code by reading the executable program code stored in the above-mentioned first memory 801, so as to execute:

根据机器学习模型获取目标图像的目标渲染方式,所述目标图像为拍照功能得到的图像;A target rendering method for obtaining a target image according to the machine learning model, where the target image is an image obtained by a photographing function;

根据所述目标渲染方式对所述目标图像进行渲染;rendering the target image according to the target rendering mode;

输出渲染后的目标图像。Output the rendered target image.

上述终端还包括:外设接口803、RF(Radio Frequency,射频)电路805、音频电路806、扬声器811、电源管理芯片808、输入/输出(I/O)子系统809、触摸屏812、其他输入/控制设备810以及外部端口804,这些部件通过一个或多个通信总线或信号线807来通信。The above terminal further includes: peripheral interface 803, RF (Radio Frequency, radio frequency) circuit 805, audio circuit 806, speaker 811, power management chip 808, input/output (I/O) subsystem 809, touch screen 812, other input/output Control device 810 and external ports 804, these components communicate via one or more communication buses or signal lines 807.

此外,终端还包括摄像头和RGB光线传感器。RGB光线传感器位于摄像头旁边,可以与摄像头相邻设置。摄像头可以为前置摄像头也可以为后置摄像头。RGB光线传感器还可以与摄像头分离配置,例如配置在终端侧边的窄边上等。In addition, the terminal also includes a camera and an RGB light sensor. The RGB light sensor is located next to the camera and can be placed adjacent to the camera. The camera can be either a front-facing camera or a rear-facing camera. The RGB light sensor can also be configured separately from the camera, for example, on the narrow side of the terminal.

应该理解的是,图示终端800仅仅是终端的一个范例,并且终端800可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。It should be understood that the illustrated terminal 800 is merely an example of a terminal, and that the terminal 800 may have more or fewer components than those shown in the figure, may combine two or more components, or may have Different part configurations. The various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.

下面就本实施例提供的终端进行详细的描述,该终端以智能手机为例。The following describes the terminal provided in this embodiment in detail, and the terminal takes a smart phone as an example.

第一存储器801,上述第一存储器801可以被CPU802、外设接口803等访问,上述第一存储器801可以包括高速随机存取第一存储器,还可以包括非易失性第一存储器,例如一个或多个磁盘第一存储器件、闪存器件、或其他易失性固态第一存储器件。The first memory 801, the above-mentioned first memory 801 can be accessed by the CPU 802, the peripheral interface 803, etc. The above-mentioned first memory 801 can include a high-speed random access first memory, and can also include a non-volatile first memory, such as one or A plurality of magnetic disk first storage devices, flash memory devices, or other volatile solid state first storage devices.

外设接口803,上述外设接口803可以将设备的输入和输出外设连接到CPU802和第一存储器801。Peripheral interface 803 , the above-mentioned peripheral interface 803 can connect the input and output peripherals of the device to the CPU 802 and the first memory 801 .

I/O子系统809,上述I/O子系统809可以将设备上的输入输出外设,例如触摸屏812和其他输入/控制设备810,连接到外设接口803。I/O子系统809可以包括显示控制器8091和用于控制其他输入/控制设备810的一个或多个输入控制器8092。其中,一个或多个输入控制器8092从其他输入/控制设备810接收电信号或者向其他输入/控制设备810发送电信号,其他输入/控制设备810可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮。值得说明的是,输入控制器8092可以与以下任一个连接:键盘、红外端口、USB接口以及诸如鼠标的指示设备。此外,其他输入/控制设备810还可以包括摄像头、指纹传感器和陀螺仪等。I/O subsystem 809 , which can connect input and output peripherals on the device, such as touch screen 812 and other input/control devices 810 , to peripheral interface 803 . The I/O subsystem 809 may include a display controller 8091 and one or more input controllers 8092 for controlling other input/control devices 810 . Wherein, one or more input controllers 8092 receive electrical signals from or send electrical signals to other input/control devices 810, which may include physical buttons (push buttons, rocker buttons, etc. ), dial pad, slide switch, joystick, click wheel. Notably, the input controller 8092 can be connected to any of the following: a keyboard, an infrared port, a USB interface, and a pointing device such as a mouse. In addition, other input/control devices 810 may also include cameras, fingerprint sensors, gyroscopes, and the like.

其中,按照触摸屏的工作原理和传输信息的介质分类,触摸屏812可以为电阻式、电容感应式、红外线式或表面声波式。按照安装方式分类,触摸屏812可以为:外挂式、内置式或整体式。按照技术原理分类,触摸屏812可以为:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏或表面声波技术触摸屏。Wherein, according to the working principle of the touch screen and the classification of the medium for transmitting information, the touch screen 812 may be a resistive type, a capacitive induction type, an infrared type or a surface acoustic wave type. According to the installation method, the touch screen 812 can be an external type, a built-in type or an integral type. Classified according to technical principles, the touch screen 812 may be: a vector pressure sensing technology touch screen, a resistive technology touch screen, a capacitive technology touch screen, an infrared technology touch screen or a surface acoustic wave technology touch screen.

触摸屏812,上述触摸屏812是用户终端与用户之间的输入接口和输出接口,将可视输出显示给用户,可视输出可以包括图形、文本、图标、视频等。可选的,触摸屏812将用户在触屏幕上触发的电信号(如接触面的电信号),发送给第一处理器802。The touch screen 812, which is an input interface and an output interface between the user terminal and the user, displays visual output to the user, and the visual output may include graphics, text, icons, videos, and the like. Optionally, the touch screen 812 sends an electrical signal triggered by a user on the touch screen (eg, an electrical signal on a contact surface) to the first processor 802 .

I/O子系统809中的显示控制器8091从触摸屏812接收电信号或者向触摸屏812发送电信号。触摸屏812检测触摸屏上的接触,显示控制器8091将检测到的接触转换为与显示在触摸屏812上的用户界面对象的交互,即实现人机交互,显示在触摸屏812上的用户界面对象可以是运行游戏的图标、联网到相应网络的图标等。值得说明的是,设备还可以包括光鼠,光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸。Display controller 8091 in I/O subsystem 809 receives electrical signals from touch screen 812 or sends electrical signals to touch screen 812 . The touch screen 812 detects the contact on the touch screen, and the display controller 8091 converts the detected contact into interaction with the user interface objects displayed on the touch screen 812, that is, to realize human-computer interaction, and the user interface objects displayed on the touch screen 812 can be run. Icons for games, icons for connecting to the corresponding network, etc. It is worth noting that the device may also include a light mouse, which is a touch-sensitive surface that does not display visual output, or an extension of the touch-sensitive surface formed by a touch screen.

RF电路805,主要用于建立智能音箱与无线网络(即网络侧)的通信,实现智能音箱与无线网络的数据接收和发送。例如收发短信息、电子邮件等。The RF circuit 805 is mainly used to establish the communication between the smart speaker and the wireless network (ie, the network side), so as to realize the data reception and transmission between the smart speaker and the wireless network. Such as sending and receiving text messages, e-mails, etc.

音频电路806,主要用于从外设接口803接收音频数据,将该音频数据转换为电信号,并且将该电信号发送给扬声器811。The audio circuit 806 is mainly used to receive audio data from the peripheral interface 803 , convert the audio data into electrical signals, and send the electrical signals to the speaker 811 .

扬声器811,用于将智能音箱通过RF电路805从无线网络接收的语音信号,还原为声音并向用户播放该声音。The speaker 811 is used to restore the voice signal received by the smart speaker from the wireless network through the RF circuit 805 into sound and play the sound to the user.

电源管理芯片808,用于为CPU802、I/O子系统及外设接口所连接的硬件进行供电及电源管理。The power management chip 808 is used for power supply and power management for the hardware connected to the CPU 802, the I/O subsystem and the peripheral interface.

在本实施例中,中央第一处理器802用于:In this embodiment, the central first processor 802 is used for:

根据机器学习模型获取目标图像的目标渲染方式,所述目标图像为拍照功能得到的图像;A target rendering method for obtaining a target image according to the machine learning model, where the target image is an image obtained by a photographing function;

根据所述目标渲染方式对所述目标图像进行渲染;rendering the target image according to the target rendering mode;

输出渲染后的目标图像。Output the rendered target image.

进一步的,所述根据机器学习模型获取目标图像的目标渲染方式,包括:Further, the target rendering method for obtaining the target image according to the machine learning model includes:

获取多个第一用户在拍摄第一图像时的第一位置信息以及所述第一图像的渲染方式;acquiring first position information of a plurality of first users when shooting a first image and a rendering mode of the first image;

对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型;performing machine learning on the first location information and the rendering mode corresponding to the plurality of first users to obtain a first machine learning model;

获取当前位置信息,将所述当前位置信息代入到所述第一机器学习模型中,得到所述当前位置对应的目标渲染方式。Acquire current position information, and substitute the current position information into the first machine learning model to obtain a target rendering mode corresponding to the current position.

进一步的,在获取多个第一用户在拍摄第一图像时的位置信息以及第一图像的渲染方式之后,还包括:Further, after acquiring the position information of the multiple first users when shooting the first image and the rendering mode of the first image, the method further includes:

获取多个第一用户在拍摄第一图像时的拍照时间;acquiring the photographing times of the multiple first users when photographing the first images;

对所述多个第一用户对应的所述第一位置信息、所述拍照时间以及所述渲染方式进行机器学习,得到第二机器学习模型;performing machine learning on the first location information, the photographing time and the rendering method corresponding to the plurality of first users to obtain a second machine learning model;

获取当前位置信息和当前时间信息,将所述当前位置信息和所述当前时间信息代入到所述第二机器学习模型中,得到所述当前位置和所述当前时间信息对应的目标渲染方式。The current location information and the current time information are acquired, and the current location information and the current time information are substituted into the second machine learning model to obtain the target rendering mode corresponding to the current location and the current time information.

进一步的,所述对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型,包括:Further, performing machine learning on the first location information and the rendering mode corresponding to the multiple first users to obtain a first machine learning model, including:

判断所述第一图像中是否存在人物特征区域;judging whether there is a character feature area in the first image;

如果第一图像中存在人物特征区域,则对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型。If there is a character feature area in the first image, perform machine learning on the first position information and the rendering manner corresponding to the plurality of first users to obtain a first machine learning model.

进一步的,在获取多个第一用户在拍摄第一图像时的位置信息以及第一图像的渲染方式之后,还包括:Further, after acquiring the position information of the multiple first users when shooting the first image and the rendering mode of the first image, the method further includes:

获取多个第一用户在拍摄第一图像时的天气信息;acquiring weather information of multiple first users when shooting the first images;

对所述多个第一用户对应的所述第一位置信息、所述天气信息以及所述渲染方式进行机器学习,得到第三机器学习模型;performing machine learning on the first location information, the weather information and the rendering mode corresponding to the plurality of first users to obtain a third machine learning model;

获取当前位置信息和当前天气信息,将所述当前位置信息和所述当前天气信息代入到所述第三机器学习模型中,得到所述当前位置和所述当前天气信息对应的目标渲染方式。The current location information and the current weather information are acquired, and the current location information and the current weather information are substituted into the third machine learning model to obtain the target rendering mode corresponding to the current location and the current weather information.

进一步的,所述根据机器学习模型获取目标图像的目标渲染方式,包括:Further, the target rendering method for obtaining the target image according to the machine learning model includes:

获取多个第一用户的人物属性信息和所述多个第一用户的渲染方式,所述人物属性信息包括下述属性信息中的至少一个或多个:年龄信息、性别信息、职业信息或兴趣信息;Obtain character attribute information of multiple first users and rendering methods of the multiple first users, where the character attribute information includes at least one or more of the following attribute information: age information, gender information, occupation information or interests information;

对所述多个第一用户对应的人物属性信息和所述渲染方式进行机器学习,得到第四机器学习模型;performing machine learning on the character attribute information corresponding to the plurality of first users and the rendering mode to obtain a fourth machine learning model;

获取当前用户的目标属性信息,将所述目标属性信息代入到所述第四机器学习模型中,得到所述目标属性信息对应的目标渲染方式。The target attribute information of the current user is acquired, the target attribute information is substituted into the fourth machine learning model, and the target rendering mode corresponding to the target attribute information is obtained.

进一步的,在输出渲染后的目标图像之后,还包括:Further, after outputting the rendered target image, it also includes:

接收用户对所述目标图像的反馈信息;receiving user feedback information on the target image;

根据所述反馈信息对所述机器学习模型进行调整。The machine learning model is adjusted according to the feedback information.

本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可实现如下步骤:Embodiments of the present application also provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the following steps can be implemented:

根据机器学习模型获取目标图像的目标渲染方式,所述目标图像为拍照功能得到的图像;A target rendering method for obtaining a target image according to the machine learning model, where the target image is an image obtained by a photographing function;

根据所述目标渲染方式对所述目标图像进行渲染;rendering the target image according to the target rendering mode;

输出渲染后的目标图像。Output the rendered target image.

进一步的,所述根据机器学习模型获取目标图像的目标渲染方式,包括:Further, the target rendering method for obtaining the target image according to the machine learning model includes:

获取多个第一用户在拍摄第一图像时的第一位置信息以及所述第一图像的渲染方式;acquiring first position information of a plurality of first users when shooting a first image and a rendering mode of the first image;

对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型;performing machine learning on the first location information and the rendering mode corresponding to the plurality of first users to obtain a first machine learning model;

获取当前位置信息,将所述当前位置信息代入到所述第一机器学习模型中,得到所述当前位置对应的目标渲染方式。Acquire current position information, and substitute the current position information into the first machine learning model to obtain a target rendering mode corresponding to the current position.

进一步的,在获取多个第一用户在拍摄第一图像时的位置信息以及第一图像的渲染方式之后,还包括:Further, after acquiring the position information of the multiple first users when shooting the first image and the rendering mode of the first image, the method further includes:

获取多个第一用户在拍摄第一图像时的拍照时间;acquiring the photographing times of the multiple first users when photographing the first images;

对所述多个第一用户对应的所述第一位置信息、所述拍照时间以及所述渲染方式进行机器学习,得到第二机器学习模型;performing machine learning on the first location information, the photographing time and the rendering method corresponding to the plurality of first users to obtain a second machine learning model;

获取当前位置信息和当前时间信息,将所述当前位置信息和所述当前时间信息代入到所述第二机器学习模型中,得到所述当前位置和所述当前时间信息对应的目标渲染方式。The current location information and the current time information are acquired, and the current location information and the current time information are substituted into the second machine learning model to obtain the target rendering mode corresponding to the current location and the current time information.

进一步的,所述对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型,包括:Further, performing machine learning on the first location information and the rendering mode corresponding to the multiple first users to obtain a first machine learning model, including:

判断所述第一图像中是否存在人物特征区域;judging whether there is a character feature area in the first image;

如果第一图像中存在人物特征区域,则对所述多个第一用户对应的所述第一位置信息和所述渲染方式进行机器学习,得到第一机器学习模型。If there is a character feature area in the first image, perform machine learning on the first position information and the rendering manner corresponding to the plurality of first users to obtain a first machine learning model.

进一步的,在获取多个第一用户在拍摄第一图像时的位置信息以及第一图像的渲染方式之后,还包括:Further, after acquiring the position information of the multiple first users when shooting the first image and the rendering mode of the first image, the method further includes:

获取多个第一用户在拍摄第一图像时的天气信息;acquiring weather information of multiple first users when shooting the first images;

对所述多个第一用户对应的所述第一位置信息、所述天气信息以及所述渲染方式进行机器学习,得到第三机器学习模型;performing machine learning on the first location information, the weather information and the rendering mode corresponding to the plurality of first users to obtain a third machine learning model;

获取当前位置信息和当前天气信息,将所述当前位置信息和所述当前天气信息代入到所述第三机器学习模型中,得到所述当前位置和所述当前天气信息对应的目标渲染方式。The current location information and the current weather information are acquired, and the current location information and the current weather information are substituted into the third machine learning model to obtain the target rendering mode corresponding to the current location and the current weather information.

进一步的,所述根据机器学习模型获取目标图像的目标渲染方式,包括:Further, the target rendering method for obtaining the target image according to the machine learning model includes:

获取多个第一用户的人物属性信息和所述多个第一用户的渲染方式,所述人物属性信息包括下述属性信息中的至少一个或多个:年龄信息、性别信息、职业信息或兴趣信息;Obtain character attribute information of multiple first users and rendering methods of the multiple first users, where the character attribute information includes at least one or more of the following attribute information: age information, gender information, occupation information or interests information;

对所述多个第一用户对应的人物属性信息和所述渲染方式进行机器学习,得到第四机器学习模型;performing machine learning on the character attribute information corresponding to the plurality of first users and the rendering mode to obtain a fourth machine learning model;

获取当前用户的目标属性信息,将所述目标属性信息代入到所述第四机器学习模型中,得到所述目标属性信息对应的目标渲染方式。The target attribute information of the current user is acquired, the target attribute information is substituted into the fourth machine learning model, and the target rendering mode corresponding to the target attribute information is obtained.

进一步的,在输出渲染后的目标图像之后,还包括:Further, after outputting the rendered target image, it also includes:

接收用户对所述目标图像的反馈信息;receiving user feedback information on the target image;

根据所述反馈信息对所述机器学习模型进行调整。The machine learning model is adjusted according to the feedback information.

本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。The computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (a non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In this document, a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.

计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .

计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a computer readable medium may be transmitted using any suitable medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.

可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional procedural languages, or a combination thereof. Programming Language - such as "C" language or similar programming language. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).

注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里上述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present application and applied technical principles. Those skilled in the art will understand that the present application is not limited to the specific embodiments described above, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present application. Therefore, although the present application has been described in detail through the above embodiments, the present application is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present application. The scope is determined by the scope of the appended claims.

Claims (7)

1.一种图像渲染方法,其特征在于,包括:1. an image rendering method, is characterized in that, comprises: 根据机器学习模型获取目标图像的目标渲染方式,包括:获取多个第一用户的人物属性信息,多个第一用户在拍摄第一图像时的第一位置信息、拍照时间以及所述第一图像的渲染方式,所述第一位置信息为坐标信息或地点标识信息;所述人物属性信息包括下述属性信息中的至少一个或多个:年龄信息、性别信息、职业信息或兴趣信息;所述目标渲染方式是当前用户或其他用户的历史渲染方式;The target rendering method for obtaining the target image according to the machine learning model includes: obtaining the character attribute information of a plurality of first users, the first position information of the plurality of first users when shooting the first image, the shooting time, and the first image. The first location information is coordinate information or location identification information; the character attribute information includes at least one or more of the following attribute information: age information, gender information, occupation information or interest information; the The target rendering mode is the historical rendering mode of the current user or other users; 对所述多个第一用户对应的所述人物属性信息、所述第一位置信息、所述拍照时间以及所述渲染方式进行机器学习,得到第二机器学习模型;performing machine learning on the character attribute information, the first location information, the photographing time and the rendering method corresponding to the plurality of first users to obtain a second machine learning model; 获取当前用户的目标属性信息,当前位置信息和当前时间信息,将所述目标属性信息,所述当前位置信息和所述当前时间信息代入到所述第二机器学习模型中,得到所述目标属性信息、所述当前位置和所述当前时间信息对应的目标渲染方式;Obtain the target attribute information, current location information and current time information of the current user, and substitute the target attribute information, the current location information and the current time information into the second machine learning model to obtain the target attribute information, the target rendering mode corresponding to the current position and the current time information; 根据所述目标渲染方式对所述目标图像进行渲染,所述目标图像为拍照功能得到的图像;Rendering the target image according to the target rendering method, where the target image is an image obtained by a photographing function; 输出渲染后的目标图像。Output the rendered target image. 2.根据权利要求1所述的图像渲染方法,其特征在于,所述对所述多个第一用户对应的所述人物属性信息、所述第一位置信息、所述拍照时间以及所述渲染方式进行机器学习,得到第二机器学习模型,包括:2 . The image rendering method according to claim 1 , wherein the character attribute information, the first location information, the photographing time, and the rendering corresponding to the plurality of first users are: 3 . Perform machine learning in this way to obtain a second machine learning model, including: 判断所述第一图像中是否存在人物特征区域;judging whether there is a character feature area in the first image; 如果第一图像中存在人物特征区域,则对所述多个第一用户对应的所述第一位置信息、所述拍照时间和所述渲染方式进行机器学习,得到第二机器学习模型。If there is a character feature area in the first image, perform machine learning on the first location information, the photographing time and the rendering method corresponding to the multiple first users to obtain a second machine learning model. 3.根据权利要求1所述的图像渲染方法,其特征在于,在获取多个第一用户在拍摄第一图像时的位置信息、拍照时间以及第一图像的渲染方式之后,还包括:3. The image rendering method according to claim 1, characterized in that, after acquiring the position information of a plurality of first users when shooting the first image, the shooting time and the rendering mode of the first image, the method further comprises: 获取多个第一用户在拍摄第一图像时的天气信息;acquiring weather information of multiple first users when shooting the first images; 对所述多个第一用户对应的所述第一位置信息、所述天气信息以及所述渲染方式进行机器学习,得到第三机器学习模型;performing machine learning on the first location information, the weather information and the rendering mode corresponding to the plurality of first users to obtain a third machine learning model; 获取当前位置信息和当前天气信息,将所述当前位置信息和所述当前天气信息代入到所述第三机器学习模型中,得到所述当前位置和所述当前天气信息对应的目标渲染方式。The current location information and the current weather information are acquired, and the current location information and the current weather information are substituted into the third machine learning model to obtain the target rendering mode corresponding to the current location and the current weather information. 4.根据权利要求1所述的图像渲染方法,其特征在于,在输出渲染后的目标图像之后,还包括:4. The image rendering method according to claim 1, characterized in that, after outputting the rendered target image, further comprising: 接收用户对所述目标图像的反馈信息;receiving user feedback information on the target image; 根据所述反馈信息对所述机器学习模型进行调整。The machine learning model is adjusted according to the feedback information. 5.一种图像渲染装置,其特征在于,包括:5. An image rendering device, comprising: 机器学习模块,用于根据机器学习模型获取目标图像的目标渲染方式,包括:获取多个第一用户的人物属性信息,多个第一用户在拍摄第一图像时的第一位置信息、拍照时间以及所述第一图像的渲染方式,所述第一位置信息为坐标信息或地点标识信息;所述人物属性信息包括下述属性信息中的至少一个或多个:年龄信息、性别信息、职业信息或兴趣信息;所述目标渲染方式是当前用户或其他用户的历史渲染方式;The machine learning module is used to obtain the target rendering method of the target image according to the machine learning model, including: obtaining the character attribute information of the plurality of first users, the first position information of the plurality of first users when shooting the first image, the shooting time and the rendering method of the first image, the first location information is coordinate information or location identification information; the character attribute information includes at least one or more of the following attribute information: age information, gender information, occupation information or interest information; the target rendering mode is the historical rendering mode of the current user or other users; 对所述多个第一用户对应的所述人物属性信息、所述第一位置信息、所述拍照时间以及所述渲染方式进行机器学习,得到第二机器学习模型;performing machine learning on the character attribute information, the first location information, the photographing time and the rendering method corresponding to the plurality of first users to obtain a second machine learning model; 获取当前用户的目标属性信息,当前位置信息和当前时间信息,将所述目标属性信息,所述当前位置信息和所述当前时间信息代入到所述第二机器学习模型中,得到所述目标属性信息、所述当前位置和所述当前时间信息对应的目标渲染方式;Obtain the target attribute information, current location information and current time information of the current user, and substitute the target attribute information, the current location information and the current time information into the second machine learning model to obtain the target attribute information, the target rendering mode corresponding to the current position and the current time information; 渲染模块,用于根据所述目标渲染方式对所述目标图像进行渲染,所述目标图像为拍照功能得到的图像;a rendering module, configured to render the target image according to the target rendering mode, where the target image is an image obtained by a photographing function; 输出模块,用于输出所述渲染模块渲染后的目标图像。The output module is used for outputting the target image rendered by the rendering module. 6.一种终端,其特征在于,所述终端包括:6. A terminal, wherein the terminal comprises: 一个或多个处理器;one or more processors; 存储装置,用于存储一个或多个程序,storage means for storing one or more programs, 数据收发器,用于与服务器进行数据交互;A data transceiver for data interaction with the server; 当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-4中任一所述的图像渲染方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the image rendering method according to any one of claims 1-4. 7.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-4中任一所述的图像渲染方法。7. A computer-readable storage medium on which a computer program is stored, characterized in that, when the program is executed by a processor, the image rendering method according to any one of claims 1-4 is implemented.
CN201710868728.XA 2017-09-22 2017-09-22 Image rendering method, device, terminal and computer readable storage medium Active CN107622473B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710868728.XA CN107622473B (en) 2017-09-22 2017-09-22 Image rendering method, device, terminal and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710868728.XA CN107622473B (en) 2017-09-22 2017-09-22 Image rendering method, device, terminal and computer readable storage medium

Publications (2)

Publication Number Publication Date
CN107622473A CN107622473A (en) 2018-01-23
CN107622473B true CN107622473B (en) 2020-01-21

Family

ID=61090211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710868728.XA Active CN107622473B (en) 2017-09-22 2017-09-22 Image rendering method, device, terminal and computer readable storage medium

Country Status (1)

Country Link
CN (1) CN107622473B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540824B (en) * 2018-05-15 2021-01-19 北京奇虎科技有限公司 A video rendering method and device
CN110570502A (en) * 2019-08-05 2019-12-13 北京字节跳动网络技术有限公司 method, apparatus, electronic device and computer-readable storage medium for displaying image frame
DE112020007668B4 (en) * 2020-12-07 2024-06-27 Mitsubishi Electric Corporation TRAINING DATA GENERATION DEVICE AND TRAINING DATA GENERATION METHOD
CN114861073B (en) * 2022-07-06 2022-09-20 哈尔滨工业大学(威海) Clothing personalized customization method and system based on big data and customer portrait

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372595B1 (en) * 2001-08-20 2008-05-13 Foveon, Inc. Flexible image rendering system utilizing intermediate device-independent unrendered image data
CN103731660A (en) * 2012-10-12 2014-04-16 辉达公司 System and method for optimizing image quality in a digital camera
CN106569763A (en) * 2016-10-19 2017-04-19 华为机器有限公司 An image display method and terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103533241B (en) * 2013-10-14 2017-05-10 厦门美图网科技有限公司 Photographing method of intelligent filter lens
CN103929594A (en) * 2014-04-28 2014-07-16 深圳市中兴移动通信有限公司 Mobile terminal and shooting method and device thereof
CN106408603B (en) * 2016-06-21 2023-06-02 北京小米移动软件有限公司 Shooting method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372595B1 (en) * 2001-08-20 2008-05-13 Foveon, Inc. Flexible image rendering system utilizing intermediate device-independent unrendered image data
CN103731660A (en) * 2012-10-12 2014-04-16 辉达公司 System and method for optimizing image quality in a digital camera
CN106569763A (en) * 2016-10-19 2017-04-19 华为机器有限公司 An image display method and terminal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"RENDERING GREYSCALE IMAGE USING COLOR FEATURE ";Ye Ji 等;《2008 International Conference on Machine Learning and Cybernetics》;20080815;第3017-3021页 *
"人脸图像的自适应美化与渲染研究";梁凌宇;《中国博士学位论文全文数据库 信息科技辑》;20141115(第 11 期);第I138-19页 *

Also Published As

Publication number Publication date
CN107622473A (en) 2018-01-23

Similar Documents

Publication Publication Date Title
US10158829B2 (en) Information processing apparatus, information processing method, program, and server
US11714533B2 (en) Method and apparatus for dynamically displaying icon based on background image
US20230160716A1 (en) Method and apparatus for displaying surrounding information using augmented reality
US9407834B2 (en) Apparatus and method for synthesizing an image in a portable terminal equipped with a dual camera
CN108537889A (en) Adjustment method, device, storage medium and electronic device for augmented reality model
CN107205125A (en) A kind of image processing method, device, terminal and computer-readable recording medium
CN107622473B (en) Image rendering method, device, terminal and computer readable storage medium
CN111026992B (en) Multimedia resource preview method, device, terminal, server and storage medium
CN115525383B (en) Wallpaper display method, device, mobile terminal and storage medium
CN107277481A (en) A kind of image processing method and mobile terminal
CN107810472B (en) Electronic device and method for controlling display of panoramic images
CN113190307A (en) Control adding method, device, equipment and storage medium
KR102077665B1 (en) Virtual movile device implementing system and control method for the same in mixed reality
KR20130117303A (en) Method for displaying augmented reality image and an electronic device thereof
US12335602B2 (en) Electronic device including a user interface (UI) for utilizing a camera to track an object and operating method thereof
US11238622B2 (en) Method of providing augmented reality contents and electronic device therefor
JP2022540736A (en) CHARACTER RECOMMENDATION METHOD, CHARACTER RECOMMENDATION DEVICE, COMPUTER AND PROGRAM
US20150143530A1 (en) Method for sharing file and electronic device thereof
US20220215050A1 (en) Picture Search Method and Device
CN109618192B (en) Method, device, system and storage medium for playing video
CN109120864B (en) Filling light processing method, device, storage medium and mobile terminal
CN108665510A (en) Rendering method and device of continuous shooting image, storage medium and terminal
CN113609358B (en) Content sharing method, device, electronic equipment and storage medium
CN114282018B (en) Multimedia resource display method, device, terminal and storage medium
CN109040588A (en) Face image photographing method and device, storage medium and terminal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 523860 No. 18, Wu Sha Beach Road, Changan Town, Dongguan, Guangdong

Applicant after: OPPO Guangdong Mobile Communications Co., Ltd.

Address before: 523860 No. 18, Wu Sha Beach Road, Changan Town, Dongguan, Guangdong

Applicant before: Guangdong OPPO Mobile Communications Co., Ltd.

GR01 Patent grant
GR01 Patent grant