CN107863964A - Accurately control the fully differential charge transfer circuit of common mode charge amount - Google Patents
Accurately control the fully differential charge transfer circuit of common mode charge amount Download PDFInfo
- Publication number
- CN107863964A CN107863964A CN201711106587.4A CN201711106587A CN107863964A CN 107863964 A CN107863964 A CN 107863964A CN 201711106587 A CN201711106587 A CN 201711106587A CN 107863964 A CN107863964 A CN 107863964A
- Authority
- CN
- China
- Prior art keywords
- charge
- circuit
- common mode
- semiconductor
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种模数转换器的信号传输电路,尤其是一种可精确控制共模电荷量的全差分电荷传输电路,具体地说说用于电荷域流水线模数转换器中的可精确控制共模电荷量的全差分电荷传输电路,属于微电子的技术领域。The present invention relates to a signal transmission circuit of an analog-to-digital converter, in particular to a fully differential charge transmission circuit that can precisely control the amount of common-mode charge, specifically for the precisely controllable charge-domain pipelined analog-to-digital converter The invention relates to a fully differential charge transmission circuit of common-mode charge, which belongs to the technical field of microelectronics.
背景技术Background technique
随着数字信号处理技术的不断发展,电子系统的数字化和集成化是必然趋势。然而现实中的信号大都是连续变化的模拟量,需经过模数转换变成数字信号方可输入到数字系统中进行处理和控制,因而模数转换器(ADC)在未来的数字系统设计中是不可或缺的组成部分。在宽带通信、数字高清电视和雷达等应用领域,系统要求模数转换器同时具有非常高的采样速率和分辨率。这些应用领域的便携式终端产品对于模数转换器的要求不仅要高采样速率和高分辨率,其功耗还应该最小化。With the continuous development of digital signal processing technology, the digitization and integration of electronic systems is an inevitable trend. However, the signals in reality are mostly continuously changing analog quantities, which need to be converted into digital signals by analog-to-digital conversion before they can be input into digital systems for processing and control. Therefore, analog-to-digital converters (ADC) are important in future digital system design. Indispensable component. In applications such as broadband communications, digital high-definition television, and radar, systems require analog-to-digital converters with both very high sampling rates and resolutions. Portable terminal products in these application fields require not only high sampling rate and high resolution for analog-to-digital converters, but also minimum power consumption.
目前,能够同时实现高采样速率和高分辨率的模数转换器结构为流水线结构模数转换器。流水线结构是一种多级的转换结构,每一级使用低精度的基本结构的模数转换器,输入信号经过一级级的处理,最后由每级的结果组合生成高精度的输出。其基本思想就是把总体上要求的转换精度平均分配到每一级,每一级的转换结果合并在一起可以得到最终的转换结果。由于流水线结构模数转换器可以在速度、功耗和芯片面积上实现最好的折中,因此在实现较高精度的模数转换时仍然能保持较高的速度和较低的功耗。At present, the analog-to-digital converter structure capable of simultaneously realizing high sampling rate and high resolution is a pipeline-structured analog-to-digital converter. The pipeline structure is a multi-stage conversion structure. Each stage uses an analog-to-digital converter with a low-precision basic structure. The input signal is processed by one stage, and finally the result of each stage is combined to generate a high-precision output. The basic idea is to evenly distribute the conversion precision required by the whole to each level, and combine the conversion results of each level to get the final conversion result. Since the pipeline structure ADC can achieve the best compromise in speed, power consumption and chip area, it can still maintain high speed and low power consumption when realizing higher precision analog-to-digital conversion.
现有比较成熟的实现流水线结构模数转换器的方式是基于开关电容技术的流水线结构。基于该技术的流水线模数转换器中采样保持电路和各个子级电路的工作也都必须使用高增益和宽带宽的运算放大器。这些高增益和宽带宽运算放大器的使用限制了开关电容流水线模数转换器的速度和精度,成为该类模数转换器性能提高的主要限制瓶颈,并且精度不变的情况下模数转换器功耗水平随速度的提高呈直线上升趋势。要降低基于开关电容电路的流水线模数转换器的功耗水平,最直接的方法就是减少或者消去高增益和超宽带宽的运算放大器的使用。The existing relatively mature way to realize the analog-to-digital converter of the pipeline structure is the pipeline structure based on the switched capacitor technology. Operational amplifiers with high gain and wide bandwidth must be used in the sampling and holding circuit and each sub-level circuit in the pipeline analog-to-digital converter based on this technology. The use of these high-gain and wide-bandwidth operational amplifiers limits the speed and accuracy of switched-capacitor pipelined ADCs, and becomes the main bottleneck limiting the performance improvement of this type of ADC. The consumption level increases linearly with the increase of speed. The most straightforward way to reduce the power consumption of a pipelined A/D converter based on switched capacitor circuits is to reduce or eliminate the use of high-gain and ultra-wide bandwidth operational amplifiers.
电荷域流水线模数转换器就是一种不使用高增益和超宽带宽的运算放大器的模数转换器,该结构模数转换器具有低功耗特性同时又能实现高速度和高精度。电荷域流水线模数转换器采用电荷域信号处理技术。电路中,信号以电荷包的形式表示,电荷包的大小代表不同大小的信号量,不同大小的电荷包在不同存储节点间的存储、传输、加/减、比较等处理实现信号处理功能。通过采用周期性的时钟来驱动控制不同大小的电荷包在不同存储节点间的信号处理便可以实现模数转换功能。然而,其面临的一个突出问题是其性能易受共模电荷误差的影响而产生性能恶化。The charge-domain pipelined ADC is an analog-to-digital converter that does not use an operational amplifier with high gain and ultra-wide bandwidth. This structure of the analog-to-digital converter has the characteristics of low power consumption and can achieve high speed and high precision at the same time. The charge-domain pipelined analog-to-digital converter uses charge-domain signal processing techniques. In the circuit, the signal is expressed in the form of a charge packet, and the size of the charge packet represents a semaphore of different sizes, and the storage, transmission, addition/subtraction, comparison, etc. of the charge packets of different sizes between different storage nodes realize the signal processing function. The analog-to-digital conversion function can be realized by using a periodic clock to drive and control the signal processing of charge packets of different sizes between different storage nodes. However, a prominent issue is that its performance is susceptible to performance degradation due to common-mode charge errors.
在影响共模电荷的诸多因素中,子级电路之间的电荷传输电路模块的影响至关重要。对于高效电荷传输电路的实现,现有的技术实现方式典型的包括如下文献:US2007/0279507A1的专利文件提出了一种基本增强型电荷传输电路,可大幅提高电荷传输技术。公开号为CN102394650A的文件提出了一种伪差动辅助型电荷传输电路,可抑制PVT波动对电荷传输引起的共模电荷误差的影响。公开号为CN101882929A的文件提出了一种针对输入共模误差的数模混合补偿技术,以解决输入信号所引起的共模误差对电荷域ADC性能的影响。因此为进一步提升电荷域流水线ADC的精度,设计可精确控制共模电荷量的差分电荷传输电路很有意义。Among the many factors affecting the common-mode charge, the influence of the charge transfer circuit block between sub-circuits is crucial. For the realization of high-efficiency charge transfer circuits, the existing technical implementation methods typically include the following documents: The patent document of US2007/0279507A1 proposes a basic enhanced charge transfer circuit, which can greatly improve the charge transfer technology. The document with the publication number CN102394650A proposes a pseudo-differential auxiliary charge transfer circuit, which can suppress the influence of PVT fluctuations on common-mode charge errors caused by charge transfer. The document with the publication number CN101882929A proposes a digital-analog hybrid compensation technology for input common-mode errors to solve the impact of common-mode errors caused by input signals on the performance of charge-domain ADCs. Therefore, in order to further improve the accuracy of the charge-domain pipeline ADC, it is meaningful to design a differential charge transfer circuit that can precisely control the amount of common-mode charge.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的不足,提供一种可精确控制共模电荷量的全差分电荷传输电路,其能提高电荷域流水线模数转换器的性能,安全可靠。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a fully differential charge transmission circuit that can precisely control the amount of common-mode charge, which can improve the performance of the charge-domain pipeline analog-to-digital converter, and is safe and reliable.
按照本发明提供的技术方案,所述可精确控制共模电荷量的全差分电荷传输电路,包括第一数模混合控制型电荷传输电路以及第二数模混合控制型电荷传输电路;还包括第一共模电荷检测电路、共模前馈电路、第二共模电荷检测电路、检测处理电路、共模电荷调整电路、M位调整寄存器以及校准控制器;According to the technical solution provided by the present invention, the fully differential charge transfer circuit that can precisely control the amount of common-mode charge includes a first digital-analog hybrid control type charge transfer circuit and a second digital-analog hybrid control type charge transfer circuit; A common-mode charge detection circuit, a common-mode feedforward circuit, a second common-mode charge detection circuit, a detection processing circuit, a common-mode charge adjustment circuit, an M-bit adjustment register, and a calibration controller;
差分输入端Q in,p 、差分输入端Q in,n 分别连接到第一共模电荷检测电路的差分电荷输入端,第一共模电荷检测电路的输出端连接到共模前馈电路的输入端;共模前馈电路的输出端Vf同时连接到第一数模混合控制型电荷传输电路的第一共模调整信号输入端FF、第二数模混合控制型电荷传输电路的第一共模调整信号输入端FF;第一数模混合控制型电荷传输电路的输出端、第二数模混合控制型电荷传输电路的输出端分别连接到第二共模电荷检测电路的差分电荷输入端,第二共模电荷检测电路的输出端连接到检测处理电路的输入端;检测处理电路的输出端连接到校准控制器的检测信号输入端;校准控制器的M位补偿码输出端连接到M位调整寄存器的信号输入端,M位调整寄存器的信号输出端连接到共模电荷调整电路的控制信号输入端;共模电荷调整电路的控制信号输出端同时连接到第一数模混合控制型电荷传输电路的第二共模调整信号输入端FB、第二数模混合控制型电荷传输电路的第二共模调整信号输入端FB。The differential input terminal Qin ,p and the differential input terminal Qin ,n are respectively connected to the differential charge input terminal of the first common-mode charge detection circuit, and the output terminal of the first common-mode charge detection circuit is connected to the input of the common-mode feedforward circuit end; the output terminal Vf of the common-mode feedforward circuit is simultaneously connected to the first common-mode adjustment signal input terminal FF of the first digital-analog hybrid control type charge transfer circuit, and the first common-mode input terminal FF of the second digital-analog hybrid control type charge transfer circuit. The adjustment signal input terminal FF; the output terminal of the first digital-analog hybrid control type charge transmission circuit and the output terminal of the second digital-analog hybrid control type charge transmission circuit are respectively connected to the differential charge input terminal of the second common-mode charge detection circuit. The output end of the two common-mode charge detection circuits is connected to the input end of the detection processing circuit; the output end of the detection processing circuit is connected to the detection signal input end of the calibration controller; the M-bit compensation code output end of the calibration controller is connected to the M-bit adjustment The signal input end of the register and the signal output end of the M-bit adjustment register are connected to the control signal input end of the common-mode charge adjustment circuit; the control signal output end of the common-mode charge adjustment circuit is simultaneously connected to the first digital-analog hybrid control type charge transmission circuit The second common-mode adjustment signal input terminal FB of the second digital-analog hybrid control type charge transfer circuit and the second common-mode adjustment signal input terminal FB of the second digital-analog hybrid control type charge transfer circuit.
校准控制器能控制进入校准模式或正常工作模式;Calibration controller can control to enter into calibration mode or normal working mode;
首先进入校准模式,校准控制器将第一模数混合控制型电荷传输电路、第二数模混合控制型电荷传输电路对应的差分输入端连接到输入基准电压;紧接着开启第一共模电荷检测电路以及第二共模电荷检测电路,第二共模电荷检测电路的输出依次被检测处理电路进行统计处理,然后由校准控制器进行运算,对M位调整寄存器进行赋值;共模电荷调整电路根据M位调整寄存器的M位数字码产生补偿电压Vadj,在所述补偿电压Vadj的作用下,控制第一数模混合控制型电荷传输电路、第二数模混合控制型电荷传输电路相应的输出共模电荷量;最后,校准控制器开启共模前馈电路,并使得第一数模混合控制型电荷传输电路的差分电荷输入端、第二数模混合控制型电荷传输电路的差分电荷输入端重新连接差分输入端Q in,N 、差分输入端Q in,P ;First enter the calibration mode, the calibration controller connects the differential input terminals corresponding to the first analog-digital hybrid control type charge transfer circuit and the second digital-analog hybrid control type charge transfer circuit to the input reference voltage; then the first common-mode charge detection is turned on circuit and the second common-mode charge detection circuit, the output of the second common-mode charge detection circuit is sequentially statistically processed by the detection processing circuit, and then the calibration controller performs calculations to assign values to the M-bit adjustment register; the common-mode charge adjustment circuit according to The M-bit digital code of the M-bit adjustment register generates a compensation voltage Vadj, and under the action of the compensation voltage Vadj, the corresponding output common of the first digital-analog hybrid control type charge transmission circuit and the second digital-analog hybrid control type charge transmission circuit is controlled. Finally, the calibration controller turns on the common-mode feed-forward circuit, and makes the differential charge input terminal of the first digital-analog hybrid control type charge transmission circuit and the differential charge input terminal of the second digital-analog hybrid control type charge transmission circuit re- Connect the differential input terminal Q in,N and the differential input terminal Q in,P ;
完成上述后,校准控制控制进入正常传输模式;在进入正常传输模式后,校准控制器和检测处理电路进入休眠模式。After completing the above, the calibration control enters the normal transmission mode; after entering the normal transmission mode, the calibration controller and the detection processing circuit enter the sleep mode.
第二共模电荷检测电路包括第一电荷检测器、第二电荷检测器、第三电荷检测器以及第四电荷检测器;The second common-mode charge detection circuit includes a first charge detector, a second charge detector, a third charge detector and a fourth charge detector;
第一电荷检测器、第四电荷检测器分别连接差分电荷输出端Q out,p 、全差分电荷输出端Q outKn ;第一电荷检测器的输出端与采样开关S1的一端连接,采样开关S1的另一端与电容C1的一端以及采样开关S2的一端连接,采样开关S2的另一端与第二电荷检测器的输出端连接,第二电荷检测器的输入端与基准信号R p连接,第三电荷检测器的输入端与基准信号Rn连接,第三电荷检测器的输出端与采样开关S3的一端连接,采样开关S3的另一端与电容C2的一端以及采样开关S4的一端连接,采样开关S4的另一端与第四电荷检测器的输出端连接,电容C1的另一端与采样开关S5的一端以及全差分放大器的正输入端连接,电容C2的另一端与采样开关S6以及全差分放大器的负输入端连接,采样开关S6的另一端与采样开关S5的另一端连接,且采样开关S5的另一端以及采样开关S6的另一端接电压VSet;The first charge detector and the fourth charge detector are respectively connected to the differential charge output terminal Q out,p and the full differential charge output terminal Q outKn ; the output terminal of the first charge detector is connected to one end of the sampling switch S1, and the output terminal of the sampling switch S1 The other end is connected with one end of the capacitor C1 and one end of the sampling switch S2, the other end of the sampling switch S2 is connected with the output end of the second charge detector, the input end of the second charge detector is connected with the reference signal Rp , and the third charge The input end of the detector is connected with the reference signal Rn, the output end of the third charge detector is connected with one end of the sampling switch S3, the other end of the sampling switch S3 is connected with one end of the capacitor C2 and one end of the sampling switch S4, and the sampling switch S4 The other end is connected to the output end of the fourth charge detector, the other end of the capacitor C1 is connected to one end of the sampling switch S5 and the positive input end of the full differential amplifier, and the other end of the capacitor C2 is connected to the sampling switch S6 and the negative input end of the full differential amplifier The other end of the sampling switch S6 is connected to the other end of the sampling switch S5, and the other end of the sampling switch S5 and the other end of the sampling switch S6 are connected to the voltage VSet;
第一电荷检测器、第四电荷检测器、采样开关S1、采样开关S4连接第二时钟Φ2,第二电荷检测器、第三电荷检测器、采样开关S2、采样开关S3、采样开关S5以及采样开关S6连接第一时钟Φ1,第一时钟Φ1与第二时钟Φ2相互不交叠。The first charge detector, the fourth charge detector, the sampling switch S1, the sampling switch S4 are connected to the second clock Φ 2 , the second charge detector, the third charge detector, the sampling switch S2, the sampling switch S3, the sampling switch S5 and The sampling switch S6 is connected to the first clock Φ 1 , and the first clock Φ 1 and the second clock Φ 2 do not overlap with each other.
共模前馈电路包括PMOS电流镜电路、差分输入对、电流镜偏置电路;The common mode feedforward circuit includes a PMOS current mirror circuit, a differential input pair, and a current mirror bias circuit;
所述PMOS电流镜电路包括PMOS管M3及PMOS管M4,所述PMOS管M3的栅极端与PMOS管M3的漏极端、PMOS管M4的栅极端相连,PMOS管M3、PMOS管M4的源极端相互连接后接电源;PMOS管M3的栅极端、PMOS管M3的漏极端均与复位MOS管Ms1的漏极端相连, PMOS管M4的漏极端与复位MOS管Ms2的漏极端相连;复位MOS管Ms1的栅极端和复位MOS管Ms2的栅极端连接到第二时钟Ф2;The PMOS current mirror circuit includes a PMOS transistor M3 and a PMOS transistor M4, the gate terminal of the PMOS transistor M3 is connected to the drain terminal of the PMOS transistor M3 and the gate terminal of the PMOS transistor M4, and the source terminals of the PMOS transistor M3 and the PMOS transistor M4 are connected to each other. connected to the power supply; the gate terminal of the PMOS transistor M3 and the drain terminal of the PMOS transistor M3 are connected to the drain terminal of the reset MOS transistor Ms1, and the drain terminal of the PMOS transistor M4 is connected to the drain terminal of the reset MOS transistor Ms2; the drain terminal of the reset MOS transistor Ms1 The gate terminal and the gate terminal of the reset MOS transistor Ms2 are connected to the second clock Φ2;
差分输入对包括MOS管M1及MOS管M2;所述MOS管M1的漏极端与复位MOS管Ms1的源极端相连;所述MOS管M2的漏极端与复位MOS管Ms2的源极端相连;所述MOS管M1的源极端通过源极电阻R1与MOS管M5的漏极端相连,且MOS管M2的源极端通过源极电阻R2与MOS管M5的漏极端相连;MOS管M5的栅极端与MOS管M8的栅极端、MOS管M8的漏极端相连,MOS管M5的源极端与MOS管M6的漏极端连接, MOS管M6的漏极端接地,MOS管M8的源极端接地,MOS管M6的栅极端与MOS管M7的栅极端、MOS管M7的漏极端相连, MOS管M7的源极端、MOS管M8的源极端均接地。MOS管M8的漏极端接偏置电流Ib1,MOS管M7的漏极端接偏置电流Ib2;The differential input pair includes a MOS transistor M1 and a MOS transistor M2; the drain terminal of the MOS transistor M1 is connected to the source terminal of the reset MOS transistor Ms1; the drain terminal of the MOS transistor M2 is connected to the source terminal of the reset MOS transistor Ms2; The source terminal of MOS transistor M1 is connected to the drain terminal of MOS transistor M5 through source resistor R1, and the source terminal of MOS transistor M2 is connected to the drain terminal of MOS transistor M5 through source resistor R2; the gate terminal of MOS transistor M5 is connected to the drain terminal of MOS transistor M5. The gate terminal of M8 is connected to the drain terminal of MOS transistor M8, the source terminal of MOS transistor M5 is connected to the drain terminal of MOS transistor M6, the drain terminal of MOS transistor M6 is grounded, the source terminal of MOS transistor M8 is grounded, and the gate terminal of MOS transistor M6 It is connected to the gate terminal of the MOS transistor M7 and the drain terminal of the MOS transistor M7, and the source terminal of the MOS transistor M7 and the source terminal of the MOS transistor M8 are both grounded. The drain terminal of the MOS transistor M8 is connected to the bias current Ib1, and the drain terminal of the MOS transistor M7 is connected to the bias current Ib2;
MOS管M1的栅极端接收第一输出误差信号CM,MOS管M2的栅极端与第二输出误差信号CMn相连,MOS管M2的漏极端与复位MOS管Ms2的源极端连接。The gate terminal of the MOS transistor M1 receives the first output error signal CM, the gate terminal of the MOS transistor M2 is connected to the second output error signal CMn, and the drain terminal of the MOS transistor M2 is connected to the source terminal of the reset MOS transistor Ms2.
本发明的优点:能够自动检测电荷域流水线模数转换器中的共模电荷误差,并对该共模电荷误差进行精确补偿,以克服共模电荷误差对现有电荷域流水线模数转换器的动态性能的限制,进一步提高现有电荷域流水线模数转换器的转换性能。The advantages of the present invention: can automatically detect the common-mode charge error in the charge-domain pipeline analog-to-digital converter, and accurately compensate the common-mode charge error, so as to overcome the common-mode charge error’s impact on the existing charge-domain pipeline analog-to-digital converter The limitation of dynamic performance further improves the conversion performance of existing charge-domain pipelined ADCs.
附图说明Description of drawings
图1为本发明可精确控制共模电荷量的全差分电荷传输电路的结构原理图。FIG. 1 is a structural principle diagram of a fully differential charge transmission circuit capable of precisely controlling the amount of common-mode charges in the present invention.
图2为本发明中数模混合控制型电荷传输电路的一种实现原理图。FIG. 2 is a schematic diagram of an implementation of a digital-analog hybrid control type charge transfer circuit in the present invention.
图3为本发明中共模电荷检测电路的电路原理图。FIG. 3 is a schematic circuit diagram of the common-mode charge detection circuit of the present invention.
图4为本发明中共模前馈电路的电路原理图。Fig. 4 is a schematic circuit diagram of the common mode feedforward circuit of the present invention.
图5为本发明中共模调整电路的电路原理图。FIG. 5 is a schematic circuit diagram of the common mode adjustment circuit of the present invention.
图6为本发明中检测处理电路的电路原理图。Fig. 6 is a schematic circuit diagram of the detection processing circuit in the present invention.
附图标记说明:1-第一共模电荷检测电路、2-共模前馈电路、3-第一数模混合控制型电荷传输电路、4-第二数模混合控制型电荷传输电路、5-第二共模电荷检测电路、6-共模电荷调整电路、7-检测处理电路、8-M位调整寄存器、9-校准控制器、10-基本增强型电荷传输电路、11-镜像控制电路、12-第一电荷检测器、13-第二电荷检测器、14-第三电荷检测器、15-第四电荷检测器、16-全差分运算放大器、17-输出缓冲运算放大器、18-DAC模块、19-K:1选择器、20-第一8:1选择器、21-带脉冲吞咽的16位计数器、22-16:1选择器、23-信号比对电路、24-读出控制器、25-窗口信号发生器、26-扫描序列发生器、27-吞咽控制电路、28-复位信号产生电路、29-第一8:1选择器、30-16位计数器以及31-误差放大器。Description of reference numerals: 1-first common-mode charge detection circuit, 2-common-mode feedforward circuit, 3-first digital-analog hybrid control type charge transmission circuit, 4-second digital-analog hybrid control type charge transmission circuit, 5 -second common-mode charge detection circuit, 6-common-mode charge adjustment circuit, 7-detection processing circuit, 8-M-bit adjustment register, 9-calibration controller, 10-basic enhanced charge transfer circuit, 11-mirror control circuit , 12-first charge detector, 13-second charge detector, 14-third charge detector, 15-fourth charge detector, 16-fully differential operational amplifier, 17-output buffer operational amplifier, 18-DAC Module, 19-K:1 selector, 20-first 8:1 selector, 21-16-bit counter with pulse swallowing, 22-16:1 selector, 23-signal comparison circuit, 24-readout control device, 25-window signal generator, 26-scan sequence generator, 27-swallow control circuit, 28-reset signal generation circuit, 29-first 8:1 selector, 30-16-bit counter and 31-error amplifier.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific drawings and embodiments.
电荷域ADC各级流水线子级电路的共模电荷的误差来源于三个方面:1)、各级BCT(数模混合控制型电荷传输电路)的关断点电压随PVT变化带来的共模电荷误差;2)、输入共模电平波动引起的共模电荷误差;3)、各流水线子级电路中的电容失配和基准电压随PVT变化引起的共模电荷误差波动。The error of the common-mode charge of the pipeline sub-level circuits of the charge domain ADC at all levels comes from three aspects: 1), the common-mode charge caused by the turn-off point voltage of the BCT (digital-analog hybrid control type charge transfer circuit) at all levels with the change of PVT Charge error; 2), common-mode charge error caused by input common-mode level fluctuations; 3), capacitance mismatch in each pipeline sub-level circuit and common-mode charge error fluctuation caused by reference voltage changes with PVT.
如图1所示,本发明包括第一共模电荷检测电路1、共模前馈电路2、第一数模混合控制型电荷传输电路3、第二数模混合控制型电荷传输电路4、第二共模电荷检测电路5、共模电荷调整电路6、检测处理电路7、M位调整寄存器8以及校准控制器9,其中,M位大于1的正整数。As shown in Figure 1, the present invention includes a first common-mode charge detection circuit 1, a common-mode feedforward circuit 2, a first digital-analog hybrid control type charge transfer circuit 3, a second digital-analog hybrid control type charge transfer circuit 4, a second Two common-mode charge detection circuit 5 , common-mode charge adjustment circuit 6 , detection processing circuit 7 , M-bit adjustment register 8 and calibration controller 9 , wherein M-bit is a positive integer greater than 1.
具体地,差分输入端Q in,p 、差分输入端Q in,n 分别连接到第一共模电荷检测电路1的差分电荷输入端,第一共模电荷检测电路1的输出端连接到共模前馈电路2的输入端;共模前馈电路2的输出端Vf同时连接到第一数模混合控制型电荷传输电路3的第一共模调整信号输入端FF、第二数模混合控制型电荷传输电路4的第一共模调整信号输入端FF;第一数模混合控制型电荷传输电路3的输出端、第二数模混合控制型电荷传输电路4的输出端分别连接到第二共模电荷检测电路5的差分电荷输入端,第二共模电荷检测电路5的输出端连接到检测处理电路7的输入端;检测处理电路7的输出端连接到校准控制器9的检测信号输入端;校准控制器9的M位补偿码输出端连接到M位调整寄存器8的信号输入端,M位调整寄存器8的信号输出端连接到共模电荷调整电路6的控制信号输入端;共模电荷调整电路6的控制信号输出端同时连接到第一数模混合控制型电荷传输电路3的第二共模调整信号输入端FB、第二数模混合控制型电荷传输电路4的第二共模调整信号输入端FB。Specifically, the differential input terminal Qin ,p and the differential input terminal Qin ,n are respectively connected to the differential charge input terminal of the first common-mode charge detection circuit 1, and the output terminal of the first common-mode charge detection circuit 1 is connected to the common-mode The input terminal of the feedforward circuit 2; the output terminal Vf of the common mode feedforward circuit 2 is simultaneously connected to the first common mode adjustment signal input terminal FF of the first digital-analog hybrid control type charge transfer circuit 3, the second digital-analog hybrid control type The first common-mode adjustment signal input terminal FF of the charge transfer circuit 4; the output end of the first digital-analog hybrid control type charge transfer circuit 3, and the output end of the second digital-analog hybrid control type charge transfer circuit 4 are connected to the second common mode respectively. The differential charge input end of the analog charge detection circuit 5, the output end of the second common mode charge detection circuit 5 is connected to the input end of the detection processing circuit 7; the output end of the detection processing circuit 7 is connected to the detection signal input end of the calibration controller 9 The M bit compensation code output end of the calibration controller 9 is connected to the signal input end of the M bit adjustment register 8, and the signal output end of the M bit adjustment register 8 is connected to the control signal input end of the common mode charge adjustment circuit 6; the common mode charge The control signal output terminal of the adjustment circuit 6 is simultaneously connected to the second common mode adjustment signal input terminal FB of the first digital-analog hybrid control type charge transfer circuit 3, and the second common mode adjustment signal of the second digital-analog hybrid control type charge transfer circuit 4. Signal input terminal FB.
本发明实施例中,上述电路具有两种工作模式,即为校准模式和正常传输模式。当开始工作时,首先进入校准模式,校准控制器9将第一模数混合控制型电荷传输电路3、第二数模混合控制型电荷传输电路4对应的差分输入端连接到输入基准电压;紧接着开启第一共模电荷检测电路1以及第二共模电荷检测电路5,第二共模电荷检测电路5的输出依次被检测处理电路7进行统计处理,然后由校准控制器9进行运算,对M位调整寄存器8进行赋值;校准控制器9每次运算仅产生1位数值,因此完成1个M位调整寄存器8的赋值校准控制器9需要计算M次,M次运算遵循的搜索方式为二分法查找方式;共模电荷调整电路6根据M位调整寄存器8的M位数字码产生补偿电压Vadj,在所述补偿电压Vadj的作用下,控制第一数模混合控制型电荷传输电路3、第二数模混合控制型电荷传输电路4相应的输出共模电荷量;最后,校准控制器9开启共模前馈电路2,并使得第一数模混合控制型电荷传输电路3的差分电荷输入端、第二数模混合控制型电荷传输电路4的差分电荷输入端重新连接差分输入端Q in,N 、差分输入端Q in,P 。此时,完成校准,即校准模式结束,进入正常传输模式。在进入正常传输模式后,校准控制器9和检测处理电路7进入休眠模式以降低功耗。在处于正常工作模式时,第一共模电荷检测电路1和共模前馈电路2处于工作状态。In the embodiment of the present invention, the above-mentioned circuit has two working modes, that is, a calibration mode and a normal transmission mode. When starting to work, first enter the calibration mode, the calibration controller 9 connects the differential input terminals corresponding to the first analog-digital hybrid control type charge transfer circuit 3 and the second digital-analog hybrid control type charge transfer circuit 4 to the input reference voltage; Then the first common-mode charge detection circuit 1 and the second common-mode charge detection circuit 5 are turned on, the output of the second common-mode charge detection circuit 5 is sequentially statistically processed by the detection processing circuit 7, and then calculated by the calibration controller 9, to The M-bit adjustment register 8 is assigned; the calibration controller 9 only generates 1-digit value for each operation, so the calibration controller 9 needs to calculate M times to complete the assignment of one M-bit adjustment register 8, and the search method followed by the M-bit operations is binary method search mode; the common-mode charge adjustment circuit 6 generates a compensation voltage Vadj according to the M-bit digital code of the M-bit adjustment register 8, and under the action of the compensation voltage Vadj, controls the first digital-analog hybrid control type charge transmission circuit 3, the second The corresponding output common-mode charge of the two digital-analog hybrid control type charge transfer circuits 4; finally, the calibration controller 9 turns on the common-mode feedforward circuit 2, and makes the differential charge input terminal of the first digital-analog hybrid control type charge transfer circuit 3 . The differential charge input terminal of the second digital-analog hybrid control type charge transfer circuit 4 is reconnected to the differential input terminal Qin ,N and the differential input terminal Qin ,P . At this point, the calibration is completed, that is, the calibration mode ends, and the normal transmission mode enters. After entering the normal transmission mode, the calibration controller 9 and the detection processing circuit 7 enter into a sleep mode to reduce power consumption. In the normal working mode, the first common-mode charge detection circuit 1 and the common-mode feedforward circuit 2 are in working state.
如图2所示,第一数模混合控制型电荷传输电路3与第二数模混合控制型电荷传输电路4采用相同的电路结构,所述第一数模混合控制型电荷传输电路3包括基本增强型电荷传输电路10、镜像控制电路11、误差放大器31和共模前馈调整NMOS管M1FF。As shown in Figure 2, the first digital-analog hybrid control type charge transfer circuit 3 and the second digital-analog hybrid control type charge transfer circuit 4 adopt the same circuit structure, and the first digital-analog hybrid control type charge transfer circuit 3 includes basic Enhanced charge transfer circuit 10, mirror control circuit 11, error amplifier 31, and common-mode feed-forward adjustment NMOS transistor M 1FF .
具体地,基本增强型电荷传输电路10由电荷传输晶体管MT、NMOS管M21、NMOS管M22和PMOS管M23组成;NMOS管M21的源极接地,NMOS管M21的栅极接输入电荷信号Q IN ,NMOS管M21的漏极接NMOS管M22的源极和共模前馈调整NMOS管M1FF的漏极,NMOS管M21的衬底接控制电压VBD;NMOS管M22的漏极接电荷传输晶体管MT的栅极和PMOS管M23的漏极;PMOS管M23的源极和PMOS管M23的衬底均接电源电压;电荷传输晶体管MT的源极与NMOS管M21的栅极端连接,电荷传输晶体管MT的漏极为输出电荷信号Q OUT ;共模前馈调整NMOS管M1FF的源极和共模前馈调整NMOS管M1FF的衬底均接地,共模前馈调整NMOS管M1FF的栅极接第一共模调整信号Vf。所述第一共模调整信号Vf由共模前馈电路2输出。Specifically, the basic enhanced charge transfer circuit 10 is composed of a charge transfer transistor M T , an NMOS transistor M 21 , an NMOS transistor M 22 and a PMOS transistor M 23 ; the source of the NMOS transistor M 21 is grounded, and the gate of the NMOS transistor M 21 is connected to Input the charge signal Q IN , the drain of the NMOS transistor M 21 is connected to the source of the NMOS transistor M 22 and the drain of the common mode feedforward adjustment NMOS transistor M 1FF , the substrate of the NMOS transistor M 21 is connected to the control voltage V BD ; The drain of M 22 is connected to the gate of charge transfer transistor MT and the drain of PMOS transistor M 23 ; the source of PMOS transistor M 23 and the substrate of PMOS transistor M 23 are connected to power supply voltage; the source of charge transfer transistor MT is The pole is connected to the gate terminal of the NMOS transistor M21, the drain of the charge transfer transistor M T is the output charge signal Q OUT ; the source of the common-mode feed-forward adjustment NMOS transistor M 1FF and the substrate of the common-mode feed-forward adjustment NMOS transistor M 1FF are both grounded, and the gate of the common-mode feedforward adjustment NMOS transistor M 1FF is connected to the first common-mode adjustment signal Vf. The first common-mode adjustment signal Vf is output by the common-mode feedforward circuit 2 .
所述镜像控制电路11由NMOS管M21R、NMOS管M22R和PMOS管M23R组成;NMOS管M21R的源极接地,NMOS管M21R的栅极接误差放大器31的正输入信号端,NMOS管M21R的漏极接NMOS管M22R的源极,NMOS管M21R的衬底接控制电压VBD;NMOS管M22R的漏极接PMOS管M23R的漏极;PMOS管M23R的源极和PMOS管M23R的衬底均接电源电压;误差放大器31的负输入信号端接补偿电压Vadj,误差放大器的输出信号端为衬底接控制电压VBD。The mirror control circuit 11 is composed of NMOS transistor M 21R , NMOS transistor M 22R and PMOS transistor M 23R ; the source of the NMOS transistor M 21R is grounded, the gate of the NMOS transistor M 21R is connected to the positive input signal terminal of the error amplifier 31, and the NMOS The drain of the tube M 21R is connected to the source of the NMOS tube M 22R , the substrate of the NMOS tube M 21R is connected to the control voltage V BD ; the drain of the NMOS tube M 22R is connected to the drain of the PMOS tube M 23R ; the source of the PMOS tube M 23R The pole and the substrate of the PMOS transistor M 23R are both connected to the power supply voltage; the negative input signal terminal of the error amplifier 31 is connected to the compensation voltage Vadj, and the output signal terminal of the error amplifier is connected to the substrate to the control voltage V BD .
如图3所示,第一共模电荷检测电路1与第二共模电荷检测电路5采用相同的电路结构,其中,第一共模电荷检测电路1采用全差分结构实现。以第二共模电荷检测电路5为例,第二共模电荷检测电路5包括第一电荷检测器12、第二电荷检测器13、第三电荷检测器14以及第四电荷检测器15,第一电荷检测器12、第四电荷检测器15分别连接差分电荷输出端Q out,p 、全差分电荷输出端Q outKn ;第一电荷检测器12的输出端与采样开关S1的一端连接,采样开关S1的另一端与电容C1的一端以及采样开关S2的一端连接,采样开关S2的另一端与第二电荷检测器13的输出端连接,第二电荷检测器13的输入端与基准信号R p连接,第三电荷检测器14的输入端与基准信号Rn连接,第三电荷检测器14的输出端与采样开关S3的一端连接,采样开关S3的另一端与电容C2的一端以及采样开关S4的一端连接,采样开关S4的另一端与第四电荷检测器15的输出端连接,电容C1的另一端与采样开关S5的一端以及全差分放大器13的正输入端连接,电容C2的另一端与采样开关S6以及全差分放大器13的负输入端连接,采样开关S6的另一端与采样开关S5的另一端连接,且采样开关S5的另一端以及采样开关S6的另一端接电压VSet。As shown in FIG. 3 , the first common-mode charge detection circuit 1 and the second common-mode charge detection circuit 5 adopt the same circuit structure, wherein the first common-mode charge detection circuit 1 adopts a fully differential structure. Taking the second common-mode charge detection circuit 5 as an example, the second common-mode charge detection circuit 5 includes a first charge detector 12, a second charge detector 13, a third charge detector 14, and a fourth charge detector 15. A charge detector 12 and a fourth charge detector 15 are respectively connected to the differential charge output terminal Q out,p and the full differential charge output terminal Q outKn ; the output terminal of the first charge detector 12 is connected to one end of the sampling switch S1, and the sampling switch The other end of S1 is connected to one end of the capacitor C1 and one end of the sampling switch S2, the other end of the sampling switch S2 is connected to the output end of the second charge detector 13, and the input end of the second charge detector 13 is connected to the reference signal R p , the input end of the third charge detector 14 is connected to the reference signal Rn, the output end of the third charge detector 14 is connected to one end of the sampling switch S3, the other end of the sampling switch S3 is connected to one end of the capacitor C2 and one end of the sampling switch S4 connected, the other end of the sampling switch S4 is connected to the output end of the fourth charge detector 15, the other end of the capacitor C1 is connected to one end of the sampling switch S5 and the positive input end of the full differential amplifier 13, and the other end of the capacitor C2 is connected to the sampling switch S6 is connected to the negative input terminal of the fully differential amplifier 13, the other end of the sampling switch S6 is connected to the other end of the sampling switch S5, and the other end of the sampling switch S5 and the other end of the sampling switch S6 are connected to the voltage VSet.
第一电荷检测器12、第四电荷检测器15、采样开关S1、采样开关S4连接第二时钟Φ2,第二电荷检测器13、第三电荷检测器14、采样开关S2、采样开关S3、采样开关S5以及采样开关S6连接第一时钟Φ1,第一时钟Φ1与第二时钟Φ2相互不交叠。The first charge detector 12, the fourth charge detector 15, the sampling switch S1, and the sampling switch S4 are connected to the second clock Φ 2 , the second charge detector 13, the third charge detector 14, the sampling switch S2, the sampling switch S3, The sampling switch S5 and the sampling switch S6 are connected to the first clock Φ 1 , and the first clock Φ 1 and the second clock Φ 2 do not overlap with each other.
具体地,对于电荷信号的采样,若采用传统的开关电容电压采样,则MOS采样开关管的一端会直接连接到差分电荷存储节点,一旦采样开关另外一端存在一个电荷注入和泄放通道,则差分电荷存储节点上所存储的电荷会通过MOS采样开关管和采样开关另外一端的电路发生电荷分享作用,使差分电荷存储节点上的电荷Q outKp 和Q out,n 发生变化,从而引起检测误差。Specifically, for the sampling of the charge signal, if the traditional switched capacitor voltage sampling is used, one end of the MOS sampling switch will be directly connected to the differential charge storage node. Once there is a charge injection and discharge channel at the other end of the sampling switch, the differential The charge stored on the charge storage node will share the charge through the MOS sampling switch tube and the circuit at the other end of the sampling switch, so that the charges Q outKp and Q out,n on the differential charge storage node will change, thereby causing detection errors.
为避免该检测误差,本发明实施例中,通过采用电荷检测器对电荷信号进行检测,保证电荷存储节点不存在电荷注入和泄放通道,实现对电荷信号的准确采样和放大。在对电荷信号Q out,p 、电荷信号Q out,n 以及基准信号R p、基准信号R n进行检测得到电压信号之后,通过相应的采样开关以及电容C1、电容C2进行进一步的采样,得到差分电压信号V i+和V i-,经过全差分放大器16放大比较得到第一输出误差信号CM和第二输出误差信号CMn。In order to avoid the detection error, in the embodiment of the present invention, the charge detector is used to detect the charge signal, so as to ensure that there is no charge injection and discharge channel in the charge storage node, and realize accurate sampling and amplification of the charge signal. After detecting the charge signal Q out,p , the charge signal Q out,n and the reference signal R p , the reference signal R n to obtain the voltage signal, further sampling is performed through the corresponding sampling switch and the capacitor C1 and capacitor C2 to obtain the differential The voltage signals V i + and V i − are amplified and compared by the fully differential amplifier 16 to obtain a first output error signal CM and a second output error signal CMn.
图3中的虚线框中示出了第四电荷检测器15的具体原理图,为一个由时钟控制的源跟随器电路,当然,第一电荷检测器12、第二电荷检测器13、第三电荷检测器14与第四电荷检测器15采用相同的电路结构。第四电荷检测器15包括NMOS管M31、NMOS管M32以及NMOS管M33,NMOS管M31的源极端接地,NMOS管M31的漏极端与NMOS管M32的源极端连接,NMOS管M32的漏极端与NMOS管M33的源极端连接,NMOS管M33的漏极端与电源连接,NMOS管M31的栅极端与偏置电压Vb连接,NMOS管M32的栅极端与第二时钟Ф2连接,NMOS管M33的栅极端接收电荷信号Q out,n 。NMOS管M31的漏极端与NMOS管M22的源极端连接后形成输出端。The specific schematic diagram of the fourth charge detector 15 is shown in the dotted line box in Fig. 3, is a source follower circuit controlled by the clock, of course, the first charge detector 12, the second charge detector 13, the third charge detector The charge detector 14 adopts the same circuit structure as the fourth charge detector 15 . The fourth charge detector 15 includes an NMOS transistor M31, an NMOS transistor M32, and an NMOS transistor M33. The source terminal of the NMOS transistor M31 is grounded, the drain terminal of the NMOS transistor M31 is connected to the source terminal of the NMOS transistor M32, and the drain terminal of the NMOS transistor M32 is connected to the NMOS transistor M32. The source terminal of the tube M33 is connected, the drain terminal of the NMOS tube M33 is connected to the power supply, the gate terminal of the NMOS tube M31 is connected to the bias voltage Vb, the gate terminal of the NMOS tube M32 is connected to the second clock Ф 2 , and the gate terminal of the NMOS tube M33 Receive the charge signal Q out,n . The drain terminal of the NMOS transistor M31 is connected to the source terminal of the NMOS transistor M22 to form an output terminal.
本发明实施例中,当第二时钟Ф2为高时,第四电荷检测器15处于导通正常检测状态,电荷信号Q out,n 的变化将会通过源跟随器响应,得到输出电压信号V outn;当第二时钟Ф2为低时,第四电荷检测器15处于关断不工作状态,输出电压信号V outn被拉到地。考虑到源跟随器会产生的压降,NMOS管M33采用了低阈值NMOS管实现。对于全差分放大器13,采用现有已非常成熟的差分电压比较器便可以完成。In the embodiment of the present invention, when the second clock Φ2 is high, the fourth charge detector 15 is in the conduction normal detection state, and the change of the charge signal Q out,n will be responded by the source follower to obtain the output voltage signal V outn ; when the second clock Φ 2 is low, the fourth charge detector 15 is in an off state, and the output voltage signal V outn is pulled to ground. Considering the voltage drop generated by the source follower, the NMOS transistor M33 is realized by using a low-threshold NMOS transistor. As for the fully differential amplifier 13, it can be completed by using the existing very mature differential voltage comparator.
如图4所示,为本发明共模前馈电路2的一种实现电路原理图,所述共模前馈电路2包括PMOS电流镜电路、差分输入对、电流镜偏置电路。As shown in FIG. 4 , it is a schematic circuit diagram of an implementation of the common-mode feedforward circuit 2 of the present invention. The common-mode feedforward circuit 2 includes a PMOS current mirror circuit, a differential input pair, and a current mirror bias circuit.
所述PMOS电流镜电路包括PMOS管M3及PMOS管M4,所述PMOS管M3的栅极端与PMOS管M3的漏极端、PMOS管M4的栅极端相连,PMOS管M3、PMOS管M4的源极端相互连接后接电源;PMOS管M3的栅极端、PMOS管M3的漏极端均与复位MOS管Ms1的漏极端相连, PMOS管M4的漏极端与复位MOS管Ms2的漏极端相连;复位MOS管Ms1的栅极端和复位MOS管Ms2的栅极端连接到第二时钟Ф2。The PMOS current mirror circuit includes a PMOS transistor M3 and a PMOS transistor M4, the gate terminal of the PMOS transistor M3 is connected to the drain terminal of the PMOS transistor M3 and the gate terminal of the PMOS transistor M4, and the source terminals of the PMOS transistor M3 and the PMOS transistor M4 are connected to each other. connected to the power supply; the gate terminal of the PMOS transistor M3 and the drain terminal of the PMOS transistor M3 are connected to the drain terminal of the reset MOS transistor Ms1, and the drain terminal of the PMOS transistor M4 is connected to the drain terminal of the reset MOS transistor Ms2; the drain terminal of the reset MOS transistor Ms1 The gate terminal and the gate terminal of the reset MOS transistor Ms2 are connected to the second clock Φ 2 .
差分输入对包括MOS管M1及MOS管M2;所述MOS管M1的漏极端与复位MOS管Ms1的源极端相连;所述MOS管M2的漏极端与复位MOS管Ms2的源极端相连;所述MOS管M1的源极端通过源极电阻R1与MOS管M5的漏极端相连,且MOS管M2的源极端通过源极电阻R2与MOS管M5的漏极端相连;MOS管M5的栅极端与MOS管M8的栅极端、MOS管M8的漏极端相连,MOS管M5的源极端与MOS管M6的漏极端连接, MOS管M6的漏极端接地,MOS管M8的源极端接地,MOS管M6的栅极端与MOS管M7的栅极端、MOS管M7的漏极端相连, MOS管M7的源极端、MOS管M8的源极端均接地。MOS管M8的漏极端接偏置电流Ib1,MOS管M7的漏极端接偏置电流Ib2。The differential input pair includes a MOS transistor M1 and a MOS transistor M2; the drain terminal of the MOS transistor M1 is connected to the source terminal of the reset MOS transistor Ms1; the drain terminal of the MOS transistor M2 is connected to the source terminal of the reset MOS transistor Ms2; The source terminal of MOS transistor M1 is connected to the drain terminal of MOS transistor M5 through source resistor R1, and the source terminal of MOS transistor M2 is connected to the drain terminal of MOS transistor M5 through source resistor R2; the gate terminal of MOS transistor M5 is connected to the drain terminal of MOS transistor M5. The gate terminal of M8 is connected to the drain terminal of MOS transistor M8, the source terminal of MOS transistor M5 is connected to the drain terminal of MOS transistor M6, the drain terminal of MOS transistor M6 is grounded, the source terminal of MOS transistor M8 is grounded, and the gate terminal of MOS transistor M6 It is connected to the gate terminal of the MOS transistor M7 and the drain terminal of the MOS transistor M7, and the source terminal of the MOS transistor M7 and the source terminal of the MOS transistor M8 are both grounded. The drain terminal of the MOS transistor M8 is connected to the bias current Ib1, and the drain terminal of the MOS transistor M7 is connected to the bias current Ib2.
MOS管M1的栅极端接收第一输出误差信号CM,MOS管M2的栅极端与第二输出误差信号CMn相连,MOS管M2的漏极端与复位MOS管Ms2的源极端连接。本发明实施例中,输入差分对MOS管M1和MOS管M2被工作在线性区,MOS管M5与MOS管M6形成NMOS电流镜,MOS管M7与MOS管M8形成NMOS电流。The gate terminal of the MOS transistor M1 receives the first output error signal CM, the gate terminal of the MOS transistor M2 is connected to the second output error signal CMn, and the drain terminal of the MOS transistor M2 is connected to the source terminal of the reset MOS transistor Ms2. In the embodiment of the present invention, the input differential pair MOS transistor M1 and MOS transistor M2 are operated in the linear region, the MOS transistor M5 and the MOS transistor M6 form an NMOS current mirror, and the MOS transistor M7 and the MOS transistor M8 form an NMOS current.
检测处理电路7将第二共模电荷检测电路5的结果进行选择,然后按照设定的处理方法进行处理,并将结果存储在其内部寄存器中。共模校准时,校准控制器9在读取两个寄存器的值,通过标志信号SGN的值,来判断所检测的共模点的共模电荷的高低,由此来调整相应的控制电压,从而达到共模电荷校准的目的。The detection processing circuit 7 selects the result of the second common-mode charge detection circuit 5, and then processes it according to a set processing method, and stores the result in its internal register. During common-mode calibration, the calibration controller 9 reads the values of the two registers, and judges the level of the common-mode charge of the detected common-mode point through the value of the flag signal SGN, thereby adjusting the corresponding control voltage, thereby To achieve the purpose of common-mode charge calibration.
如图5所示,共模电荷调整电路7的电路原理图,共模电荷调整电路7基本结构类似于一个LDO电路,包括一个工作状态控制开关M51,一个输出缓冲运算放大器17,电压输出调整PMOS管M50,用于进行分压输出补偿电压VadjK的电阻串,调整输出电压的M-bit DAC模块18,用于对输出基准信号VadjK的进行去耦滤波的电容C52,用于对输出缓冲运算放大器17进行稳定补偿的电阻R51和电容C51。As shown in Figure 5, the circuit schematic diagram of the common-mode charge adjustment circuit 7, the basic structure of the common-mode charge adjustment circuit 7 is similar to an LDO circuit, including a working state control switch M51, an output buffer operational amplifier 17, and a voltage output adjustment PMOS Tube M50, a resistor string for dividing the output compensation voltage VadjK, an M-bit DAC module 18 for adjusting the output voltage, a capacitor C52 for decoupling and filtering the output reference signal VadjK, and an output buffer operational amplifier 17 Resistor R51 and capacitor C51 for stable compensation.
开始进入正常工作模式时,控制信号置1,工作状态控制开关M51导通,由于输出缓冲运算放大器17的负反馈作用,基准电压VREF在电压输出调整PMOS管M50的控制下经电阻串分压得到一个初始电压输出VR(0),同时DAC模块18还会产生一个到地的调整电流Ic,调整电流Ic流经最末端电阻到地,这样就会在该电阻上叠加一个⊿V=Ic×R324的电压量,输出到基准信号输出电路的电压VR=VR(0)+⊿V。VR改变以后,根据电阻分压关系,输出补偿电压VadjK会相应的增加一个⊿V的电压,因此,只要控制M位调整码便可以实现改变输出基准电压的目的。DAC模块26根据M位调整码产生调整电流Ic,具体产生调整电流Ic的过程为本技术领域人员所熟知,此处不再赘述。对于其他路共模调整电路7,可以参考上述说明,此处不再赘述。When starting to enter the normal working mode, the control signal is set to 1, and the working state control switch M51 is turned on. Due to the negative feedback effect of the output buffer operational amplifier 17, the reference voltage VREF is obtained by dividing the voltage through the resistor string under the control of the voltage output adjustment PMOS transistor M50 An initial voltage output VR(0), and at the same time, the DAC module 18 will also generate an adjustment current Ic to the ground, and the adjustment current Ic flows through the end resistance to the ground, so that a ⊿V=Ic×R324 will be superimposed on the resistance The amount of voltage, the voltage output to the reference signal output circuit VR = VR (0) + ⊿V. After VR is changed, the output compensation voltage VadjK will correspondingly increase by a voltage of ⊿V according to the voltage division relationship of the resistors. Therefore, the purpose of changing the output reference voltage can be achieved only by controlling the M-bit adjustment code. The DAC module 26 generates the adjustment current Ic according to the M-bit adjustment code. The specific process of generating the adjustment current Ic is well known to those skilled in the art and will not be repeated here. For other common-mode adjustment circuits 7, reference may be made to the above description, which will not be repeated here.
如图6所示,为本发明检测处理电路7的原理框图,检测处理电路7包括一个16位计数器30、一个带脉冲吞咽的16位计数器21、一个K:1选择器19、第一8:1选择器29、第二8:1选择器20,16:1选择器22、一个吞咽脉冲控制电路27、一个复位信号产生电路28、一个扫描序列发生器26、一个窗口信号发生器25、一个信号对比电路23和一个读出控制器24。As shown in Figure 6, it is a functional block diagram of the detection processing circuit 7 of the present invention, the detection processing circuit 7 includes a 16-bit counter 30, a 16-bit counter 21 with pulse swallowing, a K:1 selector 19, the first 8: 1 selector 29, the second 8:1 selector 20, 16:1 selector 22, a swallow pulse control circuit 27, a reset signal generating circuit 28, a scan sequence generator 26, a window signal generator 25, a Signal comparison circuit 23 and a readout controller 24.
具体地:输入复位信号连接到带脉冲吞咽的16位计数器21的第一复位端和复位信号产生电路28的复位端;K:1选择器19的K个输入端分别连接到第二共模电荷检测电路5的输出端,K:1选择器19的输出端连接到第二8:1选择器20的数据输入端;第二8:1选择器20的控制输入端连接到共模选择控制信号,第二8:1选择器20的使能端连接到带脉冲吞咽的16位计数器21的第二复位端;带脉冲吞咽的16位计数器21的第三输入端连接到吞咽脉冲控制电路27的输出端,带脉冲吞咽的16位计数器21的第四输入端连接到输入时钟,带脉冲吞咽的16位计数器21的输出端连接到16:1选择器22的数据输入端和读出控制器24的数据输入端;16:1选择器22的控制信号输入端连接到扫描序列发生器26的输出端,16:1选择器22的数据输出端连接到信号对比电路23的第一数据输入端;信号对比电路23的第二数据输入端连接到窗口信号发生器25的输出端,信号对比电路18的输出端即输出标志信号SGN;读出控制器的18输出端即输出状态信号B3;复位信号产生电路28的输出端同时连接到吞咽脉冲控制电路27的复位信号输入端、扫描序列发生器26的复位信号输入端和16位计数器30的复位信号输入端;16位计数器30的第一输入端连接到输入时钟,16位计数器30的低4位输出端连接到吞咽脉冲控制电路27的控制信号输入端,16位计数器30的高8位输出端连接到第一8:1选择器23数据信号输入端;第一8:1选择器23的输出端连接到复位信号产生电路28的数据输入端。Specifically: the input reset signal is connected to the first reset terminal of the 16-bit counter 21 with pulse swallowing and the reset terminal of the reset signal generation circuit 28; the K input terminals of the K:1 selector 19 are respectively connected to the second common mode charge The output terminal of the detection circuit 5, the output terminal of the K:1 selector 19 is connected to the data input terminal of the second 8:1 selector 20; the control input terminal of the second 8:1 selector 20 is connected to the common mode selection control signal , the enabling end of the second 8:1 selector 20 is connected to the second reset end of the 16-bit counter 21 with pulse swallowing; the third input end of the 16-bit counter 21 with pulse swallowing is connected to the swallowing pulse control circuit 27 Output terminal, the fourth input terminal of the 16-bit counter 21 with pulse swallowing is connected to the input clock, the output terminal of the 16-bit counter 21 with pulse swallowing is connected to the data input terminal of the 16:1 selector 22 and the readout controller 24 The data input end of 16:1 selector 22 is connected to the output end of scan sequence generator 26, and the data output end of 16:1 selector 22 is connected to the first data input end of signal comparison circuit 23; The second data input terminal of signal comparison circuit 23 is connected to the output terminal of window signal generator 25, and the output terminal of signal comparison circuit 18 promptly outputs sign signal SGN; 18 output terminals of readout controller promptly output state signal B3; Reset signal The output end of generating circuit 28 is connected to the reset signal input end of swallowing pulse control circuit 27, the reset signal input end of scan sequence generator 26 and the reset signal input end of 16-bit counter 30 simultaneously; The first input end of 16-bit counter 30 Connected to the input clock, the low 4-bit output of the 16-bit counter 30 is connected to the control signal input of the swallowing pulse control circuit 27, and the high 8-bit output of the 16-bit counter 30 is connected to the first 8:1 selector 23 data signal Input terminal; the output terminal of the first 8:1 selector 23 is connected to the data input terminal of the reset signal generating circuit 28 .
16位计数器30为主计数器,当输入复位信号由0变为1时,16位计数器30开始计数。其高8位输出通过第一8:1选择器29选择后用于控制复位产生电路22,只要第一8:1选择器29的输出为高电平,复位信号产生电路28即输出复位信号,上述的复位信号均为复位信号产生电路28产生并输出;16位计数器30的低4位输入吞咽脉冲控制电路27。The 16-bit counter 30 is the main counter, and when the input reset signal changes from 0 to 1, the 16-bit counter 30 starts counting. Its high 8-bit output is used to control the reset generation circuit 22 after being selected by the first 8:1 selector 29, as long as the output of the first 8:1 selector 29 is high level, the reset signal generation circuit 28 outputs the reset signal, The reset signals mentioned above are all generated and output by the reset signal generation circuit 28 ; the lower 4 bits of the 16-bit counter 30 are input to the swallowing pulse control circuit 27 .
带脉冲吞咽的16位计数器21要处在计数状态,必须同时满足以下三个条件:1)、复位信号为高电平;2)、吞咽控制脉冲信号处于高电平期间;3)、第二8:1选择器20选出的信号为高电平。当第二8:1选择器20选择出的某个信号为高电平时,说明的某个共模电荷检测电路4输出为高。The 16-bit counter 21 with pulse swallowing must be in the counting state, and the following three conditions must be met at the same time: 1), the reset signal is at a high level; 2), the swallowing control pulse signal is at a high level; 3), the second The signal selected by the 8:1 selector 20 is at high level. When a signal selected by the second 8:1 selector 20 is at a high level, the output of a certain common-mode charge detection circuit 4 described above is at a high level.
所述检测处理电路2工作顺序如下:1)、复位信号由0变为1,启动16位计数器30;2)、吞咽脉冲控制电路27也开始工作,输出一个与主时钟16分频,且占空比位0.5的时钟;、3)、带脉冲吞咽的16位计数器21开始计数,不过所述带脉冲吞咽的16计数器15的数值是16位计数器30计数值的1/16(由于脉冲吞咽导致);4)、16位计数器30计满后(第一8:1选择器29输出变为高电平),复位信号产生电路28输出复位信号,16位计数器30和吞咽脉冲控制电路27被复位,输出低电平;5)、扫描序列发生器26开始工作,输出4位扫描脉冲,依次输出0~15共16个状态,使得带脉冲吞咽的16位计数器21中的每一位都被扫描输出,并分四次被读入到读取控制器24中;6)、窗口信号发生器25产生一个观察窗口信号,该信号与扫描序列相配合,用于判断带脉冲吞咽的16位计数器21中某一位是否为高电平,若带脉冲吞咽的16位计数器21中被窗口信号选中的那一位为高电平,则标志信号SGN为高电平,反之为低电平。16位计数器30、带脉冲吞咽的16位计数器21、K:1选择器19、第一8:1选择器29、第二8:1选择器20,16:1选择器22、吞咽脉冲控制电路27、复位信号产生电路28、扫描序列发生器26、窗口信号发生器25、信号对比电路23以及读出控制器24均可以采用现有常用的电路结构,具体为本技术领域人员所熟知,此处不再赘述。The working sequence of the detection processing circuit 2 is as follows: 1), the reset signal changes from 0 to 1, and the 16-bit counter 30 is started; 2), the swallowing pulse control circuit 27 also starts to work, and outputs a frequency divided by 16 from the main clock, and occupies The clock of the empty ratio bit 0.5;, 3), the 16-bit counter 21 with pulse swallowing begins to count, but the value of the 16 counter 15 with pulse swallowing is 1/16 of the 16-bit counter 30 count value (due to pulse swallowing causes ); 4), after the 16-bit counter 30 is full (the output of the first 8:1 selector 29 becomes high level), the reset signal generating circuit 28 outputs a reset signal, and the 16-bit counter 30 and the swallowing pulse control circuit 27 are reset , output low level; 5), the scan sequence generator 26 starts to work, outputs 4 scan pulses, and outputs 0~15 in total 16 states in turn, so that each bit in the 16-bit counter 21 with pulse swallowing is scanned output, and is read into the reading controller 24 in four times; 6), the window signal generator 25 generates an observation window signal, which is matched with the scanning sequence and used to judge the 16-bit counter 21 with pulse swallowing Whether a certain bit is high level, if the bit selected by the window signal in the 16-bit counter 21 with pulse swallowing is high level, then the flag signal SGN is high level, otherwise it is low level. 16-bit counter 30, 16-bit counter with pulse swallowing 21, K:1 selector 19, first 8:1 selector 29, second 8:1 selector 20, 16:1 selector 22, swallowing pulse control circuit 27. The reset signal generation circuit 28, the scan sequence generator 26, the window signal generator 25, the signal comparison circuit 23 and the readout controller 24 can all adopt existing commonly used circuit structures, which are well known to those skilled in the art. I won't repeat them here.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711106587.4A CN107863964B (en) | 2017-11-10 | 2017-11-10 | Fully Differential Charge Transfer Circuit with Precise Control of Common-Mode Charge Amount |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711106587.4A CN107863964B (en) | 2017-11-10 | 2017-11-10 | Fully Differential Charge Transfer Circuit with Precise Control of Common-Mode Charge Amount |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107863964A true CN107863964A (en) | 2018-03-30 |
| CN107863964B CN107863964B (en) | 2019-09-24 |
Family
ID=61701486
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711106587.4A Active CN107863964B (en) | 2017-11-10 | 2017-11-10 | Fully Differential Charge Transfer Circuit with Precise Control of Common-Mode Charge Amount |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107863964B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114696833A (en) * | 2020-12-30 | 2022-07-01 | Tcl科技集团股份有限公司 | Multi-channel mismatch calibration circuit, multi-channel chip and mismatch calibration method thereof |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104038225A (en) * | 2014-06-17 | 2014-09-10 | 中国电子科技集团公司第五十八研究所 | Charge coupling production line analog-digital converter having self-adaption error calibration function |
| CN104092462A (en) * | 2014-06-17 | 2014-10-08 | 中国电子科技集团公司第五十八研究所 | Charge-Coupled Pipelined Analog-to-Digital Converter with Digital Background Calibration |
| CN104270152A (en) * | 2014-10-13 | 2015-01-07 | 中国电子科技集团公司第五十八研究所 | PVT-insensitive common-mode charge control device for charge-coupled pipeline ADC |
| US20170093410A1 (en) * | 2015-09-29 | 2017-03-30 | Microsemi Semiconductor Ulc | Noise reduction in non-linear signal processing |
| CN106656183A (en) * | 2016-12-20 | 2017-05-10 | 中国电子科技集团公司第五十八研究所 | Pipelined analog-to-digital converter input common mode error feed-forward compensation circuit |
| CN106953637A (en) * | 2017-03-09 | 2017-07-14 | 黄山学院 | Charge Domain Amplitude Error Calibration Circuit and DDS Circuit Adopting the Calibration Circuit |
| US9755655B1 (en) * | 2017-03-08 | 2017-09-05 | Xilinx, Inc. | Dynamic quantizers having multiple reset levels |
| CN107241098A (en) * | 2017-05-24 | 2017-10-10 | 东南大学 | The mistuning calibration function circuit of comparator in a kind of asynchronous gradual approaching A/D converter |
-
2017
- 2017-11-10 CN CN201711106587.4A patent/CN107863964B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104038225A (en) * | 2014-06-17 | 2014-09-10 | 中国电子科技集团公司第五十八研究所 | Charge coupling production line analog-digital converter having self-adaption error calibration function |
| CN104092462A (en) * | 2014-06-17 | 2014-10-08 | 中国电子科技集团公司第五十八研究所 | Charge-Coupled Pipelined Analog-to-Digital Converter with Digital Background Calibration |
| CN104270152A (en) * | 2014-10-13 | 2015-01-07 | 中国电子科技集团公司第五十八研究所 | PVT-insensitive common-mode charge control device for charge-coupled pipeline ADC |
| US20170093410A1 (en) * | 2015-09-29 | 2017-03-30 | Microsemi Semiconductor Ulc | Noise reduction in non-linear signal processing |
| CN106656183A (en) * | 2016-12-20 | 2017-05-10 | 中国电子科技集团公司第五十八研究所 | Pipelined analog-to-digital converter input common mode error feed-forward compensation circuit |
| US9755655B1 (en) * | 2017-03-08 | 2017-09-05 | Xilinx, Inc. | Dynamic quantizers having multiple reset levels |
| CN106953637A (en) * | 2017-03-09 | 2017-07-14 | 黄山学院 | Charge Domain Amplitude Error Calibration Circuit and DDS Circuit Adopting the Calibration Circuit |
| CN107241098A (en) * | 2017-05-24 | 2017-10-10 | 东南大学 | The mistuning calibration function circuit of comparator in a kind of asynchronous gradual approaching A/D converter |
Non-Patent Citations (1)
| Title |
|---|
| 黄嵩人等: "用于电荷域流水线ADC的1.5位子级电路", 《西安电子科技大学学报》 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114696833A (en) * | 2020-12-30 | 2022-07-01 | Tcl科技集团股份有限公司 | Multi-channel mismatch calibration circuit, multi-channel chip and mismatch calibration method thereof |
| CN114696833B (en) * | 2020-12-30 | 2024-05-28 | Tcl科技集团股份有限公司 | Multichannel mismatch calibration circuit, multichannel chip and mismatch calibration method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107863964B (en) | 2019-09-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6888482B1 (en) | Folding analog to digital converter capable of calibration and method thereof | |
| US6967611B2 (en) | Optimized reference voltage generation using switched capacitor scaling for data converters | |
| CN107863962B (en) | Capacitance Adaptation Error Calibration System for High Precision Charge Domain Pipeline ADC | |
| CN107872226B (en) | Charge domain pipelined ADC with high precision digital-analog hybrid calibration | |
| US11296714B2 (en) | Residue transfer loop, successive approximation register analog-to-digital converter, and gain calibration method | |
| CN101882929B (en) | Input common mode voltage offset compensation circuit of pipelined analog-to-digital converter | |
| CN104270152B (en) | The insensitive common mode charge control devices of PVT for charge coupling assembly line analog to digital converter | |
| CN108462492B (en) | SAR_ADC system offset voltage correction circuit and correction method | |
| US8493251B2 (en) | Self-calibrated DAC with reduced glitch mapping | |
| CN106656183B (en) | Input common-mode error feedforward compensation circuit of pipeline analog-to-digital converter | |
| CN106788429B (en) | DAC offset error calibration circuit based on charge domain signal processing | |
| CN111431532B (en) | Integrator with wide output range and high precision | |
| JPH05252035A (en) | Differential amplifier, comparator and a/d converter | |
| CN107733432B (en) | High precision charge domain pipeline ADC common mode charge error calibration system | |
| CN101888246B (en) | Charge coupling pipelined analogue-to-digital converter with error correction function | |
| CN110401447B (en) | An Op-ampless MDAC Time Domain ADC Structure | |
| CN118603340A (en) | An on-chip temperature sensor | |
| CN110224701B (en) | Pipelined ADC | |
| CN107863964B (en) | Fully Differential Charge Transfer Circuit with Precise Control of Common-Mode Charge Amount | |
| CN114095028A (en) | Sampling mode selectable split pipeline successive approximation type analog-to-digital converter | |
| US12191877B2 (en) | Multi-bit voltage-to-delay conversion in data converter circuitry | |
| CN107800435B (en) | Compensation circuit and cancellation method for parasitic effect of capacitor array | |
| TWI777464B (en) | Signal converting apparatus and signal converting method | |
| CN113114256B (en) | Offset correction circuit of continuous time ADC comparator and analog-to-digital converter | |
| CN202261240U (en) | Charge transmission circuit for charge coupling production line ADC (analog-to-digital converter) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |