[go: up one dir, main page]

CN107850048B - Method and system for generating a wind turbine control arrangement - Google Patents

Method and system for generating a wind turbine control arrangement Download PDF

Info

Publication number
CN107850048B
CN107850048B CN201680038986.9A CN201680038986A CN107850048B CN 107850048 B CN107850048 B CN 107850048B CN 201680038986 A CN201680038986 A CN 201680038986A CN 107850048 B CN107850048 B CN 107850048B
Authority
CN
China
Prior art keywords
turbine
wind
components
wind turbine
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201680038986.9A
Other languages
Chinese (zh)
Other versions
CN107850048A (en
Inventor
C·斯普鲁斯
C·比雷迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Publication of CN107850048A publication Critical patent/CN107850048A/en
Application granted granted Critical
Publication of CN107850048B publication Critical patent/CN107850048B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0292Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power to reduce fatigue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/332Maximum loads or fatigue criteria
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Wind Motors (AREA)

Abstract

There is provided a method of generating a control schedule for a wind turbine, the control schedule indicating how the turbine maximum power level varies over time, the method comprising: determining a value indicative of a current remaining fatigue life of the turbine or one or more turbine components based on the measured wind turbine site data and/or operational data; applying an optimization function that changes an initial control schedule to determine an optimized control schedule by changing a tradeoff between fatigue life consumed by the turbine or one or more turbine components and energy capture until an optimized control schedule is determined, the optimization comprising: estimating a future fatigue life consumed by the turbine or turbine component during the altered control schedule based on the current remaining fatigue life and the altered control schedule; and constraining optimization of the control schedule in accordance with one or more input constraints; wherein the input constraints comprise a maximum allowable number of component replacements for one or more turbine components, and the optimizing further comprises changing an initial value of wind turbine life to determine a target wind turbine life.

Description

用于生成风力涡轮机控制安排的方法以及系统Method and system for generating wind turbine control arrangements

技术领域technical field

本发明的实施例涉及用于针对风力涡轮机功率输出确定控制安排(schedule)的方法以及系统。Embodiments of the present invention relate to methods and systems for determining a control schedule for wind turbine power output.

背景技术Background technique

图1A例示了现有技术中已知的大型常规风力涡轮机1,其包括塔架10和位于塔架10顶部的风力涡轮机机舱20。风力涡轮机转子30包括三个风力涡轮机叶片32,每个风力涡轮机叶片具有长度L。风力涡轮机转子30可以包括另外数量的叶片32,例如一个、两个、四个、五个或更多个。叶片32安装在位于塔架基底之上高度H处的轮毂34上。轮毂34通过从机舱20的前部延伸的低速轴(未示出)连接到机舱20。低速轴驱动齿轮箱(未示出),该齿轮箱提高转速并且继而驱动机舱20内的发电机,用于将由旋转叶片32从风中提取的能量转换为电功率输出。风力涡轮机叶片32限定扫掠区域A,该扫掠区域A是由旋转叶片32描划的圆的区域。扫掠区域指示风力涡轮机1拦截的给定空气质量的多少,并且因此,影响风力涡轮机1的功率输出以及涡轮机1的部件在运行期间经受的力和弯矩。涡轮机可以在岸上,如图所示,或离岸。在后一种情况下,塔架将连接到单桩、三脚架、格架或其它基础结构,基础可以是固定的或浮动的。FIG. 1A illustrates a large conventional wind turbine 1 known in the art, comprising a tower 10 and a wind turbine nacelle 20 located on top of the tower 10 . The wind turbine rotor 30 includes three wind turbine blades 32, each wind turbine blade having a length L. Wind turbine rotor 30 may include additional numbers of blades 32, such as one, two, four, five, or more. The blades 32 are mounted on a hub 34 at a height H above the base of the tower. The hub 34 is connected to the nacelle 20 by a low speed shaft (not shown) extending from the front of the nacelle 20 . The low speed shaft drives a gearbox (not shown) which increases the rotational speed and in turn drives a generator within the nacelle 20 for converting the energy extracted from the wind by the rotating blades 32 into electrical power output. The wind turbine blades 32 define a swept area A, which is the area of the circle traced by the rotating blades 32 . The swept area indicates how much of a given air mass is intercepted by the wind turbine 1 and, therefore, affects the power output of the wind turbine 1 and the forces and bending moments experienced by components of the turbine 1 during operation. Turbines can be onshore, as shown, or offshore. In the latter case, the tower will be attached to a monopile, tripod, trellis or other foundation structure, which may be fixed or floating.

例如,每个风力涡轮机具有风力涡轮机控制器,其可以位于塔架基底或塔顶。风力涡轮机控制器处理来自传感器和其它控制系统的输入,并生成输出信号用于致动器例如变桨致动器、发电机转矩控制器、发电机接触器、用于启动轴致动器的开关、偏航电机等。For example, each wind turbine has a wind turbine controller, which may be located at the base of the tower or at the top of the tower. Wind turbine controllers process input from sensors and other control systems and generate output signals for actuators such as pitch actuators, generator torque controllers, generator contactors, switch, yaw motor, etc.

图1B示意性地示出了包括多个风力涡轮机110的常规风力发电站100的示例,每个风力涡轮机110的控制器与发电站控制器(PPC)130通信。PPC 130可以与每个涡轮机双向地通信。如粗线150所示,涡轮机将电力输出到电网连接点140。在运行中,并且假定风力条件允许,每个风力涡轮机110将输出高达由制造商指定的其额定功率的最大有功功率。FIG. 1B schematically shows an example of a conventional wind power plant 100 including a plurality of wind turbines 110 , the controller of each wind turbine 110 in communication with a power plant controller (PPC) 130 . The PPC 130 may communicate bidirectionally with each turbine. The turbine outputs power to the grid connection point 140 as shown by the thick line 150 . In operation, and assuming wind conditions permit, each wind turbine 110 will output a maximum active power up to its rated power specified by the manufacturer.

图2例示了风力涡轮机的常规功率曲线55,其绘制了x轴上的风速与y轴上的功率输出的关系。曲线55是风力涡轮机的常态功率曲线,并将风力涡轮发电机的功率输出定义为风速的函数。如本领域所公知的那样,风力涡轮机以切入风速Vmin开始发电。涡轮然后在部分载荷(也称为部分载荷)条件下运行,直到在VR点达到额定风速。在额定风速下,达到额定(或标称)发电机功率并且涡轮机在满载荷下运行。例如,典型风力涡轮机中的切入风速可以是3m/s,并且额定风速可以是12m/s。Vmax点是切出风速,该切出风速是在其下风力涡轮机在输送功率时可以运行的最高风速。在风速等于或高于切出风速的情况下,出于安全原因(特别是为了减小作用在风力涡轮机上的载荷),关闭风力涡轮机。或者,功率输出可以根据风速而斜降到零功率。Figure 2 illustrates a conventional power curve 55 for a wind turbine plotting wind speed on the x-axis versus power output on the y-axis. Curve 55 is the normal power curve of the wind turbine and defines the power output of the wind turbine generator as a function of wind speed. As is known in the art, the wind turbine starts generating electricity at the cut-in wind speed Vmin . The turbine then operates under part load (also known as part load) conditions until the rated wind speed is reached at the VR point. At rated wind speed, rated (or nominal) generator power is reached and the turbine is operating at full load. For example, the cut-in wind speed in a typical wind turbine may be 3 m/s and the rated wind speed may be 12 m/s. The V max point is the cut-out wind speed, which is the highest wind speed below which the wind turbine can operate while delivering power. In situations where the wind speed is equal to or higher than the cut-out wind speed, the wind turbine is shut down for safety reasons (especially to reduce the loads acting on the wind turbine). Alternatively, the power output can be ramped down to zero power depending on the wind speed.

风力涡轮机的额定功率在IEC 61400中被定义为风力涡轮机在正常运行和外部条件下被设计实现的最大连续电功率输出。大型商业风力涡轮机一般设计寿命为20至25年,并设计为在额定功率下运行,以便不超过部件的设计载荷和疲劳寿命。The power rating of a wind turbine is defined in IEC 61400 as the maximum continuous electrical power output the wind turbine is designed to achieve under normal operating and external conditions. Large commercial wind turbines are typically designed for a life of 20 to 25 years and are designed to operate at rated power so that the design loads and fatigue life of the components are not exceeded.

风力涡轮机中各个部件的疲劳损伤累积速率在不同的运行条件下变化很大。随着发电功率的增加,磨损速率或损伤累积趋于增加。风力条件也会影响损伤的累积速率。对于一些机械部件而言,在非常高的湍流中运行会导致比在正常湍流中运行高出许多倍的疲劳损伤累积速率。对于一些电气部件,在很高的温度下运行(这可能是由高的环境温度造成的),会导致比在常温下运行高出许多倍的疲劳损伤累积速率(例如,绝缘击穿速率)。例如,发电机绕组的经验法则是,绕组温度下降10℃,寿命延长100%。Fatigue damage accumulation rates for individual components in wind turbines vary widely under different operating conditions. The wear rate or damage accumulation tends to increase as the power generated increases. Wind conditions also affect the rate of damage accumulation. For some mechanical components, operating in very high turbulence can result in a rate of accumulation of fatigue damage that is many times higher than operating in normal turbulence. For some electrical components, operating at very high temperatures (which may be caused by high ambient temperatures) can result in a rate of accumulation of fatigue damage (eg, insulation breakdown rate) many times higher than operating at ambient temperature. For example, the rule of thumb for generator windings is that a 10°C drop in winding temperature increases life by 100%.

风力发电站的年发电量(AEP)涉及形成风力发电站的风力涡轮机的生产率,并且通常取决于风力发电站位置处的年风速。对于给定的风力发电站,AEP越大,风力发电站的运营商的利润就越大,并且提供给电网的电能量也越大。The annual power production (AEP) of a wind power plant relates to the production rate of the wind turbines that form the wind power plant, and is generally dependent on the annual wind speed at the location of the wind power plant. For a given wind farm, the larger the AEP, the greater the profit for the operator of the wind farm and the greater the amount of electrical energy supplied to the grid.

因此,风力涡轮机制造商和风力发电站运营商不断尝试增加给定风力发电站的AEP。Consequently, wind turbine manufacturers and wind farm operators are continually trying to increase the AEP for a given wind farm.

一种这样的方法可以是在某些条件下使风力涡轮机超额定,换而言之,允许风力涡轮机运行达到高于风力涡轮机的额定或铭牌功率电平的功率电平一段时间,如图2的阴影区域58所示,以便当风大时生成更多的电能并因而增加风力发电站的AEP。具体而言,术语“超额定”(over-rating)被理解为意指通过控制诸如转子转速、转矩或发电机电流之类的涡轮机参数在满载荷运行期间产生大于额定有功功率。速度需求、转矩需求和/或发电机电流需求的增加提高了超额定产生的附加功率,而速度、转矩和/或发电机电流需求的减小降低了超额定所产生的附加功率。可以理解,超额定适用于有功功率,而不适用于无功功率。当涡轮机超额定时,涡轮机比正常运行得更加积极,并且发电机具有高于给定风速下的额定功率的功率输出。例如,超额定功率电平可能高出额定功率输出30%。当这对运营商有利时,特别是当诸如风速、湍流和电价之类的外部条件将允许更有利润的发电时,这允许更大的功率提取。One such approach may be to over-rate the wind turbine under certain conditions, in other words, allowing the wind turbine to operate to a power level above the wind turbine's rated or nameplate power level for a period of time, as shown in Figure 2. Shaded area 58 is shown in order to generate more electrical energy when the wind is strong and thus increase the AEP of the wind farm. In particular, the term "over-rating" is understood to mean the production of more than rated real power during full load operation by controlling turbine parameters such as rotor speed, torque or generator current. An increase in speed demand, torque demand and/or generator current demand increases the additional power generated by overrating, while a decrease in speed, torque and/or generator current demand reduces the additional power generated by overrating. Understandably, over-rating applies to active power, not reactive power. When the turbine is overrated, the turbine is running more aggressively than normal, and the generator has a power output that is higher than its rated power at a given wind speed. For example, the over-rated power level may be 30% higher than the rated power output. This allows for greater power extraction when this is beneficial to the operator, especially when external conditions such as wind speed, turbulence and electricity prices will allow for more profitable generation.

超额定导致风力涡轮机的部件上更高的磨损或疲劳,这可能导致一个或多个部件的早期故障并且需要关闭涡轮机以进行维护。因此,超额定的特点是瞬态行为。当涡轮机超额定时,可能会短至几秒钟,或者如果风力条件和部件的疲劳寿命有利于超额定,则可能是延长的时间段。Over-rating results in higher wear or fatigue on components of the wind turbine, which can lead to early failure of one or more components and require shutdown of the turbine for maintenance. Therefore, over-rating is characterized by transient behavior. When the turbine is over-rated, it may be as short as a few seconds, or it may be an extended period of time if wind conditions and fatigue life of components favor over-rating.

虽然超额定允许涡轮机运营商增加AEP,并且以其它方式修改发电以适应他们的要求,但存在与使风力涡轮机超额定相关联的若干问题和缺点。风力涡轮机通常被设计成在给定的标称额定功率电平或铭牌功率电平下运行并且运行认证的年数(例如,20年或25年)。因此,如果风力涡轮机超额定,那么风力涡轮机的寿命可能会减少。While overrating allows turbine operators to increase AEP and otherwise modify generation to suit their requirements, there are several problems and disadvantages associated with overrating wind turbines. Wind turbines are typically designed to operate at a given nominal rated power level or nameplate power level and operate for a certified number of years (eg, 20 or 25 years). Therefore, if the wind turbine is over-rated, the life of the wind turbine may be reduced.

本发明试图为涡轮机运营商提供灵活性,以便以适合其要求的方式运行其涡轮机,例如通过返回优化的AEP。The present invention seeks to provide flexibility for turbine operators to operate their turbines in a way that suits their requirements, eg by returning an optimized AEP.

发明内容SUMMARY OF THE INVENTION

本发明在现在参考的独立权利要求中进行了限定。优选的特征在从属权利要求中列出。The invention is defined in the independent claims which are now referred to. Preferred features are listed in the dependent claims.

本发明的实施例试图在采用折衷能量捕获和疲劳载荷的控制方法时提高涡轮机运营商可用的灵活性。这种控制方法的一个示例是使用超额定。Embodiments of the present invention seek to increase the flexibility available to turbine operators when employing control methods that compromise energy capture and fatigue loading. An example of this control method is the use of overrating.

根据本发明的第一方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a first aspect of the present invention, there is provided a method of generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the method comprising:

接收指示目标最小风力涡轮机寿命的输入;receiving input indicating a target minimum wind turbine lifetime;

基于测量的风力涡轮机站点数据和/或运行数据,来确定指示所述涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components based on the measured wind turbine site data and/or operational data;

通过以下操作来改变指示所述涡轮机最大功率电平如何随时间改变的初始预定义控制安排的参数:The parameters of the initial predefined control arrangement indicating how the maximum power level of the turbine changes over time are changed by:

i)调整所述初始预定义控制安排的参数;i) adjusting the parameters of the initial predefined control arrangement;

ii)基于改变的控制安排,估计所述风力涡轮机或所述一个或多个涡轮机部件在所述改变的控制安排的持续时间内所消耗的未来的疲劳寿命;以及ii) based on the changed control arrangement, estimating the future fatigue life consumed by the wind turbine or the one or more turbine components for the duration of the changed control arrangement; and

iii)重复步骤(i)和(ii),直到所述风力涡轮机或所述一个或多个涡轮机部件中的每一个所消耗的估计的未来的疲劳寿命足以允许达到目标最小风力涡轮机寿命。iii) Repeating steps (i) and (ii) until the estimated future fatigue life consumed by the wind turbine or each of the one or more turbine components is sufficient to allow the target minimum wind turbine life to be reached.

所述参数可以被改变,直到载荷最重的部件所消耗的估计的未来的疲劳寿命足以允许恰好达到目标最小风力涡轮机寿命,或者换言之,使得消耗的总疲劳寿命将基本上与目标最小风力涡轮机寿命相同。这可以基于目标最小风力涡轮机寿命的预定裕量(例如,在目标的0到1,0到3,0到6或0到12个月内)来实现。Said parameters may be varied until the estimated future fatigue life consumed by the heaviest loaded components is sufficient to allow just reaching the target minimum wind turbine life, or in other words such that the total fatigue life consumed will be substantially the same as the target minimum wind turbine life same. This may be achieved based on a predetermined margin of target minimum wind turbine life (eg, within 0 to 1, 0 to 3, 0 to 6, or 0 to 12 months of the target).

可选地,步骤(iii)进一步要求在所述涡轮机的寿命内使能量捕获最大化。Optionally, step (iii) further entails maximizing energy capture over the lifetime of the turbine.

可选地,所述控制安排指示所述风力涡轮机可以超额定运转到高于其额定功率的功率量。Optionally, the control arrangement indicates that the wind turbine may be over-rated to an amount of power above its rated power.

可选地,所述方法还包括:针对所述涡轮机部件中的一个或多个中的每一个,接收指示该涡轮机部件的最大允许更换次数的输入。然后,步骤(i)还可以包括针对所述涡轮机部件中的一个或多个,调整该部件在所述涡轮机的剩余寿命内可以被更换的次数。步骤(i)还可以包括:当在所述涡轮机的剩余寿命内可以更换所述部件时,对所述涡轮机部件中的一个或多个进行调整。所述一个或多个涡轮机部件可以包括以下中的一个或多个:叶片、变桨轴承、变桨致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动器、偏航轴承或变压器。Optionally, the method further comprises, for each of one or more of the turbine components, receiving an input indicative of a maximum allowable number of replacements for the turbine component. Step (i) may then further comprise, for one or more of the turbine components, adjusting the number of times that component may be replaced during the remaining life of the turbine. Step (i) may also include adjusting one or more of the turbine components when the components can be replaced during the remaining life of the turbine. The one or more turbine components may include one or more of the following: blades, pitch bearings, pitch actuation systems, hubs, main shafts, main bearings, gearboxes, generators, converters, yaw drives, Yaw bearing or transformer.

可选地,所述初始预定义控制安排指定所述涡轮机最大功率电平随时间的相对变化。Optionally, the initial predefined control arrangement specifies a relative change in the maximum power level of the turbine over time.

可选地,确定指示所述涡轮机或所述一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:将来自一个或多个涡轮机传感器的传感器数据应用于一个或多个寿命使用估计算法。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or the one or more turbine components comprises applying sensor data from one or more turbine sensors to one or more life usage estimation algorithms.

可选地,确定指示所述涡轮机或所述一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:使用来自条件监测系统的数据。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or the one or more turbine components comprises using data from a condition monitoring system.

可选地,确定指示所述涡轮机或所述一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:与站点检查程序结合使用从风力发电站传感器获得的数据,所述站点检查程序基于从风力发电站传感器获得的数据以及与所述风力发电站和风力涡轮机设计相关的参数来确定作用于涡轮机部件上的载荷。传感器数据可以包括在试运行(commission)和/或建造风力涡轮机或风力发电站之前收集的传感器数据。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or the one or more turbine components comprises using data obtained from wind power plant sensors in conjunction with a site inspection procedure based on The data obtained by the plant sensors and parameters related to the wind plant and wind turbine design determine the loads acting on the turbine components. The sensor data may include sensor data collected prior to commissioning and/or construction of the wind turbine or wind power plant.

可选地,调整参数包括对控制安排应用偏移、放大、去扩大或增益因子。调整参数,直到载荷最重的部件的全部或基本上全部的疲劳寿命在安排的持续时间内被消耗为止。可以通过使曲线在示出个体涡轮机以最大功率电平运行所引起的疲劳损伤的线上方和下方的区域相等来调整偏移,其中该最大功率电平被设定为期望寿命的站点特定容量。偏移可以被调整,直到由于根据控制安排运行涡轮机而随时间引起的疲劳损伤等于由于根据恒定的最大功率电平运行涡轮机而随时间引起的疲劳损伤为止,其中,该恒定的最大功率电平被设定为目标最小寿命的个体涡轮机最大功率电平。Optionally, adjusting the parameters includes applying an offset, amplification, de-amplification or gain factor to the control arrangement. The parameters are adjusted until all or substantially all of the fatigue life of the most heavily loaded component is consumed within the scheduled duration. The offset can be adjusted by equalizing the area of the curve above and below the line showing the fatigue damage caused by operating the individual turbines at the maximum power level set to the site-specific capacity of the expected life. The offset can be adjusted until the fatigue damage over time due to operating the turbine according to the control schedule is equal to the fatigue damage over time due to operating the turbine according to a constant maximum power level, where the constant maximum power level is Individual turbine maximum power level set to target minimum life.

可选地,初始预定义的控制安排指定最大功率电平随时间的变化梯度。然后调整参数可以包括调整梯度。Optionally, an initially predefined control arrangement specifies a gradient of the maximum power level over time. Adjusting the parameters may then include adjusting the gradient.

可选地,控制安排指示应当随时间引起的疲劳损伤的量,该方法还包括基于一个或多个LUE来操作风力涡轮机,以便按控制安排所指示的速率引起疲劳损伤。Optionally, the control schedule indicates an amount of fatigue damage that should be induced over time, the method further comprising operating the wind turbine based on the one or more LUEs to induce fatigue damage at a rate indicated by the control schedule.

可选地,该方法还包括将确定的控制安排提供给风力涡轮机控制器以控制风力涡轮机的功率输出。Optionally, the method further comprises providing the determined control arrangement to the wind turbine controller to control the power output of the wind turbine.

该方法可以只执行一次,或根据需要不定期地执行。或者,该方法可以周期性地重复。具体地说,该方法可以每天、每月或每年重复一次。This method can be executed only once, or from time to time as needed. Alternatively, the method can be repeated periodically. Specifically, the method can be repeated daily, monthly or yearly.

可以提供被配置用于执行本文描述的方法的用于风力涡轮机或风力发电站的对应控制器。A corresponding controller for a wind turbine or wind power plant configured to perform the methods described herein may be provided.

仍然根据第一方面,提供了一种用于针对包括两个或更多个风力涡轮机的风力发电站生成控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率电平如何随时间变化,所述方法包括:Still according to a first aspect, there is provided a method for generating a control schedule for a wind power plant comprising two or more wind turbines, the control schedule indicating for each wind turbine how a maximum power level varies over time , the method includes:

接收指示每个涡轮机的目标最小期望寿命的输入;receiving input indicating a target minimum expected life for each turbine;

基于测量的风力涡轮机站点数据和/或运行数据,确定指示每个风力涡轮机或每个风力涡轮机的一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of each wind turbine or one or more turbine components of each wind turbine based on the measured wind turbine site data and/or operational data;

通过以下操作来改变指定发电站最大功率电平如何随时间变化的初始预定义控制安排的参数:Change the parameters of the initial predefined control arrangement specifying how the maximum power level of the power station changes over time by doing the following:

i)调整初始预定义控制安排的参数;i) adjusting the parameters of the initial predefined control arrangement;

ii)使用站点检查程序,基于变化的控制安排,估计风力涡轮机或一个或多个涡轮机部件在变化的控制安排的持续时间内消耗的未来的疲劳寿命,该站点检查程序基于从风力发电站传感器获得的数据以及和风力发电站和风力涡轮机设计相关的参数来确定作用在涡轮机部件上的载荷,并且包括风力发电站的涡轮机之间的相互作用;以及ii) Estimating the future fatigue life of the wind turbine or one or more turbine components consumed for the duration of the changed control arrangement, based on the changed control arrangement, using a site inspection procedure based on information obtained from wind power plant sensors data and parameters related to wind power plant and wind turbine design to determine the loads acting on turbine components and including interactions between wind power plant turbines; and

iii)重复步骤(i)和(ii),直到由风力涡轮机或一个或多个涡轮机部件中的每一个部件所消耗的估计的未来的疲劳寿命足以允许达到目标最小风力涡轮机寿命。iii) Repeating steps (i) and (ii) until the estimated future fatigue life consumed by the wind turbine or each of the one or more turbine components is sufficient to allow the target minimum wind turbine life to be reached.

可选地,传感器数据包括在试运行和/或建造风力涡轮机或风力发电站之前收集的传感器数据。Optionally, the sensor data includes sensor data collected prior to commissioning and/or construction of the wind turbine or wind power plant.

可选地,步骤(iii)被进一步约束,使得对于安排内的任何给定的时间段,当所有涡轮机的功率被加在一起时,其不超过可以在从发电站到电网的连接中承载的功率量。Optionally, step (iii) is further constrained such that for any given time period within the arrangement, when the power of all turbines is added together, it does not exceed the amount that can be carried in the connection from the power station to the grid amount of power.

根据本发明的第二方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a second aspect of the present invention there is provided a method of generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the method comprising:

接收指示在涡轮机的剩余寿命内一个或多个涡轮机部件中的每一个将被更换的最大次数的输入;receiving input indicating a maximum number of times each of the one or more turbine components will be replaced over the remaining life of the turbine;

基于所测量的风力涡轮机站点数据和/或运行数据,来确定指示所述涡轮机或所述涡轮机部件中的一个或多个的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of the turbine or one or more of the turbine components based on the measured wind turbine site data and/or operational data;

通过以下操作来改变指示涡轮机最大功率电平如何随时间变化的初始预定义控制安排的参数:The parameters of the initial predefined control arrangement that dictate how the turbine's maximum power level changes over time are changed by:

iv)调整初始预定义控制安排的参数;iv) adjusting the parameters of the initial predefined control arrangement;

v)基于变化的控制安排并且考虑一个或多个涡轮机部件的替换,估计所述风力涡轮机或一个或多个涡轮机部件在变化的控制安排的持续时间内消耗的未来的疲劳寿命;以及v) estimating the future fatigue life that the wind turbine or one or more turbine components will consume over the duration of the changed control arrangement based on the changed control arrangement and taking into account the replacement of one or more turbine components; and

vi)重复步骤(i)和(ii)直到由风力涡轮机或一个或多个涡轮机部件中的每一个消耗的估计的未来的疲劳寿命足以允许达到目标最小风力涡轮机寿命。vi) Repeating steps (i) and (ii) until the estimated future fatigue life consumed by the wind turbine or each of the one or more turbine components is sufficient to allow the target minimum wind turbine life to be reached.

该参数可以变化,直到载荷最重的部件消耗的估计的未来疲劳寿命足以允许恰好达到目标最小风力涡轮机寿命,或者换句话说,使得消耗的总疲劳寿命将基本上与目标最小的风力涡轮机寿命相等。这可以基于目标最小风力涡轮机寿命的预定裕量(例如,在目标的0到1、0到3、0到6或0到12个月内)来实现。This parameter can be varied until the estimated future fatigue life consumed by the heaviest loaded components is sufficient to allow just reaching the target minimum wind turbine life, or in other words such that the total fatigue life consumed will be substantially equal to the target minimum wind turbine life . This may be achieved based on a predetermined margin of target minimum wind turbine life (eg, within 0 to 1, 0 to 3, 0 to 6, or 0 to 12 months of the target).

可选地,步骤(iii)进一步要求在涡轮机的寿命期间最大化能量捕获。Optionally, step (iii) further entails maximizing energy capture over the lifetime of the turbine.

可选地,控制安排指示风力涡轮机可以超额定运转到高于其额定功率的功率量。Optionally, the control arrangement indicates that the wind turbine may be over-rated to an amount of power above its rated power.

可选地,步骤(i)还包括针对一个或多个涡轮机部件调整在涡轮机的剩余寿命内部件可以被更换的次数。步骤(i)可进一步包括针对一个或多个涡轮机部件调整在涡轮机的剩余寿命期间何时可以更换部件。Optionally, step (i) further comprises adjusting, for one or more turbine components, the number of times the components may be replaced during the remaining life of the turbine. Step (i) may further include adjusting for one or more turbine components when components may be replaced during the remaining life of the turbine.

可选地,目标最小风力涡轮机寿命是对应于涡轮机设计寿命的预定目标值。Optionally, the target minimum wind turbine life is a predetermined target value corresponding to the turbine design life.

可选地,该方法还包括接收指示用户定义的目标最小风力涡轮机寿命的输入。Optionally, the method further includes receiving input indicative of a user-defined target minimum wind turbine life.

可选地,初始预定义控制安排指定涡轮机最大功率电平随时间的相对变化。Optionally, the initial predefined control schedule specifies a relative change in turbine maximum power level over time.

可选地,确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:将来自一个或多个涡轮机传感器的传感器数据应用于一个或多个寿命使用估计算法。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components includes applying sensor data from one or more turbine sensors to one or more life usage estimation algorithms.

可选地,确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:使用来自条件监测系统的数据。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components includes using data from a condition monitoring system.

可选地,确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:结合站点检查程序使用从风力发电站传感器获得的数据,所述站点检查程序基于从风力发电站传感器获得的数据以及与风力发电站和风力涡轮机设计相关的参数来确定作用在涡轮机部件上的载荷。传感器数据可以包括在试运行和/或建造风力涡轮机或风力发电站之前收集的传感器数据。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components comprises: using data obtained from the wind power plant sensors in conjunction with a site inspection procedure, the site inspection procedure being based on the data obtained from the wind power plant sensors; Data and parameters related to wind power plant and wind turbine design to determine the loads acting on turbine components. The sensor data may include sensor data collected prior to commissioning and/or construction of the wind turbine or wind power plant.

可选地,调整参数包括对控制安排应用偏移、放大、去扩大或增益因子。调整参数,直到在安排的持续时间内消耗载荷最重的部件的全部或基本上全部的疲劳寿命为止。可以通过使曲线在示出个体涡轮机以最大功率电平运行所引起的疲劳损伤的线上方和下方的区域相等来调整偏移,其中该最大功率电平被设定为期望寿命的站点特定容量。偏移可以被调整,直到由于根据控制安排运行涡轮机而随时间引起的疲劳损伤等于由于根据恒定的最大功率电平运行涡轮机而随时间引起的疲劳损伤为止,其中,该恒定的最大功率电平被设定为目标最小寿命的个体涡轮机最大功率电平。Optionally, adjusting the parameters includes applying an offset, amplification, de-amplification or gain factor to the control arrangement. The parameters are adjusted until all or substantially all of the fatigue life of the most heavily loaded component is consumed within the scheduled duration. The offset can be adjusted by equalizing the area of the curve above and below the line showing the fatigue damage caused by operating the individual turbines at the maximum power level set to the site-specific capacity of the expected life. The offset can be adjusted until the fatigue damage over time due to operating the turbine according to the control schedule is equal to the fatigue damage over time due to operating the turbine according to a constant maximum power level, where the constant maximum power level is Individual turbine maximum power level set to target minimum life.

可选地,初始预定义的控制安排指定随着时间的最大功率电平的变化梯度。调整参数可以包括调整梯度。Optionally, the initial predefined control schedule specifies a gradient of change in the maximum power level over time. Adjusting the parameters may include adjusting the gradient.

可选地,控制安排指示随时间应该引起的疲劳损伤的量,该方法还包括基于一个或多个LUE操作风力涡轮机,以便按控制安排指示的速率引起疲劳损伤。Optionally, the control arrangement indicates an amount of fatigue damage that should be induced over time, the method further comprising operating the wind turbine based on the one or more LUEs to induce fatigue damage at a rate indicated by the control arrangement.

可选地,该方法还包括将确定的控制安排提供给风力涡轮机控制器以控制风力涡轮机的功率输出。Optionally, the method further comprises providing the determined control arrangement to the wind turbine controller to control the power output of the wind turbine.

可选地,所述一个或多个涡轮机部件包括以下中的一个或多个:叶片,变桨轴承,变桨致动系统,轮毂,主轴,主轴承,齿轮箱,发电机,转换器,偏航驱动器,偏航轴承或变压器。Optionally, the one or more turbine components include one or more of the following: blades, pitch bearings, pitch actuation systems, hubs, main shafts, main bearings, gearboxes, generators, converters, offsets Air drives, yaw bearings or transformers.

该方法可以只执行一次,或根据需要不定期地执行。或者,该方法可以周期性地重复。具体地说,该方法可以每天、每月或每年重复一次。This method can be executed only once, or from time to time as needed. Alternatively, the method can be repeated periodically. Specifically, the method can be repeated daily, monthly or yearly.

可以提供被配置用于执行本文描述的方法的用于风力涡轮机或风力发电站的对应控制器。A corresponding controller for a wind turbine or wind power plant configured to perform the methods described herein may be provided.

仍然根据第二方面,提供了一种用于针对包括两个或更多个风力涡轮机的风力发电站生成控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率电平如何随时间变化,所述方法包括:Still according to a second aspect, there is provided a method for generating a control schedule for a wind power plant comprising two or more wind turbines, the control schedule indicating for each wind turbine how a maximum power level varies over time , the method includes:

接收指示在涡轮机的剩余寿命期间内每个涡轮机的一个或多个涡轮机部件中的每一个涡轮机部件要被替换的最大次数的输入;receiving input indicating a maximum number of times each of the one or more turbine components of each turbine is to be replaced during the remaining life of the turbine;

基于测量的风力涡轮机站点数据和/或运行数据,确定指示每个风力涡轮机或每个风力涡轮机的一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of each wind turbine or one or more turbine components of each wind turbine based on the measured wind turbine site data and/or operational data;

通过以下操作来改变指定发电站最大功率电平如何随时间变化的初始预定义控制安排的参数:Change the parameters of the initial predefined control arrangement specifying how the maximum power level of the power station changes over time by doing the following:

iv)调整初始预定义控制安排的参数;iv) adjusting the parameters of the initial predefined control arrangement;

v)使用站点检查程序基于变化的控制安排并考虑更换一个或多个涡轮机组件,估计风力涡轮机或一个或多个涡轮机部件在变化的控制安排的持续时间内所消耗的未来的疲劳寿命,该站点检查程序基于从风力发电站传感器获得的数据以及与风力发电站和风力涡轮机设计有关的参数来确定作用在涡轮机部件上的载荷,并且包括风力发电站的涡轮机之间的相互作用;以及v) using a site inspection procedure to estimate the future fatigue life of the wind turbine or one or more turbine components consumed for the duration of the changed control arrangement based on the changed control arrangement and considering replacement of one or more turbine components, the site The inspection procedure determines the loads acting on the turbine components, and includes the interaction between the turbines of the wind power plant, based on data obtained from the wind power plant sensors and parameters related to the wind power plant and wind turbine design; and

vi)重复步骤(i)和(ii),直到由风力涡轮机或一个或多个涡轮机部件中的每一个涡轮机部件消耗的估计的未来疲劳寿命足以允许达到目标最小风力涡轮机寿命。vi) Repeat steps (i) and (ii) until the estimated future fatigue life consumed by the wind turbine or each of the one or more turbine components is sufficient to allow the target minimum wind turbine life to be reached.

可选地,传感器数据包括在试运行和/或建造风力涡轮机或风力发电站之前收集的传感器数据。Optionally, the sensor data includes sensor data collected prior to commissioning and/or construction of the wind turbine or wind power plant.

可选地,步骤(iii)被进一步约束,使得对于安排内的任何给定的时间段,当所有涡轮机的功率被加在一起时,其不超过可以在从发电站到电网的连接中承载的功率量。Optionally, step (iii) is further constrained such that for any given time period within the arrangement, when the power of all turbines is added together, it does not exceed the amount that can be carried in the connection from the power station to the grid amount of power.

根据本发明的第三方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a third aspect of the present invention there is provided a method of generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the method comprising:

基于测量的风力涡轮机站点数据和/或运行数据来确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components based on the measured wind turbine site data and/or operational data;

应用优化功能,所述优化功能通过改变所述涡轮机或所述一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变初始控制安排以确定优化的控制安排,所述优化包括:Applying an optimization function that alters an initial control arrangement to determine an optimization by altering the trade-off between fatigue life consumed by the turbine or the one or more turbine components and energy capture until an optimized control arrangement is determined The control arrangement, the optimization includes:

基于当前剩余疲劳寿命和改变的控制安排,来估计涡轮机或涡轮机部件在改变的控制安排期间所消耗的未来的疲劳寿命;以及estimating future fatigue life consumed by the turbine or turbine component during the changed control schedule based on the current remaining fatigue life and the changed control schedule; and

根据一个或多个输入约束条件来约束对控制安排的优化;constrain the optimization of the control arrangement according to one or more input constraints;

其中,输入约束条件包括一个或多个涡轮机部件的最大允许部件更换次数,并且所述优化还包括改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。Wherein the input constraints include a maximum allowable number of component replacements for one or more turbine components, and the optimizing further includes changing an initial value of wind turbine life to determine a target wind turbine life.

根据本发明的第四方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a fourth aspect of the present invention there is provided a method of generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the method comprising:

基于测量的风力涡轮机站点数据和/或运行数据来确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components based on the measured wind turbine site data and/or operational data;

应用优化功能,所述优化功能通过改变所述涡轮机或所述一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变初始控制安排以确定优化的控制安排,所述优化包括:Applying an optimization function that alters an initial control arrangement to determine an optimization by altering the trade-off between fatigue life consumed by the turbine or the one or more turbine components and energy capture until an optimized control arrangement is determined The control arrangement, the optimization includes:

基于当前剩余疲劳寿命和改变的控制安排,来估计涡轮机或涡轮机部件在改变的控制安排期间所消耗的未来的疲劳寿命;以及estimating future fatigue life consumed by the turbine or turbine component during the changed control schedule based on the current remaining fatigue life and the changed control schedule; and

根据一个或多个输入约束条件来约束对控制安排的优化;constrain the optimization of the control arrangement according to one or more input constraints;

其中,所述输入约束条件包括目标最小风力涡轮机寿命,并且所述优化还包括针对一个或多个部件改变将在安排的期间执行的部件更换的次数的初始值,以确定最大部件更换次数。Wherein the input constraints include a target minimum wind turbine life, and the optimizing further includes changing an initial value for the number of component replacements to be performed during the scheduled period for one or more components to determine a maximum number of component replacements.

根据本发明的第五方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a fifth aspect of the present invention, there is provided a method of generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the method comprising:

基于测量的风力涡轮机站点数据和/或运行数据,来确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components based on the measured wind turbine site data and/or operational data;

应用优化功能,所述优化功能通过改变所述涡轮机或所述一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变初始控制安排以确定优化的控制安排,所述优化包括:Applying an optimization function that alters an initial control arrangement to determine an optimization by altering the trade-off between fatigue life consumed by the turbine or the one or more turbine components and energy capture until an optimized control arrangement is determined The control arrangement, the optimization includes:

基于当前剩余疲劳寿命和改变的控制安排,来估计涡轮机或涡轮机部件在改变的控制安排期间所消耗的未来的疲劳寿命;以及estimating future fatigue life consumed by the turbine or turbine component during the changed control schedule based on the current remaining fatigue life and the changed control schedule; and

根据一个或多个输入约束条件来约束对控制安排的优化;constrain the optimization of the control arrangement according to one or more input constraints;

其中,所述优化还包括:改变风力涡轮机寿命的初始值,以及针对一个或多个部件改变将在安排的期间执行的部件更换的次数的初始值,以确定目标最小风力涡轮机寿命和一个或多个涡轮机部件的部件更换次数的组合。wherein the optimizing further includes changing an initial value of wind turbine life and changing an initial value for the number of component replacements to be performed during the scheduled period for one or more components to determine a target minimum wind turbine life and one or more A combination of component replacements for each turbine component.

以下可选特征可以适用于第三、第四或第五方面。The following optional features may apply to the third, fourth or fifth aspect.

控制安排可以适用于涡轮机的整个寿命期间。The control arrangement can be applied throughout the life of the turbine.

可选地,该方法还包括通过改变部件更换的时机并改变部件更换的次数直到达到最大次数来优化所述控制安排。Optionally, the method further includes optimizing the control schedule by varying the timing of component replacements and varying the number of component replacements until a maximum number is reached.

可选地,可更换的一个或多个涡轮机部件包括以下中的一个或多个:叶片,变桨轴承,变桨致动系统,轮毂,主轴,主轴承,齿轮箱,发电机,转换器,偏航驱动器,偏航轴承或变压器。Optionally, the replaceable one or more turbine components include one or more of the following: blades, pitch bearings, pitch actuation systems, hubs, main shafts, main bearings, gearboxes, generators, converters, Yaw drive, yaw bearing or transformer.

可选地,初始控制安排指定涡轮机可以运行的涡轮机最大功率电平随时间的相对变化。Optionally, the initial control arrangement specifies a relative change over time of the maximum turbine power level at which the turbine may operate.

可选地,输入约束条件还包括涡轮机设计允许的涡轮机的上限最大功率输出和/或涡轮机的最小功率输出。Optionally, the input constraints also include an upper limit maximum power output of the turbine and/or a minimum power output of the turbine allowed by the turbine design.

可选地,确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:将来自一个或多个涡轮机传感器的传感器数据应用于一个或多个寿命使用估计算法。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components includes applying sensor data from one or more turbine sensors to one or more life usage estimation algorithms.

可选地,确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:使用来自条件监测系统的数据。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components includes using data from a condition monitoring system.

可选地,确定指示涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值包括:结合站点检查程序使用从风电场传感器获得的数据,该站点检查程序基于风电场传感器以及与风电场和风力涡轮机设计有关的参数来确定作用在涡轮机部件上的载荷。Optionally, determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components includes using data obtained from the wind farm sensors in conjunction with a site inspection procedure based on the wind farm sensors and in conjunction with the wind farm and the wind farm. Turbine design-related parameters to determine the loads acting on turbine components.

可选地,控制安排的优化包括改变控制安排以使平准化能量成本(LCoE)最小化。可以使用LCoE模型来确定LCoE,该模型包括以下中的一个或多个的参数:容量系数,指示在时间段内生成的能量除以涡轮机在该时间段内以额定功率连续运行的情况下能够生成的能量;可用性,指示涡轮机能够用于发电的时间;以及风电场效率,指示在时间段内生成的能量除以涡轮机在完全不受上游涡轮机干扰的风力下运行的情况下能够生成的能量。该模型可以进一步包括以下中的一个或多个的参数:与更换一个或多个部件相关联的成本,包括涡轮机停机时间、部件更换的人工和设备、更换部件的制造或整修成本以及经整修的部件或所述更换部件到发电站的运输成本;以及与更换磨损组件相关联的服务成本。Optionally, the optimization of the control arrangement includes changing the control arrangement to minimize the levelized cost of energy (LCoE). LCoE can be determined using an LCoE model that includes parameters for one or more of the following: A capacity factor, which indicates the amount of energy generated during a time period divided by the amount the turbine can generate if the turbine were to operate continuously at rated power for that time period availability, which indicates how long the turbines can be used to generate electricity; and wind farm efficiency, which indicates the energy generated during the time period divided by the energy the turbines could generate if they were operating in wind completely undisturbed by upstream turbines. The model may further include parameters for one or more of the following: costs associated with replacing one or more components, including turbine downtime, labor and equipment for component replacement, manufacturing or refurbishment costs for replacement components, and refurbished Transportation costs of parts or said replacement parts to the power station; and service costs associated with replacing worn components.

可选地,优化的控制安排是涡轮机可以操作的最大功率电平的安排,并且可以指定高于风力涡轮机的额定功率的最大功率电平。可选地,控制安排可以指定随着时间应该引起的疲劳损伤量,该方法还包括基于一个或多个LUE来操作风力涡轮机,以便按照控制安排指示的速率引起疲劳损伤。Optionally, the optimized control arrangement is an arrangement of a maximum power level at which the turbine can operate, and a maximum power level higher than the rated power of the wind turbine may be specified. Optionally, the control schedule may specify an amount of fatigue damage that should be induced over time, the method further comprising operating the wind turbine based on the one or more LUEs to induce fatigue damage at a rate indicated by the control schedule.

控制安排可以指示涡轮机最大功率电平在涡轮机的寿命期间如何变化。The control arrangement may dictate how the turbine maximum power level changes over the life of the turbine.

可选地,该方法可以进一步包括将优化的控制安排提供给风力涡轮机控制器或风力发电站控制器,以控制风力涡轮机的功率输出。Optionally, the method may further comprise providing the optimized control arrangement to the wind turbine controller or the wind power plant controller to control the power output of the wind turbine.

可选地,该方法周期性地重复。该方法可以每天、每月或每年重复一次。Optionally, the method is repeated periodically. This method can be repeated daily, monthly or yearly.

可以提供被配置为执行本文描述的第三、第四或第五方面的方法的用于风力涡轮机或风力发电站的对应控制器。A corresponding controller for a wind turbine or wind power plant configured to perform the method of the third, fourth or fifth aspect described herein may be provided.

根据第三方面,提供了一种用于生成用于风力涡轮机的控制安排的优化器,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述优化器包括:According to a third aspect, there is provided an optimizer for generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the optimizer comprising:

优化模块,所述优化模块被配置为接收:变量集合的初始值,所述变量集合是所述风力涡轮机的运行变量并且包括初始控制安排;一个或多个约束条件;以及指示所述涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的数据;an optimization module configured to receive: initial values for a set of variables that are operating variables of the wind turbine and include initial control arrangements; one or more constraints; and an indication of the turbine or a or data on the current remaining fatigue life of multiple turbine components;

其中,所述优化模块被配置为:Wherein, the optimization module is configured as:

通过根据所述涡轮机或所述一个或多个涡轮机部件的剩余疲劳寿命以及所述一个或多个约束条件使所述变量中的一个或多个变量从其初始值进行改变而使在所述优化模块处接收的取决于所述变量集合的运行参数最大化或最小化,来优化所述控制安排;并且The optimization is performed by changing one or more of the variables from their initial values based on the remaining fatigue life of the turbine or the one or more turbine components and the one or more constraints. maximizing or minimizing operating parameters received at the module depending on the set of variables to optimize the control arrangement; and

输出所述优化的控制安排;outputting said optimized control arrangement;

其中,所述约束条件包括一个或多个涡轮机部件的最大允许部件更换次数,并且所述优化模块还被配置为改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。Wherein the constraints include a maximum allowable number of component replacements for one or more turbine components, and the optimization module is further configured to vary the initial value of wind turbine life to determine a target wind turbine life.

根据第四方面,提供了一种用于生成用于风力涡轮机的控制安排的优化器,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述优化器包括:According to a fourth aspect, there is provided an optimizer for generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the optimizer comprising:

优化模块,所述优化模块被配置为接收:变量集合的初始值,所述变量集合是所述风力涡轮机的运行变量并且包括初始控制安排;一个或多个约束条件;以及指示所述涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的数据;an optimization module configured to receive: initial values for a set of variables that are operating variables of the wind turbine and include initial control arrangements; one or more constraints; and an indication of the turbine or a or data on the current remaining fatigue life of multiple turbine components;

其中,所述优化模块被配置为:Wherein, the optimization module is configured as:

通过根据所述涡轮机或所述一个或多个涡轮机部件的剩余疲劳寿命以及所述一个或多个约束条件使所述变量中的一个或多个变量从其初始值进行改变而使在所述优化模块处接收的取决于所述变量集合的运行参数最大化或最小化,来优化所述控制安排;并且The optimization is performed by changing one or more of the variables from their initial values based on the remaining fatigue life of the turbine or the one or more turbine components and the one or more constraints. maximizing or minimizing operating parameters received at the module depending on the set of variables to optimize the control arrangement; and

输出所述优化的控制安排;outputting said optimized control arrangement;

其中,所述约束条件包括目标最小风力涡轮机寿命,并且所述优化模块进一步被配置为针对一个或多个部件改变将在安排的期间执行的部件更换的次数的初始值,以确定最大部件更换次数。wherein the constraints include a target minimum wind turbine life, and the optimization module is further configured to vary an initial value of a number of component replacements to be performed during the scheduled period for one or more components to determine a maximum number of component replacements .

根据第五方面,提供了一种用于生成用于风力涡轮机的控制安排的优化器,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述优化器包括:According to a fifth aspect, there is provided an optimizer for generating a control schedule for a wind turbine, the control schedule indicating how the maximum power level of the turbine varies over time, the optimizer comprising:

优化模块,所述优化模块被配置为接收:变量集合的初始值,所述变量集合是所述风力涡轮机的运行变量并且包括初始控制安排;一个或多个约束条件;以及指示所述涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的数据;an optimization module configured to receive: initial values for a set of variables that are operating variables of the wind turbine and include initial control arrangements; one or more constraints; and an indication of the turbine or a or data on the current remaining fatigue life of multiple turbine components;

其中,所述优化模块被配置为:Wherein, the optimization module is configured as:

通过根据所述涡轮机或所述一个或多个涡轮机部件的剩余疲劳寿命以及所述一个或多个约束条件使所述变量中的一个或多个变量从其初始值进行改变而使在所述优化模块处接收的取决于所述变量集合的运行参数最大化或最小化,来优化所述控制安排;并且The optimization is performed by changing one or more of the variables from their initial values based on the remaining fatigue life of the turbine or the one or more turbine components and the one or more constraints. maximizing or minimizing operating parameters received at the module depending on the set of variables to optimize the control arrangement; and

输出所述优化的控制安排;outputting said optimized control arrangement;

其中,所述优化模块进一步被配置为:改变风力涡轮机寿命的初始值,并且针对一个或多个部件改变将在安排的期间执行的部件更换的次数的初始值,以确定目标最小风力涡轮机寿命和一个或多个涡轮机部件的部件更换次数的组合。wherein the optimization module is further configured to change the initial value of the wind turbine life and change the initial value of the number of component replacements to be performed during the scheduled period for one or more components to determine the target minimum wind turbine life and A combination of component replacement times for one or more turbine components.

以下可选特征可能适用于第三、第四或第五方面的优化器。The following optional features may apply to the optimizer of the third, fourth or fifth aspect.

可选地,初始控制安排指定涡轮机可以运行的涡轮机最大功率电平随时间的相对变化。Optionally, the initial control arrangement specifies a relative change over time of the maximum turbine power level at which the turbine may operate.

可选地,优化器进一步包括初始化模块,该初始化模块被配置为接收传感器数据和变量集合的初始值,初始化模块被配置为计算运行参数的初始值。Optionally, the optimizer further includes an initialization module configured to receive the sensor data and initial values of the variable set, the initialization module configured to calculate the initial values of the operating parameters.

可选地,所述一个或多个涡轮部件是以下中的一个或多个:叶片,变桨轴承,变桨致动系统,轮毂,主轴,主轴承,变速箱,发电机,转换器,偏航驱动器,偏航轴承或变压器。Optionally, the one or more turbine components are one or more of the following: blades, pitch bearings, pitch actuation systems, hubs, main shafts, main bearings, gearboxes, generators, converters, offsets Air drives, yaw bearings or transformers.

可选地,运行参数是涡轮机的平准化能量成本(LCoE),并且优化控制安排包括使平准化能量成本(LCoE)最小化。可以使用LCoE模型来确定LCoE,该模型包括以下中的一个或多个的参数:容量系数,指示在时间段内生成的能量除以涡轮机在该时间段内以额定功率连续运行的情况下能够生成的能量;可用性,指示涡轮机能够用于发电的时间;以及风电场效率,指示在时间段内生成的能量除以涡轮机在完全不受上游涡轮机干扰的风力下运行的情况下能够生成的能量。该模型可以进一步包括以下中的一个或多个的参数:与更换一个或多个部件相关联的成本,包括涡轮机停机时间、部件更换的人工和设备、更换部件的制造或整修成本以及经整修的部件或所述更换部件到发电站的运输成本;以及与更换磨损组件相关联的服务成本。Optionally, the operating parameter is the levelized cost of energy (LCoE) of the turbine, and optimizing the control arrangement includes minimizing the levelized cost of energy (LCoE). LCoE can be determined using an LCoE model that includes parameters for one or more of the following: A capacity factor, which indicates the amount of energy generated during a time period divided by the amount the turbine can generate if the turbine were to operate continuously at rated power for that time period availability, which indicates how long the turbines can be used to generate electricity; and wind farm efficiency, which indicates the energy generated during the time period divided by the energy the turbines could generate if they were operating in wind completely undisturbed by upstream turbines. The model may further include parameters for one or more of the following: costs associated with replacing one or more components, including turbine downtime, labor and equipment for component replacement, manufacturing or refurbishment costs for replacement components, and refurbished Transportation costs of parts or said replacement parts to the power station; and service costs associated with replacing worn components.

可以提供包括根据第三、第四或第五方面中的任何一个的优化器的控制器。A controller comprising an optimizer according to any of the third, fourth or fifth aspects may be provided.

根据第三方面,提供了一种生成用于包括多个风力涡轮机的风力发电站的控制安排的方法,所述控制安排针对每个风力涡轮机指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a third aspect, there is provided a method of generating a control schedule for a wind power plant comprising a plurality of wind turbines, the control schedule indicating for each wind turbine how the maximum power level of the turbine varies over time, the method include:

基于测量的风力涡轮机站点数据和/或运行数据,来确定指示每个涡轮机或每个涡轮机的一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of each turbine or one or more turbine components of each turbine based on the measured wind turbine site data and/or operational data;

应用优化功能,所述优化功能通过改变每个涡轮机或每个涡轮机的一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变每个涡轮机的初始控制安排以确定优化的控制安排,所述优化包括:Apply an optimization function that alters the performance of each turbine by changing the trade-off between fatigue life consumed and energy capture per turbine or one or more turbine components of each turbine until an optimal control arrangement is determined. The initial control schedule determines an optimized control schedule including:

基于当前剩余疲劳寿命和改变的控制安排使用站点检查程序,来估计涡轮机或涡轮机部件在改变的控制安排期间所消耗的未来的疲劳寿命,所述站点检查程序基于从风力发电站传感器获得的数据以及与所述风力发电站和风力涡轮机设计相关的参数来确定作用在涡轮机部件上的载荷,并且包括所述风力发电站的所述涡轮机之间的相互作用;以及The future fatigue life consumed by the turbine or turbine components during the changed control schedule is estimated based on the current remaining fatigue life and the changed control schedule using a site check procedure based on data obtained from wind power plant sensors and parameters related to the wind power plant and wind turbine design to determine loads acting on turbine components and including interactions between the turbines of the wind power plant; and

根据一个或多个输入约束条件来约束对所述控制安排的优化;Constraining optimization of the control arrangement according to one or more input constraints;

其中,所述约束条件包括所述风力涡轮机中的每个风力涡轮机的一个或多个涡轮机部件中的每个涡轮机部件的最大允许部件更换次数,并且所述优化模块还被配置为改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。wherein the constraints include a maximum allowable number of component replacements for each of the one or more turbine components of each of the wind turbines, and the optimization module is further configured to vary wind turbine life to determine the target wind turbine lifetime.

根据第四方面,提供了一种生成用于包括多个风力涡轮机的风力发电站的控制安排的方法,所述控制安排针对每个风力涡轮机指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a fourth aspect, there is provided a method of generating a control schedule for a wind power plant comprising a plurality of wind turbines, the control schedule indicating, for each wind turbine, how the turbine maximum power level varies over time, the method include:

基于测量的风力涡轮机站点数据和/或运行数据,来确定指示每个涡轮机或每个涡轮机的一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of each turbine or one or more turbine components of each turbine based on the measured wind turbine site data and/or operational data;

应用优化功能,所述优化功能通过改变每个涡轮机或每个涡轮机的一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变每个涡轮机的初始控制安排以确定优化的控制安排,所述优化包括:Apply an optimization function that alters the performance of each turbine by changing the trade-off between fatigue life consumed and energy capture per turbine or one or more turbine components of each turbine until an optimal control arrangement is determined. The initial control schedule determines an optimized control schedule including:

基于当前剩余疲劳寿命和改变的控制安排使用站点检查程序,来估计涡轮机或涡轮机部件在改变的控制安排期间所消耗的未来的疲劳寿命,所述站点检查程序基于从风力发电站传感器获得的数据以及与所述风力发电站和风力涡轮机设计相关的参数来确定作用在涡轮机部件上的载荷,并且包括所述风力发电站的所述涡轮机之间的相互作用;以及The future fatigue life consumed by the turbine or turbine components during the changed control schedule is estimated based on the current remaining fatigue life and the changed control schedule using a site check procedure based on data obtained from wind power plant sensors and parameters related to the wind power plant and wind turbine design to determine loads acting on turbine components and including interactions between the turbines of the wind power plant; and

根据一个或多个输入约束条件来约束对所述控制安排的优化;Constraining optimization of the control arrangement according to one or more input constraints;

其中,所述约束条件包括所述风力涡轮机中的每个风力涡轮机的目标最小风力涡轮机寿命,并且所述优化模块还被配置为针对每个风力涡轮机的一个或多个部件改变将在安排的期间执行的部件更换的次数的初始值,以确定最大部件更换次数。wherein the constraints include a target minimum wind turbine life for each of the wind turbines, and the optimization module is further configured to change, for each wind turbine, one or more component changes to be during a scheduled period The initial value of the number of parts replacements performed to determine the maximum number of parts replacements.

根据第五方面,提供了一种生成用于包括多个风力涡轮机的风力发电站的控制安排的方法,所述控制安排针对每个风力涡轮机指示涡轮机最大功率电平如何随时间变化,所述方法包括:According to a fifth aspect, there is provided a method of generating a control schedule for a wind power plant comprising a plurality of wind turbines, the control schedule indicating, for each wind turbine, how the turbine maximum power level varies over time, the method include:

基于测量的风力涡轮机站点数据和/或运行数据,来确定指示每个涡轮机或每个涡轮机的一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of each turbine or one or more turbine components of each turbine based on the measured wind turbine site data and/or operational data;

应用优化功能,所述优化功能通过改变每个涡轮机或每个涡轮机的一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变每个涡轮机的初始控制安排以确定优化的控制安排,所述优化包括:Apply an optimization function that alters the performance of each turbine by changing the trade-off between fatigue life consumed and energy capture per turbine or one or more turbine components of each turbine until an optimal control arrangement is determined. The initial control schedule determines an optimized control schedule including:

基于当前剩余疲劳寿命和改变的控制安排使用站点检查程序,来估计涡轮机或涡轮机部件在改变的控制安排期间所消耗的未来的疲劳寿命,所述站点检查程序基于从风力发电站传感器获得的数据以及与所述风力发电站和风力涡轮机设计相关的参数来确定作用在涡轮机部件上的载荷,并且包括所述风力发电站的所述涡轮机之间的相互作用;以及The future fatigue life consumed by the turbine or turbine components during the changed control schedule is estimated based on the current remaining fatigue life and the changed control schedule using a site check procedure based on data obtained from wind power plant sensors and parameters related to the wind power plant and wind turbine design to determine loads acting on turbine components and including interactions between the turbines of the wind power plant; and

根据一个或多个输入约束条件来约束对所述控制安排的优化;Constraining optimization of the control arrangement according to one or more input constraints;

其中,所述优化还包括改变每个风力涡轮机的寿命的初始值,以及针对每个风力涡轮机的一个或多个部件改变将在安排的期间执行的部件更换的次数的初始值,以确定每个风力涡轮机的目标最小风力涡轮机寿命和每个风力涡轮机的一个或多个涡轮机部件的部件更换次数的组合。wherein the optimizing further includes changing an initial value for the lifetime of each wind turbine, and changing an initial value for the number of component replacements to be performed during the scheduled period for one or more components of each wind turbine to determine each A combination of a target minimum wind turbine life for the wind turbines and the number of component replacements for one or more turbine components of each wind turbine.

以下可选特征可能适用于第三、第四或第五方面的发电站电平方法。The following optional features may apply to the plant level method of the third, fourth or fifth aspect.

可选地,初始控制安排针对每个涡轮机指定涡轮机可以运行的涡轮机最大功率电平随时间的相对变化。Optionally, the initial control schedule specifies, for each turbine, the relative change over time of the maximum turbine power level at which the turbine may operate.

可选地,传感器数据包括在试运行和/或建造风力涡轮机或风力发电站之前收集的传感器数据。Optionally, the sensor data includes sensor data collected prior to commissioning and/or construction of the wind turbine or wind power plant.

对于一个或多个涡轮机部件,可选地,优化功能改变可以在涡轮机的剩余寿命内更换部件的次数。所述优化功能针对所述涡轮机部件中的一个或多个涡轮机部件对在所述涡轮机的剩余寿命期间何时能够对所述部件进行更换做出改变。For one or more turbine components, optionally, the optimization function changes the number of times the components can be replaced over the remaining life of the turbine. The optimization function makes changes to when one or more of the turbine components can be replaced during the remaining life of the turbine.

可选地,该方法进一步被约束,使得对于安排内的任何给定的时间段,当所有涡轮机的功率被加在一起时,其不超过在从发电站到电网的连接中可以承载的功率量。Optionally, the method is further constrained such that for any given period of time within the arrangement, when the power of all turbines is added together, it does not exceed the amount of power that can be carried in the connection from the power station to the grid .

可以提供被配置为执行第三、第四或第五方面的上述方法的对应的风力发电站控制器。A corresponding wind power plant controller configured to perform the above method of the third, fourth or fifth aspect may be provided.

本文中所描述的任何方法可以以软件来体现,当所述软件在控制器的处理器上被执行时使得其执行相关方法。Any of the methods described herein may be embodied in software that, when executed on a processor of a controller, causes it to perform the associated method.

本文对站点检查软件的提及包括本领域技术人员公知的站点检查工具,用于基于建造前和/或试运行前传感器数据和其它站点信息(如地形等)来模拟风力涡轮机的运行以确定风力涡轮机和风力发电站的运行特性。站点检查工具还可以使用来自涡轮机或发电站的运行数据,或者可以使用来自类似的涡轮机或发电站的运行数据(在该数据可用的情况下)。示例包括Vestas(TM)站点检查工具。DNV GL提供了一个替代的站点检查软件包。它由三个连接的程序组成:“WindFarmer”、“WindFarmer Bladed Link”和“Bladed”,其允许用户进行全面的性能和载荷计算。References herein to site inspection software include site inspection tools known to those skilled in the art for simulating the operation of wind turbines to determine wind power based on pre-construction and/or pre-commissioning sensor data and other site information (eg, terrain, etc.) Operating characteristics of turbines and wind power plants. The site inspection tool may also use operational data from turbines or power plants, or may use operational data from similar turbines or power plants, where such data is available. Examples include the Vestas(TM) site inspection tool. DNV GL provides an alternative site checking package. It consists of three linked programs: "WindFarmer", "WindFarmer Bladed Link" and "Bladed", which allow the user to perform comprehensive performance and load calculations.

附图说明Description of drawings

现在将仅以举例的方式并参照附图进一步描述本发明,在附图中:The invention will now be further described, by way of example only, with reference to the accompanying drawings, in which:

图1A是常规风力涡轮机的示意性前视图;1A is a schematic front view of a conventional wind turbine;

图1B是包括多个风力涡轮机的常规风力发电站的示意图;FIG. 1B is a schematic diagram of a conventional wind power plant including a plurality of wind turbines;

图2是例示风力涡轮机的常规功率曲线的图;2 is a graph illustrating a conventional power curve for a wind turbine;

图3是例示风力涡轮机随时间产生的功率如何随着涡轮机的目标寿命而变化的图;3 is a graph illustrating how the power produced by a wind turbine over time varies with the target life of the turbine;

图4是示出风力涡轮机的不同功率安排的图,其中,个体最大风力涡轮机功率电平在涡轮机的寿命期间变化以控制功率输出;4 is a diagram illustrating different power arrangements for wind turbines, wherein individual maximum wind turbine power levels are varied over the life of the turbine to control power output;

图5是示出不同涡轮机部件之间累积的总寿命疲劳的示例性变化的图;FIG. 5 is a graph showing exemplary variation in accumulated total life fatigue between different turbine components;

图6是风力发电站的简化的平准化能量成本模型的示例;6 is an example of a simplified levelized energy cost model for a wind power plant;

图7是用于优化风力涡轮机控制策略的示例性优化器的框图;7 is a block diagram of an exemplary optimizer for optimizing a wind turbine control strategy;

图8是用于确定风力涡轮机类型最大功率电平的方法的示例;以及FIG. 8 is an example of a method for determining a wind turbine type maximum power level; and

图9是风力涡轮机控制器装置的示意图。Figure 9 is a schematic diagram of a wind turbine controller arrangement.

具体实施方式Detailed ways

本发明的实施例试图在采用折衷能量捕获和疲劳载荷的控制方法时提高涡轮机运营商可具有的灵活性。具体而言,实施例提供了一种优化方法,以允许涡轮机运营商根据他们的要求来优化涡轮机性能,例如AEP。Embodiments of the present invention seek to increase the flexibility a turbine operator may have when employing a control method that compromises energy capture and fatigue loading. Specifically, embodiments provide an optimization method to allow turbine operators to optimize turbine performance, such as AEP, according to their requirements.

为了优化性能,三个参数可以在整个风力涡轮机控制策略中变化。这些是:(i)风力涡轮机的功率安排;(ii)风力涡轮机的剩余寿命;(iii)在风机涡轮机的剩余寿命期间允许的部件更换次数。这些参数中的一个或多个可以相对于其它参数中的一个或多个而变化,以达到优化的控制策略。参数也可能受约束的限制。To optimize performance, three parameters can be varied throughout the wind turbine control strategy. These are: (i) the power schedule of the wind turbine; (ii) the remaining life of the wind turbine; (iii) the number of component replacements allowed during the remaining life of the wind turbine. One or more of these parameters may be varied relative to one or more of the other parameters to achieve an optimized control strategy. Parameters may also be restricted by constraints.

例如,可以执行优化以提高涡轮机在其整个寿命期间的AEP并提高收益性。涡轮机运营商可以指定一个或多个约束条件,然后可以执行优化。运营商可以请求最小风力涡轮机寿命(例如,19年)、个体部件的最大更换次数(例如,一次齿轮箱更换)和/或特定功率安排、安排曲线或形状或安排梯度中的一个或多个。For example, optimizations can be performed to increase the AEP of the turbine over its entire life and increase profitability. The turbine operator can specify one or more constraints and can then perform optimization. The operator may request one or more of a minimum wind turbine life (eg, 19 years), a maximum number of replacements of individual components (eg, one gearbox replacement), and/or a specific power schedule, schedule curve or shape, or schedule gradient.

功率安排是风力涡轮机控制器用于在剩余的涡轮机寿命期间折衷能量捕获和疲劳载荷,例如当使该涡轮机超额定时,的变量的安排。通过使给定的涡轮机超额定而生成的附加功率可以通过指定诸如个体风力涡轮机最大功率电平之类的变量的值来控制。该最大功率电平指定高于额定功率的功率,高达在超额定时涡轮机可以运行的功率。功率安排可以指定涡轮机的寿命期间的恒定的最大功率电平。可替换地,功率安排可以指定在风力涡轮机的寿命期间变化的最大功率电平,使得可以通过超额定生成的附加功率量随着时间而变化。例如,发电站运营商可能希望以涡轮机部件的疲劳寿命消耗增加为代价在风力涡轮机寿命的早年期间生成更多的电力,因为在项目早年期间的发电财务价值是不成比例的高。A power schedule is an arrangement of variables used by the wind turbine controller to trade off energy capture and fatigue loads during the remainder of the turbine's life, such as when the turbine is overrated. The additional power generated by overrating a given turbine can be controlled by specifying values for variables such as individual wind turbine maximum power levels. The maximum power level specifies power above rated power, up to the power at which the turbine can operate while overrated. A power schedule may specify a constant maximum power level over the life of the turbine. Alternatively, the power schedule may specify a maximum power level that varies over the life of the wind turbine so that the amount of additional power generated by overrating may vary over time. For example, a power station operator may wish to generate more electricity during the early years of a wind turbine's life at the expense of increased fatigue life consumption of turbine components, since the financial value of electricity generation during the early years of the project is disproportionately high.

对于给定的涡轮机类型,个体风力涡轮机最大功率电平受到风力涡轮机机械部件的最大载荷极限以及电气部件的设计极限的约束,因为最大功率不能安全地增加超过使得涡轮机经受高于其最大设计载荷极限的电载荷或机械载荷值的电平。个体风力涡轮机最大功率电平不能超过的上限最大功率电平可以被称为“风力涡轮机类型最大功率电平”,并且指定最大功率电平,在该最大功率电平下所确定的载荷不超过该类型的风力涡轮机的设计载荷。在下面“最大功率电平计算”部分中给出了可以计算风力涡轮机类型最大功率电平的方式的示例。For a given turbine type, the individual wind turbine maximum power levels are constrained by the maximum load limits of the mechanical components of the wind turbine as well as the design limits of the electrical components, as the maximum power cannot be safely increased beyond subjecting the turbine to above its maximum design load limit the level of electrical load or mechanical load value. The upper maximum power level that the individual wind turbine maximum power level cannot exceed may be referred to as the "wind turbine type maximum power level" and specifies the maximum power level at which the determined load does not exceed this maximum power level. Design loads for types of wind turbines. An example of how the wind turbine type maximum power level can be calculated is given in the "Maximum Power Level Calculation" section below.

个体风力涡轮机最大功率电平是根据本发明的实施例在安排中指定的功率电平,并且可以被简单地称为最大功率电平。可以针对每个个体涡轮机完善个体风力涡轮机最大功率电平,基于每个涡轮机在其在风力发电站中的特定地点或位置处所面对的条件中的一个或多个,基于每个涡轮机的疲劳载荷值来计算,其中,针对给定站点的每个涡轮机确定个体风力涡轮机最大功率电平。然后可以设定个体风力涡轮机最大功率电平,使得涡轮机或个体涡轮机部件的疲劳寿命的消耗速率给出对应于或超过特定目标寿命的疲劳寿命。The individual wind turbine maximum power level is the power level specified in the arrangement according to embodiments of the present invention, and may simply be referred to as the maximum power level. Individual wind turbine maximum power levels may be refined for each individual turbine, based on one or more of the conditions each turbine faces at a particular location or location in the wind power plant, based on each turbine's fatigue loads value, where an individual wind turbine maximum power level is determined for each turbine at a given site. The individual wind turbine maximum power levels can then be set such that the rate of consumption of the fatigue life of the turbine or individual turbine components gives a fatigue life that corresponds to or exceeds a particular target life.

风力涡轮机的剩余寿命指定了运营商为了优化AEP而愿意接受的运行寿命的量。剩余寿命将取决于实施AEP优化方法的第一次激活的时间点,因为随着涡轮机运行,可用的剩余寿命减少。The remaining life of the wind turbine specifies the amount of operating life that the operator is willing to accept in order to optimize the AEP. The remaining life will depend on the point in time when the first activation of the AEP optimization method is implemented, as the available remaining life decreases as the turbine operates.

在风力涡轮机的剩余寿命期间允许的部件更换次数也可用于优化AEP。由于在不同的条件下不同速率的涡轮机部件疲劳,一些部件的实际寿命可能远远超过风力涡轮机20年的预期寿命,或者同样地,这些部件能够在给定寿命周期期间以较高的量超额定运转。具有较长寿命的部件不能驱动整个涡轮机寿命,并具有多余的生产能力。然而,具有较短寿命的部件可能会对超额定具有限制作用,并且在涡轮机的寿命期间,能够通过更换一个或多个这些部件来提高AEP。特别是,通过提高转矩来实现的超额定对齿轮箱、发电机和电力输出部件的疲劳寿命具有特别重大的影响。相反,在通过提高转子速度来实现超额定的情况下,那么叶片和结构部件的疲劳寿命就会受到更大的影响。The number of component replacements allowed during the remaining life of the wind turbine can also be used to optimize the AEP. Due to different rates of turbine component fatigue under different conditions, the actual life of some components may well exceed the expected 20-year life of the wind turbine, or similarly, these components can be overrated by a higher amount during a given life cycle run. Components with a longer life cannot drive the entire turbine life and have excess production capacity. However, components with shorter lifespans may have a limiting effect on overrating, and the AEP can be increased by replacing one or more of these components during the life of the turbine. In particular, over-rating achieved by increasing torque has a particularly significant impact on the fatigue life of gearboxes, generators and power output components. Conversely, where over-rating is achieved by increasing rotor speed, then the fatigue life of blades and structural components is more affected.

在本发明的实施例的上下文中的可更换部件被认为是主要部件,例如均占风力涡轮机总成本的5%或更多并且可以在实地被更换的那些部件。仅占风力涡轮机总成本的一小部分的一般磨损部件不需要考虑。特别地,考虑更换的部件可以包括叶片、变桨轴承、变桨致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动器、偏航轴承或变压器中的一个或多个。Replaceable components in the context of embodiments of the present invention are considered major components, such as those components that each account for 5% or more of the total cost of the wind turbine and can be replaced in the field. General wear parts that make up only a fraction of the total cost of a wind turbine do not need to be considered. In particular, components under consideration for replacement may include one or more of blades, pitch bearings, pitch actuation systems, hubs, main shafts, main bearings, gearboxes, generators, converters, yaw drives, yaw bearings or transformers multiple.

图3显示了优化的第一示例,其中功率安排相对于涡轮机的目标寿命而变化。在这示例中,涡轮机的设计寿命是20年,并且在涡轮机的寿命期间功率电平是固定的。可以看出,随着风力涡轮机寿命的减少,给定年份产生的电量增加。随着涡轮机寿命的减少,涡轮机或涡轮机部件的疲劳寿命消耗速率可以增加,从而允许通过超额定生成附加功率。优化可以根据涡轮机运营商的偏好来应用。例如,可以确定和选择使涡轮机的AEP、净现值(NPV)或纯现值(NPW)最大化的寿命。NPV/NPW可以使用已知的方法来计算。Figure 3 shows a first example of optimization where the power schedule is varied relative to the target life of the turbine. In this example, the design life of the turbine is 20 years, and the power level is fixed during the life of the turbine. It can be seen that the amount of electricity produced in a given year increases as the life of the wind turbine decreases. As turbine life decreases, the fatigue life consumption rate of the turbine or turbine components may increase, allowing additional power to be generated by overrating. Optimization can be applied according to the turbine operator's preference. For example, a lifetime that maximizes the turbine's AEP, net present value (NPV), or pure present value (NPW) may be determined and selected. NPV/NPW can be calculated using known methods.

图4显示了优化的另一示例,其中,功率安排再次相对于涡轮机的目标寿命而变化。在这示例中,由安排指定的最大功率电平在涡轮机的寿命期间是可变的。可以指定初始安排,例如,涡轮机运营商可以具有要使用的期望的安排形状。安排定义了个体风力涡轮机最大功率电平如何随时间变化,但是可以以相对的方式而非绝对的方式进行。在该示例中,期望的安排401是在20年涡轮机寿命期间从风力涡轮机类型最大功率电平Pmax到涡轮机类型的标称或额定功率电平Pnom的线性安排。对于年平均风速低于涡轮机设计风速的典型示例站点,虚线A表示20年寿命期间个体涡轮机的站点具体容量。对于特定的涡轮机而言,在涡轮机的寿命期间不超过涡轮机或某些涡轮机部件的疲劳寿命的情况下,也许不可能满足期望的安排401。因此调整安排,直到根据功率安排发生的总疲劳不超过载荷最重的部件的设计疲劳寿命。Figure 4 shows another example of optimization, where the power schedule is again varied relative to the target life of the turbine. In this example, the maximum power level specified by the schedule is variable over the life of the turbine. The initial arrangement may be specified, eg, the turbine operator may have the desired arrangement shape to be used. Scheduling defines how individual wind turbine maximum power levels vary over time, but can be done in a relative rather than absolute manner. In this example, the desired schedule 401 is a linear schedule from a wind turbine type maximum power level P max to a turbine type nominal or rated power level P nom over a 20 year turbine life. For a typical example site where the annual average wind speed is below the turbine design wind speed, the dotted line A represents the site-specific capacity of the individual turbines over a 20-year life. For a particular turbine, it may not be possible to meet the desired arrangement 401 without exceeding the fatigue life of the turbine or certain turbine components during the life of the turbine. The schedule is therefore adjusted until the total fatigue that occurs according to the power schedule does not exceed the design fatigue life of the most heavily loaded component.

这可以通过估计在其持续时间内(例如,直到涡轮机设计寿命,或用户指定的涡轮机寿命)遵循安排所发生的疲劳损伤来实现。使用站点检查功能可以估计所发生的疲劳损伤,并且可以补充LUE数据,两者都考虑到鉴于给定的微站点条件由于载荷而导致的疲劳损伤。可以调整安排,直至载荷最重的部件的所得疲劳寿命等于该部件的设计疲劳寿命为止。换而言之,调整安排,直到载荷最重的部件的全部或大部分疲劳寿命在安排的持续时间期间被用完为止。This can be achieved by estimating the fatigue damage that will occur following the schedule for its duration (eg, up to the turbine design life, or user specified turbine life). Fatigue damage that occurs can be estimated using the site check function, and LUE data can be supplemented, both taking into account the fatigue damage due to loading given the conditions of the microsite. The arrangement can be adjusted until the resulting fatigue life of the most heavily loaded component equals the design fatigue life of that component. In other words, the schedule is adjusted until all or most of the fatigue life of the most heavily loaded component is used up during the scheduled duration.

安排可以通过调整它的一个或多个参数来调整。这可以包括:An arrangement can be adjusted by adjusting one or more of its parameters. This can include:

-通过在整个安排中增加或减去一个值来将偏移应用到安排;- apply an offset to an arrangement by adding or subtracting a value to the entire arrangement;

-将大于或小于1的增益应用到安排;- apply a gain greater or less than 1 to the arrangement;

-通过调整相关参数来非线性地提高或降低控制安排的任何其它适当的功能,从而以其它方式根据需要扩大/收缩或增加/缩小安排以改变安排功率电平值。- Non-linearly raising or lowering any other suitable function of the control arrangement by adjusting the relevant parameters to otherwise expand/contract or increase/decrease the arrangement as needed to change the arrangement power level value.

在一个示例中,可以通过以下来实现对安排进行调整:基于根据功率安排图确定的针对最疲劳的部件的发生的疲劳损伤相对于时间的等效图或剩余疲劳寿命相对于时间的等效图,并且使用站点检查软件来确定在给定功率电平下在发电站内的特定涡轮机位置(也称为涡轮机微站点)处可能发生的对部件的疲劳损伤。对曲线进行调整,直到适用于所需的涡轮机寿命的等效疲劳曲线上相应能力线上面和下面的每个安排所限定的区域相等为止。例如,这可以通过使得线上方和下方的曲线的区域相等来实现,该线显示了以被设定为期望寿命内的站点特定能力的恒定最大功率电平而运行的个体涡轮机所引起的疲劳损伤。例如,这将是等同于图3的虚线A的线,但是示出了个体风力涡轮机最大功率随着时间所引起的疲劳损伤。可以通过向曲线添加或减去偏移而使功率安排曲线向上或向下移动直到区域相等来实现区域相等,或者通过调整曲线的一个或多个参数而放大或缩小曲线来实现区域相等。涡轮机或涡轮机部件所消耗的总疲劳寿命将达到20年的运行。线402示出了示例性安排,该线终止于黑色方块i。In one example, the adjustment to the schedule may be accomplished by: based on an equivalence plot of occurred fatigue damage versus time or an equivalence plot of residual fatigue life versus time for the most fatigued components determined from a power schedule , and use site inspection software to determine fatigue damage to components that may occur at specific turbine locations (also referred to as turbine microsites) within the power plant at a given power level. The curves are adjusted until the area defined by each arrangement above and below the corresponding capability line on the equivalent fatigue curve for the desired turbine life is equal. This can be achieved, for example, by equalizing the areas of the curves above and below the line showing fatigue damage caused by individual turbines operating at a constant maximum power level set to the site-specific capability over the expected life . For example, this would be a line equivalent to dashed line A of Figure 3, but showing fatigue damage over time due to the maximum power of an individual wind turbine. Area equivalence can be achieved by adding or subtracting an offset to the curve to move the power scheduling curve up or down until the areas are equal, or by scaling one or more parameters of the curve to enlarge or shrink the curve. The total fatigue life consumed by the turbine or turbine components will be 20 years of operation. An exemplary arrangement is shown by line 402, which terminates in black square i.

对于同一示例性站点,19年寿命期间的涡轮机的站点特定能力如虚线B所示。可以看出,19年寿命期间的能力超过20年寿命期间的能力。因此,所得的19年安排(由线403给出其示例)可以具有比20年寿命安排402的初始最大功率电平值P’20yrs更高的初始最大功率电平值P’19yrs。安排403终止于19年,由黑色方块ii表示。The site-specific capabilities of the turbines over a 19-year lifetime are shown in dashed line B for the same exemplary site. It can be seen that the capacity during the 19-year lifespan exceeds the capacity during the 20-year lifespan. Thus, the resulting 19-year arrangement, exemplified by line 403 , may have a higher initial maximum power level value P′ 19yrs than the initial maximum power level value P′ 20yrs of the 20-year life arrangement 402 . Arrangement 403 ends in year 19, represented by the black square ii.

在图4的示例中,安排调整受限于安排的斜率或梯度应当等于20年寿命的初始安排401的斜率或梯度的附加约束。如在图4的示例中所使用的,还可以应用其它约束,由此该安排的斜率等于初始安排401的斜率,直到达到标称功率电平,该标称功率电平可以是涡轮机的额定功率,从该点起,最大功率电平被保持在标称功率电平。可替代地,实施例可以采用涡轮机的降额定,使得由安排指定的最大功率电平可以被设置为低于涡轮机的额定功率的电平。In the example of FIG. 4, the schedule adjustment is subject to the additional constraint that the slope or gradient of the schedule should be equal to the slope or gradient of the initial schedule 401 for the 20-year life. As used in the example of Figure 4, other constraints may also be applied whereby the slope of the arrangement is equal to the slope of the initial arrangement 401 until a nominal power level is reached, which may be the rated power of the turbine , from which point the maximum power level is maintained at the nominal power level. Alternatively, embodiments may employ derating of the turbine such that the maximum power level specified by the arrangement may be set to a level lower than the rated power of the turbine.

安排以逐步的方式进行调整,或者从Pmax减小,或者从Pnom增加,或者从线A的功率值增加,直到达到适当的安排,针对该适当的安排,在载荷最重的涡轮机部件中具有足够的疲劳寿命,以达到目标涡轮机寿命。例如,初始最大功率电平P’可以以Pnom的1%的步幅增加或减少直到达到适当的安排。The schedule is adjusted in a stepwise manner, either decreasing from Pmax , or increasing from Pnom , or increasing from the power value of line A, until an appropriate schedule is reached for which, in the most heavily loaded turbine component Have sufficient fatigue life to achieve target turbine life. For example, the initial maximum power level P' may be increased or decreased in steps of 1% of Pnom until an appropriate schedule is reached.

根据涡轮机寿命的年限,还有其它的可能性来优化功率安排。例如,安排可以全部从相同的初始值(例如,Pmax)开始,并且梯度变化,直到适于期望的涡轮机寿命的等效疲劳曲线上相应的能力线上方和下方的每个安排限定的区域相等为止。There are other possibilities to optimize the power schedule depending on the age of the turbine's life. For example, the schedules may all start from the same initial value (eg, Pmax ) and ramped until the area defined by each schedule above and below the corresponding capability line on the equivalent fatigue curve suitable for the expected turbine life is equal until.

另一条线404示出了如果考虑到一个或多个部件更换,则涡轮机可以在20年的寿命期内实现的安排的示例。安排404终止于黑框i。一个或多个部件可能特别容易经受超额定引起的疲劳损伤。例如,如图5所示,经过20年的运行,一个部件可能达到20年的寿命疲劳极限,而其它部件仍有一定的寿命被保留。在这种情况下,更换引起较高疲劳损伤速率的一个或多个部件允许AEP增加。在涡轮机寿命期间,包括并考虑到更换的总成本,在计算NPV时,这仍可能增加涡轮机的收益性。Another line 404 shows an example of an arrangement that a turbine can achieve over a 20-year lifetime if one or more component replacements are considered. Arrangement 404 ends with black box i. One or more components may be particularly susceptible to fatigue damage from over-rating. For example, as shown in Figure 5, after 20 years of operation, one component may reach the 20-year life fatigue limit, while other components still have a certain amount of life remaining. In this case, replacing one or more components causing the higher fatigue damage rate allows the AEP to increase. This may still increase the profitability of the turbine when calculating NPV over the lifetime of the turbine, including and taking into account the total cost of replacement.

作为指定最大功率电平值的安排的替代方案,还可以指定疲劳损伤的安排或剩余疲劳寿命,因为引起的疲劳损伤的速率与涡轮机的最大功率电平设置有关。然后控制涡轮机功率输出以使得剩余疲劳寿命保持为安排指定的剩余疲劳寿命,例如通过使用LUE来跟踪涡轮机控制器的疲劳寿命。作为另一替代,还可以使用能量安排,因为这仍然指示涡轮机最大功率电平如何随时间变化。能量安排可以是每年或每个日历月等。As an alternative to specifying a schedule for maximum power level values, schedules for fatigue damage or remaining fatigue life can also be specified, since the rate of induced fatigue damage is related to the maximum power level setting of the turbine. The turbine power output is then controlled such that the remaining fatigue life remains at the remaining fatigue life specified by the schedule, eg, by using the LUE to track the fatigue life of the turbine controller. As another alternative, energy scheduling can also be used, as this still dictates how the turbine maximum power level varies over time. The energy schedule can be yearly or every calendar month etc.

为了避免疑惑,安排还可以具有非线性形状,例如遵循多项式曲线的形状。For the avoidance of doubt, the arrangement may also have a non-linear shape, such as a shape following a polynomial curve.

虽然安排显示为在其持续时间内连续变化,但它们可以以阶梯式变化,在特定时间段(例如,一个月、一个季节或一年)期间指定给定的最大功率电平。安排可以例如是在涡轮机的寿命期间的一系列年度值。While the schedules are shown to vary continuously over their duration, they can vary in steps, specifying a given maximum power level during a specific time period (eg, a month, a season, or a year). The schedule may be, for example, a series of annual values over the life of the turbine.

安排可以计算一次,也可以每隔一段时间重复该计算。例如,安排可以按月或按年计算。对于每年指定最大功率电平的安排,(例如)每个月或每周计算安排可能是有利的,因为安排的变化可能提醒用户注意比预期更快变化的参数。A schedule can be calculated once, or it can be repeated at intervals. For example, the schedule can be monthly or yearly. For a schedule that specifies a maximum power level annually, it may be advantageous to, for example, calculate the schedule every month or week, as changes to the schedule may alert the user to parameters that are changing faster than expected.

如果安排计算一次,该计算可以在风力发电站试运行之前进行,或者可以在试运行后的任何时候进行。对于每隔一段时间重复一次的计算,第一次计算可以在风力发电站试运行之前进行,或者可以在试运行后的任何时候进行。If the calculation is scheduled once, the calculation can be done before the commissioning of the wind power plant, or it can be done at any time after the commissioning. For calculations that are repeated at regular intervals, the first calculation can be done before the commissioning of the wind power plant, or it can be done at any time after the commissioning.

-第一示例- first example

根据第一示例,产生可用于控制风力涡轮机的控制安排。可以定义相对安排,并且可以定义最小风力涡轮机寿命或主要部件的最大更换次数中的一个或多个。然后调整安排以确保涡轮机的疲劳寿命达到目标寿命,同时最大化AEP。According to a first example, a control arrangement is generated that can be used to control a wind turbine. Relative arrangements may be defined, and one or more of a minimum wind turbine life or a maximum number of replacements of major components may be defined. The arrangement is then adjusted to ensure that the fatigue life of the turbine reaches the target life while maximizing the AEP.

风力涡轮机根据本文描述的超额定控制技术中的一种使用超额定控制器来运行,其可以由风力涡轮机控制器来实施。The wind turbine operates according to one of the overrating control techniques described herein using an overrating controller, which may be implemented by the wind turbine controller.

寿命使用估计器(LUE)可用于确定和监测部件的寿命使用。寿命使用估计器可用于确保所有涡轮机部件的疲劳载荷极限保持在其设计寿命内。可以测量给定部件经受的载荷(例如,它们的弯曲力矩、温度、力或运动),并且例如使用诸如雨流计数和Miner法则或化学衰减方程之类的技术来计算消耗的部件疲劳寿命的量。基于寿命使用估计器,个体涡轮机然后可以以不超过其设计极限的方式运行。用于测量给定涡轮机部件消耗的疲劳寿命的设备、模块、软件部件或逻辑部件也可以被称为其寿命使用估计器,并且将使用相同的首字母缩略词(LUE)来指代用于确定寿命使用估计的算法以及对应的设备、模块或软件或逻辑部件。下面将更详细地描述LUE。A lifetime usage estimator (LUE) can be used to determine and monitor the lifetime usage of components. A life usage estimator can be used to ensure that the fatigue load limits of all turbine components remain within their design lives. The loads experienced by given components (eg, their bending moments, temperatures, forces, or motion) can be measured and the amount of component fatigue life consumed can be calculated, for example, using techniques such as rainflow counting and Miner's law or chemical decay equations . Based on the lifetime usage estimator, individual turbines can then operate in a manner that does not exceed their design limits. Equipment, modules, software components or logic components used to measure the fatigue life consumed by a given turbine component may also be referred to as its life usage estimator, and will use the same acronym (LUE) to refer to for determining The lifetime is estimated using algorithms and corresponding equipment, modules or software or logic components. The LUE will be described in more detail below.

根据默认运行模式,超额定控制器将基于风力涡轮机的预期或认证寿命期间内的功能或安排来控制施加的超额定的量。通常这是20或25年。According to the default operating mode, the over-rating controller will control the amount of over-rating applied based on the function or schedule during the expected or certified lifetime of the wind turbine. Usually this is 20 or 25 years.

该控制器被配置为接收例如来自站点运营商的输入参数,该输入定义风力涡轮机或一个或多个特定涡轮机部件的新目标寿命。使用LUE确定涡轮机或相关涡轮机部件到目前为止的寿命使用。这对风力涡轮机的剩余的部件寿命量具有约束,并因此对控制安排具有约束。另外,修正的目标寿命对剩余的部件寿命必须延长的时间量具有约束。The controller is configured to receive input parameters, eg, from a site operator, the input defining a new target life for the wind turbine or one or more specific turbine components. Use the LUE to determine the lifetime usage of the turbine or associated turbine components to date. This has constraints on the amount of component life remaining for the wind turbine, and therefore on the control arrangements. Additionally, the revised target life has a constraint on the amount of time the remaining component life must be extended.

未来可用的疲劳寿命可以使用站点检查软件离线或在线计算,并用于指定修正的控制安排。站点检查功能可以包括计算或一个或多个模拟,以使用基于站点的历史数据(包括在建造之前测量的站点气候数据和/或建造后的测量的站点气候数据以及/或来自LUE的数据)来确定预期的疲劳损伤速率。站点气候数据通常包括来自测风桅杆或基地激光雷达的数据,并且可以包括风速、湍流强度、风向、空气密度、垂直风切变和温度。站点检查计算可以根据情况远程地或者由涡轮机/发电站电平控制器执行。Future available fatigue life can be calculated off-line or on-line using site inspection software and used to specify revised control arrangements. Site inspection functions may include calculations or one or more simulations to use historical site-based data (including measured site climate data prior to construction and/or post-construction measured site climate data and/or data from the LUE) to Determine the expected fatigue damage rate. Site climate data typically includes data from wind masts or base-station lidars, and can include wind speed, turbulence intensity, wind direction, air density, vertical wind shear, and temperature. Site inspection calculations may be performed remotely or by the turbine/generator level controller as appropriate.

站点检查软件可以具有与给定的WPP站点地形、地貌、风力条件等有关的信息或参数。地形和地貌信息可以通过站点调查和/或从WPP站点的知识来提供,其可以包括斜坡、悬崖、WPP中每个涡轮机的入流角等等。风力条件,例如风速(季节、年度等)、湍流强度(季节、年度等)、空气密度(季节、年度等)、温度(季节、年度等)等,可以从测风桅杆数据和/或风力涡轮机和/或在WPP处的WPPC所经历和记录的风力条件提供。The site inspection software may have information or parameters related to a given WPP site topography, topography, wind conditions, etc. Topographic and topographic information may be provided through site surveys and/or knowledge from the WPP site, which may include slopes, cliffs, inflow angles for each turbine in the WPP, and the like. Wind conditions, such as wind speed (seasonal, annual, etc.), turbulence intensity (seasonal, annual, etc.), air density (seasonal, annual, etc.), temperature (seasonal, annual, etc.), can be obtained from wind mast data and/or wind turbines and/or wind conditions experienced and recorded by the WPPC at the WPP.

站点检查工具可以包括一个或多个存储器、数据库或其它数据结构,以储存和保持每种类型风力涡轮机的疲劳载荷值,每种类型风力涡轮机的风力涡轮机类型最大功率电平、以及与WPP站点条件有关的信息和/或参数。The site inspection tool may include one or more memories, databases, or other data structures to store and maintain fatigue load values for each type of wind turbine, wind turbine type maximum power levels for each type of wind turbine, and correlation with WPP site conditions related information and/or parameters.

因此生成了修正的控制安排,由此调整超额定产生的附加功率,使得涡轮机暴露于更高或更低的疲劳损伤累积速率,这取决于新的目标寿命终止日期是比先前的目标日期早还是晚,先前的目标日期可以是认证的寿命。A revised control arrangement is therefore generated whereby the additional power generated by the over-rating is adjusted such that the turbine is exposed to a higher or lower rate of accumulation of fatigue damage, depending on whether the new target end-of-life date is earlier or earlier than the previous target date Later, the previous target date can be the lifetime of the certification.

修改涡轮机控制安排的能力允许运营商随时间改变其优先级。例如,本地电网上的主发电机可能会被停止运行以进行中期检修,或者可能会完全止用,电网可能需要额外的支持。这可能反映在高得多的长期费用中,所以运营商在短期内增加能量生产是有利的。因此,运营商可以决定降低涡轮机的寿命,或降低诸如齿轮箱和发电机之类的受影响的部件的寿命,并通过超额定生成附加功率,同时接受较短的风力涡轮机或涡轮机部件寿命。The ability to modify turbine control arrangements allows operators to change their priorities over time. For example, the main generator on the local grid may be taken out of service for mid-term maintenance, or it may be taken out of service entirely and the grid may need additional support. This may be reflected in much higher long-term costs, so it is beneficial for operators to increase energy production in the short term. Therefore, operators can decide to reduce the life of the turbine, or reduce the life of affected components such as gearboxes and generators, and generate additional power by over-rating, while accepting a shorter wind turbine or turbine component life.

可以使用LUE以外的方法来确定风力涡轮机或涡轮机部件的寿命使用。替代地,可以检查涡轮机的运行日期,并可以计算迄今为止发生的疲劳损伤。当将超额定控制更新到风力涡轮机时,这可能特别有用,并且使用站点检查软件再次离线计算未来可用的疲劳寿命,并且这用于指定最大功率电平。站点检查功能可以再次包括离线或在线计算,或者一个或多个模拟,以使用到安装时的测量站点数据或基于站点的历史数据来确定预期的疲劳损伤速率,尽管在这种情况下进行计算而不需要LUE数据可用。Methods other than the LUE may be used to determine the lifetime usage of the wind turbine or turbine components. Alternatively, the operational dates of the turbine can be checked and the fatigue damage that has occurred to date can be calculated. This can be particularly useful when over-rating control is updated to wind turbines, and the future available fatigue life is calculated off-line again using site checking software, and this is used to specify maximum power levels. The site inspection function can again include off-line or on-line calculations, or one or more simulations to determine expected fatigue damage rates using measured site data up to the time of installation or based on historical site data, although in this case the calculations are not No LUE data is required to be available.

可以使用站点检查软件来检查风力涡轮机的直到安装使用本文描述的功能的超额定控制器的日期的运行,以基于指定站点地形、站点地貌、站点气象条件等的输入参数,使用与风力发电站站点内的涡轮机的精确位置相关的测量值,来计算涡轮机部件上的疲劳载荷,所述测量值例如是能量输出、风速、风向、湍流强度、风切变、空气密度、涡轮机械载荷测量结果(例如,来自叶片载荷传感器)涡轮机电气部件温度和载荷、结冰事件、部件温度和状况监测系统输出中的一个或多个。这些值可以用来计算迄今为止在涡轮机部件上已经发生的疲劳损伤的估计。涡轮机或涡轮机部件未来可用的寿命可以通过将测量值应用于站点检查功能风力涡轮机模型或模拟来计算,所述风力涡轮机模型或模拟基于涡轮机的风力涡轮机类型最大功率电平的值和这些测量值中的一个或多个来提供估计疲劳损伤和/或剩余疲劳寿命作为输出。模拟或模型可以提供部件级别的或针对涡轮机整体而提供疲劳损伤和/或剩余疲劳寿命。疲劳载荷计算可根据各种计算程序来执行。这些站点检查程序的各个示例对于本领域技术人员将是已知的,并且将不被详细描述。Site check software may be used to check the operation of wind turbines up to the date of installation of an over-rated controller using the functions described herein, to use with the wind power plant site based on input parameters specifying site topography, site topography, site weather conditions, etc. To calculate fatigue loads on turbine components, such as energy output, wind speed, wind direction, turbulence intensity, wind shear, air density, turbomachinery load measurements (e.g. , from blade load sensors) one or more of turbine electrical component temperatures and loads, icing events, component temperatures, and condition monitoring system outputs. These values can be used to calculate an estimate of the fatigue damage that has occurred on turbine components to date. The future usable life of a turbine or turbine component can be calculated by applying the measurements to a site inspection function wind turbine model or simulation based on the value of the wind turbine type maximum power level of the turbine and among these measurements one or more of to provide estimated fatigue damage and/or residual fatigue life as output. The simulation or model may provide fatigue damage and/or residual fatigue life at the component level or for the turbine as a whole. Fatigue load calculations can be performed according to various calculation programs. Various examples of these site inspection procedures will be known to those skilled in the art and will not be described in detail.

涡轮机或涡轮机部件的消耗的疲劳寿命的所得估计可以用于确定由控制器应用的超额定策略。在超额定控制的初始化时,该估计可以被使用一次,而如果被更新的话,可以在涡轮机的寿命的中途执行该估计。可替代地,该估计可以在涡轮机的寿命期间周期性地执行,使得根据在整个涡轮机寿命期间寿命疲劳消耗如何变化来定期更新超额定策略。The resulting estimates of exhausted fatigue life of the turbine or turbine components may be used to determine an overrating strategy applied by the controller. This estimate may be used once at the initialization of the over-rated control, and if updated, may be performed halfway through the life of the turbine. Alternatively, the estimation may be performed periodically during the life of the turbine, such that the over-rating strategy is periodically updated according to how the life fatigue consumption changes throughout the life of the turbine.

超额定策略基于风力涡轮机或风力涡轮机部件的剩余疲劳寿命来确定,该剩余疲劳寿命本身基于风力涡轮机的运行寿命。所施加的超额定的量被控制成使得涡轮机或涡轮机部件以足够低的速率引起疲劳损坏,从而确保涡轮机的疲劳寿命仅在最后被用完,并且优选地仅在预定的涡轮机寿命的最后被用完。The over-rating strategy is determined based on the remaining fatigue life of the wind turbine or wind turbine components, which is itself based on the operating life of the wind turbine. The amount of over-rating applied is controlled such that the turbine or turbine components cause fatigue damage at a rate low enough to ensure that the fatigue life of the turbine is used only at the end, and preferably only at the end of the intended turbine life Finish.

部件疲劳寿命估计的确定可以通过使用来自一个或多个条件监测系统的数据来进一步扩展或替代。条件监测系统(CMS)在传动系统的战略点处、在涡轮机齿轮箱、发电机或其它关键部件中包括多个传感器。条件监测系统在部件实际发生故障之前提供部件故障的预警。因此,来自条件监测系统的输出可以被提供给控制器并且被用作对被监测部件所消耗的疲劳寿命的指示,并且可以特别地提供对部件的疲劳寿命何时达到其终点的指示。这提供了一种估计使用的寿命的额外方法。The determination of component fatigue life estimates may be further extended or substituted by using data from one or more condition monitoring systems. Condition Monitoring Systems (CMS) include a number of sensors at strategic points in the driveline, in turbine gearboxes, generators or other critical components. Condition monitoring systems provide early warning of component failure before the component actually fails. Accordingly, the output from the condition monitoring system may be provided to the controller and used as an indication of the fatigue life consumed by the monitored component, and may in particular provide an indication of when the fatigue life of the component has reached its end. This provides an additional method of estimating the useful life.

-第二示例- second example

提供了第二示例来执行更一般的优化过程,该优化过程可以用来执行与上述类似的优化、以及其它更一般的优化。第二示例的优化过程可以由应用优化方案的控制器来执行。A second example is provided to perform a more general optimization process that can be used to perform optimizations similar to those described above, as well as other more general optimizations. The optimization process of the second example may be performed by the controller applying the optimization scheme.

涡轮机的全部财务成本或平准化能量成本(LCoE)模型被包括,并且可以在安装超额定控制系统之前在离线计算中使用,或者作为风力涡轮机控制器或风力发电站控制器的一部分在线使用。LCoE模型的使用允许优化超额定策略,并且还可以基于这样做的成本来包括更换主要部件的因素。如本文所使用的,术语“平准化能量成本”是指通过将涡轮机的寿命成本除以涡轮机的寿命能量输出来计算的对来自涡轮机的能量成本的度量。The full financial cost or levelized cost of energy (LCoE) model of the turbine is included and can be used in offline calculations prior to installation of the over-rated control system, or online as part of a wind turbine controller or wind farm controller. The use of the LCoE model allows for optimization of over-rating strategies and can also factor in the replacement of major components based on the cost of doing so. As used herein, the term "levelized energy cost" refers to a measure of energy cost from a turbine calculated by dividing the turbine's lifetime cost by the turbine's lifetime energy output.

图6示出了简化的LCoE模型的示例,其中考虑了与建造和运行风力涡轮机和风力涡轮机发电站相关联的各种成本。Figure 6 shows an example of a simplified LCoE model where various costs associated with building and operating wind turbines and wind turbine power plants are considered.

风力涡轮发电机(WTG)成本将制造风力涡轮机的总成本考虑进来。运输成本把将涡轮机部件运输到站点进行安装的成本作为因素进行考虑。运行和维护(O&M)成本将涡轮机运行成本考虑进来,并且可以随着运行和维护的发生而更新。这些信息可以由服务技术人员提供给本地涡轮机控制器,提供给风力发电场控制器或其它。容量系数表示在给定的时间段(例如,一年)内所生成的能量除以在该时间段如果内涡轮机在额定功率下连续运行则可能生成的能量。可用性表示涡轮机可用于发电的时间。发电场效率表示从风中提取能量的效率并且受发电场内涡轮机的间距的影响。Wind turbine generator (WTG) costs take into account the overall cost of manufacturing the wind turbine. Transportation costs Factor in the cost of transporting turbine components to the site for installation. Operation and maintenance (O&M) costs factor in turbine operating costs and can be updated as O&M occurs. This information can be provided by the service technician to the local turbine controller, to the wind farm controller, or otherwise. The capacity factor represents the energy generated during a given time period (eg, one year) divided by the energy that would have been generated during that time period if the turbine were running continuously at rated power. Availability indicates how long a turbine is available to generate electricity. Plant efficiency represents the efficiency with which energy is extracted from the wind and is affected by the spacing of the turbines within the plant.

只有受控制和部件更换策略影响的LCoE的那些要素需要包含在LCoE模型中,因为在建造涡轮机或风力发电场时,可以包含在LCoE模型中的许多参数都是固定的。受影响的要素是:Only those elements of the LCoE that are affected by control and component replacement strategies need to be included in the LCoE model because many parameters that can be included in the LCoE model are fixed when building a turbine or wind farm. The affected elements are:

·运行和维护(O&M)成本· Operation and maintenance (O&M) costs

Figure BDA0001533657660000271
如果更换更多部件,则会增加
Figure BDA0001533657660000271
Increases if more parts are replaced

·容量因素·Capacity factor

Figure BDA0001533657660000272
如果使用更积极的超额定,则会增加,因此,会生成更多的MWh
Figure BDA0001533657660000272
If a more aggressive overrating is used, it will increase and, therefore, generate more MWh

●可用性● Availability

Figure BDA0001533657660000273
如果更换更多的主要部件,则由于更换过程所需的停机时间,会稍微减少
Figure BDA0001533657660000273
If more major components are replaced, there is a slight reduction due to the downtime required for the replacement process

Figure BDA0001533657660000274
如果更积极的超额定导致磨损部件的增多的预防性更换或计划外故障,则会稍微减少
Figure BDA0001533657660000274
Slightly reduced if more aggressive over-rating results in increased preventative replacement of worn parts or unplanned failures

●寿命●Life

Figure BDA0001533657660000275
取决于约束选择而减少或增加。
Figure BDA0001533657660000275
Decrease or increase depending on constraint selection.

具有包含在涡轮机或WPP控制器中的涡轮机的财务成本(LCoE)模型允许确定更灵活和有效的控制策略。例如,如果发现特定地点处的条件在齿轮箱上特别恶劣,则将识别出这种条件,并且运营商可以选择是否使涡轮机超额定并且将齿轮箱更换一定得次数考虑进来。然后,涡轮机控制器可以确定何时应当更换齿轮箱,相应地运行涡轮机,并且可选地还提供何时更换齿轮箱的指示。A financial cost (LCoE) model with turbines included in the turbine or WPP controller allows for the determination of more flexible and efficient control strategies. For example, if conditions at a particular location are found to be particularly harsh on the gearbox, such conditions will be identified and the operator may choose whether to over-rate the turbine and take into account a certain number of gearbox replacements. The turbine controller can then determine when the gearbox should be replaced, operate the turbine accordingly, and optionally also provide an indication of when to replace the gearbox.

图7示出了用于优化风力涡轮机控制策略的示例性优化器的框图,该优化器可以被并入到控制器中,并且可以被用来实施本发明的各个实施例。Figure 7 shows a block diagram of an exemplary optimizer for optimizing a wind turbine control strategy that may be incorporated into a controller and that may be used to implement various embodiments of the present invention.

当算法启动时,被标记为“初始化”的块将运行一次。这为优化循环提供了初始条件。被标记为“优化”的循环被定期执行,例如每天、每月或每年一次。当执行时,循环会根据需要运行多次,以实现优化过程的足够好的收敛。在收敛之后,新的一组输出被发送到风力涡轮机控制器(x1)和运营商(其它输出)以实施所确定的控制策略。这两个块“计算LCoE的估计”包含相同的计算方法。它们包括图6中尚未固定的所有要素,即O&M成本、容量因素、可用性和寿命。例如,塔架CAPEX已经固定,所以它不需要包括在内。但是运行和维护(O&M)成本并不固定,因为齿轮箱可以在涡轮机的寿命期间更加努力地工作并被更换一次,所以这包括在内。Blocks marked as "initialized" will run once when the algorithm starts. This provides initial conditions for the optimization loop. Loops marked as "optimized" are executed periodically, such as daily, monthly, or yearly. When executed, the loop is run as many times as necessary to achieve good enough convergence of the optimization process. After convergence, a new set of outputs is sent to the wind turbine controller (x1) and the operator (other outputs) to implement the determined control strategy. The two blocks "Calculate estimates of LCoE" contain the same calculation method. They include all the elements not yet fixed in Figure 6, namely O&M costs, capacity factors, availability and longevity. For example, the tower CAPEX is already fixed, so it doesn't need to be included. But operation and maintenance (O&M) costs are not fixed, as the gearbox can work harder and be replaced once during the life of the turbine, so this is included.

在存在许多类似连接的情况下,例如,在优化算法块与块“计算LCoE的估计”之间的连接,并非图7中的所有连接都被显示。以下术语用于或参照图7:Where there are many similar connections, eg the connection between the optimization algorithm block and the block "Compute Estimates of LCoE", not all connections in Figure 7 are shown. The following terms are used in or with reference to Figure 7:

●N剩余寿命的时间段数量(例如,几年)。如果需要,用户可以将其改变为适合其期望的运行策略。- The number of time periods (eg, years) of N remaining life. If desired, the user can change this to suit his desired operating strategy.

●x1例如,对于3MW涡轮机[3.5MW、3.49MW、3.49MW、3.48MW、3.47MW...],在1...N年中的个体风力涡轮机最大功率电平的一维数组,x1 For example, for 3MW turbines [3.5MW, 3.49MW, 3.49MW, 3.48MW, 3.47MW...], a one-dimensional array of individual wind turbine maximum power levels in 1...N years,

●x2在1...N年中的齿轮箱更换次数的一维数组,例如[0,0,0,0,0,0,0,0,1,0,0,0,0,0]A 1D array of the number of gearbox replacements for x2 in years 1...N, eg [0,0,0,0,0,0,0,0,1,0,0,0,0,0]

●x3在1...N年中的发电机更换次数的一维数组A one-dimensional array of the number of generator replacements for x3 in years 1...N

●x4在1...N年中的主轴承更换次数的一维数组A one-dimensional array of the number of main bearing replacements for x4 in 1...N years

●x5在1...N年中的叶片组更换次数的一维数组以及可选地:A 1D array of the number of blade set replacements for x5 in 1...N years and optionally:

●x6在1...N年中的转换器更换次数的一维数组A 1D array of the number of converter replacements for x6 in 1...N years

●x7在1...N年中的变桨轴承更换次数的一维数组1D array of pitch bearing replacement times for x7 in 1...N years

●x8在1...N年中的变桨致动器(液压或电气)更换次数的一维数组1D array of x8 pitch actuator replacement times (hydraulic or electrical) in 1...N years

●x9在1...N年中的偏航驱动器更换次数的一维数组A one-dimensional array of the number of yaw drive replacements for x9 in 1...N years

●x10在1...N年中的偏航轴承更换次数的一维数组A one-dimensional array of x10 yaw bearing replacement times in 1...N years

●x11在1...N年中的变压器更换次数的一维数组A 1D array of transformer replacement times for x11 in years 1...N

●“_0”表示初始条件,例如x1_0是x1的初始条件● "_0" represents the initial condition, for example x1_0 is the initial condition of x1

参考图7,优化过程需要确定给定涡轮机的多个常数,并使用多个物理参数和控制参数的值计算优化的初始条件。一旦计算出初始条件,优化过程就应用定义平准化能量成本与物理和控制参数的输入值之间的关系的函数,以确定在不超过某些优化约束的情况下最小化平准化能量成本的输入值的组合。Referring to Figure 7, the optimization process entails determining a number of constants for a given turbine and calculating initial conditions for optimization using the values of a number of physical and control parameters. Once the initial conditions are calculated, the optimization process applies a function that defines the relationship between the leveled energy cost and the input values of the physical and control parameters to determine the level that minimizes the leveled energy cost without exceeding certain optimization constraints combination of input values.

为了计算优化的初始条件,确定给定涡轮机的多个参数值并被输入到“初始化”块中。对于任何给定的周期性优化(例如,每月),这些值是恒定的。它们是由运营商输入的参数,并且可以随时更改,但如果更改,则将在下次运行优化时应用。这些参数可以包括以下各项中的一个或多个:涡轮机/个体涡轮机部件的寿命;齿轮箱更换成本;轴承更换成本;发电机更换成本;叶片更换成本;变桨系统更换成本;并根据需要更换任何其它部件的更换成本。In order to calculate the optimal initial conditions, a number of parameter values for a given turbine are determined and entered into an "initialization" block. These values are constant for any given periodic optimization (eg, monthly). They are operator-entered parameters and can be changed at any time, but if changed, they will be applied the next time the optimization is run. These parameters may include one or more of the following: Turbine/Individual Turbine Component Life; Gearbox Replacement Cost; Bearing Replacement Cost; Generator Replacement Cost; Blade Replacement Cost; Pitch System Replacement Cost; Replacement cost of any other parts.

例如使用站点检查功能和/或一个或多个LUE来确定涡轮机的寿命和/或一个或多个部件的寿命,或者可以被提供作为要满足的约束。可更换部件包括叶片、变桨轴承、变桨致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动器、偏航轴承或变压器。The life of the turbine and/or the life of one or more components may be determined, for example, using a site inspection function and/or one or more LUEs, or may be provided as constraints to be satisfied. Replaceable parts include blades, pitch bearings, pitch actuation systems, hubs, main shafts, main bearings, gearboxes, generators, converters, yaw drives, yaw bearings or transformers.

确定更换每个部件的总成本。例如,对于更换齿轮箱,成本将考虑是安装新的齿轮箱还是整修的齿轮箱、运输成本以及起重机和劳动力成本。涡轮机停机成本也被包括在图6中的可用性部分下。Determine the total cost of replacing each part. For example, for replacing a gearbox, the cost will take into account whether to install a new gearbox or a refurbished gearbox, transportation costs, and crane and labor costs. Turbine downtime costs are also included in Figure 6 under the Availability section.

可以包括其它成本,诸如财务成本(包括加权平均资本成本(WACC)等),以及计算未来风机涡轮机运行策略对LCoE影响所需的其它要素。Other costs may be included, such as financial costs (including weighted average cost of capital (WACC), etc.), as well as other elements required to calculate the impact of future wind turbine operating strategies on LCoE.

寿命参数可以由运营商根据其对于站点的运行策略来设置,或者可以被确定作为优化的一部分。其它的常量基于最佳知识,所以它们可能会偶尔更新,但这样的更新将是相当罕见的。具体而言,O&M成本只能提前估计,随着时间的推移,这些估计将被实际的数据所替代,从而对未来的O&M成本做出更准确的估计。The lifetime parameters may be set by the operator according to its operating strategy for the site, or may be determined as part of optimization. The other constants are based on best knowledge, so they may be updated occasionally, but such updates will be fairly rare. Specifically, O&M costs can only be estimated in advance, and over time these estimates will be replaced by actual data, resulting in more accurate estimates of future O&M costs.

“初始化”块和优化算法使用以下变量:The "initialization" block and optimization algorithm use the following variables:

·x1例如对于3MW涡轮机[3.5MW、3.49MW、3.49MW、3.48MW、3.47MW...],在1...N年中的最大功率电平的一维数组,x1 eg for 3MW turbines [3.5MW, 3.49MW, 3.49MW, 3.48MW, 3.47MW...], a one-dimensional array of maximum power levels in 1...N years,

·x2在1...N年中的齿轮箱更换次数的一维数组,例如[0,0,0,0,0,0,0,0,1,0,0,0,0,0]A 1D array of the number of gearbox replacements for x2 in years 1...N, e.g. [0,0,0,0,0,0,0,0,1,0,0,0,0,0]

·x3在1...N年中的发电机更换次数的一维数组x3 1D array of generator replacements in 1...N years

·x4在1...N年中的主轴承更换次数的一维数组A 1D array of the number of main bearing replacements for x4 in 1...N years

·x5在1...N年中的叶片组更换次数的一维数组并可选地:x5 1D array of blade set replacement times in 1...N years and optionally:

·x6在1...N年中的转换器更换次数的一维数组A 1D array of the number of converter replacements for x6 in 1...N years

·x7在1...N年中的变桨轴承更换次数的一维数组1D array of pitch bearing replacement times for x7 in 1...N years

·x8在1...N年中的变桨致动器(液压或电气)更换次数的一维数组A 1D array of the number of pitch actuator replacements (hydraulic or electrical) for x8 in 1...N years

·x9在1...N年中的偏航驱动器更换次数的一维数组A 1D array of the number of yaw drive replacements for x9 in 1...N years

·x10在1...N年中的偏航轴承更换次数的一维数组x10 1D array of yaw bearing replacement times in 1...N years

·x11在1...N年中的变压器更换次数的一维数组x11 1D array of transformer replacement times in 1...N years

对LCoE的估计的初始计算使用运营商对初始条件的初始估计,x1_0,x2_0,x3_0等。The initial calculation of the estimate of LCoE uses the operator's initial estimate of the initial conditions, x1_0, x2_0, x3_0, etc.

图7中标记为“测量数据”的信号包含来自传感器的数据和根据O&M过程确定的数据。来自传感器的测量数据可以来自涡轮机或风力发电站,并且可以包括以下中的一个或多个:The signal labeled "Measured Data" in Figure 7 contains data from the sensors and data determined from the O&M process. Measurements from sensors can come from turbines or wind farms and can include one or more of the following:

-诸如齿轮箱、发电机、主轴承、叶片、转换器、变桨轴承、变桨致动器(液压或电动)、偏航驱动器、偏航轴承、变压器之类的涡轮机部件中的一个或多个部件的LUE值;- one or more of turbine components such as gearboxes, generators, main bearings, blades, converters, pitch bearings, pitch actuators (hydraulic or electric), yaw drives, yaw bearings, transformers LUE value of each component;

-风速和环境数据、或从站点检查程序获得的其它数据;- wind speed and environmental data, or other data obtained from site inspection procedures;

-涡轮机部件中的一个或多个部件的CMS数据。- CMS data for one or more of the turbine components.

来自运行和维护(O&M)活动的测量数据包含O&M成本,其可以包括基于迄今为止的成本(如果有)的估计。这与未来预定的服务模式、来自相同或其它风力发电站的具有相同设计的其它涡轮机的经验以及使用相同部件的具有不同设计的其它涡轮机的某些部件的经验一起使用,以给出LCoE计算中的对未来O&M成本的估计。Measurements from operations and maintenance (O&M) activities include O&M costs, which may include estimates based on costs to date, if any. This is used in conjunction with future predetermined service patterns, experience with other turbines of the same design from the same or other wind farms, and experience with certain components of other turbines of different designs using the same components, to give Estimates of future O&M costs.

根据初始条件,优化过程通过直接计算LCoE或者通过计算某些LCoE变量而使用输入和约束条件来最小化平准化能量成本(LCoE)。只需要计算在建造涡轮机之后发生变化的LCoE的部分,即受O&M成本、容量因素、可用性和寿命影响的部分。运行优化直到LCoE被最小化,例如直到计算出的LCoE逐步的变化在给定的容差内。Depending on the initial conditions, the optimization process uses inputs and constraints to minimize the levelized energy cost (LCoE) by directly computing the LCoE or by computing some LCoE variables. Only the portion of the LCoE that changes after the turbine is built needs to be calculated, i.e. the portion affected by O&M costs, capacity factors, availability and lifetime. The optimization is run until the LCoE is minimized, eg, until the calculated stepwise change in LCoE is within a given tolerance.

对优化的约束条件是优化算法在搜索LCoE的最小值时不能进入的区域。该约束条件可以包括以下中的一个或多个:风力涡轮机类型最大功率电平;涡轮机类型的最小功率输出;风力发电站与电网连接的最大有功功率容量,即涡轮机的有功功率输出的最大总和;以及任何其它适当的约束条件。Constraints on optimization are regions that the optimization algorithm cannot enter when searching for the minimum value of LCoE. The constraints may include one or more of the following: wind turbine type maximum power level; turbine type minimum power output; maximum active power capacity of the wind farm connected to the grid, i.e. the maximum sum of the active power outputs of the turbines; and any other appropriate constraints.

约束条件还可以包括以下中的一个或多个,其可以由用户定义:Constraints can also include one or more of the following, which can be user-defined:

-最小或目标期望的风力涡轮机寿命;- Minimum or target expected wind turbine life;

-所有部件或一个或多个给定部件的最大的部件置换次数;- the maximum number of part replacements for all parts or for one or more given parts;

-预定义的最大功率电平安排,或者定义最大功率安排的形状的预定义的相对最大功率安排。- A predefined maximum power level arrangement, or a predefined relative maximum power arrangement that defines the shape of the maximum power arrangement.

可以选择每个一维数组的输入数量,以使优化算法的运行时间更易于管理。一维数组x1、x2等在上面被描述为被提供用于每年的运行。虽然可以为每个月或每个季节的运行提供输入,但是这将提供12倍或4倍的输入。因此可以使用年度值。当然,根据期望的计算时间或优化的间隔,可以适当地使用不同的时间段。The number of inputs to each 1D array can be chosen to make the runtime of the optimization algorithm more manageable. The one-dimensional arrays x1, x2, etc. are described above as being provided for each year of operation. This would give 12x or 4x the input, although it is possible to provide input for each month or season run. So annual values can be used. Of course, different time periods may be used as appropriate, depending on the desired computation time or optimized interval.

同样,为了使运行时间更易于管理,可以选择风力涡轮机部件,使得在优化中仅使用最相关的部件。可以根据其寿命是否受到额定风速以上的有功功率输出的显著影响来选择将包括的部件,特别是齿轮箱、发电机、主轴承和叶片。Also, to make runtime more manageable, wind turbine components can be selected such that only the most relevant components are used in optimization. The components to be included, in particular gearboxes, generators, main bearings and blades, can be selected based on whether their lifespan is significantly affected by active power output above rated wind speed.

另外或可替代地,优化中使用的部件可以基于它们的值来选择。例如,可以包括仅具有涡轮机总成本的5%或更高的值的部件。Additionally or alternatively, components used in optimization may be selected based on their values. For example, only components having a value of 5% or more of the total cost of the turbine may be included.

优化器算法每次运行以收敛时都会生成多个输出。表示涡轮机在1...N年中的最大功率电平的安排的一维数组x1可以通过自动地将数据传送到风力涡轮机控制器以根据涡轮机功率需求来使用而用于闭环控制,直到下一次运行优化循环(例如,1个月之后)为止。可替代地,可以在没有自动控制回路的情况下以建议的容量例如通过将最大功率电平数据发送到计算机系统以在显示器上输出供服务部门查看来使用最大功率电平。The optimizer algorithm produces multiple outputs each time it runs to converge. A one-dimensional array x1 representing the arrangement of the maximum power levels of the turbines in 1...N years can be used for closed loop control by automatically transferring data to the wind turbine controller for use according to the turbine power demand until the next time Run the optimization loop (eg, after 1 month). Alternatively, the maximum power level may be used without an automatic control loop at the proposed capacity, eg, by sending maximum power level data to a computer system for output on a display for viewing by a service department.

其它一维数组x2、x3、x4代表部件更换的安排。这个安排数据可以被输出到另一个计算机系统以允许采取行动。数据可以直接提供到部件更换调度软件中。可替代地,包括建议的更换日期的部件更换数据可以用作建议输出,该建议输出被发送到显示器以供服务部门查看,以决定部件更换计划的手动实施。The other one-dimensional arrays x2, x3, x4 represent the arrangement of parts replacement. This scheduling data can be exported to another computer system to allow action to be taken. Data can be fed directly into parts replacement scheduling software. Alternatively, parts replacement data including proposed replacement dates may be used as a recommendation output that is sent to a display for review by service to determine manual implementation of the parts replacement program.

应当注意的是,上面描述的最大功率电平的一维数组(x1)可以被提供为仅超额定电平、超额定电平或降额定电平、或仅降额定电平,使得最大功率电平变量只需要指定高于(或低于)额定功率的量。功率需求可以替代地是每个周期的速度需求和/或转矩需求,或者如下所述通过寿命使用控制功能来控制功率的情况下是疲劳寿命消耗。使用速度需求和转矩需求两者的缺点是计算最优配置的计算时间将会更长。It should be noted that the one-dimensional array (x1) of maximum power levels described above can be provided as over-rated levels only, over-rated or de-rated levels, or only de-rated levels such that the maximum power Flat variables only need to specify the amount above (or below) the rated power. The power demand may alternatively be the speed demand and/or torque demand per cycle, or fatigue life consumption in the case of power being controlled through the life usage control function as described below. The disadvantage of using both speed demand and torque demand is that the computation time to calculate the optimal configuration will be longer.

尽管优化器在上面描述为定期执行,但也可以偶尔使用,甚至可以只使用一次。例如,可以在安装超额定控制器的点离线执行优化。或者,优化器可以具体化在风力涡轮机、风力发电站或其它地方的控制器中,在这种情况下,其将以特定的时间步骤被执行。Although the optimizer is described above as being executed periodically, it can be used occasionally, or even only once. For example, optimization can be performed offline at the point where the over-rated controller is installed. Alternatively, the optimizer may be embodied in the controller of the wind turbine, wind power plant or elsewhere, in which case it will be executed at specific time steps.

如上所述,可以在有或没有LUE的情况下执行优化,因为站点数据可以用于确定部件疲劳,并且因此给出对涡轮机或涡轮机部件可用的剩余寿命的指示。As discussed above, optimization can be performed with or without LUEs, as site data can be used to determine component fatigue and thus give an indication of the remaining life available to the turbine or turbine components.

虽然优化算法主要被描述为涉及与超额定控制器一起使用,但这不是要求。该优化可以用任何控制动作来应用,该动作针对涡轮机疲劳载荷折衷能量捕获。这可以包括以下中的一个或多个:改变功率需求,如通过降额定;推力限制,其通过以功率输出为代价减小功率曲线的“拐点”处的转子推力来限制功率输出以防止高推力载荷;或任何其它控制特征,其折衷能量捕获和疲劳载荷。While the optimization algorithm is primarily described as involving use with an over-rated controller, this is not a requirement. This optimization can be applied with any control action that trades off energy capture for turbine fatigue loads. This may include one or more of: changing power requirements, such as by derating; thrust limiting, which limits power output by reducing rotor thrust at the "knee" of the power curve at the expense of power output to prevent high thrust load; or any other control feature that compromises energy capture and fatigue loading.

虽然所需的计算可以在任何位置执行,但是在实践中,这样的策略行动可以在诸如SCADA服务器之类的风力发电站控制器中更好地执行。这允许服务数据被现场直接输入,避免从站点到控制中心的通信问题。然而,计算也可以在控制中心执行。包括第一示例的方法在内的本文描述的其它方法同样适用。While the required calculations can be performed anywhere, in practice such strategic actions can be better performed in a wind farm controller such as a SCADA server. This allows service data to be entered directly in the field, avoiding communication problems from site to control center. However, calculations can also be performed at the control center. Other methods described herein, including the method of the first example, are equally applicable.

-最大功率电平计算- Maximum power level calculation

现在接着描述用于确定可应用于涡轮机的最大功率电平的示例性技术。Exemplary techniques for determining a maximum power level applicable to a turbine are now described next.

用于确定一种类型的风力涡轮机的风力涡轮机类型最大功率电平的方法可以包括:模拟针对两个或更多个测试功率电平的载荷谱,以确定针对所述两个或更多个测试功率电平中的每一个的该类型的风力涡轮机上的载荷;将针对每个测试功率电平所确定的载荷与该类型的风力涡轮机的设计载荷进行比较;以及将该类型的风力涡轮机的风力涡轮机类型最大功率电平设置为最大测试功率电平,在该最大测试功率电平下所确定的载荷不超过该类型的风力涡轮机的设计载荷。A method for determining a wind turbine type maximum power level for a type of wind turbine may include simulating a load spectrum for two or more test power levels to determine for the two or more tests the load on the type of wind turbine for each of the power levels; comparing the determined load for each test power level to the design load for the type of wind turbine; and the wind turbine for the type of wind turbine The turbine type maximum power level is set to the maximum test power level at which the determined load does not exceed the design load for that type of wind turbine.

因此,可以针对一种或多种类型的风力涡轮机确定风力涡轮机类型最大功率电平。Thus, a wind turbine type maximum power level may be determined for one or more types of wind turbines.

图8示出了详细说明任何实施例可以使用的设置涡轮机最大功率电平的示例的流程图。在步骤301中,执行检查以确定一种或多种类型的风力涡轮机的风力涡轮机机械部件设计极限。在这示例中,离线计算机系统被用来确定设计极限。然而,如将理解的,该功能可以通过在线计算机系统或与风力涡轮机和/或WPP相关联的任何其它软件和/或硬件来实现。FIG. 8 shows a flowchart detailing an example of setting a maximum power level for a turbine that may be used by any of the embodiments. In step 301, checks are performed to determine wind turbine mechanical component design limits for one or more types of wind turbines. In this example, an offline computer system was used to determine design limits. However, as will be appreciated, this functionality may be implemented by an online computer system or any other software and/or hardware associated with the wind turbine and/or WPP.

风力涡轮机类型最大功率电平是如果给定类型的风力涡轮机在风力涡轮机的部件的设计载荷的极限下运行,当风力适当地高时允许给定类型的风力涡轮机产生的最大功率电平。风力涡轮机类型最大功率电平有效地适用于涡轮机的设计寿命。因此,风力涡轮机类型最大功率电平将典型地高于该类型的风力涡轮机的标称铭牌额定值,因为标称铭牌额定值通常是更保守的值。The wind turbine type maximum power level is the maximum power level that a given type of wind turbine is allowed to produce when the wind is suitably high if the wind turbine of the given type operates within the limits of the design loads of the components of the wind turbine. The wind turbine type maximum power level effectively applies to the design life of the turbine. Therefore, the wind turbine type maximum power level will typically be higher than the nominal nameplate rating for that type of wind turbine, as the nominal nameplate rating is usually a more conservative value.

在以下示例和实施例中使用的一种类型的风力涡轮机可以被理解为具有相同的电气系统、机械系统、发电机、齿轮箱、涡轮机叶片、涡轮机叶片长度、轮毂高度等等的风力涡轮机。因此,出于本发明的实施例的目的,与风力涡轮机的主结构或部件的任何不同有效地产生了新型的风力涡轮机。例如,除了轮毂高度(例如,塔架高度)不同之外的相同的风力涡轮机将是两种不同类型的风力涡轮机。类似地,除了涡轮机叶片长度不同以外的相同的风力涡轮机也将被认为是两种不同类型的风力涡轮机。另外,50Hz和60Hz的风力涡轮机被认为是不同类型的风力涡轮机,是寒冷气候和炎热气候设计的风力涡轮机。One type of wind turbine used in the following examples and embodiments may be understood as a wind turbine having the same electrical systems, mechanical systems, generators, gearboxes, turbine blades, turbine blade lengths, hub heights, and the like. Thus, for purposes of embodiments of the present invention, any difference from the main structure or components of the wind turbine effectively results in a new type of wind turbine. For example, the same wind turbine, except that the hub height (eg, tower height) is different, would be two different types of wind turbines. Similarly, the same wind turbine, except that the lengths of the turbine blades are different, would also be considered two different types of wind turbines. Additionally, 50Hz and 60Hz wind turbines are considered to be different types of wind turbines, cold climate and hot climate designed wind turbines.

该类型的风力涡轮机因此不一定对应于国际电工委员会(IEC)类别的风力涡轮机,因为不同类型的涡轮机可以属于相同IEC类别的风力涡轮机,其中每种类型的风力涡轮机可以具有不同的风力涡轮机类型最大功率电平,基于风力涡轮机的设计和部件。This type of wind turbine therefore does not necessarily correspond to an International Electrotechnical Commission (IEC) class of wind turbines, as different types of turbines can belong to the same IEC class of wind turbines, where each type of wind turbine can have a different wind turbine type maximum Power levels, based on wind turbine design and components.

在下面的示例中,风力涡轮机的额定功率为1.65MW(1650KW)的标称铭牌额定功率电平,其中轮毂高度为78米,并且被设计用于在特定IEC风力等级条件下服务。In the example below, the wind turbine is rated at a nominal nameplate rated power level of 1.65MW (1650KW), with a hub height of 78 meters, and is designed for service at specific IEC wind class conditions.

然后可以通过针对第一测试超额定功率电平模拟载荷谱以识别针对该第一功率电平的该类型的风力涡轮机上的载荷,来针对这种类型的风力涡轮机确定风力涡轮机类型机械部件的设计极限。载荷可以是机械载荷、疲劳载荷、风力涡轮机可能经受的任何其它载荷,或者不同载荷的任何组合。然而,如将理解的,在这示例中,机械载荷被认为是其它载荷,例如疲劳载荷也可以被考虑在内。模拟载荷谱的过程还可以包括或者是可以被执行以确定该类型的风力涡轮机上的载荷的推断或其它形式的分析。The design of wind turbine type mechanical components can then be determined for this type of wind turbine by simulating the load spectrum for a first test over-rated power level to identify the loads on that type of wind turbine for that first power level limit. The loads may be mechanical loads, fatigue loads, any other loads that the wind turbine may experience, or any combination of different loads. However, as will be appreciated, in this example, mechanical loads are considered to be other loads, such as fatigue loads, which may also be considered. The process of simulating the load spectrum may also include or may be performed to determine inferences or other forms of analysis of the loads on the type of wind turbine.

载荷谱通常包括可以在对风力涡轮机的计算机仿真中运行的一系列不同的测试例。例如,载荷谱可以包括风速为8m/s持续时间为10分钟的测试例、风速为10m/s持续10分钟的测试例、不同风力方向的测试例、不同风力湍流的测试例、风力涡轮机启动的测试例、风力涡轮机停机的测试例等。应当理解的是,存在许多不同的风速、风力条件、风力涡轮机运行条件、和/或故障条件,针对这些条件存在要在载荷谱的风力涡轮机仿真中运行的测试例。测试例可以包括真实的、实际的数据或人造数据(例如,在与风力涡轮机有关的标准中定义的50年疾风)。对载荷谱的仿真可以针对载荷谱中所有测试例确定影响风力涡轮机的力和载荷。该仿真还可以估计或确定测试例事件可能发生的次数,例如,10m/s风、持续时间为10分钟的测试例可能预期在风力涡轮机的20年的寿命期间内发生2000次,并且因此可以计算在风力涡轮机的寿命期间风力涡轮机的疲劳。仿真还可以基于所确定的影响风力涡轮机的载荷来计算或确定可能由风力涡轮机中的各个部件引起的疲劳损伤或载荷。The load spectrum typically includes a series of different test cases that can be run in a computer simulation of the wind turbine. For example, the load spectrum may include test cases with wind speed of 8m/s for 10 minutes, test cases with wind speed of 10m/s for 10 minutes, test cases with different wind directions, test cases with different wind turbulence, wind turbine startup Test cases, test cases with wind turbine shutdown, etc. It should be appreciated that there are many different wind speeds, wind conditions, wind turbine operating conditions, and/or fault conditions for which there are test cases to be run in a wind turbine simulation of the load spectrum. Test cases may include real, actual data, or artificial data (eg, 50-year high winds as defined in standards related to wind turbines). Simulation of the load spectrum can determine the forces and loads affecting the wind turbine for all test cases in the load spectrum. The simulation can also estimate or determine the number of possible occurrences of a test case event, for example, a test case of 10 m/s wind with a duration of 10 minutes might be expected to occur 2000 times over the 20-year lifetime of the wind turbine, and can therefore calculate Fatigue of a wind turbine during its lifetime. The simulation may also calculate or determine fatigue damage or loads that may be caused by various components in the wind turbine based on the determined loads affecting the wind turbine.

在该示例中,第一测试功率电平可以是1700KW,因为这比在该示例中考虑的风力涡轮机类型的标称铭牌额定功率电平高。然后,可以针对给定类型的风力涡轮机仿真载荷谱,以便确定该类型的风力涡轮机是否可以在该第一测试功率电平下运行而不超过该类型的风力涡轮机的机械部件的极限设计载荷。如果仿真确定该类型的风力涡轮机可以在第一测试功率电平下运行,则可以针对第二测试功率电平重复相同的过程。例如,在该示例中,第二测试功率电平可以是1725KW。然后,针对给定类型的风力涡轮机仿真载荷谱,以确定该类型的风力涡轮机是否能够在该第二测试功率电平下运行而不超过机械部件的极限设计载荷。In this example, the first test power level may be 1700KW, as this is higher than the nominal nameplate rating power level for the type of wind turbine considered in this example. The load spectrum can then be simulated for a given type of wind turbine in order to determine whether that type of wind turbine can operate at the first test power level without exceeding the ultimate design loads of mechanical components of that type of wind turbine. If the simulation determines that the type of wind turbine can operate at the first test power level, the same process can be repeated for the second test power level. For example, in this example, the second test power level may be 1725KW. The load spectrum is then simulated for a given type of wind turbine to determine whether that type of wind turbine can operate at this second test power level without exceeding the limit design loads of the mechanical components.

如果不超过机械部件的极限设计载荷,则可以迭代地执行针对另外的测试功率电平来仿真载荷谱的过程。在该示例中,测试功率电平以25KW的步长递增,然而,应当理解的是,递增的步长可以是出于确定风力涡轮机类型最大功率电平的目的任何适合的步长,例如,5KW、10KW、15KW、20KW、30KW、50KW等,或者测试功率电平可以以测试功率电平的百分比增长,例如,1%的增量、2%的增量、5%的增量等等。替代地,过程以高的第一测试功率电平开始,并且对于每次迭代,将测试功率电平以适合的量递减,直到确定风力涡轮机类型最大功率电平为止,即,该类型的风力涡轮机可以在其下运行而不超过极限设计限制的第一测试功率电平。The process of simulating the load spectrum for additional test power levels may be performed iteratively if the ultimate design load of the mechanical component is not exceeded. In this example, the test power level is incremented in 25KW steps, however, it should be understood that the incremental steps may be any suitable step size for the purpose of determining the maximum power level for the type of wind turbine, for example, 5KW , 10KW, 15KW, 20KW, 30KW, 50KW, etc., or the test power level can be increased by a percentage of the test power level, eg, 1% increments, 2% increments, 5% increments, etc. Alternatively, the process starts with a high first test power level, and for each iteration, the test power level is decremented by a suitable amount until the maximum power level for the type of wind turbine is determined, i.e. the type of wind turbine A first test power level at which operation can be performed without exceeding the extreme design limit.

在该示例中,给定类型的风力涡轮机被确定为在1825KW下超过一个或多个机械部件的设计限制之前能够在1750KW、1775KW和1800KW的另外的测试功率电平下运行。因此,该过程确定该类型的涡轮机的风力涡轮机类型最大功率电平是1800KW。In this example, a given type of wind turbine is determined to be capable of operating at additional test power levels of 1750KW, 1775KW and 1800KW before exceeding the design limits of one or more mechanical components at 1825KW. Therefore, the process determines that the wind turbine type maximum power level for this type of turbine is 1800KW.

在另外的实施例中,由于该类型的风力涡轮机在1800KW下未超过机械部件的极限设计载荷,但是在1825KW下超过了机械部件的极限设计载荷,因此该过程还可以以较小的增量迭代地递增测试功率电平,例如,5KW以确定风力涡轮机是否能够在1800KW到1825KW之间的功率电平下运行而不超过机械极限设计载荷。然而,在当前示例中,1800KW的功率电平被认为是这种类型的风力涡轮机的风力涡轮机类型机械部件设计极限。In a further embodiment, the process may also be iterated in smaller increments as this type of wind turbine does not exceed the ultimate design load of mechanical components at 1800KW, but exceeds the ultimate design load of mechanical components at 1825KW Power levels are incrementally tested, eg, 5KW, to determine whether the wind turbine can operate at power levels between 1800KW and 1825KW without exceeding the mechanical limit design loads. However, in the current example, a power level of 1800 KW is considered to be the wind turbine type mechanical component design limit for this type of wind turbine.

然后可以针对待分析的任何其它类型的风力涡轮机执行确定风力涡轮机类型最大功率电平的过程。在图8的步骤302中,针对先前确定的风力涡轮机机械部件设计限制,可以考虑或评估该类型的风力涡轮机中的电气部件的设计限制。The process of determining the wind turbine type maximum power level may then be performed for any other type of wind turbine to be analyzed. In step 302 of Figure 8, design constraints for electrical components in a wind turbine of this type may be considered or evaluated against previously determined wind turbine mechanical component design constraints.

在步骤302中,可以考虑主电气部件以确保针对机械部件设计极限的所确定的风力涡轮机类型功率电平并没有超过被分析的该类型的风力涡轮机的主要电气部件的设计限制。主要电气部件可以包括例如发电机、变压器、内部电缆、接触器、或该类型的风力涡轮机中的任何其它电气部件。In step 302, the main electrical components may be considered to ensure that the determined wind turbine type power level for mechanical component design limits does not exceed the design limits of the main electrical components of the type of wind turbine being analyzed. The main electrical components may include, for example, generators, transformers, internal cables, contactors, or any other electrical components in a wind turbine of this type.

基于仿真和/或计算,然后确定主电气部件是否能够在针对机械部件设计极限而先前确定的风力涡轮机类型最大功率电平下运行。例如,在机械部件设计极限功率电平下的运行可能使得风力涡轮机内部的一个或多个电缆的温度增加并因此降低电缆载流能力,这由电缆导体的大小和散热条件确定。因此,将针对新的温度条件计算载流能力,以便确定电缆是否能够在高达风力涡轮机类型最大功率电平的功率电平下运行。针对其它电气部件可以考虑类似的原因,例如,部件的温度、部件的容量等等,以确定该电气部件是否能够在高达机械部件设计极限的功率电平下运行。Based on the simulations and/or calculations, it is then determined whether the main electrical components can operate at the wind turbine type maximum power levels previously determined for mechanical component design limits. For example, operation at mechanical component design limit power levels may increase the temperature of one or more cables inside the wind turbine and thus reduce the cable current carrying capacity, as determined by the size and heat dissipation conditions of the cable conductors. Therefore, the current carrying capacity will be calculated for the new temperature conditions in order to determine whether the cable can operate at power levels up to the wind turbine type maximum power level. Similar reasons may be considered for other electrical components, eg, temperature of the component, capacity of the component, etc., to determine whether the electrical component can operate at power levels up to the design limit of the mechanical component.

如果判定或确定主电气部件能够在先前确定的机械部件设计极限下运行,则在图8的步骤303中,针对给定类型的风力涡轮机,风力涡轮机类型最大功率电平根据机械部件设计极限被设置或记录为该给定类型的风力涡轮机的最大功率电平。然而,如果判定或确定主电气部件不能在先前确定的机械部件设计极限下运行,则还可以进行进一步调查或采取进一步行动以得出适应机械部件和电气部件两者的涡轮机类型最大功率电平。If it is determined or determined that the primary electrical components are capable of operating within the previously determined mechanical component design limits, then in step 303 of Figure 8, for a given type of wind turbine, the wind turbine type maximum power level is set according to the mechanical component design limits Or recorded as the maximum power level for that given type of wind turbine. However, if it is determined or determined that the primary electrical components cannot operate within the previously determined mechanical component design limits, further investigation or action may also be undertaken to derive turbine-type maximum power levels that accommodate both mechanical and electrical components.

一旦已经针对每个类型的风力涡轮机确定了风力涡轮机类型最大功率电平,那么该参数可以在上面所描述的方法内被用作约束条件,以针对WPP中每个风力涡轮机得出个体最大功率电平的安排,例如,最大超额定功率电平。Once the wind turbine type maximum power level has been determined for each type of wind turbine, this parameter can be used as a constraint within the method described above to derive an individual maximum power level for each wind turbine in the WPP flat arrangement, for example, the maximum over-rated power level.

WPP中的每个风力涡轮机的不同的个体最大功率电平是有利的,因为WPP中的条件可能在WPP的整个站点会有所变化。因此,可能的情况是在WPP中的一个位置处的风力涡轮机可能面对与WPP中的不同位置处的相同类型的另一个风力涡轮机不同的条件。因此,相同类型的两个风力涡轮机可能需要不同的个体最大功率电平,或者可以决于优选实施方式,将最低个体最大功率电平应用于WPP中的所有该类型的风力涡轮机。如本文所描述的,个体风力涡轮机特定个体最大功率电平被确定为确定安排的部分。A different individual maximum power level for each wind turbine in a WPP is advantageous because conditions in a WPP may vary throughout the site of the WPP. Thus, it may be the case that a wind turbine at one location in the WPP may face different conditions than another wind turbine of the same type at a different location in the WPP. Therefore, two wind turbines of the same type may require different individual maximum power levels, or depending on the preferred embodiment, the lowest individual maximum power level may be applied to all wind turbines of that type in the WPP. As described herein, individual wind turbine specific individual maximum power levels are determined as part of the determination of the schedule.

-超额定控制- Over rated control

本发明的实施例可以适用于风力涡轮机或风力发电站,其通过施加超额定控制以确定要施加的超额定的量而操作。Embodiments of the present invention may be applied to wind turbines or wind power plants that operate by applying an over-rating control to determine the amount of over-rating to apply.

超额定控制信号由超额定控制器生成,并由风力涡轮机控制器使用该超额定控制信号来使涡轮机超额定。上面所描述的控制安排可以在这种超额定控制器内或者与其一起使用,以设定与可以通过超额定生成的功率量有关的上限。生成超额定控制信号的具体方式对于本发明的实施例并不重要,但是为了易于理解将给出示例。An overrating control signal is generated by the overrating controller and used by the wind turbine controller to overrate the turbine. The control arrangement described above can be used within or with such an over-rating controller to set an upper limit on the amount of power that can be generated by over-rating. The specific manner in which the over-rated control signal is generated is not critical to embodiments of the present invention, but an example will be given for ease of understanding.

每个风力涡轮机可以包括作为风力涡轮机控制器的部分的超额定控制器。超额定控制器计算超额定请求信号,其指示涡轮机被配置为超额定运转到高于额定输出的功率输出的量。控制器接收来自涡轮传感器的数据,诸如桨距角、转子速度、功率输出等,并且可以发送命令,例如桨距角、转子速度、功率输出等的设定点。控制器还可以接收来自电网的命令,例如,来自电网运营商的命令以响应于电网的需求或故障来提升或降低有功或无功功率输出。Each wind turbine may include an over-rated controller as part of the wind turbine controller. An over-rating controller calculates an over-rating request signal that indicates an amount by which the turbine is configured to over-rate to a power output above the rated output. The controller receives data from turbine sensors, such as pitch angle, rotor speed, power output, etc., and can send commands, such as setpoints for pitch angle, rotor speed, power output, and the like. The controller may also receive commands from the grid, eg, from a grid operator, to increase or decrease real or reactive power output in response to grid demand or failures.

图9示出了涡轮机控制器布置的示意性示例,其中超额定控制器901生成可以由风力涡轮机控制器使用来向涡轮机施加超额定的超额定控制信号。可以取决于检测涡轮机的运行参数和/或诸如风速和方向之类的本地条件的一个或多个传感器902/904的输出而生成超额定控制信号。超额定控制器901包括可以用于超额控制的各方面的一个或多个功能性控制模块。可以提供附加的功能性模块,模块的功能可以被组合,并且可以省略某些模块。Figure 9 shows a schematic example of a turbine controller arrangement wherein an over-rating controller 901 generates an over-rating control signal that can be used by the wind turbine controller to apply over-rating to the turbine. The over-rated control signal may be generated depending on the output of one or more sensors 902/904 that detect operating parameters of the turbine and/or local conditions such as wind speed and direction. Overrating controller 901 includes one or more functional control modules that can be used for various aspects of overrating control. Additional functional modules may be provided, the functionality of modules may be combined, and certain modules may be omitted.

优化器907根据如本文所描述的所确定的安排来提供个体涡轮机最大功率电平的值。根据安排,这提供了涡轮机可以运行的最大功率电平。The optimizer 907 provides values for individual turbine maximum power levels according to the determined schedule as described herein. By arrangement, this provides the maximum power level at which the turbine can operate.

附加的功能性模块生成功率需求,并且通常用于减少由涡轮机控制器作用的最终功率需求。附加功能性模块的具体示例是运行约束模块906。超额定利用典型地存在于部件设计载荷与运行中的每个涡轮机所经受的载荷之间的差距,其通常比IEC标准仿真条件更好,其中,在该IEC标准仿真条件下计算设计载荷。超额定使得风力涡轮机的功率需求在强风中增加,直到达到由运行约束条件(温度等)指定的运行极限为止,或者直到达到被设定为防止超过部件设计载荷的功率上限为止。由运行约束条件控制模块906实施的运行约束根据各种运行参数来限制可能的超额定功率需求。例如,在当齿轮箱油温度超过65℃时保护功能适当地启动停机的情况下,运行约束可以根据温度超过60℃的齿轮箱油温,在65℃达到“不可能超额定”(即,功率设定点信号等于额定功率),指示最大可能的超额定设定点信号的线性下降。Additional functional modules generate power requirements and are typically used to reduce final power requirements acted upon by the turbine controller. A specific example of an additional functional module is the operational constraints module 906 . Over-rated utilization typically exists as a gap between the component design loads and the loads experienced by each turbine in operation, which is generally better than the IEC standard simulation conditions under which the design loads are calculated. Overrating causes the power demand of the wind turbine to increase in strong winds until an operating limit specified by operating constraints (temperature, etc.) is reached, or until a power ceiling is reached that is set to prevent exceeding component design loads. The operational constraints implemented by the operational constraints control module 906 limit possible over-rated power requirements based on various operational parameters. For example, where the protection function properly initiates a shutdown when the gearbox oil temperature exceeds 65°C, the operating constraints may be based on the gearbox oil temperature exceeding 60°C, at 65°C "impossible to overrate" (i.e., power setpoint signal equal to rated power), indicating the maximum possible linear drop of the overrated setpoint signal.

向最小功能块908提供功能性模块的最大功率电平和功率需求,并选择最小值。可以提供另外的最小块909,其选择来自超额定控制器901的最小功率需求和诸如由电网运营商指定的用于产生由风力涡轮机控制器施加的最终功率需求之类的任何其它涡轮机功率需求。The minimum functional block 908 is provided with the maximum power levels and power requirements of the functional modules, and the minimum value is selected. An additional minimum block 909 may be provided which selects the minimum power demand from the over-rated controller 901 and any other turbine power demand such as specified by the grid operator for generating the final power demand imposed by the wind turbine controller.

作为替代,例如,超额定控制器可以是图1B的PPC控制器130的部分。PPC控制器与涡轮机中的每个进行通信,并且可以接收来自涡轮机的数据,诸如桨距角、转子速度、功率输出等,并且可以向个体涡轮机发送命令,诸如桨距角、转子速度、功率输出等的设定点。PPC 130还接收来自电网的命令,例如来自电网运营商的用于响应于电网的需求或故障而提升或减少有功或无功功率输出的命令。每个风力涡轮机的控制器与PPC 130进行通信。Alternatively, for example, the over-rated controller may be part of the PPC controller 130 of Figure IB. The PPC controller is in communication with each of the turbines and can receive data from the turbines, such as pitch angle, rotor speed, power output, etc., and can send commands to the individual turbines, such as pitch angle, rotor speed, power output etc. set point. The PPC 130 also receives commands from the grid, such as commands from the grid operator to increase or decrease real or reactive power output in response to grid demand or failures. The controller of each wind turbine communicates with the PPC 130 .

PPC控制器130接收来自涡轮机中的每个的功率输出数据,因此知道每个涡轮机和发电站作为整体在电网连接点140处输出的功率。如果需要,则PPC控制器130可以接收用于作为整体的发电站的功率输出的运行设定点,并将其在每个涡轮机中划分,使得输出不超过运营商指定的设定点。该发电站设定点可以是从0到发电站的额定功率输出的任何值。发电站的“额定功率”输出是发电站内各个涡轮机的额定功率输出的总和。发电站设定点可能高于发电站的额定功率输出,即,整个发电站超额定。The PPC controller 130 receives power output data from each of the turbines and thus knows the power output by each turbine and power plant as a whole at the grid connection point 140 . If desired, the PPC controller 130 may receive an operating set point for the power output of the power plant as a whole and divide it among each turbine so that the output does not exceed the operator specified set point. The plant setpoint can be any value from 0 to the rated power output of the plant. The "rated power" output of a power station is the sum of the rated power outputs of the individual turbines within the power station. The plant set point may be higher than the rated power output of the plant, ie the entire plant is overrated.

PPC可以直接接收来自电网连接的输入,或者可以接收信号,该信号是对总发电站输出与标称或额定发电站输出之间的差值的测量。该差值可以用于为各个涡轮机的超额定提供基础。理论上,只有单个涡轮机可以超额定,但是优选的是使多个涡轮机超额定,并且最优选的是将超额定信号发送到所有的涡轮机。被发送给每个涡轮机的超额定信号可能不是固定的控制,而可能是对每个涡轮机可能执行的超额定的最大量的指示。每个涡轮机可以具有相关联的控制器,该控制器可以在涡轮机控制器内实现或者例如集中地在PPC处实现,其将实施图9所示的功能中一个或多个以确定涡轮机是否能够响应超额定信号,并且如果能够响应超额定信号,则确定超额定信号的量。例如,在涡轮机控制器内的控制器确定给定涡轮机处的条件是有利的且高于额定风速的情况下,其可以积极响应并且给定的涡轮机超额定。由于控制器实施超额定信号,因此发电站的输出将上升。The PPC can receive input directly from the grid connection, or it can receive a signal that is a measure of the difference between the total power plant output and the nominal or rated power plant output. This difference can be used to provide a basis for overrating the individual turbines. In theory, only a single turbine can be overrated, but it is preferable to overrate multiple turbines, and most preferably to send an overrating signal to all turbines. The over-rating signal sent to each turbine may not be a fixed control, but may be an indication of the maximum amount of over-rating that each turbine may perform. Each turbine may have an associated controller, which may be implemented within the turbine controller or centrally at the PPC, for example, that will implement one or more of the functions shown in Figure 9 to determine whether the turbine is capable of responding The over-rated signal, and if the over-rated signal can be responded to, the amount of the over-rated signal is determined. For example, where the controller within the turbine controller determines that conditions at a given turbine are favorable and above rated wind speed, it may respond positively and the given turbine is overrated. Since the controller implements the over-rated signal, the output of the power station will rise.

因此,集中地或在每个个体涡轮机处生成超额定信号,该信号指示可以由一个或多个涡轮机或作为整体的发电站的涡轮机所执行的超额定的量。Thus, an over-rating signal is generated, either centrally or at each individual turbine, indicating the amount of over-rating that may be performed by one or more turbines or the turbines of the power plant as a whole.

-寿命使用估计器-Lifetime usage estimator

如上面所描述的,本发明的实施例利用寿命使用估计器(LUE)。现在将更详细地描述寿命使用估计器。估算寿命使用所需的算法对于不同部件有所不同,并且LUE可以包括LUE算法的库,其包括以下中的一些或全部:载荷持续时间、载荷旋转分布、雨流计数、应力循环损伤、温度循环损伤、发电机热反应速率、变压器热反应速率和轴承磨损。另外可以使用其它算法。如上所述,寿命使用估算仅可用于选定的关键部件,并且使用算法库实现了针对LUE选择新的部件和从库中选择的适当算法以及为该部件设置的特定参数。As described above, embodiments of the present invention utilize a lifetime usage estimator (LUE). The lifetime usage estimator will now be described in more detail. Algorithms required to estimate life usage vary for different parts, and LUE may include a library of LUE algorithms that includes some or all of the following: Load Duration, Load Rotation Distribution, Rainflow Counts, Stress Cycling Damage, Temperature Cycling Damage, generator thermal response rate, transformer thermal response rate and bearing wear. Additionally other algorithms may be used. As mentioned above, lifetime usage estimates are only available for selected critical components, and selection of a new component for the LUE and selection of an appropriate algorithm from the library and specific parameters set for that component are implemented using a library of algorithms.

在一个实施例中,LUE被实施用于涡轮机的所有主要部件,包括叶片;变桨轴承;变桨致动器或驱动器;轮毂;主轴;主轴承壳体;主轴承;齿轮箱轴承;轮齿;发电机;发电机轴承;转换器;发电机接线盒电缆;偏航驱动器;偏航轴承;塔架;离岸支撑结构,如果存在的话;基础;和变压器绕组。替代地,可以选择这些LUE中的一个或多个。In one embodiment, the LUE is implemented for all major components of the turbine, including blades; pitch bearings; pitch actuators or drives; hubs; main shafts; main bearing housings; main bearings; gearbox bearings; gear teeth ; generators; generator bearings; converters; generator junction box cables; yaw drives; yaw bearings; towers; offshore support structures, if present; foundations; and transformer windings. Alternatively, one or more of these LUEs may be selected.

作为适当算法的示例,可以将雨流计数用于叶片结构、叶片螺栓、变桨系统、主轴系统、转换器、偏航系统、塔架和基础估算器中。在叶片结构算法中,将雨流计数应用于叶根弯曲翼方向(flapwise)和翼缘方向(edgewise)矩以确定应力循环范围和平均值,并将输出发送到应力循环损伤算法。针对叶片螺栓,将雨流计数应用于螺栓弯矩,以确定应力循环范围和平均值,并将输出发送到应力循环损伤算法。在变桨系统、主轴系统、塔架和基础估算器中,雨流计数算法也被用于确定应力循环范围和平均值,并将输出发送到应力循环损伤算法。应用雨流算法的参数可以包括:As examples of suitable algorithms, rainflow counts can be used in blade structures, blade bolts, pitch systems, main shaft systems, converters, yaw systems, towers, and foundation estimators. In the blade structure algorithm, rainflow counts are applied to the blade root bending wing direction (flapwise) and edgewise (edgewise) moments to determine the stress cycle range and average, and the output is sent to the stress cycle damage algorithm. For blade bolts, rainflow counts are applied to the bolt bending moment to determine the stress cycle range and average, and the output is sent to the stress cycle damage algorithm. In the pitch system, main shaft system, tower and foundation estimator, the rainflow counting algorithm is also used to determine the stress cycle range and average, and the output is sent to the stress cycle damage algorithm. Parameters for applying the rainflow algorithm can include:

-变桨系统-俯仰力;- pitch system - pitch force;

-主轴系统-主轴转矩;- Spindle system - Spindle torque;

-塔架-塔架应力;- tower-tower stress;

-基础-基础应力。- Foundation - Foundation stress.

在偏航系统中,将雨流算法应用于塔架顶部转矩以识别载荷持续时间,并将该输出发送到应力循环损伤算法。在转换器中,将发电机功率和RPM用于推断温度,并且在该温度上使用雨流计数来识别温度循环和平均值。In the yaw system, the rainflow algorithm is applied to the tower top torque to identify the load duration, and this output is sent to the stress cycle damage algorithm. In the converter, generator power and RPM are used to infer temperature, and rainflow counts are used over that temperature to identify temperature cycles and averages.

叶片轴承的寿命使用可以通过输入叶片翼方向载荷和俯仰速度作为载荷持续时间算法或轴承磨损算法的输入来进行监测。对于变速箱,将载荷旋转持续时间应用于主轴转矩,以计算所使用的寿命。对于发电机,将发电机RPM用于推断发电机温度,其被用作发电机热反应速率算法的输入。对于变压器,从功率和环境温度推断变压器温度,以向变压器热反应速率算法提供输入。The lifetime usage of the blade bearings can be monitored by entering the blade airfoil directional load and pitch speed as input to the load duration algorithm or to the bearing wear algorithm. For gearboxes, apply the load rotation duration to the spindle torque to calculate the life used. For generators, generator RPM is used to infer generator temperature, which is used as input to the generator thermal response rate algorithm. For transformers, the transformer temperature is inferred from power and ambient temperature to provide input to the transformer thermal response rate algorithm.

在可能的情况下,优选使用现有的传感器来提供算法对其运算的输入。因此,例如,风力涡轮机通常直接测量叶片结构、叶片轴承和叶片螺栓估算器所需的叶根弯曲翼缘方向和翼方向矩。对于变桨系统,可以测量气缸的第一腔室中的压力,并推断第二腔室中的压力,从而能够计算俯仰力。这些仅是示例,作为输入所需的其它参数可以直接测量,也可以从其它可用的传感器输出推断。对于一些参数,如果不能以足够的精度推断出值,那么使用附加的传感器可能是有利的。Where possible, existing sensors are preferably used to provide input to the algorithm for its operation. Thus, for example, wind turbines often directly measure the blade root bending flange direction and wing direction moments required by the blade structure, blade bearings and blade bolt estimators. For a pitch system, the pressure in the first chamber of the cylinder can be measured and the pressure in the second chamber can be deduced, enabling the calculation of the pitch force. These are only examples, other parameters required as input can be measured directly or inferred from other available sensor outputs. For some parameters, it may be advantageous to use additional sensors if the value cannot be inferred with sufficient accuracy.

用于各种类型的疲劳评估的算法是已知的,并且可以在以下标准和文本中找到:Algorithms for various types of fatigue assessments are known and can be found in the following standards and texts:

载荷旋转分布和载荷持续时间:Load rotation distribution and load duration:

风力涡轮机认证准则,Germainischer Lloyd,第7.4.3.2节疲劳载荷Wind Turbine Certification Guidelines, Germainischer Lloyd, Section 7.4.3.2 Fatigue Loads

雨流:Rainflow:

IEC 61400-1风力涡轮机-第1部分:设计要求,附件GIEC 61400-1 Wind Turbines - Part 1: Design Requirements, Annex G

Miners求和:Miners sum:

IEC 61400-1风力涡轮机-第1部分:设计要求,附件GIEC 61400-1 Wind Turbines - Part 1: Design Requirements, Annex G

幂定律(化学衰变):Power law (chemical decay):

IEC 60076-12“电力变压器-第12部分:干式电力变压器的装载指南”,第5节。IEC 60076-12 "Power transformers - Part 12: Loading guidelines for dry-type power transformers", section 5.

-发电站电平控制- Power station level control

本文所描述的方法中的任何都可以以风力发电站电平执行,由此生成包括用于每个风力涡轮机的个体控制安排的发电站控制安排。这具有允许将给定发电站中的涡轮机之间的相互作用考虑在内的益处。Any of the methods described herein may be performed at the wind power plant level, thereby generating plant control arrangements including individual control arrangements for each wind turbine. This has the benefit of allowing interactions between turbines in a given power plant to be taken into account.

一个或多个上游涡轮机的功率需求/功率电平的变化影响跟随一个或多个上游涡轮机的任何涡轮机的功率输出和疲劳损伤累积速率。站点检查软件包括关于风力发电站内的涡轮机定位的信息,并考虑了风力发电场内的涡轮机相对于彼此的相对位置。上游涡轮机的尾流效应因此被站点检查软件考虑在计算中。Changes in the power demand/power level of the one or more upstream turbines affect the power output and fatigue damage accumulation rate of any turbine following the one or more upstream turbines. The site inspection software includes information on the positioning of the turbines within the wind farm and takes into account the relative positions of the turbines within the wind farm relative to each other. The wake effect of the upstream turbine is therefore taken into account by the site inspection software.

在一些风力发电站的情况中,从发电站到公用电网的连接的功率承载能力小于在当所有涡轮机在风力涡轮机类型最大功率电平下生成功率时的情况下每个涡轮机生成的功率的总和。在这种情况下,风力涡轮机或风力发电站的控制安排还受到约束,使得对于在安排内的任何给定时间段,当所有涡轮机的功率加在一起时,其不超过在从发电站到电网的连接中可以承载的功率的量。In the case of some wind power plants, the power carrying capacity of the connection from the power plant to the utility grid is less than the sum of the power generated by each turbine if all turbines are generating power at the wind turbine type maximum power level. In this case, the control arrangement of the wind turbines or wind power plants is also constrained such that for any given period of time within the arrangement, when the power of all turbines is added together, it does not exceed the amount of power from the power plant to the grid The amount of power that can be carried in the connection.

本文所描述的实施例依赖于对涡轮机特性和涡轮机站点特性的分析来确定涡轮机的控制安排。包括由站点检查软件执行的那些计算的各种计算可以在一个或多个不同的计算系统处离线地实施,并且所得的控制安排被提供给风力涡轮机或发电站控制器。替代地,可以在风力涡轮机控制器或发电站控制器处在线执行计算。Embodiments described herein rely on analysis of turbine characteristics and turbine site characteristics to determine a control arrangement for the turbine. Various calculations, including those performed by the site inspection software, may be performed off-line at one or more different computing systems, and the resulting control arrangements provided to the wind turbine or power plant controller. Alternatively, the calculations may be performed online at the wind turbine controller or the power plant controller.

上面所描述的实施例不是排他性的,并且特征中的一个或多个可以被组合或可以协作,以便通过为风力发电站中的每个风力涡轮机设定最大功率电平以实现改进的超额定控制,其考虑到风力涡轮机所面对的或影响风力涡轮机的环境和站点条件。The embodiments described above are not exclusive and one or more of the features may be combined or may cooperate to achieve improved over-rating control by setting a maximum power level for each wind turbine in a wind power plant , which takes into account the environmental and site conditions that the wind turbine faces or affects.

应当注意的是,本发明的实施例可以应用于恒速和变速涡轮机两者。涡轮机可以采用主动变桨控制,由此通过顺桨实现高于额定风速的功率限制,其涉及旋转每个叶片的全部或部分以减小攻角。替代地,涡轮机可以采用主动停转控制,其通过将叶片变桨到停转(与主动变桨控制的方向相反的方向)实现高于额定风速的功率限制。It should be noted that embodiments of the present invention can be applied to both constant speed and variable speed turbines. Turbines may employ active pitch control whereby power limitations above rated wind speed are achieved by feathering, which involves rotating all or part of each blade to reduce the angle of attack. Alternatively, the turbine may employ active stall control, which achieves a power limitation above rated wind speed by pitching the blades to stall (opposite the direction of active pitch control).

尽管已经示出了和描述了本发明的实施例,但是将会理解的是,这些实施例仅通过示例进行描述。在不脱离由所附权利要求所限定的本发明的范围的情况下,对于本领域技术人员而言将发生许多变型、改变和替换。While embodiments of the present invention have been shown and described, it will be understood that these embodiments have been described by way of example only. Numerous modifications, changes and substitutions will occur to those skilled in the art without departing from the scope of the invention as defined by the appended claims.

Claims (34)

1.一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率电平如何随时间而改变,所述方法包括:What is claimed is: 1. A method of generating a control schedule for a wind turbine, the control schedule indicating how a turbine maximum power level changes over time, the method comprising: 基于测量的风力涡轮机站点数据和/或运行数据,来确定指示所述涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of the turbine or one or more turbine components based on the measured wind turbine site data and/or operational data; 应用优化功能,所述优化功能通过改变所述涡轮机或所述一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变初始控制安排以确定优化的控制安排,所述优化包括:Applying an optimization function that alters an initial control arrangement to determine an optimization by altering the trade-off between fatigue life consumed by the turbine or the one or more turbine components and energy capture until an optimized control arrangement is determined The control arrangement, the optimization includes: 基于所述当前剩余疲劳寿命和改变的控制安排,来估计所述涡轮机或所述涡轮机部件在所述改变的控制安排的持续时间内所消耗的未来的疲劳寿命;以及estimating, based on the current remaining fatigue life and the changed control schedule, a future fatigue life to be consumed by the turbine or the turbine component for the duration of the changed control schedule; and 根据一个或多个输入约束条件来约束对所述控制安排的优化;Constraining optimization of the control arrangement according to one or more input constraints; 其中,所述输入约束条件包括一个或多个涡轮机部件的最大允许部件更换次数,并且所述优化还包括改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。wherein the input constraints include a maximum allowable number of component replacements for one or more turbine components, and the optimizing further includes changing an initial value of wind turbine life to determine a target wind turbine life. 2.根据权利要求1所述的方法,还包括:2. The method of claim 1, further comprising: 通过改变部件更换的时机并改变部件更换的次数直到达到最大次数来优化所述控制安排。The control schedule is optimized by changing the timing of component changes and changing the number of component changes until a maximum number is reached. 3.根据权利要求1或2所述的方法,其中,能够更换的所述一个或多个涡轮机部件包括以下中的一个或多个:叶片、变桨轴承、变桨致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动器、偏航轴承或变压器。3. The method of claim 1 or 2, wherein the one or more turbine components that can be replaced include one or more of the following: blades, pitch bearings, pitch actuation systems, hubs, main shafts , main bearings, gearboxes, generators, converters, yaw drives, yaw bearings or transformers. 4.根据权利要求1或2所述的方法,其中,所述初始控制安排指定所述涡轮机能够运行的所述涡轮机最大功率电平随时间的相对变化。4. The method of claim 1 or 2, wherein the initial control schedule specifies a relative change over time of the maximum power level of the turbine at which the turbine can operate. 5.根据权利要求1或2所述的方法,其中,所述输入约束条件还包括由涡轮机设计所允许的所述涡轮机的上限最大功率输出和/或所述涡轮机的最小功率输出。5. The method of claim 1 or 2, wherein the input constraints further comprise an upper limit maximum power output of the turbine and/or a minimum power output of the turbine allowed by the turbine design. 6.根据权利要求1或2所述的方法,其中,确定指示所述涡轮机或所述一个或多个涡轮机部件的所述当前剩余疲劳寿命的值包括:将来自一个或多个涡轮机传感器的传感器数据应用于一个或多个寿命使用估计算法。6. The method of claim 1 or 2, wherein determining a value indicative of the current remaining fatigue life of the turbine or the one or more turbine components comprises combining sensors from one or more turbine sensors The data is applied to one or more lifetimes using an estimation algorithm. 7.根据权利要求1或2所述的方法,其中,确定指示所述涡轮机或所述一个或多个涡轮机部件的所述当前剩余疲劳寿命的值包括:使用来自条件监测系统的数据。7. The method of claim 1 or 2, wherein determining a value indicative of the current remaining fatigue life of the turbine or the one or more turbine components comprises using data from a condition monitoring system. 8.根据权利要求1或2所述的方法,其中,确定指示所述涡轮机或所述一个或多个涡轮机部件的所述当前剩余疲劳寿命的值包括:与站点检查程序结合使用从风电场传感器获得的数据,所述站点检查程序基于所述风电场传感器和与所述风电场和所述风力涡轮机设计有关的参数来确定作用于涡轮机部件的载荷。8. The method of claim 1 or 2, wherein determining a value indicative of the current remaining fatigue life of the turbine or the one or more turbine components comprises using, in conjunction with a site inspection procedure, data from wind farm sensors From the acquired data, the site inspection program determines loads acting on turbine components based on the wind farm sensors and parameters related to the wind farm and the wind turbine design. 9.根据权利要求1或2所述的方法,其中,对所述控制安排的优化包括:9. The method of claim 1 or 2, wherein the optimization of the control arrangement comprises: 改变所述控制安排以使平准化能量成本最小化。The control arrangement is changed to minimize the levelized energy cost. 10.根据权利要求9所述的方法,其中,使用平准化能量成本模型来确定平准化能量成本,所述模型包括以下中的一个或多个的参数:10. The method of claim 9, wherein the levelized energy cost is determined using a levelized energy cost model, the model comprising parameters of one or more of the following: 容量系数,指示在时间段内生成的能量除以在所述涡轮机在该时间段内以额定功率连续运行的情况下能够生成的能量;a capacity factor indicating the energy generated during a time period divided by the energy that could be generated if the turbine were to operate continuously at rated power during that time period; 可用性,指示所述涡轮机能够用于发电的时间;以及availability, indicating when the turbine can be used to generate electricity; and 场效率,指示在时间段内生成的能量除以在所述涡轮机在完全不受上游涡轮机干扰的风力下运行的情况下能够生成的能量。Field Efficiency, indicating the energy generated over a period of time divided by the energy that could be generated if the turbine were operating in wind that was completely undisturbed by the upstream turbine. 11.根据权利要求10所述的方法,其中,所述模型还包括以下中的一个或多个的参数:11. The method of claim 10, wherein the model further comprises parameters of one or more of the following: 与更换一个或多个部件相关联的成本,包括涡轮机停机时间、部件更换的人工和设备、更换部件的制造或整修成本以及经整修的部件或所述更换部件到发电站的运输成本;以及Costs associated with replacing one or more components, including turbine downtime, labor and equipment for component replacement, manufacturing or refurbishment costs for replacement components, and transportation costs for refurbished components or said replacement components to the power station; and 与更换磨损组件相关联的服务成本。Service costs associated with replacing worn components. 12.根据权利要求1或2所述的方法,其中,所述优化的控制安排是所述涡轮机能够运行所达到的最大功率电平的安排。12. The method of claim 1 or 2, wherein the optimized control arrangement is an arrangement for the maximum power level at which the turbine can operate. 13.根据权利要求1或2所述的方法,其中,所述控制安排指示随时间应当引起的疲劳损伤的量,所述方法还包括:基于一个或多个寿命使用估计器运行所述风力涡轮机以按所述控制安排所指示的速率引起疲劳损伤。13. The method of claim 1 or 2, wherein the control arrangement indicates an amount of fatigue damage that should be caused over time, the method further comprising operating the wind turbine based on one or more lifetime usage estimators Fatigue damage is induced at a rate indicated by the control arrangement. 14.根据权利要求1或2所述的方法,其中,所述控制安排指定高于所述风力涡轮机的额定功率的最大功率电平。14. The method of claim 1 or 2, wherein the control arrangement specifies a maximum power level above the rated power of the wind turbine. 15.根据权利要求1或2所述的方法,其中,所述控制安排指示所述涡轮机最大功率电平在所述涡轮机的寿命期间如何改变。15. The method of claim 1 or 2, wherein the control arrangement dictates how the turbine maximum power level changes over the life of the turbine. 16.根据权利要求1或2所述的方法,还包括将所述优化的控制安排提供给风力涡轮机控制器或风力发电站控制器,以控制风力涡轮机的功率输出。16. The method of claim 1 or 2, further comprising providing the optimized control arrangement to a wind turbine controller or a wind power plant controller to control the power output of the wind turbine. 17.根据权利要求1或2所述的方法,其中,所述方法周期性地重复。17. The method of claim 1 or 2, wherein the method is repeated periodically. 18.根据权利要求17所述的方法,其中,所述方法每天、每月或每年重复一次。18. The method of claim 17, wherein the method is repeated daily, monthly or yearly. 19.一种用于风力涡轮机或风力发电站的控制器,所述控制器被配置为执行权利要求1至18中任一项所述的方法。19. A controller for a wind turbine or wind power plant, the controller being configured to perform the method of any one of claims 1 to 18. 20.一种用于生成用于风力涡轮机的控制安排的优化器,所述控制安排指示涡轮机最大功率电平如何随时间变化,所述优化器包括:20. An optimizer for generating a control schedule for a wind turbine, the control schedule indicating how a turbine maximum power level changes over time, the optimizer comprising: 优化模块,所述优化模块被配置为接收:变量集合的初始值,所述变量集合是所述风力涡轮机的运行变量并且包括初始控制安排;一个或多个约束条件;以及指示所述涡轮机或一个或多个涡轮机部件的当前剩余疲劳寿命的数据;an optimization module configured to receive: initial values for a set of variables that are operating variables of the wind turbine and include initial control arrangements; one or more constraints; and an indication of the turbine or a or data on the current remaining fatigue life of multiple turbine components; 其中,所述优化模块被配置为:Wherein, the optimization module is configured as: 通过根据所述涡轮机或所述一个或多个涡轮机部件的剩余疲劳寿命以及所述一个或多个约束条件使所述变量中的一个或多个变量从其初始值进行改变而使在所述优化模块处接收的取决于所述变量集合的运行参数最大化或最小化,来优化所述控制安排;并且The optimization is performed by changing one or more of the variables from their initial values based on the remaining fatigue life of the turbine or the one or more turbine components and the one or more constraints. maximizing or minimizing operating parameters received at the module depending on the set of variables to optimize the control arrangement; and 输出优化的控制安排;Output optimized control arrangements; 其中,所述约束条件包括一个或多个涡轮机部件的最大允许部件更换次数,并且所述优化模块还被配置为改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。Wherein the constraints include a maximum allowable number of component replacements for one or more turbine components, and the optimization module is further configured to vary the initial value of wind turbine life to determine a target wind turbine life. 21.根据权利要求20所述的优化器,还包括初始化模块,所述初始化模块被配置为接收传感器数据和所述变量集合的初始值,所述初始化模块被配置为计算所述运行参数的初始值。21. The optimizer of claim 20, further comprising an initialization module configured to receive sensor data and initial values for the set of variables, the initialization module configured to calculate initial values for the operating parameters value. 22.根据权利要求20或21所述的优化器,其中,所述一个或多个涡轮机部件是以下中的一个或多个:叶片、变桨轴承、变桨致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动器、偏航轴承或变压器。22. An optimizer according to claim 20 or 21, wherein the one or more turbine components are one or more of the following: blades, pitch bearings, pitch actuation systems, hubs, main shafts, main shafts Bearings, gearboxes, generators, converters, yaw drives, yaw bearings or transformers. 23.根据权利要求20或21所述的优化器,其中,所述运行参数是所述涡轮机的平准化能量成本,并且优化所述控制安排包括使所述平准化能量成本最小化。23. The optimizer of claim 20 or 21, wherein the operating parameter is a levelized energy cost of the turbine, and optimizing the control arrangement comprises minimizing the levelized energy cost. 24.根据权利要求23所述的优化器,其中,使用平准化能量成本模型来确定平准化能量成本,所述模型包括以下中的一个或多个的参数:24. The optimizer of claim 23, wherein the levelized energy cost is determined using a levelized energy cost model, the model including parameters of one or more of the following: 容量系数,指示在时间段内生成的能量除以在所述涡轮机在该时间段内以额定功率连续运行的情况下能够生成的能量;a capacity factor indicating the energy generated during a time period divided by the energy that could be generated if the turbine were to operate continuously at rated power during that time period; 可用性,指示所述涡轮机能够用于发电的时间;以及availability, indicating when the turbine can be used to generate electricity; and 场效率,指示在时间段内生成的能量除以在所述涡轮机在完全不受上游涡轮机干扰的风力下运行的情况下能够生成的能量。Field Efficiency, indicating the energy generated over a period of time divided by the energy that could be generated if the turbine were operating in wind that was completely undisturbed by the upstream turbine. 25.根据权利要求24所述的优化器,其中,所述模型还包括以下中的一个或多个的参数:25. The optimizer of claim 24, wherein the model further comprises parameters of one or more of the following: 与更换一个或多个部件相关联的成本,包括涡轮机停机时间、部件更换的人工和设备、更换部件的制造或整修成本以及经整修的部件或所述更换部件到发电站的运输成本;以及Costs associated with replacing one or more components, including turbine downtime, labor and equipment for component replacement, manufacturing or refurbishment costs for replacement components, and transportation costs for refurbished components or said replacement components to the power station; and 与更换磨损组件相关联的服务成本。Service costs associated with replacing worn components. 26.一种控制器,包括根据权利要求20至25中任一项所述的优化器。26. A controller comprising an optimizer according to any of claims 20 to 25. 27.一种风力涡轮机,包括根据权利要求26所述的控制器。27. A wind turbine comprising the controller of claim 26. 28.一种风力发电站,包括根据权利要求26所述的控制器。28. A wind power plant comprising the controller of claim 26. 29.一种生成用于包括多个风力涡轮机的风力发电站的控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率电平如何随时间变化,所述方法包括:29. A method of generating a control schedule for a wind power plant comprising a plurality of wind turbines, the control schedule indicating, for each wind turbine, how a maximum power level varies over time, the method comprising: 基于测量的风力涡轮机站点数据和/或运行数据,确定指示所述多个涡轮机中的每个涡轮机或所述多个涡轮机中的每个涡轮机的一个或多个部件的当前剩余疲劳寿命的值;determining a value indicative of the current remaining fatigue life of each of the plurality of turbines or one or more components of each of the plurality of turbines based on the measured wind turbine site data and/or operational data; 应用优化功能,所述优化功能通过改变所述多个涡轮机中的每个涡轮机或所述多个涡轮机中的每个涡轮机的所述一个或多个涡轮机部件所消耗的疲劳寿命与能量捕获之间的折衷直到确定优化的控制安排为止,来改变所述多个涡轮机中的每个涡轮机的初始控制安排以确定优化的控制安排,所述优化包括:Applying an optimization function by varying the relationship between fatigue life consumed and energy capture for each of the plurality of turbines or the one or more turbine components of each of the plurality of turbines to change the initial control schedule for each of the plurality of turbines to determine an optimized control schedule until an optimized control schedule is determined, the optimization comprising: 基于所述当前剩余疲劳寿命和改变的控制安排使用站点检查程序,来估计所述涡轮机或所述涡轮机部件在所述改变的控制安排的持续时间内所消耗的未来的疲劳寿命,所述站点检查程序基于从风力发电站传感器获得的数据以及与所述风力发电站和风力涡轮机设计相关的参数来确定作用在涡轮机部件上的载荷,并且包括所述风力发电站的所述多个涡轮机之间的相互作用;以及Using a site inspection procedure based on the current remaining fatigue life and the changed control schedule to estimate future fatigue life consumed by the turbine or turbine components for the duration of the changed control schedule, the site inspection The program determines loads acting on turbine components based on data obtained from wind power plant sensors and parameters related to the wind power plant and wind turbine design, and includes loads between the plurality of turbines of the wind power plant. interact; and 根据一个或多个输入约束条件来约束对所述控制安排的优化;Constraining optimization of the control arrangement according to one or more input constraints; 其中,所述约束条件包括所述多个风力涡轮机中的每个风力涡轮机的一个或多个涡轮机部件中的每个涡轮机部件的最大允许部件更换次数,并且所述优化功能还被应用以改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。wherein the constraints include a maximum allowable number of component replacements for each of the one or more turbine components of each of the plurality of wind turbines, and the optimization function is further applied to change the wind The initial value of the turbine life determines the target wind turbine life. 30.根据权利要求29所述的方法,其中,所述从风力发电站传感器获得的数据包括在试运行和/或建造所述风力涡轮机或所述风力发电站之前收集的传感器数据。30. The method of claim 29, wherein the data obtained from wind power plant sensors comprises sensor data collected prior to commissioning and/or construction of the wind turbine or the wind power plant. 31.根据权利要求29或30所述的方法,其中,所述优化功能针对所述涡轮机部件中的一个或多个涡轮机部件改变该部件在所述涡轮机的剩余寿命期间能够被更换的次数。31. A method according to claim 29 or 30, wherein the optimization function varies, for one or more of the turbine components, the number of times that component can be replaced during the remaining life of the turbine. 32.根据权利要求31所述的方法,其中,所述优化功能针对所述涡轮机部件中的一个或多个涡轮机部件对在所述涡轮机的剩余寿命期间何时能够对所述部件进行更换做出改变。32. The method of claim 31, wherein the optimization function makes for one or more of the turbine components when the component can be replaced during the remaining life of the turbine Change. 33.根据权利要求29或30所述的方法,其中,所述方法被进一步约束,使得对于所述安排内的任何给定时间段,当所有所述涡轮机的功率被加在一起时,功率之和不会超过从所述发电站到电网的连接中能够承载的功率量。33. A method according to claim 29 or 30, wherein the method is further constrained such that for any given period of time within the arrangement, when the powers of all the turbines are added together, the power and will not exceed the amount of power that can be carried in the connection from the power station to the grid. 34.一种风力发电站控制器,所述风力发电站控制器被配置为执行根据权利要求29至33中任一项所述的方法。34. A wind power plant controller configured to perform the method of any one of claims 29 to 33.
CN201680038986.9A 2015-06-30 2016-06-21 Method and system for generating a wind turbine control arrangement Expired - Fee Related CN107850048B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562186845P 2015-06-30 2015-06-30
US62/186,845 2015-06-30
DKPA201570541 2015-08-21
DKPA201570541 2015-08-21
PCT/DK2016/050204 WO2017000951A1 (en) 2015-06-30 2016-06-21 Methods and systems for generating wind turbine control schedules

Publications (2)

Publication Number Publication Date
CN107850048A CN107850048A (en) 2018-03-27
CN107850048B true CN107850048B (en) 2020-02-07

Family

ID=56321678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680038986.9A Expired - Fee Related CN107850048B (en) 2015-06-30 2016-06-21 Method and system for generating a wind turbine control arrangement

Country Status (3)

Country Link
CN (1) CN107850048B (en)
ES (1) ES2821958T3 (en)
WO (1) WO2017000951A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10928816B2 (en) 2015-06-30 2021-02-23 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
EP3317525B1 (en) 2015-06-30 2021-09-22 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10975844B2 (en) 2015-06-30 2021-04-13 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
CN109944740B (en) * 2017-12-21 2020-10-27 北京金风科创风电设备有限公司 Wind farm farm group control method and device
ES2932607T3 (en) * 2018-10-18 2023-01-23 Vestas Wind Sys As Modification of the control strategy for the control of a wind turbine using the load probability and the design load limit
DE102018009549A1 (en) * 2018-12-10 2020-06-10 Senvion Gmbh Method and system for parameterizing a controller of a wind turbine and / or operating a wind turbine
CN110397553B (en) * 2019-07-26 2020-09-25 山东中车风电有限公司 Model-free wind power plant wake flow management method and system
CN114439681B (en) * 2020-10-30 2024-12-10 金风科技股份有限公司 Power boosting method and device for wind turbine generator set
CN112855435B (en) * 2021-02-04 2022-10-21 华能国际电力股份有限公司重庆清洁能源分公司 Wind power plant wind energy optimization method
CN116432361B (en) * 2021-12-27 2024-05-24 北京金风科创风电设备有限公司 Service life assessment method and device of wind generating set
CN116412083A (en) * 2021-12-29 2023-07-11 新疆金风科技股份有限公司 A control method, device, equipment and medium for a wind power generating set
CN117905638B (en) * 2024-03-18 2024-05-31 安徽大学 Wind driven generator optimal control method and system based on reinforcement learning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325480A1 (en) * 2009-11-24 2011-05-25 Siemens Aktiengesellschaft Method for controlling the operation of a wind turbine and wind turbine load control system
CN102518555A (en) * 2012-01-12 2012-06-27 三一电气有限责任公司 Megawatt wind driven generator set as well as control method and control system thereof
EP2557311A1 (en) * 2011-08-12 2013-02-13 kk-electronic a/s A method for controlling a wind power park and a wind power park controlled by such method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140288855A1 (en) * 2013-03-20 2014-09-25 United Technologies Corporation Temporary Uprating of Wind Turbines to Maximize Power Output

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325480A1 (en) * 2009-11-24 2011-05-25 Siemens Aktiengesellschaft Method for controlling the operation of a wind turbine and wind turbine load control system
EP2557311A1 (en) * 2011-08-12 2013-02-13 kk-electronic a/s A method for controlling a wind power park and a wind power park controlled by such method
CN102518555A (en) * 2012-01-12 2012-06-27 三一电气有限责任公司 Megawatt wind driven generator set as well as control method and control system thereof

Also Published As

Publication number Publication date
CN107850048A (en) 2018-03-27
WO2017000951A1 (en) 2017-01-05
ES2821958T3 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
US10975844B2 (en) Methods and systems for generating wind turbine control schedules
CN107850048B (en) Method and system for generating a wind turbine control arrangement
EP3317523B1 (en) Methods and systems for generating wind turbine control schedules
CN107810324B (en) Method and system for generating wind turbine control schedules
EP3317522B1 (en) Methods and systems for generating wind turbine control schedules
EP3317519B1 (en) Control method and system for wind turbines
CN107810323B (en) Method and system for generating a wind turbine control arrangement
US11428208B2 (en) Methods and systems for generating wind turbine control schedules
US20190294741A1 (en) Simulation of a maximum power output of a wind turbine
US10746160B2 (en) Methods and systems for generating wind turbine control schedules
EP2955368A1 (en) Optimal wind farm operation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200207