CN107748682B - Background application management and control method, device, storage medium and electronic device - Google Patents
Background application management and control method, device, storage medium and electronic device Download PDFInfo
- Publication number
- CN107748682B CN107748682B CN201711044966.5A CN201711044966A CN107748682B CN 107748682 B CN107748682 B CN 107748682B CN 201711044966 A CN201711044966 A CN 201711044966A CN 107748682 B CN107748682 B CN 107748682B
- Authority
- CN
- China
- Prior art keywords
- characteristic parameter
- value
- target
- prediction result
- compensation value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/445—Program loading or initiating
- G06F9/44594—Unloading
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Feedback Control In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本申请涉及通信技术领域,尤其涉及一种后台应用管控方法、装置、存储介质及电子设备。The present application relates to the field of communication technologies, and in particular, to a background application management and control method, device, storage medium and electronic device.
背景技术Background technique
清理后台应用是一种常用且有效的减少内存占用、降低功耗的方法。但后台应用不能随意清理,若接下来即将使用该后台应用,但却被清理,则需要重新启动,启动时间长,功耗也相应增加。因此,需要准确判别后台应用是否可清理具有重要意义。传统判断后台应用可清理的方法为基于统计的方法,比如保留最常用的应用,清理不常用的应用。但是该清理方法存在预测精度不够的问题。Cleaning up background applications is a common and effective way to reduce memory usage and power consumption. However, the background application cannot be cleaned at will. If the background application is about to be used, but it is cleaned up, it needs to be restarted, which takes a long time to start and increases the power consumption accordingly. Therefore, it is of great significance to accurately determine whether a background application can be cleaned. The traditional method for judging that background applications can be cleaned is based on statistics, such as keeping the most commonly used applications and cleaning up less commonly used applications. However, this cleaning method has the problem of insufficient prediction accuracy.
发明内容SUMMARY OF THE INVENTION
本申请提供一种后台应用管控方法、装置、存储介质及电子设备,能够提升对应用程序进行管控的准确性。The present application provides a background application management and control method, device, storage medium and electronic device, which can improve the accuracy of application management and control.
第一方面,本申请实施例提供一种后台应用管控方法,应用于电子设备,包括步骤:In a first aspect, an embodiment of the present application provides a background application management and control method, applied to an electronic device, including the steps:
将样本数据输入算法模型,得到多个第一预测结果;Input the sample data into the algorithm model to obtain multiple first prediction results;
当所述多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取所述样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;When the plurality of first prediction results include a correct prediction result and an incorrect prediction result, respectively obtain the first feature parameter value of the target feature parameter corresponding to the correct prediction result and the second feature corresponding to the incorrect prediction result in the sample data parameter value;
根据所述第一特征参数值和所述第二特征参数值计算得到初始预设补偿值;Calculate and obtain an initial preset compensation value according to the first characteristic parameter value and the second characteristic parameter value;
将所述样本数据以及所述初始预设补偿值,输入所述算法模型进行训练,得到目标预设补偿值;Inputting the sample data and the initial preset compensation value into the algorithm model for training to obtain a target preset compensation value;
将预设后台应用当前的多个特征参数、以及与所述目标特征参数对应的所述目标预设补偿值,输入所述算法模型,得到目标预测结果,并根据所述目标预测结果对所述预设后台应用进行管控。The preset background is applied with a plurality of current feature parameters and the target preset compensation value corresponding to the target feature parameter, and the algorithm model is input to obtain a target prediction result, and according to the target prediction result Preset background applications for control.
第二方面,本申请实施例提供一种后台应用管控装置,应用于电子设备,包括:In a second aspect, an embodiment of the present application provides a background application management and control device, which is applied to an electronic device, including:
第一预测结果获取单元,用于将样本数据输入算法模型,得到多个第一预测结果;a first prediction result obtaining unit, configured to input the sample data into the algorithm model to obtain a plurality of first prediction results;
特征参数值获取单元,用于当所述多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取所述样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;a feature parameter value obtaining unit, configured to respectively obtain a first feature parameter value corresponding to the correct prediction result of the target feature parameter in the sample data when the plurality of first prediction results include a correct prediction result and an incorrect prediction result, and the second characteristic parameter value corresponding to the wrong prediction result;
初始补偿值获取单元,用于根据所述第一特征参数值和所述第二特征参数值计算得到初始预设补偿值;an initial compensation value obtaining unit, configured to calculate and obtain an initial preset compensation value according to the first characteristic parameter value and the second characteristic parameter value;
目标预设补偿值获取单元,用于将所述样本数据以及所述初始预设补偿值,输入所述算法模型进行训练,得到目标预设补偿值;a target preset compensation value acquisition unit, configured to input the sample data and the initial preset compensation value into the algorithm model for training to obtain a target preset compensation value;
管控单元,用于将预设后台应用当前的多个特征参数、以及与所述目标特征参数对应的所述目标预设补偿值,输入所述算法模型,得到目标预测结果,并根据所述目标预测结果对所述预设后台应用进行管控。A management and control unit, configured to input the preset background application current multiple feature parameters and the target preset compensation value corresponding to the target feature parameter into the algorithm model to obtain a target prediction result, and according to the target The prediction result controls the preset background application.
第三方面,本申请实施例提供一种存储介质,其上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述的后台应用管控方法。In a third aspect, an embodiment of the present application provides a storage medium on which a computer program is stored, and when the computer program runs on a computer, the computer enables the computer to execute the above-mentioned background application management and control method.
第四方面,本申请实施例提供一种电子设备,包括处理器和存储器,所述存储器有计算机程序,所述处理器通过调用所述计算机程序,用于执行上述的后台应用管控方法。In a fourth aspect, an embodiment of the present application provides an electronic device, including a processor and a memory, the memory having a computer program, and the processor is configured to execute the above-mentioned background application management and control method by invoking the computer program.
本申请实施例提供的后台应用管控方法、装置、存储介质及电子设备,通过将样本数据输入算法模型,得到多个第一预测结果;当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。可以提高对预设后台应用进行预测的准确性,从而提升对进入后台的应用程序进行管控的准确性。In the background application management and control method, device, storage medium, and electronic device provided by the embodiments of the present application, multiple first prediction results are obtained by inputting sample data into an algorithm model; when the multiple first prediction results include correct prediction results and incorrect predictions When the result is obtained, the first characteristic parameter value corresponding to the correct prediction result and the second characteristic parameter value corresponding to the wrong prediction result in the sample data are obtained respectively; the initial prediction value is calculated according to the first characteristic parameter value and the second characteristic parameter value. Set the compensation value; input the sample data and the initial preset compensation value into the algorithm model for training to obtain the target preset compensation value; apply the current multiple feature parameters and the target preset compensation value to the preset background, input the algorithm model, and obtain Target prediction results, and control the preset background applications according to the target prediction results. The accuracy of predicting preset background applications can be improved, thereby improving the accuracy of managing and controlling applications entering the background.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application, and for those skilled in the art, other drawings can also be obtained from these drawings without creative effort.
图1为本申请实施例提供的后台应用管控装置的系统示意图;FIG. 1 is a system schematic diagram of a background application management and control apparatus provided by an embodiment of the present application;
图2为本申请实施例提供的后台应用管控装置的应用场景示意图;FIG. 2 is a schematic diagram of an application scenario of a background application management and control device provided by an embodiment of the present application;
图3为本申请实施例提供的后台应用管控方法的流程示意图;3 is a schematic flowchart of a background application management and control method provided by an embodiment of the present application;
图4为本申请实施例提供的选取目标特征参数的流程示意图;4 is a schematic flowchart of selecting target feature parameters according to an embodiment of the present application;
图5为本申请实施例提供的得到初始预设补偿值的流程示意图;5 is a schematic flowchart of obtaining an initial preset compensation value according to an embodiment of the present application;
图6为本申请实施例提供的得到初始预设补偿值的另一流程示意图;6 is another schematic flowchart of obtaining an initial preset compensation value provided by an embodiment of the present application;
图7为本申请实施例提供的得到目标预设补偿值的流程示意图;7 is a schematic flowchart of obtaining a target preset compensation value according to an embodiment of the present application;
图8为本申请实施例提供的后台应用管控装置的第一种结构示意图;FIG. 8 is a first structural schematic diagram of a background application management and control apparatus provided by an embodiment of the present application;
图9为本申请实施例提供的后台应用管控装置的第二种结构示意图;FIG. 9 is a schematic structural diagram of a second type of a background application management and control apparatus provided by an embodiment of the present application;
图10为本申请实施例提供的后台应用管控装置的第三种结构示意图;10 is a schematic structural diagram of a third type of a background application management and control apparatus provided by an embodiment of the present application;
图11为本申请实施例提供的后台应用管控装置的第四种结构示意图;FIG. 11 is a schematic diagram of a fourth structure of a background application management and control apparatus provided by an embodiment of the present application;
图12为本申请实施例提供的后台应用管控装置的第五种结构示意图;FIG. 12 is a schematic structural diagram of a fifth type of a background application management and control apparatus provided by an embodiment of the present application;
图13为本申请实施例提供的电子设备的结构示意图;13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application;
图14为本申请实施例提供的电子设备的另一结构示意图。FIG. 14 is another schematic structural diagram of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
请参照图式,其中相同的组件符号代表相同的组件,本申请的原理是以实施在一适当的运算环境中来举例说明。以下的说明是基于所例示的本申请具体实施例,其不应被视为限制本申请未在此详述的其它具体实施例。Please refer to the drawings, wherein the same component symbols represent the same components, and the principles of the present application are exemplified by being implemented in a suitable computing environment. The following description is based on illustrated specific embodiments of the present application and should not be construed as limiting other specific embodiments of the present application not detailed herein.
在以下的说明中,本申请的具体实施例将参考由一部或多部计算机所执行的步骤及符号来说明,除非另有述明。因此,这些步骤及操作将有数次提到由计算机执行,本文所指的计算机执行包括了由代表了以一结构化型式中的数据的电子信号的计算机处理单元的操作。此操作转换该数据或将其维持在该计算机的内存系统中的位置处,其可重新配置或另外以本领域测试人员所熟知的方式来改变该计算机的运作。该数据所维持的数据结构为该内存的实体位置,其具有由该数据格式所定义的特定特性。但是,本申请原理以上述文字来说明,其并不代表为一种限制,本领域测试人员将可了解到以下的多种步骤及操作亦可实施在硬件当中。In the following description, specific embodiments of the present application will be described with reference to steps and symbols performed by one or more computers, unless otherwise stated. Accordingly, the steps and operations will be referred to several times as being performed by a computer, which reference herein includes operations by a computer processing unit of electronic signals representing data in a structured format. This operation transforms the data or maintains it in a location in the computer's memory system, which can be reconfigured or otherwise change the operation of the computer in a manner well known to testers in the art. The data structures maintained by the data are physical locations of the memory that have specific characteristics defined by the data format. However, the principles of the present application are described by the above text, which does not represent a limitation. Testers in the art will understand that the following various steps and operations can also be implemented in hardware.
本文所使用的术语“模块”可看做为在该运算系统上执行的软件对象。本文的不同组件、模块、引擎及服务可看做为在该运算系统上的实施对象。而本文的装置及方法可以以软件的方式进行实施,当然也可在硬件上进行实施,均在本申请保护范围之内。As used herein, the term "module" can be thought of as a software object that executes on the computing system. The different components, modules, engines and services herein can be considered as implementation objects on the computing system. The apparatus and method herein can be implemented in software, and certainly can also be implemented in hardware, which are all within the protection scope of the present application.
本申请中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是某些实施例还包括没有列出的步骤或模块,或某些实施例还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。The terms "first," "second," and "third," etc. in this application are used to distinguish different objects, rather than to describe a specific order. Furthermore, the terms "comprising" and "having" and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product or device comprising a series of steps or modules is not limited to the listed steps or modules, but some embodiments also include unlisted steps or modules, or some embodiments Other steps or modules inherent to these processes, methods, products or devices are also included.
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application. The appearances of the phrase in various places in the specification are not necessarily all referring to the same embodiment, nor a separate or alternative embodiment that is mutually exclusive of other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
请参阅图1,图1为本申请实施例提供的后台应用管控装置的系统示意图。该后台应用管控装置主要用于:将样本数据输入算法模型,得到多个第一预测结果;当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。例如关闭、或者冻结等。Please refer to FIG. 1 , which is a schematic diagram of a system of a background application management and control apparatus provided by an embodiment of the present application. The background application control device is mainly used for: inputting sample data into an algorithm model to obtain a plurality of first prediction results; when the plurality of first prediction results include correct prediction results and wrong prediction results, respectively acquiring target feature parameters in the sample data The first characteristic parameter value corresponding to the correct prediction result and the second characteristic parameter value corresponding to the wrong prediction result; the initial preset compensation value is calculated according to the first characteristic parameter value and the second characteristic parameter value; the sample data and the initial preset compensation value are obtained. Compensation value, input the algorithm model for training, and obtain the target preset compensation value; apply the current multiple feature parameters and the target preset compensation value to the preset background, input the algorithm model, obtain the target prediction result, and adjust the prediction result according to the target prediction result. Set up background applications for control. Such as closing, or freezing, etc.
具体的,请参阅图2,图2为本申请实施例提供的后台应用管控装置的应用场景示意图。比如,后台应用管控装置在接收到管控请求时,检测到在电子设备的后台运行的应用程序包括预设后台应用a、预设后台应用b以及预设后台应用c;然后获取对应预设后台应用a、预设后台应用b以及预设后台应用c的多个特征参数,将多个特征参数输入算法模型;分别得到概率a’、概率b’和概率c’;然后根据概率a’、概率b’以及概率c’分别对后台运行的预设后台应用a、预设后台应用b以及预设后台应用c进行管控,例如将概率最低的预设后台应用b关闭。Specifically, please refer to FIG. 2 , which is a schematic diagram of an application scenario of the background application management and control apparatus provided by the embodiment of the present application. For example, when the background application management and control device receives the management and control request, it detects that the applications running in the background of the electronic device include a preset background application a, a preset background application b, and a preset background application c; and then obtains the corresponding preset background application. a. Preset multiple characteristic parameters of background application b and preset background application c, and input multiple characteristic parameters into the algorithm model; obtain probability a', probability b' and probability c' respectively; then according to probability a', probability b ' and probability c' respectively manage and control the preset background application a, the preset background application b, and the preset background application c running in the background, for example, the preset background application b with the lowest probability is closed.
本申请实施例提供一种后台应用管控方法,该后台应用管控方法的执行主体可以是本申请实施例提供的后台应用管控装置,或者集成了该后台应用管控装置的电子设备,其中该后台应用管控装置可以采用硬件或者软件的方式实现。The embodiment of the present application provides a background application management and control method, and the execution body of the background application management and control method may be the background application management and control device provided by the embodiment of the present application, or an electronic device integrated with the background application management and control device, wherein the background application management and control The apparatus can be implemented in hardware or software.
本申请实施例将从后台应用管控装置的角度进行描述,该后台应用管控装置具体可以集成在电子设备中。该后台应用管控方法包括:将样本数据输入算法模型,得到多个第一预测结果;当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。The embodiments of the present application will be described from the perspective of a background application management and control apparatus, and the background application management and control apparatus may specifically be integrated in an electronic device. The background application management and control method includes: inputting sample data into an algorithm model to obtain a plurality of first prediction results; when the plurality of first prediction results include correct prediction results and incorrect prediction results, respectively obtaining the corresponding correct target feature parameters in the sample data The first characteristic parameter value of the prediction result, and the second characteristic parameter value corresponding to the wrong prediction result; the initial preset compensation value is calculated according to the first characteristic parameter value and the second characteristic parameter value; the sample data and the initial preset compensation value are calculated , input the algorithm model for training, and obtain the target preset compensation value; apply the current multiple feature parameters and the target preset compensation value to the preset background, input the algorithm model, get the target prediction result, and make the preset background according to the target prediction result. application control.
请参阅图3,图3为本申请实施例提供的后台应用管控方法的流程示意图。本申请实施例提供的后台应用管控方法应用于电子设备,具体流程可以如下:Please refer to FIG. 3 , which is a schematic flowchart of a background application management and control method provided by an embodiment of the present application. The background application management and control method provided by the embodiment of the present application is applied to an electronic device, and the specific process may be as follows:
步骤101,将样本数据输入算法模型,得到多个第一预测结果。Step 101: Input the sample data into the algorithm model to obtain a plurality of first prediction results.
样本数据包括多个维度的特征参数集合。样本数据为预先获取的训练样本数据,样本数据内的特征参数对应后台应用的运行参数,一个具体的样本数据可以如下表1所示,包括多个维度的特征信息,需要说明的是,表1所示的特征参数仅为举例,实际中,一个样本数据所包含的特征参数的数量,可以多于比表1所示特征参数的数量,也可以少于表1所示特征参数的数量,所取的具体特征参数也可以与表1所示不同,此处不作具体限定。The sample data includes feature parameter sets of multiple dimensions. The sample data is pre-acquired training sample data. The feature parameters in the sample data correspond to the running parameters of the background application. A specific sample data can be shown in Table 1 below, including feature information of multiple dimensions. It should be noted that Table 1 The feature parameters shown are only examples. In practice, the number of feature parameters contained in a sample data may be more than the number of feature parameters shown in Table 1, or less than the number of feature parameters shown in Table 1, so The specific characteristic parameters taken may also be different from those shown in Table 1, which are not specifically limited here.
表1Table 1
样本数据每次输入算法模型的特征参数可以为全部,也可以从样本数据中其选取部分特征参数形成的,如表2所示,一个输入数据为从样本数据中选取10个特征参数。Each time the sample data is input to the algorithm model, the feature parameters can be all, or it can be formed by selecting some feature parameters from the sample data. As shown in Table 2, one input data is 10 feature parameters selected from the sample data.
表2Table 2
需要说明的是,表2中的维度仅是对一个输入数据中特征参数的举例,并不表示对特征参数的维度进行限定。在某些实施方式中,可以根据实际需要选择特征参数。It should be noted that the dimensions in Table 2 are only examples of feature parameters in an input data, and do not mean that the dimensions of the feature parameters are limited. In some embodiments, characteristic parameters can be selected according to actual needs.
训练样本数据包括多个特征参数,每个特征参数内包括的特征参数值不同,每个样本数据包括多个特征参数,每个特征参数对应一个或多个特征参数值,将这些样本数据作为训练数据分别输入到算法模型内,算法模型根据这些样本数据得到对应的多个第一预测结果。The training sample data includes multiple feature parameters, and the feature parameter values included in each feature parameter are different. Each sample data includes multiple feature parameters, and each feature parameter corresponds to one or more feature parameter values. These sample data are used as training The data are respectively input into the algorithm model, and the algorithm model obtains a plurality of corresponding first prediction results according to the sample data.
需要说明的是,同一个样本数据的特征参数可以对应不同的特征参数值。It should be noted that the feature parameters of the same sample data may correspond to different feature parameter values.
一个特征参数的特征参数值如表3所示。The characteristic parameter values of a characteristic parameter are shown in Table 3.
表3:亮屏灭屏记录Table 3: On-screen off-screen records
步骤102,当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值。
第一预测结果是算法模型对应不同的输入数据进行预测得到的结果,输入数据不同,得到的结果也可能不同。其中就包括正确预测结果和错误预测结果。当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值。The first prediction result is a result obtained by the algorithm model predicting corresponding to different input data. Different input data may result in different results. These include correct predictions and incorrect predictions. When the multiple first prediction results include a correct prediction result and an incorrect prediction result, respectively obtain the first characteristic parameter value corresponding to the correct prediction result and the second characteristic parameter value corresponding to the incorrect prediction result in the sample data of the target characteristic parameter.
请一并参阅图4,图4为本申请实施例提供的选取目标特征参数的流程示意图。在本实施方式中,获取目标特征参数的方法,具体流程可以如下:Please refer to FIG. 4 together. FIG. 4 is a schematic flowchart of selecting target feature parameters according to an embodiment of the present application. In this embodiment, the specific process of the method for obtaining target feature parameters may be as follows:
步骤1021,依次修改输入算法模型的各个特征参数的权重。
输入算法模型的输入数据包括多个特征参数,每次修改其中一个特征参数,将该特征参数的权重不断调整,如不断降低或不断提高,调整完后再输入算法模型中进行预测,继续得到第一预测结果。其中,不断降低权重可以直至降到零,即去掉该特征参数。The input data of the input algorithm model includes multiple feature parameters. When one of the feature parameters is modified each time, the weight of the feature parameter is continuously adjusted, such as continuously decreasing or increasing. A prediction result. Among them, the weight can be continuously reduced until it drops to zero, that is, the characteristic parameter is removed.
步骤1022,若第一预测结果改变,则确定对应的特征参数为目标特征参数。
第一预测结果改变,即从正确预测结果变成错误预测结果,或从错误预测结果变成正确预测结果,说明该特征参数能对预测结果的正确与否起到比较关键的影响,则确定对应的特征参数为目标特征参数。The first prediction result changes, that is, from the correct prediction result to the wrong prediction result, or from the wrong prediction result to the correct prediction result, indicating that the characteristic parameter can play a key role in the correctness of the prediction result, then determine the corresponding The feature parameters of are the target feature parameters.
步骤103,根据第一特征参数值和第二特征参数值计算得到初始预设补偿值。Step 103: Calculate and obtain an initial preset compensation value according to the first characteristic parameter value and the second characteristic parameter value.
可以通过获取第一特征参数值和第二特征参数值的差值得到初始预设补偿值,也可以对第一特征参数值和第二特征参数值分别乘以不同的权重值后相减得到初始预设补偿值。The initial preset compensation value can be obtained by obtaining the difference between the first characteristic parameter value and the second characteristic parameter value, or the first characteristic parameter value and the second characteristic parameter value can be multiplied by different weight values and then subtracted to obtain the initial value. Preset compensation value.
请一并参阅图5,图5为本申请实施例提供的得到初始预设补偿值的流程示意图。在本实施方式中,得到初始预设补偿值的方法,具体流程可以如下:Please refer to FIG. 5 together. FIG. 5 is a schematic flowchart of obtaining an initial preset compensation value according to an embodiment of the present application. In this embodiment, the specific process of obtaining the initial preset compensation value may be as follows:
步骤10131,获取目标特征参数对应多个正确预测结果的多个第一特征参数值。Step 10131: Obtain multiple first feature parameter values corresponding to multiple correct prediction results of the target feature parameter.
步骤10132,获取目标特征参数对应多个错误预测结果的多个第二特征参数值。Step 10132: Acquire multiple second feature parameter values corresponding to multiple error prediction results of the target feature parameter.
步骤10133,根据多个第一特征参数值的平均值和多个第二特征参数值的平均值计算得到初始预设补偿值。Step 10133: Calculate and obtain an initial preset compensation value according to an average value of a plurality of first characteristic parameter values and an average value of a plurality of second characteristic parameter values.
通过对多个第一特征参数值和多个第二特征参数值分别求平均值,然后再相减得到初始预设补偿值。当然,也可以对第一特征参数值的平均值和第二特征参数值的平均值分别乘以不同的权重值后相减得到初始预设补偿值。The initial preset compensation value is obtained by averaging a plurality of first characteristic parameter values and a plurality of second characteristic parameter values respectively, and then subtracting them. Of course, the average value of the first characteristic parameter value and the average value of the second characteristic parameter value can also be multiplied by different weight values and then subtracted to obtain the initial preset compensation value.
请一并参阅图6,图6为本申请实施例提供的得到初始预设补偿值的另一流程示意图。在本实施方式中,得到初始预设补偿值的方法,具体流程可以如下:Please also refer to FIG. 6 . FIG. 6 is another schematic flowchart of obtaining an initial preset compensation value according to an embodiment of the present application. In this embodiment, the specific process of obtaining the initial preset compensation value may be as follows:
步骤10134,获取目标特征参数的特征参数值,以及与特征参数值成梯度的多个参考特征参数值。Step 10134: Obtain the feature parameter value of the target feature parameter and a plurality of reference feature parameter values that are gradients with the feature parameter value.
梯度可以为递增的梯度,也可以为递减的梯度。先获取目标特征参数的特征参数值,然后以该特征参数值为基数,然后在这个基数的基础上,获取一个递增和/或递减的数列。梯度的值可以为基础的十分之一、二分之一等。可以为一个等差的梯度,也可以不是等差的,随着数列中数据的数量级变化,如数据越大差值也越大,数据越小差值也越小。The gradient can be an increasing gradient or a decreasing gradient. First obtain the characteristic parameter value of the target characteristic parameter, then use the characteristic parameter value as the base, and then obtain an increasing and/or decreasing sequence based on the base. The value of the gradient can be one-tenth, one-half, etc. of the base. It can be an equal gradient, or it may not be equal, as the order of magnitude of the data in the sequence changes, for example, the larger the data, the larger the difference, and the smaller the data, the smaller the difference.
步骤10135,将多个参考特征参数值输入算法模型,得到第二预测结果。Step 10135: Input multiple reference feature parameter values into the algorithm model to obtain a second prediction result.
然后将多个参考特征参数值分别输入算法模块,得到多个第二预测结果。相应的,输入数据中其他特征参数对应的特征参数值不变。Then, the multiple reference feature parameter values are respectively input into the algorithm module to obtain multiple second prediction results. Correspondingly, the feature parameter values corresponding to other feature parameters in the input data remain unchanged.
步骤10136,若第二预测结果改变,则分别获取相邻的正确预测结果和错误预测结果对应的第一特征参数值和第二特征参数值。Step 10136: If the second prediction result changes, obtain the first characteristic parameter value and the second characteristic parameter value corresponding to the adjacent correct prediction result and the wrong prediction result, respectively.
第二预测结果同样因为输入数据不同,结果也不同。第二预测结果从正确变成错误,或从错误变成正确时,获取相邻的正确预测结果和错误预测结果对应的第一特征参数值和第二特征参数值。即梯度数据中相邻的两个数据。The second prediction result is also different because the input data is different. When the second prediction result changes from correct to incorrect, or from incorrect to correct, the first characteristic parameter value and the second characteristic parameter value corresponding to the adjacent correct prediction result and the incorrect prediction result are obtained. That is, two adjacent data in the gradient data.
步骤10137,根据第一特征参数值和第二特征参数值的差值得到初始预设补偿值。Step 10137: Obtain an initial preset compensation value according to the difference between the first characteristic parameter value and the second characteristic parameter value.
通过对第一特征参数值和第二特征参数值相减得到初始预设补偿值。当然,也可以对第一特征参数值和第二特征参数值分别乘以不同的权重值后相减得到初始预设补偿值。The initial preset compensation value is obtained by subtracting the first characteristic parameter value and the second characteristic parameter value. Of course, the initial preset compensation value may also be obtained by multiplying the first characteristic parameter value and the second characteristic parameter value by different weight values respectively and then subtracting them.
步骤104,将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值。Step 104: Input the sample data and the initial preset compensation value into the algorithm model for training to obtain the target preset compensation value.
样本数据中的目标特征参数在输入算法模型前,叠加上初始预设补偿值,然后输入算法模型预测,经过大量次数的训练学习,得到一个目标预设补偿值,可以让较多的输入数据在叠加目标预设补偿值后,提高预测的准确性。The target feature parameters in the sample data are superimposed on the initial preset compensation value before being input into the algorithm model, and then input into the algorithm model for prediction. After a large number of training and learning, a target preset compensation value is obtained, which can allow more input data to be After superimposing the target preset compensation value, the prediction accuracy is improved.
请一并参阅图7,图7为本申请实施例提供的得到目标预设补偿值的流程示意图。在本实施方式中,得到目标预设补偿值的方法,具体流程可以如下:Please also refer to FIG. 7 , which is a schematic flowchart of obtaining a target preset compensation value according to an embodiment of the present application. In this embodiment, the specific process of obtaining the target preset compensation value may be as follows:
步骤1041,根据多个第一特征参数值,获取对应的第一取值范围。Step 1041: Acquire a corresponding first value range according to a plurality of first characteristic parameter values.
从多个第一特征参数值中,可以得到一个第一取值范围。From a plurality of first characteristic parameter values, a first value range can be obtained.
步骤1042,根据多个第二特征参数值,获取对应的第二取值范围。Step 1042: Acquire a corresponding second value range according to a plurality of second characteristic parameter values.
同样的,从多个第二特征参数值中,可以得到一个第二取值范围。甚至还可以得打一个第三取值范围,与第二取值范围分别在第一取值范围的两侧。Similarly, a second value range can be obtained from the plurality of second characteristic parameter values. It is even possible to set a third value range, and the second value range is on both sides of the first value range.
步骤1043,获取对应第一取值范围的第一目标预设补偿值,以及对应第二取值范围的第二目标预设补偿值。Step 1043: Obtain a first target preset compensation value corresponding to the first value range and a second target preset compensation value corresponding to the second value range.
对应不同的取值范围设置不同的目标预设补偿值。第一取值范围内的目标特征值对应的预测结果时正确的,则不需要补偿或只需要较少的补偿,第二取值范围内的目标特征参数值需要补偿,可能是增加也可能是减少。Set different target preset compensation values corresponding to different value ranges. If the prediction result corresponding to the target eigenvalue within the first value range is correct, no compensation or only less compensation is required, and the target feature parameter value within the second value range needs to be compensated, which may be increased or may be reduce.
步骤105,将预设后台应用当前的多个特征参数、以及与目标特征参数对应的目标预设补偿值目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。Step 105: Apply the current multiple feature parameters and the target preset compensation value corresponding to the target feature parameter in the preset background, input the algorithm model, obtain the target prediction result, and adjust the preset value according to the target prediction result. Background applications are controlled.
在对预设后台应用进行预测前,先获取预设后台应用当前的多个特征参数,将多个特征参数中的目标特征参数叠加相应的目标预设补偿值,然后输入算法模型。需要说明的是,目标特征参数可以包括多个,目标预设补偿值与目标特征参数一一对应。Before predicting the preset background application, first obtain multiple current feature parameters of the preset background application, superimpose the target feature parameters in the multiple feature parameters with the corresponding target preset compensation value, and then input the algorithm model. It should be noted that, the target characteristic parameter may include multiple ones, and the target preset compensation value corresponds to the target characteristic parameter one-to-one.
目标预测结果可以为清理该预设后台应用的一个概率值,和/或不清理该后台应用的一个概率值,然后根据目标预测结果对该预设后台应用进行管控,如关闭或保持该后台应用。The target prediction result may be a probability value of clearing the preset background application, and/or a probability value of not cleaning the background application, and then controlling the preset background application according to the target prediction result, such as closing or keeping the background application .
将该多个特征参数输入算法模型中,算法模型对应其中一个或多个特征参数的特征参数值叠加对应的目标预设补偿值。例如,将10个特征参数输入算法模型中,其中包括两个目标特征参数:当前电量和后台运行时长,其中当前电量的特征参数值为10%,后台运行时长的特征参数值为10分钟,然后对当前电量的特征参数值10%叠加对应的目标预设补偿值-%2,即10%-2%=8%,输入算法模型的特征参数值为8%,对后台运行时长的特征参数值10分钟叠加对应的目标预设补偿值5分钟,即10分钟+5分钟=15分钟吗,输入算法模型的特征参数值为15分钟。然后算法模型根据叠加对应目标预设补偿值后的特征参数值进行预测,得到预测结果。需要说明的是,本示例仅是为了理解进行的举例,并不对本申请进行限制,本申请还可以用其他方式利用目标预设补偿值。The plurality of characteristic parameters are input into the algorithm model, and the characteristic parameter values corresponding to one or more of the characteristic parameters of the algorithm model are superimposed with corresponding target preset compensation values. For example, input 10 feature parameters into the algorithm model, including two target feature parameters: current power and background running time, where the feature parameter value of current power is 10%, and the feature parameter value of background running time is 10 minutes, then The target preset compensation value -%2 corresponding to the characteristic parameter value of the current power is superimposed by 10%, that is, 10%-2%=8%, the characteristic parameter value of the input algorithm model is 8%, and the characteristic parameter value of the background running time is 8%. The target preset compensation value corresponding to the 10-minute superposition is 5 minutes, that is, 10 minutes + 5 minutes = 15 minutes, and the characteristic parameter value of the input algorithm model is 15 minutes. Then, the algorithm model performs prediction according to the characteristic parameter value after superimposing the preset compensation value of the corresponding target, and obtains the prediction result. It should be noted that this example is only an example for understanding, and does not limit the present application, and the present application may also use the target preset compensation value in other ways.
需要说明的是,算法模型的训练过程可以在服务器端也可以在电子设备端完成。当算法模型的训练过程、实际预测过程都在服务器端完成时,需要使用优化后的算法模型时,可以将预设后台应用当前时间前的多个时间段的使用状态输入到服务器,服务器实际预测完成后,将预测结果发送至电子设备端,电子设备再根据预测结果管控该预设后台应用。It should be noted that the training process of the algorithm model can be completed on the server side or on the electronic device side. When the training process of the algorithm model and the actual prediction process are completed on the server side, and the optimized algorithm model needs to be used, the usage status of the preset background application in multiple time periods before the current time can be input to the server, and the server can actually predict After completion, the prediction result is sent to the electronic device, and the electronic device controls the preset background application according to the prediction result.
当算法模型的训练过程、实际预测过程都在电子设备端完成时,需要使用优化后的算法模型时,可以将预设后台应用当前时间前的多个时间段的使用状态输入到电子设备,电子设备实际预测完成后,电子设备根据预测结果管控该预设后台应用。When the training process of the algorithm model and the actual prediction process are completed on the electronic device, and the optimized algorithm model needs to be used, the usage status of the preset background application in multiple time periods before the current time can be input to the electronic device. After the actual prediction of the device is completed, the electronic device controls the preset background application according to the prediction result.
当算法模型的训练过程在服务器端完成,算法模型的实际预测过程在电子设备端完成时,需要使用优化后的算法模型时,可以将预设后台应用当前时间前的多个时间段的使用状态输入到电子设备,电子设备实际预测完成后,电子设备根据预测结果管控该预设后台应用。可选的,可以将训练好的算法模型文件(model文件)移植到智能设备上,若需要判断当前后台应用是否可清理,则获取预设后台应用当前时间前的多个时间段的使用状态,输入到训练好的算法模型文件(model文件),计算即可得到预测值。When the training process of the algorithm model is completed on the server side and the actual prediction process of the algorithm model is completed on the electronic device side, and the optimized algorithm model needs to be used, the preset background can be applied to the usage status of multiple time periods before the current time Input to the electronic device, after the actual prediction of the electronic device is completed, the electronic device controls the preset background application according to the prediction result. Optionally, the trained algorithm model file (model file) can be transplanted to the smart device. If it is necessary to determine whether the current background application can be cleaned, the usage status of the preset background application in multiple time periods before the current time is obtained, Input into the trained algorithm model file (model file), and the predicted value can be obtained by calculation.
上述所有的技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。All the above technical solutions can be combined arbitrarily to form optional embodiments of the present application, which will not be repeated here.
由上可知,本申请实施例提供的后台应用管控方法,通过将样本数据输入算法模型,得到多个第一预测结果;当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。可以提高对预设后台应用进行预测的准确性,从而提升对进入后台的应用程序进行管控的准确性。It can be seen from the above that the background application management and control method provided by the embodiment of the present application obtains multiple first prediction results by inputting the sample data into the algorithm model; when the multiple first prediction results include correct prediction results and incorrect prediction results, respectively. Obtain the first characteristic parameter value corresponding to the correct prediction result and the second characteristic parameter value corresponding to the wrong prediction result in the sample data of the target characteristic parameter; and obtain the initial preset compensation value by calculating according to the first characteristic parameter value and the second characteristic parameter value; Input the sample data and the initial preset compensation value into the algorithm model for training to obtain the target preset compensation value; apply the current multiple feature parameters and the target preset compensation value to the preset background, input the algorithm model, and obtain the target prediction result, And control the preset background applications according to the target prediction results. The accuracy of predicting preset background applications can be improved, thereby improving the accuracy of managing and controlling applications entering the background.
请参阅图8,图8为本申请实施例提供的后台应用管控装置的第一种结构示意图。其中该后台应用管控装置300应用于电子设备,该后台应用管控装置300包括第一预测结果获取单元301、特征参数值获取单元302、初始补偿值获取单元303、目标预设补偿值获取单元304和管控单元305。其中:Please refer to FIG. 8 , FIG. 8 is a first structural schematic diagram of a background application management and control apparatus provided by an embodiment of the present application. The background application management and
第一预测结果获取单元301,用于将样本数据输入算法模型,得到多个第一预测结果。The first prediction
样本数据包括多个维度的特征参数集合。样本数据为预先获取的训练样本数据,样本数据内的特征参数对应后台应用的运行参数,一个具体的样本数据包括多个维度的特征信息。The sample data includes feature parameter sets of multiple dimensions. The sample data is pre-acquired training sample data, the characteristic parameters in the sample data correspond to the running parameters of the background application, and a specific sample data includes characteristic information of multiple dimensions.
样本数据每次输入算法模型的特征参数可以为全部,也可以从样本数据中其选取部分特征参数形成的。The feature parameters of the sample data input to the algorithm model each time can be all, or can be formed by selecting some of the feature parameters from the sample data.
训练样本数据包括多个特征参数,每个特征参数内包括的特征参数值不同,每个样本数据包括多个特征参数,每个特征参数对应一个或多个特征参数值,将这些样本数据作为训练数据分别输入到算法模型内,算法模型根据这些样本数据得到对应的多个第一预测结果。The training sample data includes multiple feature parameters, and the feature parameter values included in each feature parameter are different. Each sample data includes multiple feature parameters, and each feature parameter corresponds to one or more feature parameter values. These sample data are used as training The data are respectively input into the algorithm model, and the algorithm model obtains a plurality of corresponding first prediction results according to the sample data.
特征参数值获取单元302,用于当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值。The feature parameter
第一预测结果是算法模型对应不同的输入数据进行预测得到的结果,输入数据不同,得到的结果也可能不同。其中就包括正确预测结果和错误预测结果。当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值。The first prediction result is a result obtained by the algorithm model predicting corresponding to different input data. Different input data may result in different results. These include correct predictions and incorrect predictions. When the multiple first prediction results include a correct prediction result and an incorrect prediction result, respectively obtain the first characteristic parameter value corresponding to the correct prediction result and the second characteristic parameter value corresponding to the incorrect prediction result in the sample data of the target characteristic parameter.
请参阅图9,图9为本申请实施例提供的后台应用管控装置的第二种结构示意图。在本实施方式中,特征参数值获取单元302包括权重获取子单元3021和目标特征参数获取子单元3022。Please refer to FIG. 9 , FIG. 9 is a schematic structural diagram of a second type of a background application management and control apparatus provided by an embodiment of the present application. In this embodiment, the feature parameter
权重获取子单元3021,用于依次修改输入算法模型的各个特征参数的权重。The
输入算法模型的输入数据包括多个特征参数,每次修改其中一个特征参数,将该特征参数的权重不断调整,如不断降低或不断提高,调整完后再输入算法模型中进行预测,继续得到第一预测结果。其中,不断降低权重可以直至降到零,即去掉该特征参数。The input data of the input algorithm model includes multiple feature parameters. When one of the feature parameters is modified each time, the weight of the feature parameter is continuously adjusted, such as continuously decreasing or increasing. A prediction result. Among them, the weight can be continuously reduced until it drops to zero, that is, the characteristic parameter is removed.
目标特征参数获取子单元3022,用于若第一预测结果改变,则确定对应的特征参数为目标特征参数。The target feature
第一预测结果改变,即从正确预测结果变成错误预测结果,或从错误预测结果变成正确预测结果,说明该特征参数能对预测结果的正确与否起到比较关键的影响,则确定对应的特征参数为目标特征参数。The first prediction result changes, that is, from the correct prediction result to the wrong prediction result, or from the wrong prediction result to the correct prediction result, indicating that the characteristic parameter can play a key role in the correctness of the prediction result, then determine the corresponding The feature parameters of are the target feature parameters.
初始补偿值获取单元303,用于根据第一特征参数值和第二特征参数值计算得到初始预设补偿值。The initial compensation
可以通过获取第一特征参数值和第二特征参数值的差值得到初始预设补偿值,也可以对第一特征参数值和第二特征参数值分别乘以不同的权重值后相减得到初始预设补偿值。The initial preset compensation value can be obtained by obtaining the difference between the first characteristic parameter value and the second characteristic parameter value, or the first characteristic parameter value and the second characteristic parameter value can be multiplied by different weight values and then subtracted to obtain the initial value. Preset compensation value.
请参阅图10,图10为本申请实施例提供的后台应用管控装置的第三种结构示意图。在本实施方式中,初始补偿值获取单元303包括第一特征参数值获取子单元3031、第二特征参数值获取子单元3032和初始补偿值获取子单元3033.其中:Please refer to FIG. 10. FIG. 10 is a schematic structural diagram of a third type of a background application management and control apparatus provided by an embodiment of the present application. In this embodiment, the initial compensation
第一特征参数值获取子单元3031,用于获取目标特征参数对应多个正确预测结果的多个第一特征参数值。The first feature parameter
第二特征参数值获取子单元3032,用于获取目标特征参数对应多个错误预测结果的多个第二特征参数值。The second feature parameter
初始补偿值获取子单元3033,用于根据多个第一特征参数值的平均值和多个第二特征参数值的平均值计算得到初始预设补偿值。The initial compensation
通过对多个第一特征参数值和多个第二特征参数值分别求平均值,然后再相减得到初始预设补偿值。当然,也可以对第一特征参数值的平均值和第二特征参数值的平均值分别乘以不同的权重值后相减得到初始预设补偿值。The initial preset compensation value is obtained by averaging a plurality of first characteristic parameter values and a plurality of second characteristic parameter values respectively, and then subtracting them. Of course, the average value of the first characteristic parameter value and the average value of the second characteristic parameter value can also be multiplied by different weight values and then subtracted to obtain the initial preset compensation value.
请参阅图11,图11为本申请实施例提供的后台应用管控装置的第四种结构示意图。在本实施方式中,初始补偿值获取单元303包括参考特征参数值获取子单元3034、第二预测结果获取子单元3035、特征参数值获取子单元3036和初始预设补偿值获取子单元3033。其中:Please refer to FIG. 11 . FIG. 11 is a schematic diagram of a fourth structure of a background application management and control apparatus provided by an embodiment of the present application. In this embodiment, the initial compensation
参考特征参数值获取子单元3034,用于获取目标特征参数的特征参数值,以及与特征参数值成梯度的多个参考特征参数值。The reference feature parameter
梯度可以为递增的梯度,也可以为递减的梯度。先获取目标特征参数的特征参数值,然后以该特征参数值为基数,然后在这个基数的基础上,获取一个递增和/或递减的数列。梯度的值可以为基础的十分之一、二分之一等。可以为一个等差的梯度,也可以不是等差的,随着数列中数据的数量级变化,如数据越大差值也越大,数据越小差值也越小。The gradient can be an increasing gradient or a decreasing gradient. First obtain the characteristic parameter value of the target characteristic parameter, then use the characteristic parameter value as the base, and then obtain an increasing and/or decreasing sequence based on the base. The value of the gradient can be one-tenth, one-half, etc. of the base. It can be an equal gradient, or it may not be equal, as the order of magnitude of the data in the sequence changes, for example, the larger the data, the larger the difference, and the smaller the data, the smaller the difference.
第二预测结果获取子单元3035,用于将多个参考特征参数值输入算法模型,得到第二预测结果。The second prediction
然后将多个参考特征参数值分别输入算法模块,得到多个第二预测结果。相应的,输入数据中其他特征参数对应的特征参数值不变。Then, the multiple reference feature parameter values are respectively input into the algorithm module to obtain multiple second prediction results. Correspondingly, the feature parameter values corresponding to other feature parameters in the input data remain unchanged.
特征参数值获取子单元3036,用于若第二预测结果改变,则分别获取相邻的正确预测结果和错误预测结果对应的第一特征参数值和第二特征参数值。The characteristic parameter
第二预测结果同样因为输入数据不同,结果也不同。第二预测结果从正确变成错误,或从错误变成正确时,获取相邻的正确预测结果和错误预测结果对应的第一特征参数值和第二特征参数值。即梯度数据中相邻的两个数据。The second prediction result is also different because the input data is different. When the second prediction result changes from correct to incorrect, or from incorrect to correct, the first characteristic parameter value and the second characteristic parameter value corresponding to the adjacent correct prediction result and the incorrect prediction result are obtained. That is, two adjacent data in the gradient data.
初始预设补偿值获取子单元3033,用于根据第一特征参数值和第二特征参数值的差值得到初始预设补偿值。The initial preset compensation
通过对第一特征参数值和第二特征参数值相减得到初始预设补偿值。当然,也可以对第一特征参数值和第二特征参数值分别乘以不同的权重值后相减得到初始预设补偿值。The initial preset compensation value is obtained by subtracting the first characteristic parameter value and the second characteristic parameter value. Of course, the initial preset compensation value may also be obtained by multiplying the first characteristic parameter value and the second characteristic parameter value by different weight values respectively and then subtracting them.
目标预设补偿值获取单元304,用于将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值。The target preset compensation
样本数据中的目标特征参数在输入算法模型前,叠加上初始预设补偿值,然后输入算法模型预测,经过大量次数的训练学习,得到一个目标预设补偿值,可以让较多的输入数据在叠加目标预设补偿值后,提高预测的准确性。The target feature parameters in the sample data are superimposed on the initial preset compensation value before being input into the algorithm model, and then input into the algorithm model for prediction. After a large number of training and learning, a target preset compensation value is obtained, which can allow more input data to be After superimposing the target preset compensation value, the prediction accuracy is improved.
请参阅图12,图12为本申请实施例提供的后台应用管控装置的第五种结构示意图。在本实施方式中,目标预设补偿值获取单元304包括:Please refer to FIG. 12 . FIG. 12 is a schematic structural diagram of a fifth type of a background application management and control apparatus provided by an embodiment of the present application. In this embodiment, the target preset compensation
第一取值范围获取子单元3041,用于根据多个第一特征参数值,获取对应的第一取值范围。The first value
从多个第一特征参数值中,可以得到一个第一取值范围。From a plurality of first characteristic parameter values, a first value range can be obtained.
第二取值范围获取子单元3042,用于根据多个第二特征参数值,获取对应的第二取值范围。The second value
同样的,从多个第二特征参数值中,可以得到一个第二取值范围。甚至还可以得打一个第三取值范围,与第二取值范围分别在第一取值范围的两侧。Similarly, a second value range can be obtained from the plurality of second characteristic parameter values. It is even possible to set a third value range, and the second value range is on both sides of the first value range.
第一目标预设补偿值确定子单元3043,用于获取对应第一取值范围的第一目标预设补偿值。The first target preset compensation
对应不同的取值范围设置不同的目标预设补偿值。第一取值范围内的目标特征值对应的预测结果时正确的,则不需要补偿或只需要较少的补偿,第二取值范围内的目标特征参数值需要补偿,可能是增加也可能是减少。Set different target preset compensation values corresponding to different value ranges. If the prediction result corresponding to the target eigenvalue within the first value range is correct, no compensation or only less compensation is required, and the target feature parameter value within the second value range needs to be compensated, which may be increased or may be reduce.
第二目标预设补偿值确定子单元3044,用于获取对应第二取值范围的第二目标预设补偿值。The second target preset compensation
管控单元305,用于将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。The management and
在对预设后台应用进行预测前,先获取预设后台应用当前的多个特征参数,将多个特征参数中的目标特征参数叠加相应的目标预设补偿值,然后输入算法模型。需要说明的是,目标特征参数可以包括多个,目标预设补偿值与目标特征参数一一对应。Before predicting the preset background application, first obtain multiple current feature parameters of the preset background application, superimpose the target feature parameters in the multiple feature parameters with the corresponding target preset compensation value, and then input the algorithm model. It should be noted that, the target characteristic parameter may include multiple ones, and the target preset compensation value corresponds to the target characteristic parameter one-to-one.
目标预测结果可以为清理该预设后台应用的一个概率值,和/或不清理该后台应用的一个概率值,然后根据目标预测结果对该预设后台应用进行管控,如关闭或保持该后台应用。The target prediction result may be a probability value of clearing the preset background application, and/or a probability value of not cleaning the background application, and then controlling the preset background application according to the target prediction result, such as closing or keeping the background application .
上述所有的技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。All the above technical solutions can be combined arbitrarily to form optional embodiments of the present application, which will not be repeated here.
由上可知,本申请实施例提供的后台应用管控装置,通过将样本数据输入算法模型,得到多个第一预测结果;当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。可以提高对预设后台应用进行预测的准确性,从而提升对进入后台的应用程序进行管控的准确性。It can be seen from the above that the background application management and control device provided by the embodiment of the present application obtains multiple first prediction results by inputting sample data into the algorithm model; when the multiple first prediction results include correct prediction results and incorrect prediction results, they are respectively Obtain the first characteristic parameter value corresponding to the correct prediction result and the second characteristic parameter value corresponding to the wrong prediction result in the sample data of the target characteristic parameter; and obtain the initial preset compensation value by calculating according to the first characteristic parameter value and the second characteristic parameter value; Input the sample data and the initial preset compensation value into the algorithm model for training to obtain the target preset compensation value; apply the current multiple feature parameters and the target preset compensation value to the preset background, input the algorithm model, and obtain the target prediction result, And control the preset background applications according to the target prediction results. The accuracy of predicting preset background applications can be improved, thereby improving the accuracy of managing and controlling applications entering the background.
本申请实施例中,后台应用管控装置与上文实施例中的后台应用管控方法属于同一构思,在后台应用管控装置上可以运行后台应用管控方法实施例中提供的任一方法,其具体实现过程详见后台应用管控方法的实施例,此处不再赘述。In the embodiments of the present application, the background application management and control apparatus and the background application management and control method in the above embodiments belong to the same concept, and any method provided in the background application management and control method embodiments can be executed on the background application management and control apparatus, and the specific implementation process thereof For details, please refer to the embodiment of the background application management and control method, which will not be repeated here.
本申请实施例还提供一种电子设备。请参阅图13,电子设备400包括处理器401以及存储器402。其中,处理器401与存储器402电性连接。The embodiments of the present application also provide an electronic device. Referring to FIG. 13 , the
处理器400是电子设备400的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或加载存储在存储器402内的计算机程序,以及调用存储在存储器402内的数据,执行电子设备400的各种功能并处理数据,从而对电子设备400进行整体监控。The
存储器402可用于存储软件程序以及模块,处理器401通过运行存储在存储器402的计算机程序以及模块,从而执行各种功能应用以及数据处理。存储器402可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的计算机程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器402还可以包括存储器控制器,以提供处理器401对存储器402的访问。The
在本申请实施例中,电子设备400中的处理器401会按照如下的步骤,将一个或一个以上的计算机程序的进程对应的指令加载到存储器402中,并由处理器401运行存储在存储器402中的计算机程序,从而实现各种功能,如下:In the embodiment of the present application, the
将样本数据输入算法模型,得到多个第一预测结果;Input the sample data into the algorithm model to obtain multiple first prediction results;
当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;When the plurality of first prediction results include a correct prediction result and an incorrect prediction result, obtain the first characteristic parameter value of the target characteristic parameter corresponding to the correct prediction result and the second characteristic parameter value corresponding to the incorrect prediction result in the sample data respectively;
根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;Calculate the initial preset compensation value according to the first characteristic parameter value and the second characteristic parameter value;
将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;Input the sample data and the initial preset compensation value into the algorithm model for training to obtain the target preset compensation value;
将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。The preset background application current multiple feature parameters and target preset compensation values are input into the algorithm model to obtain the target prediction result, and the preset background application is managed and controlled according to the target prediction result.
在一些实施方式中,处理器401还用于执行以下步骤:In some embodiments, the
获取目标特征参数对应多个正确预测结果的多个第一特征参数值;obtaining multiple first feature parameter values corresponding to multiple correct prediction results of the target feature parameter;
获取目标特征参数对应多个错误预测结果的多个第二特征参数值;obtaining multiple second feature parameter values corresponding to multiple error prediction results of the target feature parameter;
根据多个第一特征参数值的平均值和多个第二特征参数值的平均值计算得到初始预设补偿值。The initial preset compensation value is calculated according to the average value of the plurality of first characteristic parameter values and the average value of the plurality of second characteristic parameter values.
在一些实施方式中,处理器401还用于执行以下步骤:In some embodiments, the
获取目标特征参数的特征参数值,以及与特征参数值成梯度的多个参考特征参数值;Obtain the feature parameter value of the target feature parameter, and multiple reference feature parameter values that are gradients with the feature parameter value;
将多个参考特征参数值输入算法模型,得到第二预测结果;Inputting multiple reference feature parameter values into the algorithm model to obtain a second prediction result;
若第二预测结果改变,则分别获取相邻的正确预测结果和错误预测结果对应的第一特征参数值和第二特征参数值;If the second prediction result changes, obtain the first characteristic parameter value and the second characteristic parameter value corresponding to the adjacent correct prediction result and the wrong prediction result respectively;
根据第一特征参数值和第二特征参数值的差值得到初始预设补偿值。The initial preset compensation value is obtained according to the difference between the first characteristic parameter value and the second characteristic parameter value.
在一些实施方式中,处理器401还用于执行以下步骤:In some embodiments, the
依次修改输入算法模型的各个特征参数的权重;Modify the weights of each feature parameter of the input algorithm model in turn;
若第一预测结果改变,则确定对应的特征参数为目标特征参数。If the first prediction result changes, the corresponding feature parameter is determined to be the target feature parameter.
在一些实施方式中,处理器401还用于执行以下步骤:In some embodiments, the
获取目标特征参数的多个第一特征参数值和多个第二特征参数值;obtaining a plurality of first characteristic parameter values and a plurality of second characteristic parameter values of the target characteristic parameter;
根据多个第一特征参数值,获取对应的第一取值范围;obtaining a corresponding first value range according to a plurality of first characteristic parameter values;
根据多个第二特征参数值,获取对应的第二取值范围;obtaining a corresponding second value range according to the plurality of second characteristic parameter values;
获取对应第一取值范围的第一目标预设补偿值,以及对应第二取值范围的第二目标预设补偿值。The first target preset compensation value corresponding to the first value range and the second target preset compensation value corresponding to the second value range are acquired.
由上述可知,本申请实施例提供的电子设备,通过将样本数据输入算法模型,得到多个第一预测结果;当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。可以提高对预设后台应用进行预测的准确性,从而提升对进入后台的应用程序进行管控的准确性。It can be seen from the above that the electronic device provided by the embodiment of the present application obtains multiple first prediction results by inputting sample data into the algorithm model; when the multiple first prediction results include correct prediction results and wrong prediction results, samples are obtained respectively. The target feature parameter in the data corresponds to the first feature parameter value of the correct prediction result, and the second feature parameter value corresponding to the wrong prediction result; the initial preset compensation value is calculated according to the first feature parameter value and the second feature parameter value; The data and the initial preset compensation value are input into the algorithm model for training, and the target preset compensation value is obtained; the preset background is applied with the current multiple feature parameters and the target preset compensation value, and the algorithm model is input to obtain the target prediction result. The target prediction result controls the preset background application. The accuracy of predicting preset background applications can be improved, thereby improving the accuracy of managing and controlling applications entering the background.
请一并参阅图14,在一些实施方式中,电子设备400还可以包括:显示器403、射频电路404、音频电路405以及电源406。其中,其中,显示器403、射频电路404、音频电路405以及电源406分别与处理器401电性连接。Please also refer to FIG. 14 , in some embodiments, the
显示器403可以用于显示由用户输入的信息或提供给用户的信息以及各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示器403可以包括显示面板,在一些实施方式中,可以采用液晶显示器(Liquid Crystal Display,LCD)、或者有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板。The
射频电路404可以用于收发射频信号,以通过无线通信与网络设备或其他电子设备建立无线通讯,与网络设备或其他电子设备之间收发信号。The
音频电路405可以用于通过扬声器、传声器提供用户与电子设备之间的音频接口。The
电源406可以用于给电子设备400的各个部件供电。在一些实施方式中,电源406可以通过电源管理系统与处理器401逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图14中未示出,电子设备400还可以包括摄像头、蓝牙模块等,在此不再赘述。Although not shown in FIG. 14 , the
本申请实施例还提供一种存储介质,存储介质存储有计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述任一实施例中的应用程序管控方法,比如:通过将样本数据输入算法模型,得到多个第一预测结果;当多个第一预测结果中包括正确预测结果和错误预测结果时,分别获取样本数据中目标特征参数对应正确预测结果的第一特征参数值,以及对应错误预测结果的第二特征参数值;根据第一特征参数值和第二特征参数值计算得到初始预设补偿值;将样本数据以及初始预设补偿值,输入算法模型进行训练,得到目标预设补偿值;将预设后台应用当前的多个特征参数以及目标预设补偿值,输入算法模型,得到目标预测结果,并根据目标预测结果对预设后台应用进行管控。Embodiments of the present application further provide a storage medium, where a computer program is stored in the storage medium, and when the computer program runs on the computer, the computer is made to execute the application program management and control method in any of the above-mentioned embodiments, for example, by inputting sample data into an algorithm model to obtain multiple first prediction results; when the multiple first prediction results include correct prediction results and incorrect prediction results, obtain the first feature parameter values of the target feature parameters in the sample data corresponding to the correct prediction results, and the corresponding error The second characteristic parameter value of the prediction result; the initial preset compensation value is calculated according to the first characteristic parameter value and the second characteristic parameter value; the sample data and the initial preset compensation value are input into the algorithm model for training to obtain the target preset compensation value; apply the current multiple feature parameters and target preset compensation values in the preset background, input the algorithm model, obtain the target prediction result, and manage and control the preset background application according to the target prediction result.
在本申请实施例中,存储介质可以是磁碟、光盘、只读存储器(Read Only Memory,ROM)、或者随机存取记忆体(Random Access Memory,RAM)等。In this embodiment of the present application, the storage medium may be a magnetic disk, an optical disk, a read only memory (Read Only Memory, ROM), or a random access memory (Random Access Memory, RAM), or the like.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
需要说明的是,对本申请实施例的后台应用管控方法而言,本领域普通测试人员可以理解实现本申请实施例后台应用管控方法的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,计算机程序可存储于一计算机可读取存储介质中,如存储在电子设备的存储器中,并被该电子设备内的至少一个处理器执行,在执行过程中可包括如后台应用管控方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储器、随机存取记忆体等。It should be noted that, for the background application management and control method of the embodiment of the present application, ordinary testers in the art can understand that all or part of the process of implementing the background application management and control method of the embodiment of the present application can be controlled by a computer program. After completion, the computer program can be stored in a computer-readable storage medium, such as a memory of an electronic device, and executed by at least one processor in the electronic device, and the execution process can include methods such as background application management and control methods. Example flow. The storage medium can be a magnetic disk, an optical disk, a read-only memory, a random access memory, or the like.
对本申请实施例的后台应用管控装置而言,其各功能模块可以集成在一个处理芯片中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中,存储介质譬如为只读存储器,磁盘或光盘等。For the background application management and control apparatus of the embodiment of the present application, each functional module thereof may be integrated in one processing chip, or each module may exist physically alone, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they can also be stored in a computer-readable storage medium, such as a read-only memory, a magnetic disk or an optical disk.
以上对本申请实施例所提供的一种后台应用管控方法、装置、存储介质及电子设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The background application management and control method, device, storage medium, and electronic device provided by the embodiments of the present application have been described above in detail. The principles and implementations of the present application are described with specific examples in this article. It is only used to help understand the method of the present application and its core idea; at the same time, for those skilled in the art, according to the idea of the present application, there will be changes in the specific implementation and application scope. The contents of the description should not be construed as limiting the application.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711044966.5A CN107748682B (en) | 2017-10-31 | 2017-10-31 | Background application management and control method, device, storage medium and electronic device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711044966.5A CN107748682B (en) | 2017-10-31 | 2017-10-31 | Background application management and control method, device, storage medium and electronic device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107748682A CN107748682A (en) | 2018-03-02 |
| CN107748682B true CN107748682B (en) | 2020-11-13 |
Family
ID=61253658
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711044966.5A Active CN107748682B (en) | 2017-10-31 | 2017-10-31 | Background application management and control method, device, storage medium and electronic device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107748682B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113050783B (en) * | 2019-12-26 | 2023-08-08 | Oppo广东移动通信有限公司 | Terminal control method, device, mobile terminal and storage medium |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001043094A (en) * | 1999-07-10 | 2001-02-16 | Samsung Electronics Co Ltd | Micro scheduling method and operating system kernel |
| CN1855141A (en) * | 2005-04-28 | 2006-11-01 | 通用电气公司 | Method and system for performing model-based multi-objective asset optimization and decision-making |
| CN104159286A (en) * | 2014-07-08 | 2014-11-19 | 中国人民解放军信息工程大学 | Uplink time synchronization method of LTE system of GEO satellite |
| CN104750780A (en) * | 2015-03-04 | 2015-07-01 | 北京航空航天大学 | Hadoop configuration parameter optimization method based on statistic analysis |
| CN105991667A (en) * | 2015-01-27 | 2016-10-05 | 华为软件技术有限公司 | Method and device for correcting resource prediction error |
-
2017
- 2017-10-31 CN CN201711044966.5A patent/CN107748682B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001043094A (en) * | 1999-07-10 | 2001-02-16 | Samsung Electronics Co Ltd | Micro scheduling method and operating system kernel |
| CN1855141A (en) * | 2005-04-28 | 2006-11-01 | 通用电气公司 | Method and system for performing model-based multi-objective asset optimization and decision-making |
| CN104159286A (en) * | 2014-07-08 | 2014-11-19 | 中国人民解放军信息工程大学 | Uplink time synchronization method of LTE system of GEO satellite |
| CN105991667A (en) * | 2015-01-27 | 2016-10-05 | 华为软件技术有限公司 | Method and device for correcting resource prediction error |
| CN104750780A (en) * | 2015-03-04 | 2015-07-01 | 北京航空航天大学 | Hadoop configuration parameter optimization method based on statistic analysis |
Non-Patent Citations (1)
| Title |
|---|
| "HiNextApp: A Context-Aware and Adaptive Framework for App Prediction in Mobile Systems";Chaoneng Xiang.et;《2017 IEEE Trustcom/BigDataSE/ICESS》;20170904;第776-783页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107748682A (en) | 2018-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107678799B (en) | Application program control method and device, storage medium and electronic equipment | |
| CN107943571B (en) | Background application control method and device, storage medium and electronic equipment | |
| CN107632697B (en) | Application processing method and device, storage medium and electronic equipment | |
| CN107807730A (en) | Application cleaning method, device, storage medium and electronic device | |
| CN105389073A (en) | Desktop icon display system and method | |
| CN108681480B (en) | Background application program control method and device, storage medium and electronic equipment | |
| CN107943570A (en) | Application management method, device, storage medium and electronic device | |
| CN107885544A (en) | Application program management and control method, device, medium and electronic equipment | |
| CN107797832B (en) | Application cleaning method and device, storage medium and electronic equipment | |
| CN107748682B (en) | Background application management and control method, device, storage medium and electronic device | |
| CN107249082B (en) | Volume control method and device, storage medium and electronic equipment | |
| CN107832848A (en) | Application management method, device, storage medium and electronic device | |
| CN107729078B (en) | Background application program control method and device, storage medium and electronic equipment | |
| CN111883066B (en) | Gate electrode drive design method and device and electronic equipment | |
| US20160070320A1 (en) | Individual Device Reset and Recovery in a Computer | |
| CN107870811B (en) | Application cleaning method and device, storage medium and electronic equipment | |
| CN106970813A (en) | Software upgrade control method, device and electronic equipment | |
| CN107943535B (en) | Application cleaning method, device, storage medium and electronic device | |
| CN116955271A (en) | Method and device for storing data copy, electronic equipment and storage medium | |
| CN114692824B (en) | A quantized training method, device and equipment for a neural network model | |
| CN107870791A (en) | Application management method, device, storage medium and electronic device | |
| CN107749201A (en) | Point reading object processing method, device, storage medium and electronic equipment | |
| CN111858395B (en) | Data management method and device | |
| US9578131B2 (en) | Virtual machine migration based on communication from nodes | |
| CN104298333B (en) | Portable electronic device and power management method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information |
Address after: Changan town in Guangdong province Dongguan 523860 usha Beach Road No. 18 Applicant after: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS Corp.,Ltd. Address before: Changan town in Guangdong province Dongguan 523860 usha Beach Road No. 18 Applicant before: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS Corp.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant |