CN107862699B - Bone edge extraction method, device, equipment and storage medium from bone CT images - Google Patents
Bone edge extraction method, device, equipment and storage medium from bone CT images Download PDFInfo
- Publication number
- CN107862699B CN107862699B CN201710863598.0A CN201710863598A CN107862699B CN 107862699 B CN107862699 B CN 107862699B CN 201710863598 A CN201710863598 A CN 201710863598A CN 107862699 B CN107862699 B CN 107862699B
- Authority
- CN
- China
- Prior art keywords
- bone
- image
- edge
- data
- data fitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30008—Bone
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
Abstract
本发明适用计算机技术领域,提供了一种骨骼CT图像的骨骼边缘提取方法、装置、设备及存储介质,该方法包括:接收用户输入的骨骼CT图像骨骼边缘提取请求,该骨骼边缘提取请求中包括对应的骨骼CT图像,根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线,根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值,根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用骨骼边缘检测算法对骨骼CT图像进行边缘提取,从而提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。
The present invention is applicable to the field of computer technology, and provides a method, device, equipment and storage medium for bone edge extraction from bone CT images. The method includes: receiving a bone CT image bone edge extraction request input by a user, and the bone edge extraction request includes: For the corresponding bone CT image, according to the bone edge extraction request, use the preset data fitting function to fit the grayscale data of the bone CT image to obtain the data fitting curve of the bone CT image, and fit the data according to the bone CT image. Curve, calculate the gray mean value of the bone edge area in the bone CT image, set the high threshold parameter and low threshold parameter of the preset bone edge detection algorithm according to the calculated gray mean value, and use the bone edge detection algorithm to detect the bone CT. The image is subjected to edge extraction, thereby improving the accuracy and speed of bone edge extraction in bone CT images, thereby improving the efficiency of bone edge extraction.
Description
技术领域technical field
本发明属于计算机技术领域,尤其涉及一种骨骼CT图像的骨骼边缘提取方法、装置、设备及存储介质。The invention belongs to the field of computer technology, and in particular relates to a bone edge extraction method, device, equipment and storage medium for bone CT images.
背景技术Background technique
脊柱是人体的重要支撑,由椎骨、骶骨、尾骨及相关连接组成。微创治疗椎间盘突出的关键在于安全、彻底、有效地消除脊柱的髓核外泄部分。为了保证手术的准确性和安全性,需要在术前拍摄椎间盘突出病人的X射线断层影像(CT)。骨骼CT二维图像的边缘提取是三维重建的第一步,同时也是术中二维到三维图像配准的关键。因此,精确快速的获取CT图像边缘信息在计算机辅助脊柱诊断和微创手术治疗中具有重要的意义。The spine is an important support for the human body and consists of vertebrae, sacrum, coccyx and related connections. The key to minimally invasive treatment of intervertebral disc herniation is to safely, thoroughly and effectively eliminate the leakage of the nucleus pulposus of the spine. To ensure the accuracy and safety of surgery, it is necessary to take X-ray tomography (CT) images of patients with disc herniation before surgery. The edge extraction of 2D bone CT images is the first step in 3D reconstruction, and it is also the key to intraoperative 2D to 3D image registration. Therefore, accurate and rapid acquisition of edge information of CT images is of great significance in computer-aided spine diagnosis and minimally invasive surgical treatment.
图像中的边缘即为灰度的局部极值点或灰度发生急剧变化的点的集合。边缘检测的常规思想是根据图像的一阶导数和二阶导数求取边界,比较经典的边缘检测算子有:Sobel、Prewitt、Roberts、Laplacian、Canny算子等。其中,Canny算子因其具有高信噪比、高定位精度及单边缘响应等优良性能而得到广泛应用。Canny算子的基本思想是采用二维高斯函数的任意方向上的一阶方向导数为噪声滤波器,通过与图像卷积进行滤波,然后对滤波后的图像寻找局部梯度最大值,以此来确定图像边缘。随后,又出现了一些新型的边缘检测算法,如非线性小波变换法、神经网络法、模糊技术、数学形态变换法等。The edge in the image is the local extreme point of gray level or a collection of points where the gray level changes sharply. The conventional idea of edge detection is to find the boundary according to the first and second derivatives of the image. The more classic edge detection operators are: Sobel, Prewitt, Roberts, Laplacian, Canny operators, etc. Among them, Canny operator is widely used because of its excellent performance such as high signal-to-noise ratio, high positioning accuracy and single edge response. The basic idea of the Canny operator is to use the first-order directional derivative of the two-dimensional Gaussian function in any direction as the noise filter, filter it by convolution with the image, and then find the local gradient maximum value for the filtered image to determine image edges. Subsequently, some new edge detection algorithms appeared, such as nonlinear wavelet transform method, neural network method, fuzzy technology, mathematical morphological transformation method and so on.
骨骼CT图像里主要包括骨骼、骨髓、肌肉及体液噪声,因各部分成分不同,因此在成像上表现为不同的灰度值,边缘主要存在于各成分相连接处。若采用传统的边缘检测算法如Canny算子,则会检测出除了骨骼边缘以外的各种其他组织的边缘。而新型的边缘检测算子往往需要大量的计算,且对脊柱骨骼这种存在多种复杂成分的人体部位的骨骼边缘提取往往具有一定的局限性。Bone CT images mainly include bone, bone marrow, muscle and body fluid noise. Due to the different components of each part, they appear as different grayscale values on the imaging, and the edges mainly exist at the connection of each component. If a traditional edge detection algorithm such as the Canny operator is used, the edges of various other tissues other than bone edges will be detected. However, the new edge detection operators often require a lot of computation, and the bone edge extraction of the human body with multiple complex components, such as spine bones, often has certain limitations.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种骨骼CT图像的骨骼边缘提取方法、装置、设备及存储介质,旨在解决由于现有的骨骼边缘提取方法计算量大、骨骼边缘提取准确性较低,导致骨骼边缘提取效率低下的问题。The purpose of the present invention is to provide a bone edge extraction method, device, equipment and storage medium for bone CT images, aiming to solve the problem of bone edge extraction due to the large amount of calculation and low accuracy of bone edge extraction in the existing bone edge extraction method. Extraction inefficiencies.
一方面,本发明提供了一种骨骼CT图像的骨骼边缘提取方法,所述方法包括下述步骤:In one aspect, the present invention provides a method for extracting a bone edge from a bone CT image, the method comprising the following steps:
接收用户输入的骨骼CT图像骨骼边缘提取请求,所述骨骼边缘提取请求中包括对应的骨骼CT图像;receiving a skeleton CT image skeleton edge extraction request input by a user, where the skeleton edge extraction request includes a corresponding skeleton CT image;
根据所述骨骼边缘提取请求,使用预设的数据拟合函数对所述骨骼CT图像的灰度数据进行拟合,得到所述骨骼CT图像的数据拟合曲线;According to the bone edge extraction request, use a preset data fitting function to fit the grayscale data of the bone CT image to obtain a data fitting curve of the bone CT image;
根据所述骨骼CT图像的所述数据拟合曲线,计算所述骨骼CT图像中骨骼边缘区域的灰度均值;According to the data fitting curve of the bone CT image, calculate the gray mean value of the bone edge region in the bone CT image;
根据所述计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用所述骨骼边缘检测算法对所述骨骼CT图像进行边缘提取。According to the gray mean value obtained by the calculation, the high threshold parameter and the low threshold parameter of the preset bone edge detection algorithm are set, and the bone edge detection algorithm is used to perform edge extraction on the bone CT image.
另一方面,本发明提供了一种骨骼CT图像的骨骼边缘提取装置,所述装置包括:In another aspect, the present invention provides a bone edge extraction device from a bone CT image, the device comprising:
请求接收单元,用于接收用户输入的骨骼CT图像骨骼边缘提取请求,所述骨骼边缘提取请求中包括对应的骨骼CT图像;a request receiving unit, configured to receive a skeleton CT image skeleton edge extraction request input by a user, where the skeleton edge extraction request includes a corresponding skeleton CT image;
数据拟合单元,用于根据所述骨骼边缘提取请求,使用预设的数据拟合函数对所述骨骼CT图像的灰度数据进行拟合,得到所述骨骼CT图像的数据拟合曲线;a data fitting unit, configured to use a preset data fitting function to fit the grayscale data of the bone CT image according to the bone edge extraction request to obtain a data fitting curve of the bone CT image;
均值计算单元,用于根据所述骨骼CT图像的所述数据拟合曲线,计算所述骨骼CT图像中骨骼边缘区域的灰度均值;以及a mean value calculation unit, configured to calculate the gray mean value of the bone edge region in the bone CT image according to the data fitting curve of the bone CT image; and
边缘获取单元,用于根据所述计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用所述骨骼边缘检测算法对所述骨骼CT图像进行边缘提取。The edge acquisition unit is configured to set the high threshold parameter and the low threshold parameter of the preset bone edge detection algorithm according to the gray mean value obtained by the calculation, and use the bone edge detection algorithm to perform edge detection on the bone CT image. extract.
另一方面,本发明还提供了一种医疗设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如所述骨骼CT图像的骨骼边缘提取方法的步骤。In another aspect, the present invention also provides a medical device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, and the processor is implemented when the processor executes the computer program Such as the steps of the bone edge extraction method of the bone CT image.
另一方面,本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如所述骨骼CT图像的骨骼边缘提取方法的步骤。In another aspect, the present invention also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the bone edge extraction method as described in the bone CT image A step of.
本发明接收用户输入的骨骼CT图像骨骼边缘提取请求,该骨骼边缘提取请求中包括对应的骨骼CT图像,根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线,根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值,根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用骨骼边缘检测算法对骨骼CT图像进行边缘提取,从而提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。The present invention receives a bone CT image bone edge extraction request input by a user, the bone edge extraction request includes a corresponding bone CT image, and uses a preset data fitting function to perform grayscale data on the bone CT image according to the bone edge extraction request. Fitting, obtains the data fitting curve of the bone CT image, calculates the average gray value of the bone edge area in the bone CT image according to the data fitting curve of the bone CT image, and calculates the preset bone edge according to the calculated gray average value. The high threshold parameter and low threshold parameter of the detection algorithm are set, and the bone edge detection algorithm is used to extract the edge of the bone CT image, thereby improving the accuracy and speed of bone edge extraction from the bone CT image, thereby improving the efficiency of bone edge extraction.
附图说明Description of drawings
图1是本发明实施例一提供的骨骼CT图像的骨骼边缘提取方法的实现流程图;Fig. 1 is the realization flow chart of the bone edge extraction method of the bone CT image provided by Embodiment 1 of the present invention;
图2是本发明实施例一的骨骼CT图像边缘检测过程的示意图;2 is a schematic diagram of a bone CT image edge detection process according to Embodiment 1 of the present invention;
图3是无阈值的边缘检测结果与本发明实施例一提供的有阈值边缘检测结果的对比图;3 is a comparison diagram of the edge detection result without a threshold and the edge detection result with a threshold provided by Embodiment 1 of the present invention;
图4是本发明实施例二提供的骨骼CT图像的骨骼边缘提取装置的结构示意图;4 is a schematic structural diagram of a device for extracting bone edges from a bone CT image according to Embodiment 2 of the present invention;
图5是本发明实施例三提供的骨骼CT图像的骨骼边缘提取装置的结构示意图;以及5 is a schematic structural diagram of a device for extracting bone edges from a bone CT image according to Embodiment 3 of the present invention; and
图6是本发明实施例四提供的医疗设备的结构示意图。FIG. 6 is a schematic structural diagram of a medical device provided in Embodiment 4 of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
以下结合具体实施例对本发明的具体实现进行详细描述:The specific implementation of the present invention is described in detail below in conjunction with specific embodiments:
实施例一:Example 1:
图1示出了本发明实施例一提供的骨骼CT图像的骨骼边缘提取方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:FIG. 1 shows the implementation process of the bone edge extraction method from the bone CT image provided by the first embodiment of the present invention. For the convenience of description, only the part related to the embodiment of the present invention is shown, and the details are as follows:
在步骤S101中,接收用户输入的骨骼CT图像骨骼边缘提取请求,该骨骼边缘提取请求中包括对应的骨骼CT图像。In step S101, a request for extracting a bone edge of a bone CT image input by a user is received, and the bone edge extraction request includes a corresponding bone CT image.
本发明实施例适用于医疗设备,尤其适用于医疗设备中骨骼CT图像的骨骼边缘提取。在本发明实施例中,接收到的骨骼边缘提取请求中可以包括对应的待提取骨骼边缘的骨骼CT图像,骨骼CT图像也可以单独接收。The embodiments of the present invention are suitable for medical equipment, especially for bone edge extraction of bone CT images in medical equipment. In this embodiment of the present invention, the received bone edge extraction request may include a corresponding bone CT image of the bone edge to be extracted, and the bone CT image may also be received separately.
在步骤S102中,根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线。In step S102, according to the bone edge extraction request, a preset data fitting function is used to fit the grayscale data of the bone CT image to obtain a data fitting curve of the bone CT image.
在本发明实施例中,由于骨骼CT图像里主要包括人体或动物体的骨骼、骨髓、肌肉及体液噪声等多个不同部分,且这些不同部分拥有不同的成分,导致这些不同部分在成像为骨骼CT图像时表现出不同的灰度值,并且这些不同部分的灰度值表现出不同的分布状态,从而需要使用不同的拟合函数对这些不同部分在骨骼CT图像的灰度数据进行拟合。因此,优选地,预设的数据拟合函数为多个高斯函数组成的混合数据拟合函数,以提高骨骼CT图像的数据拟合曲线的拟合效果。In the embodiment of the present invention, since the bone CT image mainly includes many different parts of the human body or animal body, such as bones, bone marrow, muscle, and body fluid noise, and these different parts have different components, these different parts are imaged as bones. CT images show different grayscale values, and the grayscale values of these different parts show different distribution states, so it is necessary to use different fitting functions to fit the grayscale data of these different parts in bone CT images. Therefore, preferably, the preset data fitting function is a mixed data fitting function composed of multiple Gaussian functions, so as to improve the fitting effect of the data fitting curve of the bone CT image.
由于骨骼中的骨髓区域数据、肌肉区域数据及背景噪声数据的分布状态不同,因此,优选地,在使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合时,使用混合数据拟合函数对骨骼CT图像中的骨骼边缘区域灰度数据、骨髓区域灰度数据、肌肉区域灰度数据及背景噪声区域灰度数据进行拟合。其中,wGl为混合数据拟合函数中各个函数所占的比例,l=1,2,3,4,且wGl满足fGl(x)表示该混合数据拟合函数中的各个函数,优选地,各个函数可以为这样,通过该混合数据拟合函数可有效提高骨骼CT图像数据拟合的精确性,拟合效果可参考图2。图2(a)示出了骨骼CT图像,图2(b)示出了使用本发明实施例的混合数据拟合函数拟合得到的效果图。Because the distribution states of the bone marrow region data, the muscle region data and the background noise data in the bones are different, preferably, when using the preset data fitting function to fit the grayscale data of the bone CT image, the mixed data is used. fit function The grayscale data of bone edge region, bone marrow region grayscale data, muscle region grayscale data and background noise region grayscale data in bone CT images were fitted. Among them, w Gl is the proportion of each function in the mixed data fitting function, l=1, 2, 3, 4, and w Gl satisfies f G1 (x) represents each function in the mixed data fitting function, preferably, each function can be In this way, the hybrid data fitting function can effectively improve the accuracy of bone CT image data fitting, and the fitting effect can be referred to FIG. 2 . Fig. 2(a) shows a CT image of the bone, and Fig. 2(b) shows an effect diagram obtained by fitting the mixed data fitting function according to the embodiment of the present invention.
优选地,在使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合之前,首先对数据拟合函数中的参数进行初始估计,然后对初始估计得到的参数进行优化,从而提高了数据拟合函数的可用性,进而提高了数据拟合的精确性。其中,这些参数包括数据拟合函数中各个高斯函数的参数以及各个高斯函数在数据拟合函数中的权重。Preferably, before using the preset data fitting function to fit the grayscale data of the bone CT image, the parameters in the data fitting function are initially estimated first, and then the parameters obtained by the initial estimation are optimized, so as to improve the The availability of the data fitting function is improved, thereby improving the accuracy of the data fitting. The parameters include parameters of each Gaussian function in the data fitting function and weights of each Gaussian function in the data fitting function.
进一步优选地,在对数据拟合函数中的参数进行初始估计时,使用k均值聚类算法进行初始估计,得到数据拟合函数中的这些参数的初始值(l=1,2,3,4),从而进一步提高了数据拟合函数的可用性。Further preferably, in the initial estimation of the parameters in the data fitting function, the k-means clustering algorithm is used for the initial estimation to obtain the initial values of these parameters in the data fitting function. (l=1, 2, 3, 4), thereby further improving the usability of the data fitting function.
进一步优选地,在对初始估计得到的参数进行优化时,首先将这些参数的初始值作为最大期望算法(Expectation Maximization Algorithm,简称EM算法)迭代的初始值,然后使用EM算法对这些参数的初始值(l=1,2,3,4)进行迭代优化操作,得到优化后的参数从而进一步提高了数据拟合函数的可用性,进而提高数据拟合的精确性。Further preferably, when optimizing the parameters obtained by the initial estimation, the initial values of these parameters are first used as the initial values of the iteration of the Expectation Maximization Algorithm (EM algorithm), and then the initial values of these parameters are calculated by the EM algorithm. (l=1, 2, 3, 4) perform iterative optimization operation to obtain the optimized parameters Thus, the availability of the data fitting function is further improved, thereby improving the accuracy of the data fitting.
在步骤S103中,根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值。In step S103, according to the data fitting curve of the bone CT image, the average gray value of the bone edge region in the bone CT image is calculated.
在本发明实施例中,拟合得到骨骼CT图像的数据拟合曲线之后,首先根据灰度值的大小,从骨骼CT图像的数据拟合曲线中获取骨骼边缘区域对应的曲线段,然后根据获取的曲线段对应的数据,计算骨骼CT图像中骨骼边缘区域的灰度均值。In the embodiment of the present invention, after the data fitting curve of the bone CT image is obtained by fitting, first, according to the size of the gray value, the curve segment corresponding to the bone edge region is obtained from the data fitting curve of the bone CT image, and then according to the obtained The data corresponding to the curve segment of , calculate the average gray value of the bone edge area in the bone CT image.
在步骤S104中,根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用骨骼边缘检测算法对骨骼CT图像进行边缘提取。In step S104, the high threshold parameter and the low threshold parameter of the preset bone edge detection algorithm are set according to the calculated gray mean value, and the bone edge detection algorithm is used to extract the edge of the bone CT image.
在本发明实施例中,首先根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数进行设置,然后根据低阈值与高阈值之间的关系,对预设的骨骼边缘检测算法的低阈值参数进行设置,从而通过限制骨骼边缘检测算法的高阈值参数和低阈值参数,消除骨骼边缘之外的其他边缘的影响,进而提高骨骼边缘提取的效果。请参考图2和图3,其中,图2(a)和图3(a)为骨骼CT图像,图2(c)和图3(c)为本发明实施例提供的有阈值边缘检测结果示意图,图3(b)为无阈值的边缘检测结果示意图,从图3(b)和图3(c)可以看出通过限制骨骼边缘检测算法的高阈值参数和低阈值参数,消除了骨骼边缘之外的其他边缘的影响,提高了骨骼边缘提取的效果。之后,使用该骨骼边缘检测算法对骨骼CT图像进行边缘提取,从而提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。In the embodiment of the present invention, firstly, the high threshold parameter of the preset bone edge detection algorithm is set according to the calculated average gray value, and then the preset bone edge detection algorithm is set according to the relationship between the low threshold and the high threshold. The low threshold parameter of the algorithm is set, so that by limiting the high threshold parameter and low threshold parameter of the bone edge detection algorithm, the influence of other edges other than the bone edge is eliminated, thereby improving the effect of bone edge extraction. Please refer to FIG. 2 and FIG. 3 , wherein, FIG. 2( a ) and FIG. 3 ( a ) are CT images of bones, and FIG. 2 ( c ) and FIG. 3 ( c ) are schematic diagrams of edge detection results with a threshold provided by an embodiment of the present invention , Figure 3(b) is a schematic diagram of the edge detection result without threshold. From Figure 3(b) and Figure 3(c), it can be seen that by limiting the high threshold parameter and low threshold parameter of the bone edge detection algorithm, the edge of the bone is eliminated. The influence of other edges outside the skeleton improves the effect of bone edge extraction. After that, the bone edge detection algorithm is used to extract the edge of the bone CT image, so as to improve the accuracy and speed of bone edge extraction from the bone CT image, thereby improving the efficiency of bone edge extraction.
优选地,骨骼边缘检测算法为Canny边缘检测算法,从而提高骨骼边缘提取的效率。Preferably, the bone edge detection algorithm is a Canny edge detection algorithm, so as to improve the efficiency of bone edge extraction.
由于不同部分的边缘主要存在于各部分的连接处,因此,优选地,在使用骨骼边缘检测算法对骨骼CT图像进行边缘提取时,使用预设的滤波算法对骨骼CT图像进行平滑去噪处理,计算去噪后骨骼CT图像中各个像素点的灰度梯度的幅值和方向,对灰度梯度幅值进行非极大值抑制操作,根据非极大值抑制操作后的灰度梯度幅值,将骨骼CT图像的像素点划分为强边缘点、弱边缘点和非边缘点。之后,从弱边缘点中,获取与强边缘点相连接的弱边缘点,将获取的与强边缘点相连接的弱边缘点和强边缘点设置为骨骼CT图像的边缘点,对边缘点执行连接操作,得到骨骼CT图像的边缘,从而进一步提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。Since the edges of different parts mainly exist at the connection of each part, preferably, when using the bone edge detection algorithm to extract the edge of the bone CT image, use a preset filtering algorithm to perform smoothing and denoising processing on the bone CT image, Calculate the magnitude and direction of the gray gradient of each pixel in the bone CT image after denoising, and perform a non-maximum suppression operation on the gray gradient amplitude. According to the gray gradient amplitude after the non-maximum suppression operation, The pixel points of the bone CT image are divided into strong edge points, weak edge points and non-edge points. After that, from the weak edge points, obtain the weak edge points connected with the strong edge points, set the acquired weak edge points and strong edge points connected with the strong edge points as the edge points of the bone CT image, and execute the operation on the edge points. The connection operation is used to obtain the edge of the bone CT image, thereby further improving the accuracy and speed of bone edge extraction from the bone CT image, thereby improving the efficiency of bone edge extraction.
具体地,在根据非极大值抑制操作后的灰度梯度幅值,将骨骼CT图像的像素点划分为强边缘点、弱边缘点和非边缘点时,首先获取预先设置的高阈值和低阈值,然后对非极大值抑制操作后的灰度梯度幅值与高阈值和低阈值进行比较,将灰度梯度幅值处于灰度梯度幅值大于高阈值的像素点划分为强边缘点,将灰度梯度幅值处于灰度梯度幅值小于低阈值的像素点划分为弱边缘点,将灰度梯度幅值处于灰度梯度幅值处于高阈值和低阈值之间的像素点划分为非边缘点。Specifically, when dividing the pixel points of the skeletal CT image into strong edge points, weak edge points and non-edge points according to the gray gradient amplitude after the non-maximum suppression operation, first obtain the preset high threshold and low Then compare the gray gradient amplitude after the non-maximum suppression operation with the high threshold and low threshold, and divide the pixels whose gray gradient amplitude is greater than the high threshold into strong edge points. The pixels whose gray gradient amplitude is less than the low threshold are divided into weak edge points, and the pixels whose gray gradient amplitude is between the high threshold and the low threshold are divided into non-edge points. edge point.
实施例二:Embodiment 2:
图4示出了本发明实施例二提供的骨骼CT图像的骨骼边缘提取装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分,其中包括:FIG. 4 shows the structure of the device for extracting the bone edge of the bone CT image provided by the second embodiment of the present invention. For the convenience of description, only the part related to the embodiment of the present invention is shown, including:
请求接收单元41,用于接收用户输入的骨骼CT图像骨骼边缘提取请求,骨骼边缘提取请求中包括对应的骨骼CT图像。The
数据拟合单元42,用于根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线。The data
均值计算单元43,用于根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值。The mean
边缘获取单元44,用于根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用骨骼边缘检测算法对骨骼CT图像进行边缘提取。The
在本发明实施例中,请求接收单元41接收用户输入的骨骼CT图像骨骼边缘提取请求,该骨骼边缘提取请求中包括对应的骨骼CT图像,数据拟合单元42根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线,均值计算单元43根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值,边缘获取单元44根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,并使用骨骼边缘检测算法对骨骼CT图像进行边缘提取,从而提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。In this embodiment of the present invention, the
在本发明实施例中,骨骼CT图像的骨骼边缘提取装置的各单元可由相应的硬件或软件单元实现,各单元可以为独立的软、硬件单元,也可以集成为一个软、硬件单元,在此不用以限制本发明。各单元的具体实施方式可参考实施例一的描述,在此不再赘述。In this embodiment of the present invention, each unit of the device for extracting bone edges from a bone CT image can be implemented by corresponding hardware or software units. Each unit can be an independent software or hardware unit, or can be integrated into a software and hardware unit. Here It is not intended to limit the present invention. For the specific implementation of each unit, reference may be made to the description of Embodiment 1, which will not be repeated here.
实施例三:Embodiment three:
图5示出了本发明实施例三提供的骨骼CT图像的骨骼边缘提取装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分,其中包括:FIG. 5 shows the structure of the device for extracting the bone edge of the bone CT image provided by the third embodiment of the present invention. For the convenience of description, only the part related to the embodiment of the present invention is shown, including:
请求接收单元51,用于接收用户输入的骨骼CT图像骨骼边缘提取请求,骨骼边缘提取请求中包括对应的骨骼CT图像。The
在本发明实施例中,请求接收单元51接收到的骨骼边缘提取请求中可以包括对应的待提取骨骼边缘的骨骼CT图像,当然,骨骼边缘提取请求中不包括对应的待提取骨骼边缘的骨骼CT图像时,骨骼CT图像也可以单独接收。In this embodiment of the present invention, the bone edge extraction request received by the
参数优化单元52,用于对数据拟合函数中的参数进行初始估计,并对初始估计得到的参数进行优化。The
在本发明实施例中,参数优化单元52首先对数据拟合函数中的参数进行初始估计,然后对初始估计得到的参数进行优化,从而提高了数据拟合函数的可用性,进而提高了数据拟合的精确性。其中,这些参数包括数据拟合函数中各个高斯函数的参数以及各个高斯函数在数据拟合函数中的权重。In the embodiment of the present invention, the
优选地,在对数据拟合函数中的参数进行初始估计时,使用k均值聚类算法进行初始估计,得到数据拟合函数中的这些参数的初始值(l=1,2,3,4),从而进一步提高了数据拟合函数的可用性。Preferably, in the initial estimation of the parameters in the data fitting function, the k-means clustering algorithm is used for the initial estimation to obtain the initial values of these parameters in the data fitting function (l=1, 2, 3, 4), thereby further improving the usability of the data fitting function.
优选地,在对初始估计得到的参数进行优化时,首先将这些参数的初始值作为最大期望算法EM算法迭代的初始值,然后使用EM算法对这些参数的初始值(l=1,2,3,4)进行迭代优化操作,得到优化后的参数从而进一步提高了数据拟合函数的可用性,进而提高数据拟合的精确性。Preferably, when optimizing the parameters obtained by the initial estimation, the initial values of these parameters are first used as the initial values of the iteration of the EM algorithm of the maximum expectation algorithm, and then the initial values of these parameters are calculated by the EM algorithm. (l=1, 2, 3, 4) perform iterative optimization operation to obtain the optimized parameters Thus, the availability of the data fitting function is further improved, thereby improving the accuracy of the data fitting.
数据拟合单元53,用于根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线。The data
在本发明实施例中,由于骨骼CT图像里主要包括人体或动物体的骨骼、骨髓、肌肉及体液噪声等多个不同部分,且这些不同部分拥有不同的成分,导致这些不同部分在成像为骨骼CT图像时表现出不同的灰度值,并且这些不同部分的灰度值表现出不同的分布状态,从而使得数据拟合单元53需要使用不同的拟合函数对这些不同部分在骨骼CT图像的灰度数据进行拟合,因此,优选地,预设的数据拟合函数为多个高斯函数组成的混合数据拟合函数,以提高骨骼CT图像的数据拟合曲线的拟合效果。In the embodiment of the present invention, since the bone CT image mainly includes many different parts of the human body or animal body, such as bones, bone marrow, muscle, and body fluid noise, and these different parts have different components, these different parts are imaged as bones. CT images show different grayscale values, and the grayscale values of these different parts show different distribution states, so that the
由于骨骼中的骨髓区域数据、肌肉区域数据及背景噪声数据的分布状态不同,因此,优选地,在使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合时,使用混合数据拟合函数对骨骼CT图像中的骨骼边缘区域灰度数据、骨髓区域灰度数据、肌肉区域灰度数据及背景噪声区域灰度数据进行拟合。其中,wGl为混合数据拟合函数中各个函数所占的比例,l=1,2,3,4,且wGl满足fGl(x)表示该混合数据拟合函数中的各个函数,优选地,各个函数可以为这样,通过该混合数据拟合函数可有效提高骨骼CT图像数据拟合的精确性。Because the distribution states of the bone marrow region data, the muscle region data and the background noise data in the bones are different, preferably, when using the preset data fitting function to fit the grayscale data of the bone CT image, the mixed data is used. fit function The grayscale data of bone edge region, bone marrow region grayscale data, muscle region grayscale data and background noise region grayscale data in bone CT images were fitted. Among them, w Gl is the proportion of each function in the mixed data fitting function, l=1, 2, 3, 4, and w Gl satisfies f G1 (x) represents each function in the mixed data fitting function, preferably, each function can be In this way, the accuracy of bone CT image data fitting can be effectively improved through the mixed data fitting function.
均值计算单元54,用于根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值。The mean
在本发明实施例中,拟合得到骨骼CT图像的数据拟合曲线之后,均值计算单元54首先根据灰度值的大小,从骨骼CT图像的数据拟合曲线中获取骨骼边缘区域对应的曲线段,然后根据获取的曲线段对应的数据,计算骨骼CT图像中骨骼边缘区域的灰度均值。In the embodiment of the present invention, after the data fitting curve of the bone CT image is obtained by fitting, the mean
边缘获取单元55,用于根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用骨骼边缘检测算法对骨骼CT图像进行边缘提取。The
在本发明实施例中,边缘获取单元55首先根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数进行设置,然后根据低阈值与高阈值之间的关系,对预设的骨骼边缘检测算法的低阈值参数进行设置,从而通过限制骨骼边缘检测算法的高阈值参数和低阈值参数,消除骨骼边缘之外的其他边缘的影响,进而提高骨骼边缘提取的效果。之后,使用该骨骼边缘检测算法对骨骼CT图像进行边缘提取,从而提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。In the embodiment of the present invention, the
优选地,骨骼边缘检测算法为Canny边缘检测算法,从而提高骨骼边缘提取的效率。Preferably, the bone edge detection algorithm is a Canny edge detection algorithm, so as to improve the efficiency of bone edge extraction.
由于不同部分的边缘主要存在于各部分的连接处,因此,优选地,在使用骨骼边缘检测算法对骨骼CT图像进行边缘提取时,使用预设的滤波算法对骨骼CT图像进行平滑去噪处理,计算去噪后骨骼CT图像中各个像素点的灰度梯度的幅值和方向,对灰度梯度幅值进行非极大值抑制操作,根据非极大值抑制操作后的灰度梯度幅值,将骨骼CT图像的像素点划分为强边缘点、弱边缘点和非边缘点。之后,从弱边缘点中,获取与强边缘点相连接的弱边缘点,将获取的与强边缘点相连接的弱边缘点和强边缘点设置为骨骼CT图像的边缘点,对边缘点执行连接操作,得到骨骼CT图像的边缘,从而进一步提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。Since the edges of different parts mainly exist at the connection of each part, preferably, when using the bone edge detection algorithm to extract the edge of the bone CT image, use a preset filtering algorithm to perform smoothing and denoising processing on the bone CT image, Calculate the magnitude and direction of the gray gradient of each pixel in the bone CT image after denoising, and perform a non-maximum suppression operation on the gray gradient amplitude. According to the gray gradient amplitude after the non-maximum suppression operation, The pixel points of the bone CT image are divided into strong edge points, weak edge points and non-edge points. After that, from the weak edge points, obtain the weak edge points connected with the strong edge points, set the acquired weak edge points and strong edge points connected with the strong edge points as the edge points of the bone CT image, and execute the operation on the edge points. The connection operation is used to obtain the edge of the bone CT image, thereby further improving the accuracy and speed of bone edge extraction from the bone CT image, thereby improving the efficiency of bone edge extraction.
具体地,在根据非极大值抑制操作后的灰度梯度幅值,将骨骼CT图像的像素点划分为强边缘点、弱边缘点和非边缘点时,首先获取预先设置的高阈值和低阈值,然后对非极大值抑制操作后的灰度梯度幅值与高阈值和低阈值进行比较,将灰度梯度幅值处于灰度梯度幅值大于高阈值的像素点划分为强边缘点,将灰度梯度幅值处于灰度梯度幅值小于低阈值的像素点划分为弱边缘点,将灰度梯度幅值处于灰度梯度幅值处于高阈值和低阈值之间的像素点划分为非边缘点。Specifically, when dividing the pixel points of the skeletal CT image into strong edge points, weak edge points and non-edge points according to the gray gradient amplitude after the non-maximum suppression operation, first obtain the preset high threshold and low Then compare the gray gradient amplitude after the non-maximum suppression operation with the high threshold and low threshold, and divide the pixels whose gray gradient amplitude is greater than the high threshold into strong edge points. The pixels whose gray gradient amplitude is less than the low threshold are divided into weak edge points, and the pixels whose gray gradient amplitude is between the high threshold and the low threshold are divided into non-edge points. edge point.
因此,优选地,该数据拟合单元53包括:Therefore, preferably, the
数据拟合子单元531,用于使用混合数据拟合函数对骨骼CT图像中的骨骼边缘区域灰度数据、骨髓区域灰度数据、肌肉区域灰度数据及背景噪声区域灰度数据进行拟合;
其中,wGl为混合数据拟合函数中各个函数所占的比例,l=1,2,3,4,且wGl满足fGl(x)表示混合数据拟合函数中的各个函数;Among them, w Gl is the proportion of each function in the mixed data fitting function, l=1, 2, 3, 4, and w Gl satisfies f Gl (x) represents each function in the mixed data fitting function;
优选地,该边缘获取单元55包括:Preferably, the
图像去噪单元551,用于使用预设的滤波算法对骨骼CT图像进行平滑去噪处理;The
数据处理单元552,用于计算去噪后骨骼CT图像中各个像素点的灰度梯度的幅值和方向,对灰度梯度幅值进行非极大值抑制操作;The
像素点分类单元553,用于根据非极大值抑制操作后的灰度梯度幅值,将骨骼CT图像的像素点划分为强边缘点、弱边缘点和非边缘点;The pixel
边缘点提取单元554,用于从弱边缘点中获取与强边缘点相连接的弱边缘点,将获取的与强边缘点相连接的弱边缘点和强边缘点设置为骨骼CT图像的边缘点;以及The edge
边缘点连接单元555,用于对边缘点执行连接操作,得到骨骼CT图像的边缘。The edge
在本发明实施例中,骨骼CT图像的骨骼边缘提取装置的各单元可由相应的硬件或软件单元实现,各单元可以为独立的软、硬件单元,也可以集成为一个软、硬件单元,在此不用以限制本发明。In this embodiment of the present invention, each unit of the device for extracting bone edges from a bone CT image can be implemented by corresponding hardware or software units. Each unit can be an independent software or hardware unit, or can be integrated into a software and hardware unit. Here It is not intended to limit the present invention.
实施例四:Embodiment 4:
图6示出了本发明实施例四提供的医疗设备的结构,为了便于说明,仅示出了与本发明实施例相关的部分。FIG. 6 shows the structure of the medical device provided by the fourth embodiment of the present invention. For the convenience of description, only the part related to the embodiment of the present invention is shown.
本发明实施例的医疗设备6包括处理器60、存储器61以及存储在存储器61中并可在处理器60上运行的计算机程序62。该处理器60执行计算机程序62时实现上述各个骨骼CT图像的骨骼边缘提取方法实施例中的步骤,例如,图1所示的步骤S101至S104。或者,处理器60执行计算机程序62时实现上述各装置实施例中各单元的功能,例如,图4所示单元41至44、图5所示单元51至55的功能。The medical device 6 of the embodiment of the present invention includes a processor 60 , a
在本发明实施例中,该处理器60执行计算机程序62时实现上述各个骨骼CT图像的骨骼边缘提取方法实施例中的步骤时,接收用户输入的骨骼CT图像骨骼边缘提取请求,该骨骼边缘提取请求中包括对应的骨骼CT图像,根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线,根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值,根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用骨骼边缘检测算法对骨骼CT图像进行边缘提取,从而提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。In this embodiment of the present invention, when the processor 60 executes the
该医疗设备6中处理器60在执行计算机程序62时实现的步骤具体可参考实施例一中方法的描述,在此不再赘述。For specific steps implemented by the processor 60 in the medical device 6 when executing the
实施例五:Embodiment 5:
在本发明实施例中,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述各个骨骼CT图像的骨骼边缘提取方法实施例中的步骤,例如,图1所示的步骤S101至S104。或者,该计算机程序被处理器执行时实现上述各装置实施例中各单元的功能,例如,图4所示单元41至44、图5所示单元51至55的功能。In an embodiment of the present invention, a computer-readable storage medium is provided, and the computer-readable storage medium stores a computer program. When the computer program is executed by a processor, the above-mentioned bone edge extraction method for each bone CT image is implemented in the embodiments steps, for example, steps S101 to S104 shown in FIG. 1 . Or, when the computer program is executed by the processor, the functions of the units in the above apparatus embodiments, for example, the functions of
在本发明实施例中,接收用户输入的骨骼CT图像骨骼边缘提取请求,该骨骼边缘提取请求中包括对应的骨骼CT图像,根据骨骼边缘提取请求,使用预设的数据拟合函数对骨骼CT图像的灰度数据进行拟合,得到骨骼CT图像的数据拟合曲线,根据骨骼CT图像的数据拟合曲线,计算骨骼CT图像中骨骼边缘区域的灰度均值,根据计算得到的灰度均值,对预设的骨骼边缘检测算法的高阈值参数和低阈值参数进行设置,使用骨骼边缘检测算法对骨骼CT图像进行边缘提取,从而提高了骨骼CT图像骨骼边缘提取的准确性和速度,进而提高了骨骼边缘提取的效率。In this embodiment of the present invention, a bone edge extraction request from a bone CT image input by a user is received, and the bone edge extraction request includes a corresponding bone CT image. According to the bone edge extraction request, a preset data fitting function is used to fit the bone CT image. According to the data fitting curve of the bone CT image, the average gray value of the bone edge area in the bone CT image is calculated, and according to the calculated gray average value, the The preset high threshold parameters and low threshold parameters of the bone edge detection algorithm are set, and the bone edge detection algorithm is used to extract the edge of the bone CT image, thereby improving the accuracy and speed of bone edge extraction from the bone CT image, thereby improving the bone edge. Efficiency of edge extraction.
该计算机程序被处理器执行时实现的骨骼CT图像的骨骼边缘提取方法进一步可参考前述方法实施例中步骤的描述,在此不再赘述。When the computer program is executed by the processor, the method for extracting the bone edge of the bone CT image can further refer to the description of the steps in the foregoing method embodiments, which will not be repeated here.
本发明实施例的计算机可读存储介质可以包括能够携带计算机程序代码的任何实体或装置、记录介质,例如,ROM/RAM、磁盘、光盘、闪存等存储器。The computer-readable storage medium of the embodiments of the present invention may include any entity or device capable of carrying computer program codes, recording medium, for example, memory such as ROM/RAM, magnetic disk, optical disk, flash memory, and the like.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710863598.0A CN107862699B (en) | 2017-09-22 | 2017-09-22 | Bone edge extraction method, device, equipment and storage medium from bone CT images |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710863598.0A CN107862699B (en) | 2017-09-22 | 2017-09-22 | Bone edge extraction method, device, equipment and storage medium from bone CT images |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107862699A CN107862699A (en) | 2018-03-30 |
| CN107862699B true CN107862699B (en) | 2020-11-10 |
Family
ID=61699557
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710863598.0A Active CN107862699B (en) | 2017-09-22 | 2017-09-22 | Bone edge extraction method, device, equipment and storage medium from bone CT images |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107862699B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112017147B (en) * | 2019-05-31 | 2024-03-22 | 杭州三坛医疗科技有限公司 | Bone image extraction method and device |
| CN112017148B (en) * | 2019-05-31 | 2024-03-22 | 杭州三坛医疗科技有限公司 | Method and device for extracting single-segment skeleton contour |
| CN112017146B (en) * | 2019-05-31 | 2024-03-22 | 杭州三坛医疗科技有限公司 | Bone segmentation method and device |
| CN114037719B (en) * | 2022-01-11 | 2022-04-01 | 北京威高智慧科技有限公司 | Bone region determination method and device, electronic equipment and storage medium |
| CN114897703B (en) * | 2022-06-08 | 2024-08-20 | 西安交通大学 | Automatic splicing system and method for full-length X-ray film of orthopedics department, computer equipment and storage medium |
| CN117218368A (en) * | 2023-08-21 | 2023-12-12 | 广州航海学院 | Ship weld defect texture edge extraction method, system, equipment and storage medium |
| CN118365662B (en) * | 2024-06-19 | 2024-12-31 | 深圳惟德精准医疗科技有限公司 | Bone extraction method and related products |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103714538A (en) * | 2013-12-20 | 2014-04-09 | 中联重科股份有限公司 | Road edge detection method and device and vehicle |
| CN104700421A (en) * | 2015-03-27 | 2015-06-10 | 中国科学院光电技术研究所 | Edge detection algorithm based on canny self-adaptive threshold value |
| CN105551041A (en) * | 2015-12-15 | 2016-05-04 | 中国科学院深圳先进技术研究院 | Universal blood vessel segmentation method and system |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8913817B2 (en) * | 2011-10-28 | 2014-12-16 | Carestream Health, Inc. | Rib suppression in radiographic images |
| US9269139B2 (en) * | 2011-10-28 | 2016-02-23 | Carestream Health, Inc. | Rib suppression in radiographic images |
| CN104574361B (en) * | 2014-11-27 | 2017-12-29 | 沈阳东软医疗系统有限公司 | A kind of mammary gland peripheral tissues balanced image processing method and device |
| CN106683085A (en) * | 2016-12-23 | 2017-05-17 | 浙江大学 | CT image spine and spinal dura mater automation detection method |
-
2017
- 2017-09-22 CN CN201710863598.0A patent/CN107862699B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103714538A (en) * | 2013-12-20 | 2014-04-09 | 中联重科股份有限公司 | Road edge detection method and device and vehicle |
| CN104700421A (en) * | 2015-03-27 | 2015-06-10 | 中国科学院光电技术研究所 | Edge detection algorithm based on canny self-adaptive threshold value |
| CN105551041A (en) * | 2015-12-15 | 2016-05-04 | 中国科学院深圳先进技术研究院 | Universal blood vessel segmentation method and system |
Non-Patent Citations (3)
| Title |
|---|
| 3D MODEL-BASED METHOD FOR VESSEL SEGMENTATION IN TOF-MRA;KUI FANG 等;《Proceedings of the 2011 International Conference on Machine Learning and Cybernetics》;20110912;第1608-1611页 * |
| a vessel segmentation method for MRA ata based on probabilistic mixture model;Pei Lu 等;《《2015 IET International Conference on Biomedical Image and Signal Processing(ICBISP 2015)》》;20160411;第1-4页 * |
| 基于数学形态变换的骨骼CT图像边缘提取;朱志松 等;《微计算机信息》;20061125;第22卷(第30期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107862699A (en) | 2018-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107862699B (en) | Bone edge extraction method, device, equipment and storage medium from bone CT images | |
| Nikolic et al. | Edge detection in medical ultrasound images using adjusted Canny edge detection algorithm | |
| Naranjo et al. | Metal artifact reduction in dental CT images using polar mathematical morphology | |
| Kroon et al. | Optimized anisotropic rotational invariant diffusion scheme on cone-beam CT | |
| EP2380132A2 (en) | Denoising medical images | |
| EP2588374A2 (en) | Non-linear resolution reduction for medical imagery | |
| US10460423B2 (en) | System and method for medical image quality enhancement using multiscale total variation flow | |
| WO2007061744A2 (en) | Image enhancement using anisotropic noise filtering | |
| JP2019512361A (en) | Method and system for segmentation of vasculature in a volumetric image data set | |
| JP2019524356A (en) | Feature-based image processing using feature images extracted from different iterations | |
| EP1849310A2 (en) | Adaptive image de-noising by pixels relation maximization | |
| CN103345731A (en) | Anisotropy diffusion image noise reduction method based on McIlhagga edge detection operator | |
| CN108885786B (en) | Medical image processing | |
| JP7278224B2 (en) | Quantified aspects of lesions in medical images | |
| CN108038840A (en) | A kind of image processing method, device, image processing equipment and storage medium | |
| Zarei et al. | A physics-informed deep neural network for harmonization of CT images | |
| Zeng et al. | Contrast enhancement of mammographic images using guided image filtering | |
| CN118297817A (en) | Multi-sequence prostate MR image fusion method and system based on combined tensor detection | |
| JP7232242B2 (en) | Motion-compensated heart valve reconstruction | |
| Patrick et al. | A semi-automated technique for vertebrae detection and segmentation from CT images of spine | |
| Yang et al. | Fusion of CT and MR images using an improved wavelet based method | |
| Mittal et al. | Deep residual learning-based denoiser for medical X-ray images | |
| CN110136095A (en) | System and method for automatic extraction of lesion area in liver three-dimensional CT image | |
| Shahina et al. | Renal stone detection and analysis by contour based algorithm | |
| Jerebko et al. | Robust parametric modeling approach based on domain knowledge for computer aided detection of vertebrae column metastases in MRI |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |