CN107866267B - Catalyst for synthesizing cyclohexylbenzene - Google Patents
Catalyst for synthesizing cyclohexylbenzene Download PDFInfo
- Publication number
- CN107866267B CN107866267B CN201610852211.7A CN201610852211A CN107866267B CN 107866267 B CN107866267 B CN 107866267B CN 201610852211 A CN201610852211 A CN 201610852211A CN 107866267 B CN107866267 B CN 107866267B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- solution
- zeolite molecular
- molecular sieve
- cyclohexylbenzene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 102
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 title claims abstract description 36
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 84
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 48
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000002808 molecular sieve Substances 0.000 claims abstract description 48
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000010457 zeolite Substances 0.000 claims abstract description 48
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 39
- 239000001257 hydrogen Substances 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 23
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 9
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- 238000001035 drying Methods 0.000 claims description 23
- 238000011068 loading method Methods 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 13
- 238000005470 impregnation Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 5
- 229910052693 Europium Inorganic materials 0.000 claims description 5
- 238000001308 synthesis method Methods 0.000 claims description 3
- 238000010544 hydroalkylation process reaction Methods 0.000 claims description 2
- 150000002601 lanthanoid compounds Chemical class 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 17
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 abstract description 9
- 239000006227 byproduct Substances 0.000 abstract description 4
- 239000000047 product Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 110
- 238000011156 evaluation Methods 0.000 description 43
- 238000005303 weighing Methods 0.000 description 37
- 239000000203 mixture Substances 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 20
- 238000002156 mixing Methods 0.000 description 16
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 15
- 235000012239 silicon dioxide Nutrition 0.000 description 15
- 238000002791 soaking Methods 0.000 description 14
- 101150003085 Pdcl gene Proteins 0.000 description 13
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 13
- 238000007598 dipping method Methods 0.000 description 9
- 239000011259 mixed solution Substances 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000029936 alkylation Effects 0.000 description 5
- 238000005804 alkylation reaction Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 101150116295 CAT2 gene Proteins 0.000 description 2
- 101100326920 Caenorhabditis elegans ctl-1 gene Proteins 0.000 description 2
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 2
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 2
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 2
- 101100126846 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) katG gene Proteins 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- IGARGHRYKHJQSM-UHFFFAOYSA-N cyclohexylbenzene Chemical compound C1CCCCC1C1=CC=CC=C1 IGARGHRYKHJQSM-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- -1 coatings Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7415—Zeolite Beta
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/54—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
- C07C2/64—Addition to a carbon atom of a six-membered aromatic ring
- C07C2/66—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/10—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
- C07C2523/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
- C07C2523/44—Palladium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
- C07C2529/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
- C07C2529/74—Noble metals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
Abstract
The invention relates to a catalyst for synthesizing cyclohexylbenzene, a preparation method thereof and a method for synthesizing cyclohexylbenzene by a benzene hydroalkylation one-step method, and mainly solves the technical problems that a catalyst in the prior art causes high yield of cyclohexane serving as a byproduct in a reaction and low yield of cyclohexylbenzene serving as a main product. The catalyst for synthesizing the cyclohexylbenzene comprises a carrier and the following active components: (1) 0.5-20 g/L of Pd; (2)0 to 50g/L of at least one lanthanide; (3) 0-20 g/L of Zr, wherein the carrier is hydrogen type zeolite molecular sieve, and the technical scheme has better effect, and can be used for preparing cyclohexylbenzene by a benzene hydroalkylation one-step method.
Description
Technical Field
The invention relates to a catalyst for synthesizing cyclohexylbenzene, a preparation method thereof and a method for synthesizing cyclohexylbenzene by a benzene hydroalkylation one-step method.
Background
The cyclohexylbenzene is an important intermediate and is widely applied to the fields of liquid crystal, plastics, coatings, adhesives and the like. The cyclohexylbenzene liquid crystal has the characteristics of extremely high chemical stability, photochemical stability, low viscosity, excellent physical properties and the like, and is one of ideal materials of display devices. The cyclohexylbenzene is used as an additive of the lithium ion battery electrolyte, has the overcharge prevention performance and can improve the safety performance of the battery. In addition, phenol and cyclohexanone can be prepared through the peroxidation and decomposition reaction processes of cyclohexylbenzene, and the method is used for producing a large amount of chemical raw materials such as phenolic resin, caprolactam, nylon and the like and has a good application prospect. The basic information for cyclohexylbenzene is as follows: colorless liquid with CAS number 827-52-1 and molecular weight of C12H16Density 0.95g/cm3The boiling point is 238-240 ℃, the melting point is 5 ℃, and the flash point is 98 ℃.
The preparation method of the cyclohexylbenzene comprises the following steps: biphenyl selective hydrogenation, benzene and cyclohexene alkylation, and benzene hydrogenation alkylation. Wherein, the reaction principle of preparing the cyclohexylbenzene by benzene hydroalkylation is as follows (formula 1): according to the reaction mechanism of benzene hydrogenation alkylation, benzene is subjected to hydrogenation reaction on a metal center, so that cyclohexene can be selectively generated, and part of cyclohexane and cyclohexadiene are generated at the same time; cyclohexene and cyclohexadiene undergo alkylation with benzene on an acidic center to produce cyclohexylbenzene as a main product. Therefore, the benzene hydroalkylation can be realized to produce the cyclohexylbenzene by adopting the bi-component catalyst with the hydrogenation function and the alkylation function.
Formula 1 benzene hydroalkylation principle
The first study on the hydroalkylation of benzene to produce cyclohexylbenzene began in the seventies and eighties of the 20 th century. The catalyst developed in the early stage has the problem of low selectivity of cyclohexylbenzene, for example, a catalyst loaded with hydrogenation metal is developed by ExxonMobil company based on MCM-22 series molecular sieves (U.S. Pat. No. 5,2011/0015457A 1, U.S. Pat. No. 3,2011/0021841A 1) and is used for preparing cyclohexylbenzene by benzene hydroalkylation, and the selectivity of the technology to byproduct cyclohexane is high. U.S. Pat. Nos. US4094918, US4219689 and US4329531 of Phillips oil company, USA, use Ni-rare earth treated zeolite catalyst and Pd as adjuvant, and both the conversion rate of benzene and the yield of CHB are low. The method has the problems of high yield of the cyclohexane as a byproduct and relatively low yield of the cyclohexylbenzene as a product in the process of preparing the cyclohexylbenzene.
Disclosure of Invention
One of the technical problems to be solved by the invention is the problems of high yield of the byproduct cyclohexane and low yield of the main product cyclohexylbenzene in the prior art, and provides a catalyst for synthesizing cyclohexylbenzene, which has the advantages of low yield of the cyclohexane and high yield of the cyclohexylbenzene when the catalyst is used for synthesizing the cyclohexylbenzene by reacting benzene and hydrogen.
The second technical problem to be solved by the present invention is a method for preparing the catalyst.
The invention also provides a synthesis method of cyclohexylbenzene by using the catalyst.
One of the technical solutions of the present invention to solve the above technical problems is as follows: the catalyst for synthesizing the cyclohexylbenzene comprises a carrier and the following active components:
(a) 0.5-20 g/L of Pd;
(b)0 to 50g/L of at least one lanthanide;
(c) 0-20 g/L of Zr;
wherein the carrier is a hydrogen type zeolite molecular sieve.
In the above technical solution, Eu or Dy is preferably selected as the lanthanide, but Eu or Dy is preferably included at the same time. Eu and Dy have synergistic effect in improving CHB yield.
In the technical scheme, the Pd content in the catalyst is preferably 1-10 g/L.
In the above technical scheme, the zeolite molecular sieve is preferably selected from BEA, MOR or MWW zeolite molecular sieve; more preferred zeolite molecular sieve supports are BEA zeolite molecular sieves.
In the above technical scheme, the BEA zeolite molecular sieve is preferably a binderless molded BEA zeolite molecular sieve. The mole ratio of silicon dioxide/aluminum oxide of the binderless formed BEA zeolite molecular sieve is preferably 10-100, and more preferably 20-60.
In the technical scheme, the content of the lanthanide in the catalyst is preferably more than 0 and less than or equal to 50g/L, and more preferably 4-30 g/L.
In the technical scheme, the Zr content in the catalyst is preferably more than 0 and less than or equal to 20g/L, and more preferably 2-10 g/L.
In the technical scheme, Zr and at least one lanthanide element selected from Eu or Dy have a synergistic effect on the aspect of improving the yield of CHB.
To solve the second technical problem, the technical solution of the present invention is as follows: the preparation method of the catalyst in the technical scheme of one of the technical problems comprises the following steps:
(1) obtaining the hydrogen-form zeolite molecular sieve;
(2) preparing a compound with required amount of Pd into a solution I; the optional compound comprises one of palladium chloride, palladium nitrate, ammonium chloropalladate and ammonium chloropalladite, the solvent adopted by the solution can be water, and the pH value of the solution is adjusted to be 2.0-6.5 by hydrochloric acid or nitric acid or acetic acid, and in order to facilitate the same proportion, 1mol/L acetic acid aqueous solution is used as the solvent in the embodiment and the comparative example in the specific embodiment of the invention;
(3) preparing a required amount of lanthanide compound into a solution II;
(4) preparing a compound with the required amount of Zr into a solution III;
(5) and (3) loading the solution I prepared in the step (2), the solution II prepared in the step (3) and the solution III prepared in the step (4) on the zeolite molecular sieve carrier in the step (1) by adopting an impregnation method, drying, and roasting at 350-550 ℃ for 3-6 hours to obtain the catalyst.
In the above technical scheme, the compound of Pd in the step (2) is preferably palladium chloride.
In the above technical scheme, the compound of the lanthanide element in the step (3) is preferably nitrate.
In the above technical solution, the compound of Zr in the step (4) is preferably zirconium nitrate.
In the above technical solution, the impregnation procedure in step (5) can adopt any one of the following three procedures, and the purpose of the present invention can be achieved:
the method 1, firstly dipping the solution I, drying and roasting, then mixing the solution II and the solution III, dipping together, drying and roasting. This impregnation method is abbreviated in table 1 of the specific embodiments as step impregnation I.
And 2, mixing the solution II and the solution III, soaking, drying, roasting, soaking the solution I, drying and roasting. This impregnation method is abbreviated in table 1 of the specific embodiments as step impregnation II.
And 3, mixing the solution I, the solution II and the solution III, dipping, drying and roasting. This impregnation method is abbreviated in table 1 of the specific embodiment as hybrid impregnation.
However, it has been surprisingly found that the best process is process 2, where the CHB yield is higher.
The third technical solution of the present invention to solve the above technical problems is as follows: the synthesis method of the cyclohexylbenzene takes benzene and hydrogen as reaction raw materials, and the reaction raw materials are contacted with the catalyst in any technical scheme of the technical problem to carry out benzene hydroalkylation reaction to generate the cyclohexylbenzene.
In the technical scheme, the reaction temperature is preferably 100-200 ℃, and more preferably 120-180 ℃.
In the above technical scheme, the molar ratio of benzene to hydrogen in the reaction raw material is preferably 0.5 to 2.0, and more preferably 0.5 to 1.3.
In the above-mentioned technical means, the pressure of the reaction is preferably 0.5 to 3.0MPa (gauge pressure), and more preferably 0.5 to 2.0MPa (gauge pressure).
In the technical scheme, the liquid volume space velocity of the reaction raw material benzene is preferably 0.2-2 h-1More preferably 0.2 to 1.5 hours-1。
The catalyst of the invention simultaneously adopts Pd, lanthanide and Zr as active components, thereby reducing the yield of the cyclohexane and increasing the yield of the p-cyclohexylbenzene. At the reaction temperature of 150 ℃, the molar ratio of benzene to hydrogen of 0.8, the pressure of 2.0MPa and the liquid volume space velocity of benzene of 0.5h-1Under the conditions, the yield of the cyclohexane can reach below 5.0 percent, the yield of the cyclohexylbenzene can reach 34 percent, and a better technical effect is achieved.
Detailed Description
[ example 1 ]
1. Catalyst preparation
Weighing PdCl containing 1.2g Pd2Dissolving in 1mol/L hydrochloric acid water solution to prepare 80g of solution I; measuring 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve with diameter of 1mm and length of 5mm (the mole ratio of silicon dioxide/aluminum oxide is 40); loading the solution I on a hydrogen type BEA zeolite molecular sieve, soaking for 12h at room temperature, drying for 12h at 100 ℃, and roasting for 4h at 450 ℃ to obtain the required catalyst.
2. Catalyst evaluation
10ml of the catalyst was charged into a fixed bed reactor, and activity evaluation was performed after reduction activation under the following conditions: the reaction temperature is 150 ℃, and the mol ratio of benzene and hydrogen in the reaction raw materialThe ratio is 0.8, the pressure of the reaction is 2.0MPa (gauge pressure), and the liquid volume space velocity of the raw material benzene is 0.5h-1。
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 2 ]
1. Catalyst preparation
PdCl containing Pd 0.3g is weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 0.9g of Eu3)3·6H2Dissolving O in water to prepare 40g of solution II; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, uniformly mixing the solution I and the solution II, loading the mixture on the hydrogen type BEA zeolite molecular sieve, soaking the mixture at room temperature for 12 hours, drying the mixture at 100 ℃ for 12 hours, and roasting the mixture at 450 ℃ for 4 hours to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 3 ]
1. Catalyst preparation
PdCl containing Pd 0.3g is weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Dy (NO) containing Dy 0.9g3)3·6H2Dissolving O in water to prepare 40g of solution II; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, uniformly mixing the solution I and the solution II, loading the mixture on the hydrogen type BEA zeolite molecular sieve, soaking the mixture at room temperature for 12 hours, drying the mixture at 100 ℃ for 12 hours, and roasting the mixture at 450 ℃ for 4 hours to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 4 ]
1. Catalyst preparation
Weighing the mixture containing Pd 0.3g of PdCl2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Zr (NO) containing 0.9g of Zr3)4·5H2Dissolving O in water to prepare 40g of solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, uniformly mixing the solution I and the solution III, loading the mixture on the hydrogen type BEA zeolite molecular sieve, soaking the mixture at room temperature for 12 hours, drying the mixture at 100 ℃ for 12 hours, and roasting the mixture at 450 ℃ for 4 hours to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 5 ]
1. Catalyst preparation
PdCl containing Pd 0.3g is weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 0.5g of Eu3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 0.4g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, uniformly mixing the solution I, the solution II and the solution III, loading the mixture on the hydrogen type BEA zeolite molecular sieve, soaking the mixture at room temperature for 12 hours, drying the mixture at 100 ℃ for 12 hours, and roasting the mixture at 450 ℃ for 4 hours to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 6 ]
1. Catalyst preparation
PdCl containing 0.3g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; dy (NO) containing 0.5g Dy is weighed3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 0.4g of Zr3)4·5H2O dissolved in waterPreparing 20g of solution III; then uniformly mixing the solution I, the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, loading the mixed solution on the hydrogen type BEA zeolite molecular sieve, soaking at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 7 ]
1. Catalyst preparation
PdCl containing 0.3g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 0.4g Eu3)3·6H2O and Dy (NO) containing Dy 0.1g3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 0.4g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution I, the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, loading the mixed solution on the hydrogen type BEA zeolite molecular sieve, soaking at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 8 ]
1. Catalyst preparation
PdCl containing 0.3g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 0.3g Eu3)3·6H2O and Dy (NO) containing Dy 0.2g3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 0.4g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution I, the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, loading the mixed solution on the hydrogen type BEA zeolite molecular sieve, soaking at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 9 ]
1. Catalyst preparation
PdCl containing 0.3g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 0.2g Eu3)3·6H2O and Dy (NO) containing Dy 0.3g3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 0.4g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution I, the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, loading the mixed solution on the hydrogen type BEA zeolite molecular sieve, soaking at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 10 ]
1. Catalyst preparation
PdCl containing 0.3g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 0.1g of Eu3)3·6H2O and Dy (NO) containing Dy 0.4g3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing 0.4g of ZrZr (NO)3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution I, the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, loading the mixed solution on the hydrogen type BEA zeolite molecular sieve, soaking at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 11 ]
1. Catalyst preparation
PdCl containing 0.3g Pd was weighed2Dissolving in 1mol/L hydrochloric acid aqueous solution to prepare 80g of solution I, weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide/aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, and loading the solution I on the hydrogen type BEA zeolite molecular sieve; dipping at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain CAT 1. Weighing Eu (NO) containing 0.2g Eu3)3·6H2O and Dy (NO) containing Dy 0.3g3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 0.4g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution II and the solution III; dipping the mixed solution on CAT 1; dipping for 12h at room temperature, drying for 12h at 100 ℃, and roasting for 4h at 450 ℃ to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 12 ]
1. Catalyst preparation
Weighing Eu (NO) containing 0.2g Eu3)3·6H2O and 0.3g of Dy-containing Ce (NO)3)3·6H2Dissolving O in water to prepare 20g, solution II; weighing Zr (NO) containing 0.4g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide/aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, and loading the mixed solution onto the hydrogen type BEA zeolite molecular sieve; dipping at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain CAT 2. PdCl containing 0.3g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 80g of solution I; dipping solution I onto CAT 2; dipping for 12h at room temperature, drying for 12h at 100 ℃, and roasting for 4h at 450 ℃ to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method is shown in example 1.
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 13 ]
PdCl containing 0.5g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 1.8g of Eu3)3·6H2O and Dy (NO) containing Dy 1.2g3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 8g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution I, the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, loading the mixed solution on the hydrogen type BEA zeolite molecular sieve, soaking at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method in example 1 was the same except that the following process parameters were changed: the reaction temperature is 100 ℃, the molar ratio of benzene to hydrogen in the reaction raw material is 2.0, the reaction pressure is 0.5MPa (gauge pressure), and the liquid volume space velocity of the reaction raw material is 0.2h-1。
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
[ example 14 ]
1. Catalyst preparation
PdCl containing 0.1g Pd was weighed2Dissolving in 1mol/L hydrochloric acid water solution to prepare 40g of solution I; weighing Eu (NO) containing 0.3g Eu3)3·6H2O and Dy (NO) containing Dy 0.1g3)3·6H2Dissolving O in water to prepare 20g of solution II; weighing Zr (NO) containing 0.2g of Zr3)4·5H2Dissolving O in water to prepare 20g of solution III; then uniformly mixing the solution I, the solution II and the solution III; weighing 0.1L of binderless cylindrical hydrogen type BEA zeolite molecular sieve (the molar ratio of silicon dioxide to aluminum oxide is 40) with the diameter of 1mm and the length of 5mm, loading the mixed solution on the hydrogen type BEA zeolite molecular sieve, soaking at room temperature for 12h, drying at 100 ℃ for 12h, and roasting at 450 ℃ for 4h to obtain the required catalyst.
2. Catalyst evaluation
The catalyst evaluation method in example 1 was the same except that the following process parameters were changed: the reaction temperature is 200 ℃, the molar ratio of benzene to hydrogen in the reaction raw material is 3.0, the reaction pressure is 3.0MPa (gauge pressure), and the liquid volume space velocity of the reaction raw material is 2.0h-1。
The composition of the catalyst and the evaluation results are shown in Table 1 for convenience of comparison.
TABLE 1 catalyst composition and evaluation results
Note: in table 1, CH represents cyclohexane, and CHB represents cyclohexylbenzene.
Claims (9)
1. The catalyst for synthesizing the cyclohexylbenzene comprises a carrier and the following active components:
(a) 0.5-20 g/L of Pd;
(b) 4-30 g/L of lanthanide;
(c) zr, the Zr content is more than 0 and less than or equal to 20 g/L;
wherein the carrier is a hydrogen type zeolite molecular sieve; the lanthanide elements comprise Eu and Dy at the same time.
2. The catalyst according to claim 1, wherein the Pd content is 1-10 g/L.
3. The catalyst of claim 1, wherein said zeolite molecular sieve is selected from the group consisting of BEA, MOR and MWW zeolite molecular sieves.
4. The catalyst of claim 3 wherein the BEA zeolite molecular sieve selected is a binderless molded BEA zeolite molecular sieve.
5. The catalyst of claim 4, wherein the binderless formed BEA zeolite molecular sieve has a silica to alumina mole ratio of from 10 to 100.
6. The catalyst according to claim 1, wherein the Zr content in the catalyst is 2 to 10 g/L.
7. A process for preparing the catalyst of claim 1, comprising the steps of:
(1) obtaining the hydrogen-form zeolite molecular sieve;
(2) preparing a compound with required amount of Pd into a solution I;
(3) preparing a required amount of lanthanide compound into a solution II;
(4) preparing a compound with the required amount of Zr into a solution III;
(5) and (3) loading the solution I prepared in the step (2), the solution II prepared in the step (3) and the solution III prepared in the step (4) on the zeolite molecular sieve carrier in the step (1) by adopting an impregnation method, drying, and roasting at 350-550 ℃ for 3-6 hours to obtain the catalyst.
8. A method for synthesizing cyclohexylbenzene, which comprises using benzene and hydrogen as reaction raw materials, and contacting the reaction raw materials with the catalyst of any one of claims 1 to 6 to perform benzene hydroalkylation reaction to generate cyclohexylbenzene.
9. The synthesis method of claim 8, wherein the liquid volume space velocity of the reaction raw material benzene is 0.2-3 h-1。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610852211.7A CN107866267B (en) | 2016-09-26 | 2016-09-26 | Catalyst for synthesizing cyclohexylbenzene |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610852211.7A CN107866267B (en) | 2016-09-26 | 2016-09-26 | Catalyst for synthesizing cyclohexylbenzene |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107866267A CN107866267A (en) | 2018-04-03 |
| CN107866267B true CN107866267B (en) | 2020-07-07 |
Family
ID=61751927
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610852211.7A Active CN107866267B (en) | 2016-09-26 | 2016-09-26 | Catalyst for synthesizing cyclohexylbenzene |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107866267B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101119948A (en) * | 2004-12-22 | 2008-02-06 | 埃克森美孚化学专利公司 | Production of aromatic hydrocarbons from methane |
| CN105233861A (en) * | 2014-07-11 | 2016-01-13 | 中国石油化工股份有限公司 | Cyclohexyl benzene catalyst and synthetic method thereof |
| CN105582989A (en) * | 2014-10-24 | 2016-05-18 | 中国石油化工股份有限公司 | Catalyst for synthesizing cyclohexylbenzene |
| CN105582990A (en) * | 2014-10-24 | 2016-05-18 | 中国石油化工股份有限公司 | Catalyst for producing cyclohexylbenzene |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7361797B2 (en) * | 2002-02-05 | 2008-04-22 | Abb Lummus Global Inc. | Hydrocarbon conversion using nanocrystalline zeolite Y |
-
2016
- 2016-09-26 CN CN201610852211.7A patent/CN107866267B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101119948A (en) * | 2004-12-22 | 2008-02-06 | 埃克森美孚化学专利公司 | Production of aromatic hydrocarbons from methane |
| CN105233861A (en) * | 2014-07-11 | 2016-01-13 | 中国石油化工股份有限公司 | Cyclohexyl benzene catalyst and synthetic method thereof |
| CN105582989A (en) * | 2014-10-24 | 2016-05-18 | 中国石油化工股份有限公司 | Catalyst for synthesizing cyclohexylbenzene |
| CN105582990A (en) * | 2014-10-24 | 2016-05-18 | 中国石油化工股份有限公司 | Catalyst for producing cyclohexylbenzene |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107866267A (en) | 2018-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105233862B (en) | Cyclohexyl benzene catalyst and preparation method thereof | |
| CN105233861B (en) | The synthetic method of cyclohexyl benzene catalyst and cyclohexyl benzene | |
| CN105582989B (en) | Cyclohexyl benzene catalyst for synthesizing | |
| CN107930681B (en) | Catalyst suitable for synthesis of cyclohexylbenzene and preparation method thereof | |
| CN105582990B (en) | Cyclohexyl benzene production catalyst | |
| CN107930683B (en) | Catalyst for synthesizing cyclohexylbenzene and preparation method thereof | |
| CN105582988B (en) | Cyclohexyl benzene catalyst | |
| CN107930679B (en) | Catalyst for producing cyclohexylbenzene and preparation method thereof | |
| CN107930675B (en) | Catalyst for synthesis of cyclohexylbenzene and preparation method thereof | |
| CN107866267B (en) | Catalyst for synthesizing cyclohexylbenzene | |
| CN107866275B (en) | Catalyst for producing cyclohexylbenzene | |
| CN107866268B (en) | Catalyst for cyclohexylbenzene | |
| CN107866271B (en) | Catalyst suitable for producing cyclohexylbenzene | |
| CN107866270B (en) | Catalyst for synthesis of cyclohexylbenzene | |
| CN107866262B (en) | Catalyst for producing cyclohexylbenzene | |
| CN107866266B (en) | Catalyst for production of cyclohexylbenzene | |
| CN107866273B (en) | Catalyst for synthesizing cyclohexylbenzene | |
| CN112138724B (en) | Hydroalkylation catalyst and method thereof | |
| CN107930684B (en) | Catalyst for producing cyclohexylbenzene and preparation method thereof | |
| CN107930680B (en) | Catalyst suitable for cyclohexylbenzene production and preparation method thereof | |
| CN107866274B (en) | Catalyst for producing cyclohexylbenzene | |
| CN110590634A (en) | Production method of 1-acetyl-2-pyrrolidone | |
| CN107930682B (en) | Catalyst for cyclohexylbenzene and preparation method thereof | |
| CN107866272B (en) | Prepare the catalyst of cyclohexyl benzene | |
| CN107866263B (en) | Suitable for cyclohexyl benzene production catalyst |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |