CN107660313A - Gallium Nitride (GAN) Transistor Structure on a Substrate - Google Patents
Gallium Nitride (GAN) Transistor Structure on a Substrate Download PDFInfo
- Publication number
- CN107660313A CN107660313A CN201580080327.7A CN201580080327A CN107660313A CN 107660313 A CN107660313 A CN 107660313A CN 201580080327 A CN201580080327 A CN 201580080327A CN 107660313 A CN107660313 A CN 107660313A
- Authority
- CN
- China
- Prior art keywords
- gan
- layer
- fin
- transistor
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76248—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using lateral overgrowth techniques, i.e. ELO techniques
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/43—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 1D charge carrier gas channels, e.g. quantum wire FETs or transistors having 1D quantum-confined channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6735—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes having gates fully surrounding the channels, e.g. gate-all-around
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/675—Group III-V materials, Group II-VI materials, Group IV-VI materials, selenium or tellurium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Element Separation (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
背景技术Background technique
射频(RF)开关是在现代移动通信设备的RF前端系统中建立的重要部件。RF前端现今需要支持在不同频带(例如长距离无线频带(例如WiFi 协议)、短距离无线频带(例如蓝牙协议)和蜂窝频带(例如3G/4G/LTE/GSM 协议))下的多种无线服务。虽然一些设备包括特别用于不同频带的多个 RF功率放大器(例如多于6个),但一般存在用于不多于3个天线的空间。而且,RF开关需要实现例如同时下载数据的能力的功能,同时主要天线被占用以用于语音通信。在一般RF前端中可以有多达20到30个RF开关。此外,RF开关必须能够在它们的断开状态中操纵在漏极和源极上的高达 50V,同时维持尽可能低的泄漏。在它们的接通状态中,RF开关必须提供尽可能低的接通电阻以减小功率耗散。Radio frequency (RF) switches are important components built into the RF front-end systems of modern mobile communication devices. RF front-ends today need to support multiple wireless services in different frequency bands such as long-range wireless bands (eg, WiFi protocols), short-range wireless bands (eg, Bluetooth protocols), and cellular bands (eg, 3G/4G/LTE/GSM protocols) . While some devices include multiple RF power amplifiers (e.g. more than 6) specifically for different frequency bands, there is generally room for no more than 3 antennas. Also, the RF switch needs to implement functions such as the ability to download data simultaneously while the main antenna is occupied for voice communication. There can be as many as 20 to 30 RF switches in a typical RF front end. Furthermore, RF switches must be able to handle up to 50V on the drain and source in their off-state while maintaining as low leakage as possible. In their on-state, RF switches must provide the lowest possible on-resistance to reduce power dissipation.
附图说明Description of drawings
图1示出了根据本公开内容的各种实施例的形成集成电路的方法。FIG. 1 illustrates a method of forming an integrated circuit according to various embodiments of the present disclosure.
图2A-F示出了根据本公开内容的各种实施例的当执行图1的方法时形成的示例性结构。2A-F illustrate exemplary structures formed when the method of FIG. 1 is performed, according to various embodiments of the present disclosure.
图2F’示出了根据本公开内容的实施例的穿过鳍状非平面多量子阱 (MQW)氮化镓(GaN)晶体管结构的沟道区的截面。Figure 2F' shows a cross-section through the channel region of a fin-shaped non-planar multiple quantum well (MQW) gallium nitride (GaN) transistor structure, according to an embodiment of the disclosure.
图2F”示出了根据本公开内容的实施例的穿过鳍状非平面三维电子气体(3DEG)GaN晶体管结构的沟道区的截面。Figure 2F" shows a cross-section through the channel region of a fin-like non-planar three-dimensional electron gas (3DEG) GaN transistor structure according to an embodiment of the disclosure.
图3是示出根据本公开内容的实施例形成的集成电路结构的截面侧视图的透射电子显微镜(TEM)图像。3 is a transmission electron microscope (TEM) image showing a cross-sectional side view of an integrated circuit structure formed according to an embodiment of the disclosure.
图4示出了根据本公开内容的各种实施例的移动计算平台的片上系统 (SoC)实施方式的功能方框图。4 illustrates a functional block diagram of a system-on-chip (SoC) implementation of a mobile computing platform, according to various embodiments of the present disclosure.
图5示出了根据本公开内容的各种实施例的利用使用本文公开的技术形成的集成电路结构或器件来实施的计算系统。FIG. 5 illustrates a computing system implemented using integrated circuit structures or devices formed using the techniques disclosed herein, according to various embodiments of the present disclosure.
具体实施方式Detailed ways
公开了用于氮化镓(GaN)氧化物隔离和在衬底(例如体硅(Si)衬底)上形成GaNk晶体管结构的技术。GaN晶体管结构可以例如用于在Si 衬底上的高电压GaN前端射频(RF)开关的片上系统(SoC)集成。在实施例中,技术可以包括在衬底中形成多个鳍状物,将GaN层沉积在鳍状物上,在GaN层下方的间隙中氧化每个鳍状物的至少一部分,以及在GaN 层上和/或从GaN层形成一个或多个晶体管。例如,GaN层可以用于晶体管沟道,但晶体管源极和漏极区可以在GaN层上外延地生长。可以例如在用于在隔离GaN岛上形成低泄漏高击穿增强模式高k电介质GaN晶体管的过程中使用技术。技术也可以用于例如形成包括具有减小的接通电阻的多个量子阱(MQW)或三维电子气体(3DEG)架构的GaN晶体管。技术也可以用于形成鳍状(或三栅极)和纳米线(或栅极环绕)架构以例如实现低断开状态泄漏。根据本公开内容,很多变型和构造将是明显的。Techniques for gallium nitride (GaN) oxide isolation and formation of GaNk transistor structures on substrates such as bulk silicon (Si) substrates are disclosed. GaN transistor structures can be used, for example, for system-on-chip (SoC) integration of high-voltage GaN front-end radio frequency (RF) switches on Si substrates. In an embodiment, the technique may include forming a plurality of fins in the substrate, depositing a GaN layer on the fins, oxidizing at least a portion of each fin in the gap below the GaN layer, and One or more transistors are formed on and/or from the GaN layer. For example, a GaN layer can be used for the transistor channel, but the transistor source and drain regions can be grown epitaxially on the GaN layer. The technique may be used, for example, in a process for forming low-leakage high-breakdown enhancement-mode high-k dielectric GaN transistors on isolated GaN islands. The technique can also be used, for example, to form GaN transistors including multiple quantum well (MQW) or three-dimensional electron gas (3DEG) architectures with reduced on-resistance. Techniques can also be used to form fin (or tri-gate) and nanowire (or gate wrap) architectures to achieve low off-state leakage, for example. Many variations and configurations will be apparent from the present disclosure.
一般概述general overview
主要使用在半绝缘GaAs衬底上的砷化镓(GaAs)假型高电子迁移率晶体管(pHEMT)来实施射频(RF)开关。注意,HEMT(或pHEMT) 也可以被称为异质结构场效应晶体管(HFET)、调制掺杂的FET(MODFET)、二维电子气体FET(TEGFET)或选择性掺杂的异质结构晶体管(SDHT);然而,为了描述的容易,器件在本文主要被称为HEMT。GaAs pHEMT呈现复杂问题,例如对同时实现片上系统(SoC)应用所需的低接通电阻和小形状因子(管芯尺寸)的困难。此外,GaAs pHEMT一般被形成为耗尽模式(D模式)器件,其需要负供电电压来将它们断开且从而导致增加的电路复杂度和系统成本。此外,GaAs的相对低的带隙(1.4eV的带隙)相对于例如可缩放性、接通电阻、断开状态泄漏、RF损耗、控制逻辑集成、外加电压能力和功率耗散而限制GaAs pHEMT的能力。相应地,氮化镓(GaN) ——较高带隙材料(3.4eV的带隙)在HEMT器件中被认为是GaAs的代替品。然而,这样的GaN晶体管主要是在具有相对小的直径(例如3-4英寸)的相对昂贵的碳化硅(SiC)晶圆上实施的D模式HEMT器件。因此,这样的GaN晶体管的成本相应地较高,使器件对很多应用变得不实际。Radio frequency (RF) switches are implemented primarily using gallium arsenide (GaAs) pseudotyped high electron mobility transistors (pHEMTs) on semi-insulating GaAs substrates. Note that HEMTs (or pHEMTs) may also be referred to as heterostructure field-effect transistors (HFETs), modulation-doped FETs (MODFETs), two-dimensional electron gas FETs (TEGFETs), or selectively doped heterostructure transistors ( SDHT); however, for ease of description, the device is primarily referred to herein as a HEMT. GaAs pHEMTs present complex issues such as difficulty in simultaneously achieving low on-resistance and small form factor (die size) required for system-on-chip (SoC) applications. Furthermore, GaAs pHEMTs are generally formed as depletion-mode (D-mode) devices, which require a negative supply voltage to turn them off and thus result in increased circuit complexity and system cost. Furthermore, the relatively low bandgap of GaAs (bandgap of 1.4eV) limits GaAs pHEMTs with respect to, for example, scalability, on-resistance, off-state leakage, RF losses, control logic integration, applied voltage capability, and power dissipation. Ability. Correspondingly, Gallium Nitride (GaN), a higher bandgap material (3.4eV bandgap), is considered as a GaAs replacement in HEMT devices. However, such GaN transistors are primarily D-mode HEMT devices implemented on relatively expensive silicon carbide (SiC) wafers with relatively small diameters (eg, 3-4 inches). Consequently, the cost of such GaN transistors is correspondingly high, rendering the device impractical for many applications.
因此且根据本公开内容的一个或多个实施例,公开了用于GaN氧化物隔离和在硅(Si)衬底上形成GaN晶体管结构的技术。如按照本公开内容将明显的,氧化物隔离技术实现GaN晶体管结构在Si衬底上的形成,并且还实现在高外加电压(VDD)下对HEMT器件所需的低泄漏。相应地,根据实施例,技术可以例如用于在Si衬底上的高电压GaN前端RF开关的片上系统(SoC)集成。如前所述,与例如GaAs(1.4eV的带隙)比较,GaN 是更高带隙材料(3.4eV的带隙),并且因此GaN在晶体管性能的背景下提供很多益处,如本文所述的。在一些实施例中,技术可以用于在硅锗(SiGe) 或锗(Ge)衬底上形成GaN晶体管结构。在一些实施例中,技术可以用于形成GaN晶体管架构,包括但不限于HEMT、pHEMT、采用二维电子气体(2DEG)架构的晶体管、采用三维电子气体(3DEG)或3D极化场效应晶体管(FET)架构的晶体管以及采用多量子阱(MQW)或超晶格架构的晶体管。Accordingly and in accordance with one or more embodiments of the present disclosure, techniques for GaN oxide isolation and formation of GaN transistor structures on silicon (Si) substrates are disclosed. As will be apparent in light of this disclosure, oxide isolation techniques enable the formation of GaN transistor structures on Si substrates and also achieve the low leakage required for HEMT devices at high applied voltages (V DD ). Accordingly, according to an embodiment, the technique may eg be used for system-on-chip (SoC) integration of a high-voltage GaN front-end RF switch on a Si substrate. As previously stated, GaN is a higher bandgap material (bandgap of 3.4eV) compared to, for example, GaAs (bandgap of 1.4eV), and thus GaN offers many benefits in the context of transistor performance, as described herein . In some embodiments, techniques may be used to form GaN transistor structures on silicon germanium (SiGe) or germanium (Ge) substrates. In some embodiments, techniques can be used to form GaN transistor architectures, including but not limited to HEMTs, pHEMTs, transistors using two-dimensional electron gas (2DEG) architectures, using three-dimensional electron gas (3DEG) or 3D polarized field effect transistors ( FET) architecture and transistors using multiple quantum well (MQW) or superlattice architecture.
在一些实施例中,技术包括通过图案化衬底并蚀刻鳍状物(例如经由浅沟槽凹进(STR)蚀刻)来在衬底(例如体Si衬底)中形成纳米模板。浅沟槽隔离(STI)材料(例如氧化物或氮化物材料)可以接着沉积在STR 沟槽中,以例如使衬底鳍状物彼此隔离。可以接着在结构上沉积一层GaN,并且在一些实施例中,可以在沉积GaN层之前沉积成核层(例如氮化铝)(例如以防止GaN与衬底材料起反应)。注意,可以沉积GaN层(和成核层,在存在的情况下),使得它们只在衬底鳍状物上生长(例如使用金属有机化学气相沉积(MOCVD)工艺)。间隙可以存在于GaN层和STI材料之间,并且在一些实施例中,在GaN层之下的STI材料可以可选地被蚀刻掉以形成间隙或增加间隙尺寸,从而暴露衬底鳍状物的至少一部分。注意,在一些实施例中,可以在沉积GaN层之前使STI材料凹进,使得间隙在 GaN层形成之后存在。衬底鳍状物的在间隙中的暴露部分可以接着被氧化以将GaN层与衬底隔离。在GaN层与STI材料之间的间隙可以接着被填充(例如使用旋涂沉积工艺)有额外的STI材料。由此产生的隔离GaN层(不管是跨鳍状物顶部的单个连续的GaN层或多个GaN层或所谓的GaN 岛,每个对应于特定的鳍状物顶部,视情况而定)可以用于在该层上和/或从该层形成各种晶体管器件。以这种方式,GaN层充当与下层衬底(例如Si、SiGe、Ge衬底)电隔离的伪衬底,晶体管结构可以在衬底上形成。例如在一些实施例中,可以通过n型源极和漏极(S/D)区的外延再生长来形成n沟道晶体管器件。如按照本公开内容将明显的,这样的晶体管器件可以包括下面的几何结构:HEMT架构、MQW或超晶格架构、3DEG架构、鳍状(例如三栅极或FinFET)构造和/或纳米线(或纳米带或栅极环绕)构造,仅仅提供几个示例性器件的几何结构。In some embodiments, techniques include forming nano-templates in a substrate (eg, a bulk Si substrate) by patterning the substrate and etching the fins, eg, via Shallow Trench Recess (STR) etching. Shallow trench isolation (STI) material, such as an oxide or nitride material, may then be deposited in the STR trenches, for example, to isolate the substrate fins from each other. A layer of GaN may then be deposited over the structure, and in some embodiments, a nucleation layer (eg, aluminum nitride) may be deposited prior to depositing the GaN layer (eg, to prevent GaN from reacting with the substrate material). Note that the GaN layer (and nucleation layer, if present) can be deposited such that they grow only on the substrate fins (eg using a Metal Organic Chemical Vapor Deposition (MOCVD) process). A gap may exist between the GaN layer and the STI material, and in some embodiments, the STI material below the GaN layer may optionally be etched away to form a gap or increase the size of the gap, exposing the substrate fin. at least partly. Note that in some embodiments, the STI material may be recessed prior to depositing the GaN layer such that the gap exists after the GaN layer is formed. The exposed portions of the substrate fins in the gaps may then be oxidized to isolate the GaN layer from the substrate. The gap between the GaN layer and the STI material can then be filled (eg, using a spin-on deposition process) with additional STI material. The resulting isolated GaN layer (whether a single continuous GaN layer across the top of the fin or multiple GaN layers or so-called GaN islands, each corresponding to a particular fin top, as the case may be) can be used Various transistor devices are formed on and/or from this layer. In this way, the GaN layer acts as a pseudo substrate electrically isolated from the underlying substrate (eg Si, SiGe, Ge substrate) on which transistor structures can be formed. For example, in some embodiments, n-channel transistor devices may be formed by epitaxial regrowth of n-type source and drain (S/D) regions. As will be apparent from this disclosure, such transistor devices may include the following geometries: HEMT architectures, MQW or superlattice architectures, 3DEG architectures, fin-like (e.g. Tri-Gate or FinFET) configurations, and/or nanowire ( or nanoribbon or gate surround) configurations, to provide only a few exemplary device geometries.
在一些实施例中,优点可以作为对本文中以各种方式描述的晶体管结构使用隔离GaN的结果而被实现。如前所述,GaN具有3.4eV的宽带隙(例如与GaAs的1.4eV带隙比较),因此允许GaN晶体管在遭受击穿之前经得起较大的电场(外加电压VDD)。例如,GaN晶体管可以经得起的电场可以比类似尺寸的GaAs晶体管可以在遭受击穿之前经得起的电场大几个数量级。这也使GaN晶体管能够按比例缩小到甚至更小的物理尺寸,同时在相同的VDD下操作,从而使较小的接通电阻、较小的电容和较小的晶体管宽度成为可能,从而产生诸如减小的功率耗散、较高的电路效率和较小的形状因子之类的益处。而且,GaN具有高电子迁移率(例如大约1000平方厘米/(V-s))。GaN n沟道晶体管也可以采用2DEG,其可以位于通过具有较大的自发和压电极化的电荷诱导膜(在本文被称为极化层)的外延生长而形成的陡峭异质界面处。这样的极化层材料可以包括氮化铝(AlN)、氮化铝镓(AlGaN)、氮化铟铝(InAlN)、氮化铟铝镓(InAlGaN)或任何其它适合的材料,这取决于最终用途或目标应用。相应地,非常高的电荷密度(例如每平方厘米高达2E13)可以由这样的机制形成而没有杂质掺杂剂,从而允许高迁移率被维持。In some embodiments, advantages may be realized as a result of using isolated GaN for the transistor structures described in various ways herein. As previously mentioned, GaN has a wide bandgap of 3.4eV (compared eg to the 1.4eV bandgap of GaAs), thus allowing GaN transistors to withstand larger electric fields (applied voltage V DD ) before suffering breakdown. For example, a GaN transistor can withstand an electric field that is orders of magnitude greater than a similarly sized GaAs transistor can withstand before suffering breakdown. This also enables GaN transistors to be scaled down to even smaller physical dimensions while operating at the same V DD , enabling smaller on-resistance, smaller capacitance, and smaller transistor widths, resulting in Benefits such as reduced power dissipation, higher circuit efficiency, and smaller form factors. Also, GaN has high electron mobility (for example, about 1000 cm2/(Vs)). GaN n-channel transistors can also employ 2DEGs, which can be located at steep heterointerfaces formed by epitaxial growth of a charge-induced film (referred to herein as a polarization layer) with large spontaneous and piezoelectric polarization. Such polarizing layer materials may include Aluminum Nitride (AlN), Aluminum Gallium Nitride (AlGaN), Indium Aluminum Nitride (InAlN), Indium Aluminum Gallium Nitride (InAlGaN), or any other suitable material, depending on the final purpose or target application. Accordingly, very high charge densities (eg, up to 2E13 per square centimeter) can be formed by such mechanisms without impurity dopants, allowing high mobility to be maintained.
按照本公开内容,本文中以各种方式描述的技术和结构的很多其它益处将明显。例如,技术可以用于通过在大Si衬底(例如8英寸/20cm和更大)上集成GaN来实现大规模SoC集成。此外,氧化物隔离技术实现通常在SoC实施方式中使用的高VDD下所需的低泄漏。此外,技术和结构可以通过利用多量子阱和3DEG架构以及非平面/3D构造(例如鳍状或三栅极架构、纳米线或纳米带或栅极环绕架构等)来提高接通电阻,因此减小所需的晶体管宽度并从而实现较小的形状因子。技术的另一益处是,它们可以用于实现增强模式GaN晶体管,从而去除对供应负栅极电压的偏压电路的需要,并且因此实现较小的形状因子并节约与和耗尽模式(D模式)晶体管结构有关的部件和处理相关联的成本。仍然进一步地,GaN对本文中以各种方式描述的技术具有特定的效用,因为与在氧化条件下分解的其它Ⅲ-Ⅴ材料比较,GaN将不在氧化过程期间被氧化。仍然进一步地,GaN可以实现HEMT器件应用所需的高电子迁移率(例如大约1000平方厘米 /(V-s))。此外,与例如现有的Si金属氧化物半导体场效应晶体管(MOSFET) 比较,GaN提供提高的品质因数(FOM)性能。Many other benefits of the techniques and structures variously described herein will be apparent in light of this disclosure. For example, technology can be used to achieve large-scale SoC integration by integrating GaN on large Si substrates (eg, 8 inches/20 cm and larger). Additionally, oxide isolation technology enables the low leakage required at the high V DD typically used in SoC implementations. In addition, technologies and structures can improve the on-resistance by utilizing multiple quantum wells and 3DEG architectures and non-planar/3D configurations (such as fin or tri-gate architectures, nanowires or nanoribbons or gate surround architectures, etc.), thus reducing the on-resistance. The required transistor width is small and thus enables a small form factor. Another benefit of the techniques is that they can be used to implement enhancement-mode GaN transistors, removing the need for bias circuits supplying negative gate voltages, and thus enabling smaller form factors and saving AND and depletion-mode (D-mode ) Transistor structure-related components and costs associated with processing. Still further, GaN has particular utility for the techniques variously described herein because GaN will not be oxidized during the oxidation process, in contrast to other III-V materials that decompose under oxidizing conditions. Still further, GaN can achieve high electron mobility (eg, about 1000 cm2/(V −s )) required for HEMT device applications. Furthermore, GaN provides improved figure of merit (FOM) performance compared to, for example, existing Si metal oxide semiconductor field effect transistors (MOSFETs).
当分析(例如使用扫描/透射电子显微镜(SEM/TEM)、复合映射、二次离子质谱术(SIMS)、原子探针成像、3D X线断层摄影术等)时,根据一个或多个实施例配置的结构或器件将有效地显示本文中以各种方式描述的集成电路和晶体管结构。例如,在一些实施例中,可以检测在Si、SiGe 或Ge衬底的鳍状物上形成的GaN晶体管。此外,GaN层(晶体管在该GaN层中和/或上形成)(例如晶体管沟道区可以在GaN层中形成,但源极区和漏极区可以经由外延再生长在该层上形成)可以由于衬底鳍状物的至少一部分被氧化而与衬底电隔离。例如,在Si衬底的情况下,每个鳍状物的至少一部分可以被氧化成二氧化硅,从而电隔离上GaN层与下层Si衬底,并减小或防止从GaN晶体管到Si衬底的泄漏。相应地,技术允许SoC集成,其中GaN晶体管可以在Si衬底上形成。在一些实施例中,GaN晶体管结构可以被包括在一个或多个RF开关(例如高电压前端RF开关)中。本文中以各种方式描述的GaN晶体管结构可以适合于各种应用,例如个人计算机(PC)、平板计算机、智能电话、功率管理和通信应用以及功率转换和汽车应用;然而,本公开内容并不旨在被这样限制。例如,当消费者要求较小的形状因子来使更多集成电路适应于更多的功能时,存在对有效和小的形状因子RF前端的高需求,并且因此基于隔离GaN晶体管的SoC解决方案是非常有吸引力的。按照本公开内容,很多构造和变型将明显。When analyzed (e.g., using scanning/transmission electron microscopy (SEM/TEM), composite mapping, secondary ion mass spectrometry (SIMS), atom probe imaging, 3D tomography, etc.), according to one or more embodiments Configured structures or devices will effectively represent the integrated circuit and transistor structures described herein in various ways. For example, in some embodiments, GaN transistors formed on fins of Si, SiGe, or Ge substrates may be inspected. Furthermore, the GaN layer in and/or on which the transistor is formed (for example, the transistor channel region may be formed in the GaN layer, but the source and drain regions may be formed on this layer via epitaxial regrowth) may The fin is electrically isolated from the substrate due to at least a portion of the substrate being oxidized. For example, in the case of a Si substrate, at least a portion of each fin may be oxidized to silicon dioxide, thereby electrically isolating the upper GaN layer from the underlying Si substrate and reducing or preventing the flow from the GaN transistor to the Si substrate. of leaks. Accordingly, the technology allows SoC integration where GaN transistors can be formed on Si substrates. In some embodiments, GaN transistor structures may be included in one or more RF switches (eg, high voltage front-end RF switches). GaN transistor structures described in various ways herein may be suitable for a variety of applications, such as personal computers (PCs), tablet computers, smartphones, power management and communications applications, and power conversion and automotive applications; however, this disclosure does not are intended to be so limited. For example, as consumers demand smaller form factors to fit more integrated circuits into more functions, there is high demand for efficient and small form factor RF front-ends, and thus SoC solutions based on isolated GaN transistors are very attractive. Many configurations and modifications will be apparent in light of this disclosure.
架构和方法Architecture and Methodology
图1示出了根据本公开内容的一个或多个实施例的形成集成电路的方法100。图2A-F示出了根据各种实施例的当执行图1的方法100时形成的示例性集成电路结构。如按照所形成的结构将明显的,为了在衬底上形成 GaN晶体管结构的目的,方法100公开了用于GaN氧化物隔离的技术。各种晶体管几何结构可以受益于本文所述的技术,包括但不限于HEMT、 pHEMT、采用2DEG架构的晶体管、采用3DEG(或3D极化FET)架构的晶体管、采用多量子阱(MQW)或超晶格架构的晶体管。此外,技术可以用形成CMOS晶体管/器件/电路,其中本文中以各种方式描述的GaN晶体管结构例如用于CMOS的n-MOS晶体管。FIG. 1 illustrates a method 100 of forming an integrated circuit in accordance with one or more embodiments of the present disclosure. 2A-F illustrate exemplary integrated circuit structures formed when performing the method 100 of FIG. 1 in accordance with various embodiments. As will be apparent from the formed structures, method 100 discloses techniques for GaN oxide isolation for the purpose of forming GaN transistor structures on a substrate. A variety of transistor geometries can benefit from the techniques described herein, including but not limited to HEMTs, pHEMTs, transistors with 2DEG architectures, transistors with 3DEG (or 3D polarized FETs) architectures, multiple quantum well (MQW) or ultra- Lattice architecture of transistors. In addition, techniques can be used to form CMOS transistors/devices/circuits, wherein the GaN transistor structures described herein in various ways are eg n-MOS transistors for CMOS.
如可以在图1中看到的,根据实施例,方法100包括在衬底200中形成(102)鳍状物202以形成图2A中所示的示例性产生结构。在一些实施例中,衬底200可以是Si、SiGe或Ge的体衬底。在一些实施例中,衬底 200可以是绝缘体上X(SOI)衬底,其中X包括Si、SiGe或Ge,并且绝缘体材料是氧化物材料或电介质材料或一些其它电绝缘材料或一些其它适合的多层结构,其中顶层包括Si、SiGe或Ge。例如在一些实施例中,衬底可以是体Si衬底,SiGe或Ge的缓冲层在体Si衬底的一部分的顶部上,其中缓冲层可以用于如本文中以各种方式描述的衬底200。在一些示例性应用中,体Si衬底可以具有高电阻率(例如大于10欧姆-厘米)。鳍状物202 可以使用任何适合的技术(例如使用一个或多个图案化、掩蔽、光刻和蚀刻(湿法和/或干法)过程)由衬底200形成(102)。如可以在图2A中看到的,在一些实例中,结构包括可以被称为浅沟槽凹进(STR)沟槽的沟槽205。沟槽205可以被形成有不同的宽度和深度,并且鳍状物202可以被形成为具有不同的宽度和高度,这取决于最终用途或目标应用。鳍状物202可以被形成为具有不同的宽度和高度。注意,为了便于说明,在这个示例性结构中,沟槽205和鳍状物202均被示为具有相同的宽度和高度/深度;然而,本公开内容并不旨在被这样限制。此外注意,尽管在示例性结构中示出了四个鳍状物202,但可以形成任何数量的鳍状物,例如一个、两个、十个、数百个、数千个、数百万个等,这取决于最终用途或目标应用。As can be seen in FIG. 1 , according to an embodiment, method 100 includes forming ( 102 ) fins 202 in substrate 200 to form the exemplary resulting structure shown in FIG. 2A . In some embodiments, substrate 200 may be a bulk substrate of Si, SiGe, or Ge. In some embodiments, substrate 200 may be an X-on-insulator (SOI) substrate, where X includes Si, SiGe, or Ge, and the insulator material is an oxide material or a dielectric material or some other electrically insulating material or some other suitable A multilayer structure where the top layer includes Si, SiGe or Ge. For example, in some embodiments, the substrate may be a bulk Si substrate with a buffer layer of SiGe or Ge on top of a portion of the bulk Si substrate, where the buffer layer may be used for the substrate as described herein in various ways 200. In some exemplary applications, the bulk Si substrate can have a high resistivity (eg, greater than 10 ohm-cm). Fins 202 may be formed ( 102 ) from substrate 200 using any suitable technique, such as using one or more patterning, masking, photolithography, and etching (wet and/or dry) processes. As can be seen in FIG. 2A , in some examples, the structure includes trenches 205 that may be referred to as shallow trench recess (STR) trenches. Trenches 205 may be formed with different widths and depths, and fins 202 may be formed with different widths and heights, depending on the end use or target application. Fins 202 may be formed to have different widths and heights. Note that, for ease of illustration, in this exemplary structure, trenches 205 and fins 202 are both shown as having the same width and height/depth; however, the disclosure is not intended to be so limited. Also note that although four fins 202 are shown in the exemplary configuration, any number of fins may be formed, such as one, two, ten, hundreds, thousands, millions etc., depending on the end use or target application.
根据实施例,图1的方法100继续沉积(104)浅沟槽隔离(STI)材料210并平面化以形成图2B中所示的产生的示例性结构。STI材料210的沉积104可以包括任何适合的技术,例如化学气相沉积(CVD)、原子层沉积(ALD)、物理气相沉积(PVD)或任何其它适合的沉积工艺。STI材料 210可以包括任何适合的绝缘材料,例如一个或多个氧化物(例如二氧化硅)和/或氮化物(例如氮化硅)。在一些实施例中,可以基于衬底材料200来选择STI材料210。例如,在Si衬底200的情况下,STI材料210可以是二氧化硅或氮化硅。注意在一些情况下,在执行平面化过程之后,鳍状物 202可以从STI材料210突出。According to an embodiment, method 100 of FIG. 1 continues with depositing ( 104 ) shallow trench isolation (STI) material 210 and planarizing to form the resulting exemplary structure shown in FIG. 2B . Deposition 104 of STI material 210 may include any suitable technique, such as chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), or any other suitable deposition process. STI material 210 may include any suitable insulating material, such as one or more oxides (eg, silicon dioxide) and/or nitrides (eg, silicon nitride). In some embodiments, STI material 210 may be selected based on substrate material 200 . For example, in the case of Si substrate 200, STI material 210 may be silicon dioxide or silicon nitride. Note that in some cases, fins 202 may protrude from STI material 210 after the planarization process is performed.
根据实施例,图1的方法100继续可选地使STI材料210凹进(106)。例如,可以在平面化104的过程之后执行凹进106过程以使鳍状物202增加从STI材料210突出的鳍状物202的量。这样的凹进过程106可以包括任何适合的湿法或干法蚀刻过程或任何其它适合的过程。如可以在图2B中看到的,在这个示例性实施例中,鳍状物突出,使得鳍状物202的高度H在STI材料上方。According to an embodiment, the method 100 of FIG. 1 continues with optionally recessing the STI material 210 ( 106 ). For example, the recessing 106 process may be performed after the planarizing 104 process to increase the fins 202 by the amount of the fins 202 protruding from the STI material 210 . Such recessing process 106 may include any suitable wet or dry etching process or any other suitable process. As can be seen in FIG. 2B , in this exemplary embodiment, the fins protrude such that the height H of the fins 202 is above the STI material.
根据实施例,图1的方法100继续沉积(108)GaN层230并且沉积(110) 平面化层240以形成图2C中所示的产生的示例性结构。沉积108和110 可以包括任何适合的技术,例如在金属有机化学气相沉积(MOCVD)室或任何其它适合的沉积过程中使GaN层230和平面化层240生长。在一些实施例中,可以基于层的期望产生特性来调节生长条件。例如在一些情况下,温度可以增加和/或压力可以降低和/或Ⅴ:Ⅲ比(例如N2与Ga前体气体流之比)可以增加以使层230和240的横向部件更快地生长,从而在层的竖直部件中维持层230和240尽可能薄。在一些实施例中,可以沉积GaN层 230(108),使得它仅在衬底材料上(并且因此仅在所暴露的衬底鳍状物202 上)而不是在STI材料210上生长。在成核层220存在(如下面更详细描述的)的实施例中,GaN层230可以在那个成核层和/或衬底鳍状物202上生长。因此在一些实施例中,可以沉积层230的GaN材料,使得它只在Ⅲ -Ⅴ材料和衬底材料(例如Si、SiGe、Ge)上而不是在STI材料210上生长。例如,形成图2C的结构,因为所使用的沉积过程108(例如MOCVD)导致GaN材料230只在鳍状物202上生长。在一些实施例中,GaN层230可以是在每个衬底鳍状物202上的GaN生长的单独岛。在这样的实施例中,图2C中所示的GaN层230将包括在每个鳍状物202的顶部上的多个GaN 岛,但不是例如未被连接的那些岛。在一些实例中,可以分离GaN层230 以形成这样的GaN层230的岛。在一些实施例中,GaN层230可以在厚度上是大约1微米(例如当被沉积时大约1微米高)或更小或任何其它适合的厚度,这取决于最终用途或目标应用。According to an embodiment, method 100 of FIG. 1 continues with depositing ( 108 ) GaN layer 230 and depositing ( 110 ) planarization layer 240 to form the resulting exemplary structure shown in FIG. 2C . Depositions 108 and 110 may include any suitable technique, such as growing GaN layer 230 and planarization layer 240 in a metal organic chemical vapor deposition (MOCVD) chamber or any other suitable deposition process. In some embodiments, the growth conditions can be adjusted based on the desired resulting properties of the layer. For example, in some cases, the temperature can be increased and/or the pressure can be decreased and/or the V:III ratio (e.g., the ratio of N2 to Ga precursor gas flow) can be increased to allow faster growth of the lateral features of layers 230 and 240, The layers 230 and 240 are thereby kept as thin as possible in the vertical sections of the layers. In some embodiments, the GaN layer 230 (108) may be deposited such that it grows only on the substrate material (and thus only on the exposed substrate fins 202) and not on the STI material 210. In embodiments where a nucleation layer 220 is present (as described in more detail below), GaN layer 230 may be grown on that nucleation layer and/or substrate fin 202 . Thus in some embodiments, the GaN material of layer 230 may be deposited such that it only grows on the III-V material and substrate material (eg, Si, SiGe, Ge) and not on the STI material 210 . For example, the structure of FIG. 2C is formed because the deposition process 108 used (eg, MOCVD) results in GaN material 230 growing only on fins 202 . In some embodiments, GaN layer 230 may be a separate island of GaN growth on each substrate fin 202 . In such an embodiment, the GaN layer 230 shown in FIG. 2C would include a plurality of GaN islands on top of each fin 202 , but not, for example, those islands that are not connected. In some examples, GaN layer 230 may be separated to form islands of such GaN layer 230 . In some embodiments, GaN layer 230 may be about 1 micron in thickness (eg, about 1 micron high as deposited) or less or any other suitable thickness, depending on the end use or target application.
在一些实施例中,极化层可以是氮化铝(AlN)、氮化铝镓(AlGaN)、氮化铟铝(InAlN)、氮化铟铝镓(InAlGaN)或任何其它适合的材料,如按照本公开内容将明显的。在一些实施例中,极化层240可以在厚度上小于50nm,例如大约20-30nm或任何其它适合的厚度,这取决于最终用途或目标应用。在一些实施例中,在沉积(108)GaN层230之前,可以可选地将成核层220沉积在图2B的结构上。可以沉积成核层220以防止GaN 层230与衬底材料起反应(例如在GaN层230在其它情况下将直接沉积在衬底材料鳍状物202时的区域中)。可以例如使用任何适合的技术(例如使成核层220在MOCVD室中生长)来执行成核层220的沉积。在一些实施例中,成核层可以选择性地沉积在鳍状物202上,因为成核材料可以只在衬底鳍状物材料202上而不是在STI材料210上生长。在一些实施例中,例如成核层可以是Ⅲ-Ⅴ材料,例如氮化铝(AlN)或低温GaN层(例如在 700到950摄氏度的范围内的温度下沉积的)。在一些实施例中,在存在的情况下,成核层220可以具有小于50nm(例如大约20nm的厚度或任何其它适合的厚度),这取决于最终用途或目标应用。In some embodiments, the polarizing layer may be aluminum nitride (AlN), aluminum gallium nitride (AlGaN), indium aluminum nitride (InAlN), indium aluminum gallium nitride (InAlGaN), or any other suitable material, such as It will be apparent in light of this disclosure. In some embodiments, the polarizing layer 240 may be less than 50 nm in thickness, such as about 20-30 nm or any other suitable thickness, depending on the end use or target application. In some embodiments, nucleation layer 220 may optionally be deposited on the structure of FIG. 2B prior to depositing ( 108 ) GaN layer 230 . Nucleation layer 220 may be deposited to prevent GaN layer 230 from reacting with the substrate material (eg, in regions where GaN layer 230 would otherwise be deposited directly on substrate material fin 202 ). Deposition of nucleation layer 220 may be performed, for example, using any suitable technique, such as growing nucleation layer 220 in an MOCVD chamber. In some embodiments, the nucleation layer may be selectively deposited on the fin 202 because the nucleation material may only grow on the substrate fin material 202 and not on the STI material 210 . In some embodiments, for example, the nucleation layer may be a III-V material such as aluminum nitride (AlN) or a low temperature GaN layer (eg, deposited at a temperature in the range of 700 to 950 degrees Celsius). In some embodiments, where present, nucleation layer 220 may have a thickness of less than 50 nm (eg, a thickness of about 20 nm or any other suitable thickness), depending on the end use or intended application.
根据一些实施例,图1的方法100继续可选地在图2C的结构上沉积 (112)额外的Ⅲ-Ⅴ层以形成图2C’或2C”的产生的示例性结构的其中之一。如按照本公开内容将明显的,图2C’的示例性结构可以用于形成MQW或超晶格晶体管结构,而图2C”的示例性结构可以用于形成3D极化FET。可以例如使用任何适合的技术(例如使额外的III-N材料层在MOCVD室中生长)来执行沉积112。如图2C’的示例性结构中所示的,额外的两组 2DEG层被沉积,其中每组包括GaN层和极化层。换句话说,第一组2DEG 层包括GaN层232和极化层242,并且第二组2DEG层包括GaN层234和极化层244。可以在过程112中沉积任何数量的额外2DEG层组以形成多量子阱结构,并且尽管在这个示例性实施例中示出两组,但可以形成一组、五组、100组、1000组等。此外,极化层242和244可以是本文所述的任何极化层材料(例如AlN、AlGaN、InAlN、InAlGaN)或任何其它适合的极化层材料,这取决于最终用途或目标应用。下面将更详细地描述由图2C’的示例性结构形成的晶体管结构。如图2C”的示例性结构中所示的,在这个替代的实施例中两个额外层由沉积额外的第III-N族材料层形成。层236 是渐变层,其包括以在层的中间附近一直到大约5-20%(或大约10%)In 的百分比的增加的铟(In)均匀地渐变并随后以降低的In含量均匀地渐变直到0%的In被沉积(并且因此只有GaN被沉积)为止的GaN。极化层246 可以接着沉积在渐变层236上。在一些实例中,可以为极化层246选择氮化铝(AlN),因为要形成的产生的结构可以是3D极化FET或3DEG晶体管,如下面将更详细描述的。然而,可以为层246选择本文所述的任何极化层材料或任何其它适合的极化层材料,这取决于最终用途或目标应用。According to some embodiments, the method 100 of FIG. 1 continues with optionally depositing (112) additional III-V layers on the structure of FIG. 2C to form one of the resulting exemplary structures of FIG. 2C′ or 2C″. As As will be apparent from this disclosure, the exemplary structure of Figure 2C' can be used to form a MQW or superlattice transistor structure, while the exemplary structure of Figure 2C" can be used to form a 3D polarized FET. Deposition 112 may be performed, for example, using any suitable technique, such as growing an additional layer of III-N material in an MOCVD chamber. As shown in the exemplary structure of Figure 2C', an additional two sets of 2DEG layers are deposited, where each set includes a GaN layer and a polarization layer. In other words, the first set of 2DEG layers includes GaN layer 232 and polarization layer 242 , and the second set of 2DEG layers includes GaN layer 234 and polarization layer 244 . Any number of additional 2DEG layer groups may be deposited in process 112 to form a multiple quantum well structure, and although two groups are shown in this exemplary embodiment, one group, five groups, 100 groups, 1000 groups, etc. may be formed. Additionally, polarization layers 242 and 244 may be any of the polarization layer materials described herein (eg, AlN, AlGaN, InAlN, InAlGaN) or any other suitable polarization layer material, depending on the end use or target application. The transistor structure formed from the exemplary structure of Figure 2C' will be described in more detail below. As shown in the exemplary structure of FIG. 2C ″, in this alternative embodiment two additional layers are formed by depositing additional III-N material layers. Layer 236 is a graded layer that includes Increasing indium (In) is uniformly graded around a percentage of about 5-20% (or about 10%) In and then uniformly graded with decreasing In content until 0% In is deposited (and thus only GaN is deposited). GaN until deposited). Polarization layer 246 may then be deposited on graded layer 236. In some examples, aluminum nitride (AlN) may be selected for polarization layer 246 because the resulting structure to be formed may be a 3D polarized FET or 3DEG transistors, as will be described in more detail below.However, any polarizing layer material described herein or any other suitable polarizing layer material may be chosen for layer 246, depending on the end use or target application.
根据实施例,图1的方法100继续可选地使STI材料210凹进(114)。例如,根据在图2D所示的GaN层230和STI材料210之间的间隙G,可以执行凹进114以增加间隙距离G以例如提供对下面所述的氧化过程116 的更好开口。在一些实施例中,可以使用湿法蚀刻以蚀刻到GaN层230之下来执行可选的凹进114。在一些这样的实施例中,蚀刻剂对STI材料210 可以是选择性的,使得它1)去除STI材料210而不蚀刻掉衬底材料200//202 或沉积在STI材料210上方的Ⅲ-N材料层(例如层230和240),或者2) 以比其蚀刻掉衬底材料200/202和/或Ⅲ-N材料层更快的速率蚀刻掉STI材料210。According to an embodiment, the method 100 of FIG. 1 continues with optionally recessing the STI material 210 ( 114 ). For example, depending on the gap G between the GaN layer 230 and the STI material 210 shown in FIG. 2D , the recess 114 may be performed to increase the gap distance G to, for example, provide better opening to the oxidation process 116 described below. In some embodiments, optional recess 114 may be performed using a wet etch to etch below GaN layer 230 . In some such embodiments, the etchant may be selective to the STI material 210 such that it 1) removes the STI material 210 without etching away the substrate material 200//202 or III-N deposited over the STI material 210 The material layers (eg, layers 230 and 240 ), or 2) etch away the STI material 210 at a faster rate than it etches away the substrate material 200/202 and/or the III-N material layer.
根据实施例,图1的方法100继续氧化(116)鳍状物202的至少一部分以形成具有氧化的鳍状物部分203的图2D的产生的示例性结构。引起氧化的鳍状物部分203的氧化116导致GaN层230完全或几乎完全与衬底200 隔离,这减少了另外将在没有隔离的情况下出现的泄漏。可以使用任何适合的技术(例如湿法或干法热氧化过程或任何其它适合的氧化过程)来执行氧化116。例如,在衬底200是Si的实施例中,可以在800到1000摄氏度的温度下使用例如水蒸气(通常超高纯度流)或分子氧作为氧化剂来执行氧化116以形成二氧化硅。在一些情况下,氧化的鳍状物部分203可以被称为高温氧化物层(HTO)。为氧化过程116选择的氧化条件和氧化剂可以取决于衬底200的材料(以及因而自然鳍状物202的材料)。例如,如果衬底200是Ge或具有高达30%的Ge的SiGe,则可以在氧化116期间使用较低温度。GaN对氧化过程116有特别的效用,因为与在氧化条件下将分解的其它Ⅲ-Ⅴ材料比较,GaN将不如在过程116期间一样容易或快速地氧化/分解(例如,作为在氧化过程116期间使用的高温的结果)。如可以理解的,氧化技术116允许GaN层230用作伪衬底,一个或多个晶体管可以在伪衬底上形成,因为在氧化116被执行之后GaN层230与衬底200电隔离。因此,在一些实施例中,GaN层230可以被描述为GaN伪衬底230,一个或多个GaN晶体管结构可以从GaN伪衬底230形成,如按照本公开内容将明显的。According to an embodiment, method 100 of FIG. 1 continues with oxidizing ( 116 ) at least a portion of fin 202 to form the resulting exemplary structure of FIG. 2D having oxidized fin portion 203 . Oxidation 116 of the oxidized fin portion 203 results in complete or almost complete isolation of GaN layer 230 from substrate 200 , which reduces leakage that would otherwise occur without isolation. Oxidation 116 may be performed using any suitable technique, such as a wet or dry thermal oxidation process or any other suitable oxidation process. For example, in embodiments where substrate 200 is Si, oxidation 116 may be performed at a temperature of 800 to 1000 degrees Celsius using, for example, water vapor (typically an ultra-high purity flow) or molecular oxygen as an oxidant to form silicon dioxide. In some cases, oxidized fin portion 203 may be referred to as a high temperature oxide layer (HTO). The oxidation conditions and oxidizing agent selected for the oxidation process 116 may depend on the material of the substrate 200 (and thus naturally the material of the fin 202). For example, lower temperatures may be used during oxidation 116 if substrate 200 is Ge or SiGe with up to 30% Ge. GaN has particular utility for the oxidation process 116 because GaN will not oxidize/decompose as easily or as quickly during the process 116 compared to other III-V materials that will decompose under oxidizing conditions (e.g., as result of the high temperature used). As can be appreciated, oxidation technique 116 allows GaN layer 230 to be used as a dummy substrate on which one or more transistors can be formed because GaN layer 230 is electrically isolated from substrate 200 after oxidation 116 is performed. Thus, in some embodiments, GaN layer 230 may be described as a GaN dummy substrate 230 from which one or more GaN transistor structures may be formed, as will be apparent in light of this disclosure.
根据实施例,图1的方法100继续用额外的STI材料212底部填充(118) GaN层230与STI材料210之间的间隙G以形成图2E中所示的产生的示例性结构。可以使用任何适合的技术(例如旋涂过程或其它适合的过程) 来执行底部填充118。在一些情况下,STI材料212可以是可再流动的,允许它受到高温(例如500-600摄氏度)。STI材料212可以是任何适合的材料,例如对STI层210描述的任何材料(例如氧化物和/或氮化物材料)。在一些实施例中,额外的STI材料212可以与STI材料210相同,而在其它实施例中,额外的STI材料212可以不同于STI材料210,这取决于最终用途或目标应用。According to an embodiment, the method 100 of FIG. 1 continues with underfilling ( 118 ) the gap G between the GaN layer 230 and the STI material 210 with additional STI material 212 to form the resulting exemplary structure shown in FIG. 2E . Underfill 118 may be performed using any suitable technique, such as a spin coating process or other suitable process. In some cases, STI material 212 may be reflowable, allowing it to be subjected to high temperatures (eg, 500-600 degrees Celsius). STI material 212 may be any suitable material, such as any of the materials described for STI layer 210 (eg, oxide and/or nitride materials). In some embodiments, additional STI material 212 may be the same as STI material 210, while in other embodiments, additional STI material 212 may be different from STI material 210, depending on the end use or target application.
根据各种实施例,图1的方法100继续完成(120)在隔离的GaN层 230上形成一个或多个晶体管。可以执行各种不同的过程以完成(120)一个或多个晶体管(包括具有各种几何结构,例如HEMT架构、MQW或超晶格架构(下面关于图2F’讨论的)、3DEG架构(下面关于图2F”讨论的)、鳍状(例如三栅极或FinFET)构造和/或纳米线(或纳米带或栅极环绕)构造的晶体管)的形成。例如,图2F示出了在隔离GaN层上形成的晶体管,其中晶体管包括源极和漏极(S/D)252、254和栅极256(在GaN层230 中的沟道区之上形成)。在这个示例性实施例中,可以通过掩蔽图2E的结构以及蚀刻以去除S/D区252和254中的极化层240、随后进行n型S/D材料的外延再生长来形成S/D区252和254。例如,材料可以是掺杂有Si 以形成n型S/D区252和254的氮化铟镓(InGaN)。在一些实施例中,S/D 材料可以是n型掺杂的氮化镓、具有渐变的铟成分的n型掺杂的氮化铟镓或任何其它适合的材料,如按照本公开内容将明显的。在S/D区252和254 形成之后,可以通过从沟道区(在栅极256之下的区域)蚀刻极化层240 并形成栅极叠置体256来形成栅极叠置体256,如下面以各种方式描述的。在这个示例性实施例中,通过去除栅极256下方的极化层240来实现晶体管的增强模式操作。如已知的,增强模式包括晶体管正常断开并且在栅极和源极之间没有电位差时将不传导。这可以与耗尽模式(或D模式)晶体管构造比较,如果在形成栅极叠置体256之前不去除极化层,则D模式晶体管构造将是产生的构造。然而,在一些情况下,增强模式操作由于从这样的模式得到的益处(其中一些在本文被描述)是更合乎需要的。Method 100 of FIG. 1 continues (120) with forming one or more transistors on isolated GaN layer 230, according to various embodiments. Various processes can be performed to complete (120) one or more transistors (including those having various geometries such as HEMT architectures, MQW or superlattice architectures (discussed below with respect to FIG. 2F'), 3DEG architectures (below with respect to Figure 2F" discusses the formation of transistors in fin-like (eg tri-gate or FinFET) configurations and/or nanowire (or nanoribbon or gate surround) configurations). For example, Figure 2F shows A transistor formed on the GaN layer 230, wherein the transistor includes source and drain (S/D) 252, 254 and a gate 256 (formed over the channel region in the GaN layer 230). In this exemplary embodiment, the Masking the structure of Figure 2E and etching to remove the polarization layer 240 in the S/D regions 252 and 254, followed by epitaxial regrowth of n-type S/D material to form the S/D regions 252 and 254. For example, the material may be Indium gallium nitride (InGaN) doped with Si to form n-type S/D regions 252 and 254. In some embodiments, the S/D material may be n-doped gallium nitride with a graded indium composition n-type doped InGaN or any other suitable material, as will be apparent from this disclosure. After the S/D regions 252 and 254 are formed, the region of the polarizing layer 240) and form the gate stack 256 to form the gate stack 256, as described in various ways below. In this exemplary embodiment, by removing the pole below the gate 256 layer 240 to achieve enhancement mode operation of the transistor. As is known, enhancement mode involves the transistor being normally off and will not conduct when there is no potential difference between the gate and source. This can be compared to the depletion mode (or D-mode ) transistor configuration, if the polarization layer is not removed before forming the gate stack 256, then the D-mode transistor configuration will be the resulting configuration. However, in some cases, enhancement mode operation is due to the benefits derived from such a mode (some of which are described herein) are more desirable.
在一些实施例中,栅极叠置体265的形成可以包括虚设栅极氧化物沉积、虚设栅极电极(例如多晶Si)沉积和图案化硬掩模沉积。额外的处理可以包括图案化虚设栅极和沉积/蚀刻间隔体材料。在这样的过程之后,该方法可以继续绝缘体沉积、平面化以及然后去除虚设栅极电极和栅极氧化物以暴露晶体管的沟道区,例如对替换金属栅极(RMG)过程而完成的。在敞开沟道区之后,虚设栅极氧化物和电极可以分别用例如栅极电介质和替换金属栅极代替。其它实施例可以包括由任何适合的过程(例如减性过程)形成的标准栅极叠置体,其中栅极电介质/栅极金属被沉积并接着进行一个或多个蚀刻过程。还可以执行任何数量的标准后端过程以帮助完成 (120)一个或多个晶体管的形成。In some embodiments, the formation of gate stack 265 may include dummy gate oxide deposition, dummy gate electrode (eg, poly-Si) deposition, and patterned hard mask deposition. Additional processing may include patterning dummy gates and depositing/etching spacer materials. After such a process, the method may continue with insulator deposition, planarization, and then removal of the dummy gate electrode and gate oxide to expose the channel region of the transistor, such as is done for a replacement metal gate (RMG) process. After opening the channel region, the dummy gate oxide and electrode can be replaced with eg a gate dielectric and a replacement metal gate, respectively. Other embodiments may include standard gate stacks formed by any suitable process, such as a subtractive process, where a gate dielectric/gate metal is deposited followed by one or more etch processes. Any number of standard back-end processes may also be performed to assist in completing (120) the formation of the one or more transistors.
在图2F所示的示例性结构中,栅极叠置体256可以包括栅极电极和在栅极电极之下直接形成的栅极电介质。可以使用任何适合的技术并由任何适合的材料形成栅极电介质和栅极电极。例如,可以在替换金属栅极过程期间形成栅极叠置体,如先前所述的,并且这样的过程可以包括任何适合的沉积技术(例如CVD、PVD等)。栅极电介质可以是例如任何适合的氧化物,例如二氧化硅或高k栅极电介质材料。高k栅极电介质材料的示例包括例如氧化铪、氧化铪硅、氧化镧、氧化镧铝、氧化锆、氧化锆硅、氧化钽、氧化钛、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、氧化铅钪钽和铌酸铅锌。在一些实施例中,当高k材料被使用时,可以在栅极电介质层上执行退火过程以提高其质量。通常,栅极电介质的厚度应足以电隔离栅极电极与源极和漏极接触部。此外,栅极电极可以例如包括各种材料,例如多晶硅、氮化硅、碳化硅或各种适合的金属或金属合金,例如铝(Al)、钨(W)、钛(Ti)、钽(Ta)、铜(Cu)、氮化钛(TiN)或氮化钽(TaN)。还可以执行各种后端过程,例如使用例如硅化过程(通常接触金属的沉积和随后的退火)来在S/D区252和254上形成接触部。In the exemplary structure shown in FIG. 2F , gate stack 256 may include a gate electrode and a gate dielectric formed directly under the gate electrode. The gate dielectric and gate electrodes may be formed using any suitable technique and from any suitable material. For example, the gate stack may be formed during a replacement metal gate process, as previously described, and such process may include any suitable deposition technique (eg, CVD, PVD, etc.). The gate dielectric can be, for example, any suitable oxide, such as silicon dioxide or a high-k gate dielectric material. Examples of high-k gate dielectric materials include, for example, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, Yttrium oxide, aluminum oxide, lead scandium tantalum oxide and lead zinc niobate. In some embodiments, when a high-k material is used, an annealing process may be performed on the gate dielectric layer to improve its quality. In general, the thickness of the gate dielectric should be sufficient to electrically isolate the gate electrode from the source and drain contacts. Furthermore, the gate electrode may for example comprise various materials such as polysilicon, silicon nitride, silicon carbide or various suitable metals or metal alloys such as aluminum (Al), tungsten (W), titanium (Ti), tantalum (Ta ), copper (Cu), titanium nitride (TiN) or tantalum nitride (TaN). Various back-end processes may also be performed, such as forming contacts on S/D regions 252 and 254 using, for example, a silicidation process (typically deposition of a contact metal followed by annealing).
图2F’示出了根据本公开内容的实施例的穿过鳍状非平面多量子阱 (MQW)GaN晶体管结构的沟道区的截面。晶体管结构在这个示例性实施例中从图2C’的结构继续,其中形成多个2DEG层组(例如GaN层232/极化层242和GaN层234/极化层244)。从图2C’中,结构被氧化(116)和底部填充(118),如上面以各种方式描述的。然后,晶体管结构的形成的完成(120)包括将Ⅲ-N层(例如GaN层和极化层)蚀刻和图案化成鳍状物,从而形成沟槽260。在一些实施例中,可以例如形成具有小于100nm 的宽度和大于20nm的高度的鳍状物。过程120在这个示例性实施例中可以然后通过形成源极/漏极区来继续,这可以包括例如在那些区中沉积n型 InGaN或用于源极/漏极处理的一些其它适合的技术。过程120在这个示例性实施例中可以通过形成栅极叠置体256继续,如本文中以各种方式描述的。因此,方法100可以用于使用本文所述的氧化物隔离技术在Si、SiGe 或Ge衬底上形成MQW或超晶格晶体管结构。回想起可以在过程112(额外的Ⅲ-N材料的沉积)期间形成任何数量的组的2DEG层。因此,图2F’中所示的MQW沟道区可以包括更多或更少的2DEG(GaN/极化层)组,这取决于最终用途或目标应用。注意,尽管沟槽260被凹进到第一/最下面的GaN层230中,但本公开内容并不旨在被这样限制。在一些情况下,用于形成3DEG鳍状物结构的沟槽260可以更浅或更深,这取决于最终用途或目标应用。在一些实施例中,MQW结构的极化层可以用于减小GaN晶体管的接通电阻。按照本公开内容,MQW或超晶格GaN晶体管结构的很多其它构造和益处将明显。Figure 2F' shows a cross-section through the channel region of a fin-like non-planar multiple quantum well (MQW) GaN transistor structure, according to an embodiment of the disclosure. The transistor structure continues in this exemplary embodiment from the structure of Figure 2C', where multiple 2DEG layer groups (e.g., GaN layer 232/polarization layer 242 and GaN layer 234/polarization layer 244) are formed. From Figure 2C', the structure is oxidized (116) and underfilled (118), as described above in various ways. Completion ( 120 ) of formation of the transistor structure then includes etching and patterning the III-N layer (eg GaN layer and polarization layer) into fins, thereby forming trenches 260 . In some embodiments, fins may be formed, for example, with a width of less than 100 nm and a height of greater than 20 nm. Process 120 may then continue in this exemplary embodiment by forming source/drain regions, which may include, for example, depositing n-type InGaN in those regions or some other suitable technique for source/drain processing. Process 120 may continue in this exemplary embodiment by forming gate stack 256 as variously described herein. Accordingly, method 100 may be used to form MQW or superlattice transistor structures on Si, SiGe, or Ge substrates using the oxide isolation techniques described herein. Recall that any number of sets of 2DEG layers may be formed during process 112 (deposition of additional III-N material). Thus, the MQW channel region shown in Figure 2F' may include more or fewer 2DEG (GaN/polarization layer) groups, depending on the end use or target application. Note that although the trenches 260 are recessed into the first/lowermost GaN layer 230, the present disclosure is not intended to be so limited. In some cases, the trenches 260 used to form the 3DEG fin structure can be shallower or deeper, depending on the end use or target application. In some embodiments, the polarization layer of the MQW structure can be used to reduce the on-resistance of the GaN transistor. Many other configurations and benefits of MQW or superlattice GaN transistor structures will be apparent in light of this disclosure.
图2F”示出了根据本公开内容的实施例的穿过鳍状非平面3DEG GaN 晶体管结构的沟道区的截面。晶体管结构在这个示例实施例中从图2C”的结构继续,其中形成渐变的3D极化层236。从图2C”中,结构被氧化(116) 和底部填充(118),如上面以各种方式描述的。然后,晶体管结构的形成的完成(120)包括将Ⅲ-N层(例如GaN层和极化层)蚀刻和图案化成鳍状物,从而形成沟槽260。在一些实施例中,可以例如形成具有小于100nm 的宽度和大于20nm的高度的鳍状物。过程120在这个示例性实施例中可以然后通过形成源极区/漏极区来继续,这可以包括例如在那些区域中的n 型InGaN的沉积或用于源极/漏极处理的一些其它适合的技术。过程120在这个示例性实施例中可以通过形成栅极叠置体256继续,如本文中以各种方式描述的。因此,方法100可以用于使用本文所述的氧化物隔离技术在 Si、SiGe或Ge衬底上形成3DEG或3D极化FET晶体管结构。注意,尽管沟槽260未凹进到第一/最下面的GaN层230中,本公开内容并不旨在被这样限制。在一些情况下,用于形成3DEG鳍状物结构的沟槽260可以更浅或更深,这取决于最终用途或目标应用。在一些实施例中,3DEG结构的极化层可以用于减小GaN晶体管的接通电阻。按照本公开内容,3DEG 或3D极化FET晶体管结构的很多其它构造和益处将明显。Figure 2F" shows a cross-section through the channel region of a fin-shaped non-planar 3DEG GaN transistor structure according to an embodiment of the disclosure. The transistor structure continues in this example embodiment from that of Figure 2C", wherein a gradient is formed 3D polarizing layer 236 . From FIG. 2C″, the structure is oxidized (116) and underfilled (118), as described above in various ways. Completion of the formation of the transistor structure (120) then includes the addition of III-N layers (e.g., GaN layers and Polarization layer) etched and patterned into fins, thereby forming trenches 260. In some embodiments, fins having a width of less than 100 nm and a height of greater than 20 nm may be formed, for example. Process 120 in this exemplary embodiment may then continue by forming source/drain regions, which may include, for example, deposition of n-type InGaN in those regions or some other suitable technique for source/drain processing. Process 120 in this example The exemplary embodiment may continue by forming the gate stack 256, as described in various ways herein. Thus, the method 100 may be used on Si, SiGe, or Ge substrates using the oxide isolation techniques described herein Form a 3DEG or 3D polarized FET transistor structure. Note that although trench 260 is not recessed into first/lowermost GaN layer 230, the disclosure is not intended to be so limited. In some cases, for forming The trench 260 of the 3DEG fin structure can be shallower or deeper, depending on the end use or target application. In some embodiments, the polarization layer of the 3DEG structure can be used to reduce the on-resistance of the GaN transistor. According to this Many other configurations and benefits of 3DEG or 3D polarized FET transistor structures will be apparent from this disclosure.
图3是示出根据本公开内容的实施例形成的集成电路结构的截面侧视图的透射电子显微镜(TEM)图像。如可看到的,图像示出了包括由STI 材料210/212围绕的氧化鳍状物203的Si衬底200。如也可看到的,AlN 成核层220在衬底200和STI材料210/212上形成,并且GaN层230在成核层和衬底200上和之上形成。注意,GaN层230在这个示例性实施例中具有大约1.1微米的厚度,虽然还可以使用其它适合的厚度(例如0.25微米到2.5微米)。可以接着在这个示例性实施例中使用氧化过程116以隔离 GaN层230与Si衬底200,以允许电隔离的GaN晶体管结构形成在GaN 层230上并防止或减小从GaN层到Si衬底200的泄漏。在一些实施例中,技术可以用于形成在高达大约40V下具有例如小于每微米1E-4mA的断开状态泄漏电流的GaN晶体管。相应地,技术使在Si衬底(或SiGe衬底或 Ge衬底)上的GaN晶体管的SoC集成成为可能,如本文中以各种方式描述的。3 is a transmission electron microscope (TEM) image showing a cross-sectional side view of an integrated circuit structure formed according to an embodiment of the disclosure. As can be seen, the image shows a Si substrate 200 including an oxide fin 203 surrounded by STI material 210 / 212 . As can also be seen, an AlN nucleation layer 220 is formed on the substrate 200 and STI materials 210 / 212 , and a GaN layer 230 is formed on and over the nucleation layer and the substrate 200 . Note that GaN layer 230 has a thickness of approximately 1.1 microns in this exemplary embodiment, although other suitable thicknesses (eg, 0.25 microns to 2.5 microns) may also be used. Oxidation process 116 may then be used in this exemplary embodiment to isolate GaN layer 230 from Si substrate 200 to allow electrically isolated GaN transistor structures to be formed on GaN layer 230 and to prevent or reduce 200 leaks. In some embodiments, techniques may be used to form GaN transistors with off-state leakage currents, eg, less than 1E-4mA per micron, up to about 40V. Accordingly, technology enables SoC integration of GaN transistors on Si substrates (or SiGe substrates or Ge substrates), as described in various ways herein.
在一些实施例中,本文中以各种方式描述的GaN晶体管结构(例如 MQW和3DEG晶体管结构)可以形成有非平面构造,例如鳍状(例如三栅极或FinFET)或纳米线(或纳米带或栅极环绕)构造。在鳍状晶体管构造中,有三个有效栅极——两个在任一侧上以及一个在顶部上——如本领域中已知的。纳米线晶体管构造与基于鳍状物的晶体管构造类似地被配置,但代替鳍状沟道区(其中栅极在三侧上(以及因此有三个有效栅极)),一个或多个纳米线被使用且栅极材料通常在所有侧上围绕每个纳米线。根据特定的设计,一些纳米线晶体管具有例如四个有效栅极。可以形成(多个) 纳米线,同时在替换栅极过程(例如RMG过程)期间在例如去除虚设栅极之后或使用一些其它适合的过程来暴露沟道区。注意,本文所述的各种 GaN晶体管结构可以被设计为耗尽模式(D模式)或增强模式晶体管,这取决于最终用途或目标应用。进一步注意,为了便于描述,在图1中以特定的顺序示出方法100的过程102-120。然而,过程102-120中的一个或多个可以按不同的顺序被执行或根本不被执行。例如,框106、112和114是可以不在方法100期间执行的可选过程。按照本公开内容,很多变型和构造将明显。In some embodiments, GaN transistor structures variously described herein (such as MQW and 3DEG transistor structures) can be formed with non-planar configurations, such as fins (such as Tri-Gate or FinFET) or nanowires (or nanoribbons). or gate surround) construction. In a fin transistor configuration, there are three active gates - two on either side and one on top - as known in the art. Nanowire transistor constructions are configured similarly to fin-based transistor constructions, but instead of a fin-shaped channel region (with gates on three sides (and thus three effective gates)), one or more nanowires are A gate material is used and typically surrounds each nanowire on all sides. Depending on the particular design, some nanowire transistors have, for example, four active gates. The nanowire(s) may be formed while exposing the channel region during a replacement gate process (eg RMG process) eg after removing the dummy gate or using some other suitable process. Note that the various GaN transistor structures described herein can be designed as depletion-mode (D-mode) or enhancement-mode transistors, depending on the end use or target application. Note further that processes 102-120 of method 100 are shown in a particular order in FIG. 1 for ease of description. However, one or more of processes 102-120 may be performed in a different order or not performed at all. For example, blocks 106 , 112 , and 114 are optional procedures that may not be performed during method 100 . Many variations and configurations will be apparent in light of the present disclosure.
示例性片上系统(SoC)实施方式Exemplary System-on-Chip (SoC) Implementation
图4示出了根据本公开内容的各种实施例的移动计算平台的SoC实施方式的功能方框图。移动计算平台400可以是为电子数据显示器、电子数据处理和无线电子数据传输中的每个构造的任何便携式设备。例如,移动计算平台400可以是平板电脑、智能电话、膝上型电脑等中的任一种并包括显示屏405,显示屏405在示例性实施例中是允许用户输入的接收的触摸屏(例如电容式、电感式、电阻式等)、SoC 410和电池413。如所示的, SoC 410的集成水平越高,可以在充电之间的最长的操作寿命期间由电池 413占据或为了最大的功能性由诸如固态驱动器之类的存储器(未描绘)占用的、在移动计算平台400内的形状因子就越多。Figure 4 illustrates a functional block diagram of a SoC implementation of a mobile computing platform according to various embodiments of the present disclosure. Mobile computing platform 400 may be any portable device constructed for each of electronic data display, electronic data processing, and wireless electronic data transmission. For example, mobile computing platform 400 may be any of a tablet computer, smartphone, laptop, etc. and includes display screen 405, which in an exemplary embodiment is a touch screen (e.g., capacitive type, inductive, resistive, etc.), SoC 410 and battery 413. As shown, the higher level of integration of the SoC 410 may be occupied by the battery 413 during the longest operating life between charges or by memory (not depicted) such as a solid-state drive for maximum functionality. The more form factors within the mobile computing platform 400 .
根据其应用,移动计算平台400可以包括其它部件,包括但不限于易失性存储器(例如DRAM)、非易失性存储器(例如ROM)、闪速存储器、图形处理器、数字信号处理器、密码处理器、芯片组、天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编码解码器、视频编码解码器、功率放大器、全球定位系统(GPS)设备、罗盘、加速度计、陀螺仪、扬声器、照相机和大容量存储设备(例如硬盘驱动器、光盘(CD)、数字多功能盘(DVD)等)。Depending on its application, mobile computing platform 400 may include other components including, but not limited to, volatile memory (such as DRAM), nonvolatile memory (such as ROM), flash memory, graphics processors, digital signal processors, cryptographic processors, chipsets, antennas, displays, touchscreen displays, touchscreen controllers, batteries, audio codecs, video codecs, power amplifiers, global positioning system (GPS) devices, compasses, accelerometers, gyroscopes, speakers, Cameras and mass storage devices (such as hard drives, compact disks (CD), digital versatile disks (DVD), etc.).
在展开视图421中进一步示出了SoC 410。根据实施例,SoC 410可以包括衬底(芯片)的一部分,其上包括以下中的两个或更多个:功率管理集成电路(PMIC)415;包括RF发射机和/或接收机的RF集成电路(RFIC) 425;其控制器411;以及一个或多个中央处理器核心420、430。RFIC 425 可以实施多种无线标准或协议中的任一种,包括但不限于Wi-Fi(IEEE802.11系列)、WiMAX(IEEE 802.16系列)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、 TDMA、DECT、蓝牙、其派生物以及被指定为3G、4G、5G和更高代的任何其它无线协议。RFIC 425可以包括多个通信芯片。例如,第一通信芯片可以专用于较短距离的无线通信,例如Wi-Fi和蓝牙,并且第二通信芯片可以专用于较长距离的无线通信,例如GPS、EDGE、GPRS、CDMA、WiMAX、 LTE、Ev-DO等。SoC 410 is further shown in expanded view 421 . According to an embodiment, SoC 410 may include a portion of a substrate (chip) on which two or more of: a power management integrated circuit (PMIC) 415; an RF integrated circuit including an RF transmitter and/or receiver; circuit (RFIC) 425; its controller 411; and one or more central processor cores 420,430. RFIC 425 may implement any of a variety of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 series), WiMAX (IEEE 802.16 series), IEEE 802.20, Long Term Evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, its derivatives, and any other wireless protocol designated as 3G, 4G, 5G and beyond. RFIC 425 may include multiple communication chips. For example, the first communication chip can be dedicated to shorter range wireless communication, such as Wi-Fi and Bluetooth, and the second communication chip can be dedicated to longer range wireless communication, such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE , Ev-DO, etc.
如本领域中的技术人员将认识到的,在这些功能上不同的电路模块当中,一般排他性地采用CMOS晶体管,除了在PMIC 415和RFIC 425中以外。在本公开内容的实施例中,PMIC 415和/或RFIC 425采用如本文中以各种方式描述的一个或多个集成电路结构(例如包括一个或多个GaN晶体管结构)。在另外的实施例中,采用本文所述的集成电路结构的PMIC 415 和RFIC 425可以与控制器411和处理器核心420、430中的一个或多个集成在一起,控制器411和处理器核心420、430在例如Si CMOS技术中被提供,与PMIC 415和/或RFIC425一起单片地集成到衬底(例如,如本文中以各种方式描述的衬底200)上。将认识到,在PMIC 415和/或RFIC 425 内,不需要排除CMOS利用高电压GaN前端RF开关和本文所述的晶体管结构,相反地其它CMOS器件和结构可以进一步被包括在PMIC 415和 RFIC 425中的每个中。As will be appreciated by those skilled in the art, among these functionally distinct circuit blocks, CMOS transistors are typically employed exclusively, except in PMIC 415 and RFIC 425 . In an embodiment of the present disclosure, PMIC 415 and/or RFIC 425 employ one or more integrated circuit structures (eg, including one or more GaN transistor structures) as variously described herein. In another embodiment, the PMIC 415 and RFIC 425 using the integrated circuit structure described herein can be integrated with one or more of the controller 411 and the processor cores 420, 430, the controller 411 and the processor core 420, 430 are provided in eg Si CMOS technology monolithically integrated with PMIC 415 and/or RFIC 425 onto a substrate (eg substrate 200 as variously described herein). It will be appreciated that within PMIC 415 and/or RFIC 425, CMOS need not be excluded utilizing high voltage GaN front-end RF switches and transistor structures described herein, rather other CMOS devices and structures may be further included within PMIC 415 and RFIC 425 in each of the .
如进一步在图4的示例性实施例中所示的,PMIC 415具有耦合到天线的输出端,并且还可以具有耦合到SoC 410上的通信模块(例如RF模拟和数字基带模块(未描绘))的输入端。替代地,这样的通信模块可以设置在SoC 410的片外IC上并耦合到SoC 410中以用于传输。如基于本公开内容可以理解的,本文中以各种方式描述的隔离GaN晶体管结构可以用于提供包括SOC所需的低接通电阻和小形状因子的高电压前端RF开关。此外,本文中以各种方式描述的氧化物隔离技术允许GaN晶体管形成在Si、SiGe 和Ge衬底上。As further shown in the exemplary embodiment of FIG. 4 , PMIC 415 has an output coupled to an antenna, and may also have communication modules (such as RF analog and digital baseband modules (not depicted)) coupled to SoC 410 input terminal. Alternatively, such a communication module may be provided on an off-chip IC of SoC 410 and coupled into SoC 410 for transmission. As can be appreciated based on this disclosure, the isolated GaN transistor structures described in various ways herein can be used to provide high voltage front-end RF switches including the low on-resistance and small form factor required for SOCs. Furthermore, the oxide isolation techniques described in various ways herein allow GaN transistors to be formed on Si, SiGe and Ge substrates.
示例性系统exemplary system
图5示出了根据本公开内容的各种实施例的利用使用本文公开的技术形成的集成电路结构或器件实施的计算系统1000。如可以看到的,计算系统1000容纳母板1002。母板1002可以包括多个部件,包括但不限于处理器1004和至少一个通信芯片1006,其中每个可以物理地和电气地耦合到母板1002或以其它方式集成在其中。如将认识到的,母板1002可以例如是任何印刷电路板,无论是主板、安装在主板上的子板或系统1000的唯一板等。FIG. 5 illustrates a computing system 1000 implemented using integrated circuit structures or devices formed using the techniques disclosed herein, according to various embodiments of the present disclosure. As can be seen, computing system 1000 houses motherboard 1002 . Motherboard 1002 may include a number of components including, but not limited to, a processor 1004 and at least one communication chip 1006, each of which may be physically and electrically coupled to motherboard 1002 or otherwise integrated therein. As will be appreciated, motherboard 1002 may be, for example, any printed circuit board, whether a motherboard, a daughterboard mounted on a motherboard, or the only board of system 1000, or the like.
根据其应用,计算系统1000可以包括可以或可以不物理地和电气地耦合到母板1002的其它部件。这些其它部件可以包括但不限于易失性存储器 (例如DRAM)、非易失性存储器(例如ROM)、图形处理器、数字信号处理器、密码处理器、芯片组、天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编码解码器、视频编码解码器、功率放大器、全球定位系统(GPS)设备、罗盘、加速度计、陀螺仪、扬声器、照相机和大容量储存设备(例如硬盘驱动器、光盘(CD)、数字多功能盘(DVD)等)。被包括在计算系统1000中的任何部件可以包括使用根据示例性实施例的所公开的技术形成的一个或多个集成电路结构或器件。在一些实施例中,多个功能可以集成到一个或多个芯片中(例如注意,通信芯片1006可以是处理器1004的部分或以其它方式集成到处理器1004中)。Depending on its application, computing system 1000 may include other components that may or may not be physically and electrically coupled to motherboard 1002 . These other components may include, but are not limited to, volatile memory (such as DRAM), nonvolatile memory (such as ROM), graphics processors, digital signal processors, cryptographic processors, chipsets, antennas, displays, touch screen displays, Touch screen controllers, batteries, audio codecs, video codecs, power amplifiers, global positioning system (GPS) devices, compasses, accelerometers, gyroscopes, speakers, cameras, and mass storage devices such as hard drives, optical discs ( CD), Digital Versatile Disk (DVD), etc.). Any components included in computing system 1000 may include one or more integrated circuit structures or devices formed using the disclosed techniques according to the example embodiments. In some embodiments, multiple functions may be integrated into one or more chips (eg note that communications chip 1006 may be part of or otherwise integrated into processor 1004).
通信芯片1006实现了无线通信,以用于将数据传输到计算系统1000 以及从计算系统1000传输数据。术语“无线”及其派生词可以用于描述可通过使用经调制电磁辐射来经由非固体介质传送数据的电路、设备、系统、方法、技术、通信信道等。该术语并不暗示相关联的设备不包含任何导线,虽然在一些实施例中它们可以不包含导线。通信芯片1006可以实施多种无线标准或协议中的任一种,包括但不限于Wi-Fi(IEEE 802.11系列)、WiMAX(IEEE 802.16系列)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、 HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、其派生物以及被指定为3G、4G、5G和更高代的任何其它无线协议。计算系统1000可以包括多个通信芯片1006。例如,第一通信芯片1006可以专用于较短距离的无线通信,例如Wi-Fi和蓝牙,并且第二通信芯片1006 可以专用于较长距离的无线通信,例如GPS、EDGE、GPRS、CDMA、WiMAX、 LTE、Ev-DO等。Communications chip 1006 enables wireless communications for transferring data to and from computing system 1000 . The term "wireless" and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communication channels, etc., that can communicate data over a non-solid medium through the use of modulated electromagnetic radiation. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1006 may implement any of a variety of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 series), WiMAX (IEEE 802.16 series), IEEE 802.20, Long Term Evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, its derivatives, and any other wireless protocol designated as 3G, 4G, 5G and beyond. Computing system 1000 may include multiple communication chips 1006 . For example, the first communication chip 1006 may be dedicated to shorter-range wireless communications, such as Wi-Fi and Bluetooth, and the second communication chip 1006 may be dedicated to longer-range wireless communications, such as GPS, EDGE, GPRS, CDMA, WiMAX , LTE, Ev-DO, etc.
计算系统1000的处理器1004包括在处理器1004内封装的集成电路管芯。在一些实施例中,处理器的集成电路管芯包括利用使用所公开的技术形成的一个或多个集成电路结构或器件实施的板上电路,如本文中以各种方式描述的。术语“处理器”可以指代处理例如来自寄存器和/或存储器的电子数据以将该电子数据转换成可以存储在寄存器和/或存储器中的其它电子数据的任何设备或设备的部分。Processor 1004 of computing system 1000 includes an integrated circuit die packaged within processor 1004 . In some embodiments, the integrated circuit die of the processor includes on-board circuitry implemented with one or more integrated circuit structures or devices formed using the disclosed techniques, as variously described herein. The term "processor" may refer to any device or portion of a device that processes electronic data, eg, from registers and/or memory, to transform that electronic data into other electronic data that may be stored in registers and/or memory.
通信芯片1006也可以包括封装在通信芯片1006内的集成电路管芯。根据一些这样的示例性实施例,通信芯片的集成电路管芯包括使用所公开的技术形成的一个或多个集成电路结构或器件,如本文中以各种方式描述的。如按照本公开内容将认识到的,注意,多标准无线能力可以直接集成到处理器1004中(例如其中任何芯片1006的功能集成到处理器1004中,而不是具有单独的通信芯片)。进一步注意,处理器1004可以是具有这样的无线能力的芯片组。简而言之,可以使用任何数量的处理器1004和/或通信芯片1006。同样,任何一个芯片或芯片组可以具有集成在其中的多个功能。Communications chip 1006 may also include an integrated circuit die packaged within communications chip 1006 . According to some of these exemplary embodiments, the integrated circuit die of the communications chip includes one or more integrated circuit structures or devices formed using the disclosed techniques, as variously described herein. As will be appreciated in light of this disclosure, note that multi-standard wireless capabilities may be integrated directly into the processor 1004 (eg, where the functionality of any chip 1006 is integrated into the processor 1004 rather than having a separate communications chip). Note further that processor 1004 may be a chipset with such wireless capabilities. In short, any number of processors 1004 and/or communications chips 1006 may be used. Likewise, any one chip or chipset may have multiple functions integrated therein.
在各种实施方式中,计算设备1000可以是膝上型电脑、上网本电脑、笔记本电脑、智能电话、平板电脑、个人数字助理(PDA)、超移动PC、移动电话、桌上型计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数字照相机、便携式音乐播放器、数字视频记录器或处理数据或利用使用所公开的技术形成的一个或多个集成电路结构或器件的任何其它电子设备,如本文中以各种方式描述的。In various implementations, computing device 1000 may be a laptop computer, netbook computer, notebook computer, smartphone, tablet computer, personal digital assistant (PDA), ultra-mobile PC, mobile phone, desktop computer, server, Printers, scanners, monitors, set-top boxes, entertainment control units, digital cameras, portable music players, digital video recorders, or any other device that processes data or utilizes one or more integrated circuit structures or devices formed using the disclosed techniques Electronic devices, as variously described herein.
另外的示例性实施例Additional Exemplary Embodiments
下面的示例涉及另外的实施例,根据这些实施例,很多置换和构造将明显。The following examples refer to additional embodiments from which many permutations and configurations will be apparent.
示例1是集成电路,其包括:衬底,多个鳍状物源自于衬底,其中每个鳍状物的至少一部分被氧化;位于鳍状物上和鳍状物的氧化部分上方的氮化镓(GaN)层;以及具有沟道的晶体管,晶体管沟道被包括在GaN层中。Example 1 is an integrated circuit comprising: a substrate from which a plurality of fins are derived, wherein at least a portion of each fin is oxidized; nitrogen on the fins and over the oxidized portions of the fins a gallium nitride (GaN) layer; and a transistor having a channel included in the GaN layer.
示例2包括示例1的主题,其中衬底是硅、硅锗和锗体衬底的其中之一。Example 2 includes the subject matter of Example 1, wherein the substrate is one of silicon, silicon germanium, and a bulk germanium substrate.
示例3包括示例1-2中的任一项的主题,进一步包括至少部分地位于鳍状物与GaN层之间的成核层。Example 3 includes the subject matter of any of Examples 1-2, further including a nucleation layer at least partially between the fin and the GaN layer.
示例4包括示例3的主题,其中成核层是氮化铝和在700到950摄氏度的范围内的低温下沉积的氮化镓的其中之一。Example 4 includes the subject matter of Example 3, wherein the nucleation layer is one of aluminum nitride and gallium nitride deposited at a low temperature in the range of 700 to 950 degrees Celsius.
示例5包括示例1-4中的任一项的主题,进一步包括位于GaN层上方的至少一个额外的GaN层,晶体管沟道包括至少一个额外的GaN层。Example 5 includes the subject matter of any of Examples 1-4, further including at least one additional GaN layer above the GaN layer, the transistor channel including at least one additional GaN layer.
示例6包括示例5的主题,进一步包括位于每个额外的GaN层上方的极化层,其中每个极化层是氮化铝、氮化铝镓、氮化铟铝和氮化铟铝镓的其中之一。Example 6 includes the subject matter of Example 5, further comprising a poling layer over each additional GaN layer, wherein each poling layer is aluminum nitride, aluminum gallium nitride, indium aluminum nitride, and indium aluminum gallium nitride one of them.
示例7包括示例1-4中的任一项的主题,进一步包括位于GaN层上方的渐变层,晶体管沟道包括渐变层。Example 7 includes the subject matter of any of Examples 1-4, further including a graded layer overlying the GaN layer, the transistor channel including the graded layer.
示例8包括示例7的主题,其中渐变层包括以铟渐变的GaN。Example 8 includes the subject matter of Example 7, wherein the graded layer comprises GaN graded with indium.
示例9包括示例7-8中的任一项的主题,进一步包括位于渐变层上方的氮化铝层。Example 9 includes the subject matter of any of Examples 7-8, further including an aluminum nitride layer over the graded layer.
示例10包括示例1-9中的任一项的主题,其中晶体管源极区和漏极区包括n型掺杂氮化铟镓、n型掺杂氮化镓、具有渐变的铟组分的n型掺杂氮化铟镓中的至少一种。Example 10 includes the subject matter of any of Examples 1-9, wherein the transistor source and drain regions comprise n-type doped indium gallium nitride, n-type doped gallium nitride, n At least one of doped InGaN.
示例11包括示例1-10中的任一项的主题,其中晶体管是增强模式晶体管。Example 11 includes the subject matter of any of Examples 1-10, wherein the transistor is an enhancement mode transistor.
示例12包括示例1-11中的任一项的主题,其中晶体管与衬底电隔离。Example 12 includes the subject matter of any of Examples 1-11, wherein the transistor is electrically isolated from the substrate.
示例13包括示例1-12中的任一项的主题,其中晶体管包括以下几何结构中的至少一种:平面构造、非平面构造、鳍状构造、三栅极构造、纳米线构造、栅极环绕构造、高电子迁移率晶体管(HEMT)架构、假型HEMT (pHEMT)架构、二维电子气体(2DEG)架构、三维电子气体(3DEG) 架构、三维极化场效应晶体管(FET)架构、多量子阱(MQW)架构以及超晶格架构。Example 13 includes the subject matter of any of Examples 1-12, wherein the transistor comprises at least one of the following geometries: planar configuration, non-planar configuration, fin configuration, tri-gate configuration, nanowire configuration, gate surround Construction, High Electron Mobility Transistor (HEMT) Architecture, Pseudotyped HEMT (pHEMT) Architecture, Two-Dimensional Electron Gas (2DEG) Architecture, Three-Dimensional Electron Gas (3DEG) Architecture, Three-Dimensional Polarized Field-Effect Transistor (FET) Architecture, Multiquantum well (MQW) architecture and superlattice architecture.
示例14是包括示例1-13中的任一项的主题的射频(RF)开关,其中 RF开关是片上系统(SoC)实施方式的部件。Example 14 is a radio frequency (RF) switch comprising the subject matter of any of Examples 1-13, wherein the RF switch is a component of a system on chip (SoC) implementation.
示例15是包括示例1-14中的任一项的主题的计算系统。Example 15 is a computing system comprising the subject matter of any of Examples 1-14.
示例16是晶体管,其包括:位于源自于下层体硅(Si)衬底的多个鳍状物中的每个上的氮化镓(GaN)伪衬底,其中GaN伪衬底与Si衬底电隔离;以及位于沟道区之上的栅极叠置体,沟道区位于GaN伪衬底中和/或上。Example 16 is a transistor comprising: a gallium nitride (GaN) dummy substrate on each of a plurality of fins derived from an underlying bulk silicon (Si) substrate, wherein the GaN dummy substrate is bonded to the Si substrate bottom electrical isolation; and a gate stack over a channel region in and/or on a GaN dummy substrate.
示例17包括示例16的主题,其中源自于衬底的Si鳍状物的至少一部分被氧化成二氧化硅,提供与Si衬底的电隔离。Example 17 includes the subject matter of Example 16, wherein at least a portion of the Si fin originating from the substrate is oxidized to silicon dioxide, providing electrical isolation from the Si substrate.
示例18包括示例16-17中的任一项的主题,进一步包括至少部分地位于Si鳍状物与GaN层之间的成核层。Example 18 includes the subject matter of any of Examples 16-17, further including a nucleation layer at least partially between the Si fin and the GaN layer.
示例19包括示例18的主题,其中成核层是氮化铝和在700到950摄氏度的范围内的低温下沉积的氮化镓的其中之一。Example 19 includes the subject matter of Example 18, wherein the nucleation layer is one of aluminum nitride and gallium nitride deposited at a low temperature in the range of 700 to 950 degrees Celsius.
示例20包括示例16-19中的任一项的主题,进一步包括位于GaN层上方的至少一个额外的GaN层,晶体管沟道包括至少一个额外的GaN层。Example 20 includes the subject matter of any of Examples 16-19, further comprising at least one additional GaN layer above the GaN layer, the transistor channel comprising at least one additional GaN layer.
示例21包括示例20的主题,进一步包括位于每个额外的GaN层上方的极化层,其中每个极化层是氮化铝、氮化铝镓、氮化铟铝和氮化铟铝镓的其中之一。Example 21 includes the subject matter of Example 20, further comprising a poling layer over each additional GaN layer, wherein each poling layer is aluminum nitride, aluminum gallium nitride, indium aluminum nitride, and indium aluminum gallium nitride one of them.
示例22包括示例16-19中的任一项的主题,进一步包括位于GaN层上方的渐变层,晶体管沟道包括渐变层。Example 22 includes the subject matter of any of Examples 16-19, further comprising a graded layer overlying the GaN layer, the transistor channel comprising the graded layer.
示例23包括示例22的主题,其中渐变层包括以铟渐变的GaN。Example 23 includes the subject matter of Example 22, wherein the graded layer comprises GaN graded with indium.
示例24包括示例22-23中的任一项的主题,进一步包括位于渐变层上方的氮化铝层。Example 24 includes the subject matter of any of Examples 22-23, further including an aluminum nitride layer over the graded layer.
示例25包括示例16-24中的任一项的主题,其中晶体管源极区和漏极区包括n型掺杂氮化铟镓、n型掺杂氮化镓、具有渐变的铟组分的n型掺杂氮化铟镓中的至少一种。Example 25 includes the subject matter of any of Examples 16-24, wherein the transistor source and drain regions comprise n-type doped indium gallium nitride, n-type doped gallium nitride, n Type doped indium gallium nitride at least one.
示例26包括示例16-25中的任一项的主题,其中晶体管是增强模式晶体管。Example 26 includes the subject matter of any of Examples 16-25, wherein the transistor is an enhancement mode transistor.
示例27包括示例16-26中的任一项的主题,其中位于原生的多个鳍状物中的每个鳍状物上的GaN伪衬底包括多个GaN伪衬底,所述多个GaN 伪衬底均对应于鳍状物中的一个鳍状物。Example 27 includes the subject matter of any of Examples 16-26, wherein the GaN dummy substrate on each fin of the native plurality of fins includes a plurality of GaN dummy substrates, the plurality of GaN dummy substrates The dummy substrates each correspond to one of the fins.
示例28包括示例16-27中的任一项的主题,其中晶体管包括以下几何结构中的至少一种:平面构造、非平面构造、鳍状构造、三栅极构造、纳米线构造、栅极环绕构造、高电子迁移率晶体管(HEMT)架构、假型HEMT (pHEMT)架构、二维电子气体(2DEG)架构、三维电子气体(3DEG) 架构、三维极化场效应晶体管(FET)架构、多量子阱(MQW)架构以及超晶格架构。Example 28 includes the subject matter of any of Examples 16-27, wherein the transistor comprises at least one of the following geometries: planar configuration, non-planar configuration, fin configuration, tri-gate configuration, nanowire configuration, gate surround Construction, High Electron Mobility Transistor (HEMT) Architecture, Pseudotyped HEMT (pHEMT) Architecture, Two-Dimensional Electron Gas (2DEG) Architecture, Three-Dimensional Electron Gas (3DEG) Architecture, Three-Dimensional Polarized Field-Effect Transistor (FET) Architecture, Multiquantum well (MQW) architecture and superlattice architecture.
示例29是包括示例16-28中的任一项的主题的射频(RF)开关,其中 RF开关是片上系统(SoC)实施方式的部件。Example 29 is a radio frequency (RF) switch comprising the subject matter of any of Examples 16-28, wherein the RF switch is a component of a system on chip (SoC) implementation.
示例30是包括示例16-29中的任一项的主题的计算系统。Example 30 is a computing system comprising the subject matter of any of Examples 16-29.
示例31是形成集成电路的方法,该方法包括:在衬底中形成多个鳍状物;在鳍状物上沉积氮化镓(GaN)层;氧化每个鳍状物的至少一部分;以及在GaN层上和/或从GaN层形成晶体管。Example 31 is a method of forming an integrated circuit, the method comprising: forming a plurality of fins in a substrate; depositing a gallium nitride (GaN) layer on the fins; oxidizing at least a portion of each fin; Transistors are formed on and/or from the GaN layer.
示例32包括示例31的主题,进一步包括在GaN层上沉积极化层,其中极化层是氮化铝、氮化铝镓、氮化铟铝和氮化铟铝镓的其中之一。Example 32 includes the subject matter of Example 31, further comprising depositing a polarizing layer on the GaN layer, wherein the polarizing layer is one of aluminum nitride, aluminum gallium nitride, indium aluminum nitride, and indium aluminum gallium nitride.
示例33包括示例31-32中的任一项的主题,进一步包括在鳍状物上沉积GaN层之前在鳍状物之间沉积浅沟槽隔离(STI)材料。Example 33 includes the subject matter of any of Examples 31-32, further comprising depositing shallow trench isolation (STI) material between the fins before depositing the GaN layer on the fins.
示例34包括示例33的主题,进一步包括在鳍状物上沉积GaN层之前使STI材料凹进。Example 34 includes the subject matter of Example 33, further comprising recessing the STI material prior to depositing the GaN layer on the fin.
示例35包括示例33-34中的任一项的主题,进一步包括在鳍状物上沉积GaN层之后使STI材料凹进。Example 35 includes the subject matter of any of Examples 33-34, further comprising recessing the STI material after depositing the GaN layer on the fin.
示例36包括示例31-25中的任一项的主题,进一步包括在GaN层上方沉积一个或多个额外的Ⅲ-N材料层。Example 36 includes the subject matter of any of Examples 31-25, further comprising depositing one or more additional layers of III-N material over the GaN layer.
示例37包括示例31-36中的任一项的主题,进一步包括在氧化每个鳍状物的至少一部分之后利用STI材料底部填充GaN层与衬底之间的间隙。Example 37 includes the subject matter of any of Examples 31-36, further comprising underfilling the gap between the GaN layer and the substrate with an STI material after oxidizing at least a portion of each fin.
示例38包括示例31-37中的任一项的主题,其中在GaN层上和/或从 GaN层形成晶体管包括将GaN层和在其上方的任何额外的Ⅲ-N层图案化成鳍状物。Example 38 includes the subject matter of any of Examples 31-37, wherein forming the transistor on and/or from the GaN layer includes patterning the GaN layer and any additional III-N layers thereover into fins.
示例39包括示例31-38中的任一项的主题,其中在GaN层上和/或从 GaN层形成晶体管包括在晶体管的源极区和漏极区中沉积n型掺杂氮化铟镓、n型掺杂氮化镓、具有渐变的铟组分的n型掺杂氮化铟镓中的至少一种。Example 39 includes the subject matter of any of Examples 31-38, wherein forming the transistor on and/or from the GaN layer comprises depositing n-type doped indium gallium nitride in source and drain regions of the transistor, At least one of n-type doped gallium nitride, n-type doped indium gallium nitride with graded indium composition.
示例40包括示例31-39中的任一项的主题,其中晶体管包括以下几何结构中的至少一种:平面构造、非平面构造、鳍状构造、三栅极构造、纳米线构造、栅极环绕构造、高电子迁移率晶体管(HEMT)架构、假型HEMT (pHEMT)架构、二维电子气体(2DEG)架构、三维电子气体(3DEG) 架构、三维极化场效应晶体管(FET)架构、多量子阱(MQW)架构以及超晶格架构。Example 40 includes the subject matter of any of Examples 31-39, wherein the transistor comprises at least one of the following geometries: planar configuration, non-planar configuration, fin configuration, tri-gate configuration, nanowire configuration, gate surround Construction, High Electron Mobility Transistor (HEMT) Architecture, Pseudotyped HEMT (pHEMT) Architecture, Two-Dimensional Electron Gas (2DEG) Architecture, Three-Dimensional Electron Gas (3DEG) Architecture, Three-Dimensional Polarized Field-Effect Transistor (FET) Architecture, Multiquantum well (MQW) architecture and superlattice architecture.
示例41包括示例31-40中的任一项的主题,其中在鳍状物上沉积GaN 层包括在鳍状物上选择性地沉积GaN层,以便提供多个GaN岛,每个岛对应于鳍状物的其中之一。Example 41 includes the subject matter of any of Examples 31-40, wherein depositing the GaN layer on the fin comprises selectively depositing the GaN layer on the fin so as to provide a plurality of GaN islands, each island corresponding to the fin. one of the objects.
为了说明和描述的目的介绍了示例性实施例的前述描述。并不是要穷举性的或将本公开内容局限于所公开的精确形式。按照本公开内容,很多修改和变化是可能的。本公开内容的范围并不是要被该具体实施方式限制,而是被所附权利要求限制。要求本申请的优先权的未来提交的申请可以用不同的方式主张所公开的主题,并且可以通常包括如本文中以各种方式公开或以另外方式展示的一个或多个限制的任何集合。The foregoing description of the exemplary embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the present disclosure. It is intended that the scope of the disclosure be limited not by this detailed description, but rather by the claims appended hereto. Future filed applications claiming priority from this application may claim the disclosed subject matter in different ways, and may generally include any combination of one or more limitations as variously disclosed or otherwise presented herein.
Claims (25)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2015/037987 WO2016209263A1 (en) | 2015-06-26 | 2015-06-26 | GALLIUM NITRIDE (GaN) TRANSISTOR STRUCTURES ON A SUBSTRATE |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107660313A true CN107660313A (en) | 2018-02-02 |
| CN107660313B CN107660313B (en) | 2022-09-13 |
Family
ID=57585298
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201580080327.7A Active CN107660313B (en) | 2015-06-26 | 2015-06-26 | Gallium nitride (GaN) transistor structure on a substrate |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US11195944B2 (en) |
| EP (1) | EP3314657A4 (en) |
| KR (1) | KR102389363B1 (en) |
| CN (1) | CN107660313B (en) |
| TW (1) | TW201712869A (en) |
| WO (1) | WO2016209263A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022094966A1 (en) * | 2020-11-06 | 2022-05-12 | 苏州晶湛半导体有限公司 | Semiconductor structure and fabrication method therefor |
| US12446244B2 (en) | 2020-11-06 | 2025-10-14 | Enkris Semiconductor, Inc. | Semiconductor structure and manufacturing method thereof |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3195364A4 (en) | 2014-09-18 | 2018-04-25 | Intel Corporation | Wurtzite heteroepitaxial structures with inclined sidewall facets for defect propagation control in silicon cmos-compatible semiconductor devices |
| US10229991B2 (en) | 2014-09-25 | 2019-03-12 | Intel Corporation | III-N epitaxial device structures on free standing silicon mesas |
| US10573647B2 (en) | 2014-11-18 | 2020-02-25 | Intel Corporation | CMOS circuits using n-channel and p-channel gallium nitride transistors |
| KR102309482B1 (en) | 2014-12-18 | 2021-10-07 | 인텔 코포레이션 | N-channel gallium nitride transistors |
| CN107949914B (en) | 2015-05-19 | 2022-01-18 | 英特尔公司 | Semiconductor device with raised doped crystal structure |
| US10388777B2 (en) | 2015-06-26 | 2019-08-20 | Intel Corporation | Heteroepitaxial structures with high temperature stable substrate interface material |
| KR102389363B1 (en) | 2015-06-26 | 2022-04-22 | 인텔 코포레이션 | Gallium Nitride (GaN) Transistor Structures on a Substrate |
| US10658471B2 (en) | 2015-12-24 | 2020-05-19 | Intel Corporation | Transition metal dichalcogenides (TMDCS) over III-nitride heteroepitaxial layers |
| FR3052592B1 (en) * | 2016-06-08 | 2018-05-18 | Soitec | STRUCTURE FOR RADIO FREQUENCY APPLICATIONS |
| KR101958928B1 (en) * | 2017-09-05 | 2019-03-15 | 한국과학기술연구원 | Method for fabricating 3-dimensional transistor sensor and the sensor and sensor array thereof |
| WO2019066953A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride (iii-n) devices with reduced contact resistance and their methods of fabrication |
| WO2019066973A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride (iii-n) devices with reduced contact resistance and their methods of fabrication |
| WO2019066908A1 (en) | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride polarization junction diodes |
| WO2019066935A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride (iii-n) devices with reduced contact resistance and their methods of fabrication |
| US11295992B2 (en) | 2017-09-29 | 2022-04-05 | Intel Corporation | Tunnel polarization junction III-N transistors |
| WO2019066916A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Complementary group iii-nitride transistors with complementary polarization junctions |
| US11183613B2 (en) | 2017-09-29 | 2021-11-23 | Intel Corporation | Group III-nitride light emitting devices including a polarization junction |
| US10475889B1 (en) | 2018-06-05 | 2019-11-12 | Qualcomm Incorporated | Gallium nitride power amplifier integration with metal-oxide-semiconductor devices |
| US11527610B2 (en) | 2018-06-05 | 2022-12-13 | Intel Corporation | CMOS compatible isolation leakage improvements in gallium nitride transistors |
| US11257818B2 (en) * | 2018-09-27 | 2022-02-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin-based field effect transistors |
| US11387329B2 (en) * | 2018-09-28 | 2022-07-12 | Intel Corporation | Tri-gate architecture multi-nanowire confined transistor |
| US10840341B2 (en) * | 2018-10-24 | 2020-11-17 | Intel Corporation | Semiconductor devices, radio frequency devices and methods for forming semiconductor devices |
| TWI685968B (en) | 2018-11-23 | 2020-02-21 | 財團法人工業技術研究院 | Enhancement mode gallium nitride based transistor device and manufacturing method thereof |
| JP7522211B2 (en) * | 2020-06-23 | 2024-07-24 | 広東致能科技有限公司 | Semiconductor device and method for manufacturing the same |
| US11837634B2 (en) | 2020-07-02 | 2023-12-05 | Atomera Incorporated | Semiconductor device including superlattice with oxygen and carbon monolayers |
| US11668735B2 (en) | 2020-07-21 | 2023-06-06 | Qualcomm Incorporated | Granular sensing on an integrated circuit |
| WO2022245889A1 (en) | 2021-05-18 | 2022-11-24 | Atomera Incorporated | Semiconductor device including a superlattice providing metal work function tuning and associated methods |
| US20230128166A1 (en) * | 2021-10-26 | 2023-04-27 | Intel Corporation | Ic structures with improved bonding between a semiconductor layer and a non-semiconductor support structure |
| TWI857763B (en) * | 2023-08-25 | 2024-10-01 | 國立中山大學 | Method of forming indium gallium nitride quantum well structures |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020185655A1 (en) * | 2000-07-18 | 2002-12-12 | Fahimulla Ayub M. | Ultra-linear multi-channel field effect transistor |
| US20050006639A1 (en) * | 2003-05-23 | 2005-01-13 | Dupuis Russell D. | Semiconductor electronic devices and methods |
| KR20120010512A (en) * | 2010-07-26 | 2012-02-03 | 삼성전자주식회사 | High electron mobility transistor having a multi-channel and its manufacturing method |
| EP2519968A2 (en) * | 2009-12-30 | 2012-11-07 | Intel Corporation | Multi-gate iii-v quantum well structures |
| CN103035705A (en) * | 2011-09-29 | 2013-04-10 | 三星电子株式会社 | High electron mobility transistor |
| WO2013096821A1 (en) * | 2011-12-21 | 2013-06-27 | Massachusetts Institute Of Technology | Aluminum nitride based semiconductor devices |
| WO2014093555A1 (en) * | 2012-12-11 | 2014-06-19 | Massachusetts Institute Of Technology | Reducing leakage current in semiconductor devices |
| CN103943498A (en) * | 2013-01-22 | 2014-07-23 | 中芯国际集成电路制造(上海)有限公司 | Three-dimensional quantum well transistor and formation method thereof |
| CN104011867A (en) * | 2011-12-23 | 2014-08-27 | 英特尔公司 | III-N Material Structures for Recessed Gate Transistors |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050133816A1 (en) * | 2003-12-19 | 2005-06-23 | Zhaoyang Fan | III-nitride quantum-well field effect transistors |
| US8652947B2 (en) * | 2007-09-26 | 2014-02-18 | Wang Nang Wang | Non-polar III-V nitride semiconductor and growth method |
| US8106459B2 (en) * | 2008-05-06 | 2012-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFETs having dielectric punch-through stoppers |
| KR101373398B1 (en) * | 2012-04-18 | 2014-04-29 | 서울바이오시스 주식회사 | Method for preparing high efficiency Light Emitting Diode thereof |
| KR101946010B1 (en) * | 2012-10-23 | 2019-02-08 | 삼성전자주식회사 | Structure having large area gallium nitride substrate and method of manufacturing the same |
| US8835936B2 (en) * | 2012-11-15 | 2014-09-16 | Globalfoundries Inc. | Source and drain doping using doped raised source and drain regions |
| US8896101B2 (en) | 2012-12-21 | 2014-11-25 | Intel Corporation | Nonplanar III-N transistors with compositionally graded semiconductor channels |
| US9837440B2 (en) * | 2014-02-07 | 2017-12-05 | International Business Machines Corporation | FinFET device with abrupt junctions |
| KR102389363B1 (en) | 2015-06-26 | 2022-04-22 | 인텔 코포레이션 | Gallium Nitride (GaN) Transistor Structures on a Substrate |
-
2015
- 2015-06-26 KR KR1020187002271A patent/KR102389363B1/en active Active
- 2015-06-26 US US15/576,508 patent/US11195944B2/en active Active
- 2015-06-26 CN CN201580080327.7A patent/CN107660313B/en active Active
- 2015-06-26 EP EP15896549.1A patent/EP3314657A4/en not_active Withdrawn
- 2015-06-26 WO PCT/US2015/037987 patent/WO2016209263A1/en active Application Filing
-
2016
- 2016-05-19 TW TW105115532A patent/TW201712869A/en unknown
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020185655A1 (en) * | 2000-07-18 | 2002-12-12 | Fahimulla Ayub M. | Ultra-linear multi-channel field effect transistor |
| US20050006639A1 (en) * | 2003-05-23 | 2005-01-13 | Dupuis Russell D. | Semiconductor electronic devices and methods |
| EP2519968A2 (en) * | 2009-12-30 | 2012-11-07 | Intel Corporation | Multi-gate iii-v quantum well structures |
| KR20120010512A (en) * | 2010-07-26 | 2012-02-03 | 삼성전자주식회사 | High electron mobility transistor having a multi-channel and its manufacturing method |
| CN103035705A (en) * | 2011-09-29 | 2013-04-10 | 三星电子株式会社 | High electron mobility transistor |
| WO2013096821A1 (en) * | 2011-12-21 | 2013-06-27 | Massachusetts Institute Of Technology | Aluminum nitride based semiconductor devices |
| CN104011867A (en) * | 2011-12-23 | 2014-08-27 | 英特尔公司 | III-N Material Structures for Recessed Gate Transistors |
| WO2014093555A1 (en) * | 2012-12-11 | 2014-06-19 | Massachusetts Institute Of Technology | Reducing leakage current in semiconductor devices |
| CN103943498A (en) * | 2013-01-22 | 2014-07-23 | 中芯国际集成电路制造(上海)有限公司 | Three-dimensional quantum well transistor and formation method thereof |
Non-Patent Citations (1)
| Title |
|---|
| 张玉龙等: "《半导体材料技术》", 28 February 2010, 浙江科学技术出版社 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022094966A1 (en) * | 2020-11-06 | 2022-05-12 | 苏州晶湛半导体有限公司 | Semiconductor structure and fabrication method therefor |
| US12446244B2 (en) | 2020-11-06 | 2025-10-14 | Enkris Semiconductor, Inc. | Semiconductor structure and manufacturing method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20180021123A (en) | 2018-02-28 |
| US20180175184A1 (en) | 2018-06-21 |
| KR102389363B1 (en) | 2022-04-22 |
| TW201712869A (en) | 2017-04-01 |
| US11195944B2 (en) | 2021-12-07 |
| EP3314657A1 (en) | 2018-05-02 |
| WO2016209263A1 (en) | 2016-12-29 |
| CN107660313B (en) | 2022-09-13 |
| EP3314657A4 (en) | 2019-03-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107660313B (en) | Gallium nitride (GaN) transistor structure on a substrate | |
| US10411067B2 (en) | Integrated RF frontend structures | |
| US10096683B2 (en) | Group III-N transistor on nanoscale template structures | |
| TWI727950B (en) | SUB-FIN SIDEWALL PASSIVATION IN REPLACEMENT CHANNEL FinFETs | |
| KR102198938B1 (en) | Composite high-k metal gate stack for enhancement mode gan semiconductor devices | |
| KR20180109997A (en) | Ferroelectric-based Field Effect Transistor with Threshold Voltage Switching for Enhanced On-State and Off-State Performance | |
| CN103999216A (en) | Group III-N transistors for system-on-a-chip (SOC) architecture with integrated power management and radio frequency circuitry | |
| TWI706538B (en) | Co-integrated iii-n voltage regulator and rf power amplifier for envelope tracking systems | |
| US20190214464A1 (en) | Geometric manipulation of 2deg region in source/drain extension of gan transistor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |