CN107879620B - Optical glass, glass preforms and optical components - Google Patents
Optical glass, glass preforms and optical components Download PDFInfo
- Publication number
- CN107879620B CN107879620B CN201610861598.2A CN201610861598A CN107879620B CN 107879620 B CN107879620 B CN 107879620B CN 201610861598 A CN201610861598 A CN 201610861598A CN 107879620 B CN107879620 B CN 107879620B
- Authority
- CN
- China
- Prior art keywords
- glass
- tio
- sio
- optical glass
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims abstract description 192
- 239000005304 optical glass Substances 0.000 title claims abstract description 65
- 230000003287 optical effect Effects 0.000 title claims abstract description 44
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims abstract description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 10
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 67
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 57
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 40
- 238000002834 transmittance Methods 0.000 claims description 26
- 238000002425 crystallisation Methods 0.000 claims description 25
- 230000008025 crystallization Effects 0.000 claims description 24
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 12
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 8
- 230000009477 glass transition Effects 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- -1 B 2 O 3 Inorganic materials 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 5
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 5
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 abstract description 30
- 239000000126 substance Substances 0.000 abstract description 14
- 238000000465 moulding Methods 0.000 abstract description 8
- 238000013461 design Methods 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 abstract description 2
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 abstract description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004031 devitrification Methods 0.000 description 30
- 230000007423 decrease Effects 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000005499 meniscus Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910001260 Pt alloy Inorganic materials 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- 229910005690 GdF 3 Inorganic materials 0.000 description 1
- 229910017768 LaF 3 Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910007992 ZrF Inorganic materials 0.000 description 1
- XGCTUKUCGUNZDN-UHFFFAOYSA-N [B].O=O Chemical compound [B].O=O XGCTUKUCGUNZDN-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007907 direct compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种高折射低色散光学玻璃,尤其是涉及一种低成本的高折射低色散光学玻璃和光学元件。The invention relates to a high-refractive and low-dispersion optical glass, in particular to a low-cost high-refractive and low-dispersion optical glass and an optical element.
背景技术Background technique
近年来,随着光学系统的数字化和高精密化的迅速发展,在数码相机、摄像机等摄影设备以及投影仪、投影电视等图像播放(投影)设备等光学设备中,对减少光学系统中使用的透镜、棱镜等光学元件的个数,使光学系统整体轻量化和小型化的要求越来越高。在光学系统的设计中,广泛采用高折射率的玻璃或利用非球面透镜来实现小型化、超薄化和广角化,在实现光学系统轻量化高性能化的同时更容易实现色差的校正,因此,高折射低色散玻璃的研发需求正逐渐加大。In recent years, with the rapid development of digitization and high precision of optical systems, in optical equipment such as digital cameras, video cameras, and other photographic equipment, and image playback (projection) equipment such as projectors and projection televisions, there is a need to reduce the amount of energy used in optical systems. The number of optical elements such as lenses and prisms has increased the requirements for the overall light weight and miniaturization of the optical system. In the design of optical systems, high-refractive-index glass or aspherical lenses are widely used to achieve miniaturization, ultra-thinning and wide-angle. It is easier to achieve chromatic aberration correction while achieving lightweight and high-performance optical systems. Therefore, , The demand for research and development of high-refractive and low-dispersion glass is gradually increasing.
早期制作高折射低色散玻璃都含有大量的Ta2O5,如CN1876589A公开的一种折射率在1.75-1.85、阿贝数在34-44的光学玻璃,其中就含有大于15%但小于35%的Ta2O5。钽是一种稀缺金属,Ta2O5的使用对产品成本的控制极其不利,因此在高折射低色散玻璃组成中降低或不使用Ta2O5,成了光学玻璃研发工作者的研发目标。Early production of high-refractive and low-dispersion glass contains a large amount of Ta 2 O 5 , such as an optical glass with a refractive index of 1.75-1.85 and an Abbe number of 34-44 disclosed in CN1876589A, which contains more than 15% but less than 35% Ta 2 O 5 . Tantalum is a rare metal, and the use of Ta 2 O 5 is extremely unfavorable to the control of product cost. Therefore, reducing or not using Ta 2 O 5 in the composition of high-refractive and low-dispersion glass has become the research and development goal of optical glass researchers.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种成本低、折射率为1.77-1.85、阿贝数为40-48的高折射低色散光学玻璃。The technical problem to be solved by the present invention is to provide a high-refractive and low-dispersion optical glass with a low cost, a refractive index of 1.77-1.85 and an Abbe number of 40-48.
本发明还要提供一种由上述光学玻璃形成的玻璃预制件和光学元件。The present invention also provides a glass preform and optical element formed from the above-mentioned optical glass.
本发明解决技术问题所采用的技术方案是:光学玻璃,其折射率(nd)为1.77-1.85,阿贝数(vd)为40-48,其组成按重量百分比表示,含有:SiO2+B2O3:15-40%;La2O3+Gd2O3+Y2O3:35-70%;WO3+Nb2O5+ZrO2+TiO2:1-30%;ZnO:11-30%;Nb2O5/Gd2O3为0.01-0.45。The technical scheme adopted by the present invention to solve the technical problem is: optical glass, its refractive index (nd) is 1.77-1.85, and the Abbe number (vd) is 40-48, and its composition is expressed in weight percentage, and contains: SiO 2 +B 2O3 : 15-40%; La2O3 + Gd2O3 + Y2O3 : 35-70% ; WO3 + Nb2O5 +ZrO2 + TiO2 : 1-30% ; ZnO: 11-30%; Nb 2 O 5 /Gd 2 O 3 0.01-0.45.
进一步的,其组成按重量百分比表示,还含有:Al2O3:0-10%;Ta2O5:0-8%;Rn2O:0-10%,其中Rn2O为Li2O、Na2O、K2O中的一种或多种;RO:0-10%,其中RO为MgO、CaO、SrO或BaO中的一种或多种。Further, its composition is expressed in weight percentage, and also contains: Al 2 O 3 : 0-10%; Ta 2 O 5 : 0-8%; Rn 2 O: 0-10%, wherein Rn 2 O is Li 2 O , one or more of Na 2 O, K 2 O; RO: 0-10%, wherein RO is one or more of MgO, CaO, SrO or BaO.
进一步的,SiO2+B2O3:18-38%;和/或La2O3+Gd2O3+Y2O3:35-65%;和/或WO3+Nb2O5+ZrO2+TiO2:2-20%;Rn2O:0-5%,其中Rn2O为Li2O、Na2O、K2O中的一种或多种;RO:0-5%,其中RO为MgO、CaO、SrO或BaO中的一种或多种。Further, SiO 2 +B 2 O 3 : 18-38%; and/or La 2 O 3 +Gd 2 O 3 +Y 2 O 3 : 35-65%; and/or WO 3 +Nb 2 O 5 + ZrO 2 +TiO 2 : 2-20%; Rn 2 O: 0-5%, wherein Rn 2 O is one or more of Li 2 O, Na 2 O, K 2 O; RO: 0-5% , wherein RO is one or more of MgO, CaO, SrO or BaO.
进一步的,SiO2+B2O3:20-35%;和/或La2O3+Gd2O3+Y2O3:38-60%;和/或WO3+Nb2O5+ZrO2+TiO2:4-15%;Rn2O:0-2%,其中Rn2O为Li2O、Na2O、K2O中的一种或多种;RO:0-1%,其中RO为MgO、CaO、SrO或BaO中的一种或多种。Further, SiO 2 +B 2 O 3 : 20-35%; and/or La 2 O 3 +Gd 2 O 3 +Y 2 O 3 : 38-60%; and/or WO 3 +Nb 2 O 5 + ZrO 2 +TiO 2 : 4-15%; Rn 2 O: 0-2%, wherein Rn 2 O is one or more of Li 2 O, Na 2 O, K 2 O; RO: 0-1% , wherein RO is one or more of MgO, CaO, SrO or BaO.
进一步的,各组分的含量满足以下9种条件中的一种或一种以上:Further, the content of each component satisfies one or more of the following 9 conditions:
1)Ta2O5/Nb2O5:小于1;1) Ta 2 O 5 /Nb 2 O 5 : less than 1;
2)ZnO/(SiO2+B2O3)为0.3-2;2) ZnO/(SiO 2 +B 2 O 3 ) is 0.3-2;
3)Gd2O3/(La2O3+Gd2O3+Y2O3)为0.2-0.55;3) Gd 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ) is 0.2-0.55;
4)SiO2/(SiO2+B2O3)为0.2-0.6;4) SiO 2 /(SiO 2 +B 2 O 3 ) is 0.2-0.6;
5)Nb2O5/Gd2O3为0.01-0.4;5) Nb 2 O 5 /Gd 2 O 3 is 0.01-0.4;
6)(WO3+Ta2O5+Nb2O5)/(ZrO2+TiO2)为0.1-5;6) (WO 3 +Ta 2 O 5 +Nb 2 O 5 )/(ZrO 2 +TiO 2 ) is 0.1-5;
7)Nb2O5/ZnO为0.01-0.5;7) Nb 2 O 5 /ZnO is 0.01-0.5;
8)TiO2/(TiO2+Nb2O5)为0.01-0.8;8) TiO 2 /(TiO 2 +Nb 2 O 5 ) is 0.01-0.8;
9)ZnO/(WO3+Ta2O5+Nb2O5+TiO2)为1.8以上。9) ZnO/(WO 3 +Ta 2 O 5 +Nb 2 O 5 +TiO 2 ) is 1.8 or more.
进一步的,其中:Nb2O5+ZrO2+TiO2:1-25%。Further, wherein: Nb 2 O 5 +ZrO 2 +TiO 2 : 1-25%.
进一步的,其中:Nb2O5:大于0但小于或等于8%;ZrO2:大于0但小于或等于15%;TiO2:0-8%;WO3:0-15%。Further, wherein: Nb 2 O 5 : greater than 0 but less than or equal to 8%; ZrO 2 : greater than 0 but less than or equal to 15%; TiO 2 : 0-8%; WO 3 : 0-15%.
进一步的,其中:La2O3:20-40%;Gd2O3:11-30%;Y2O3:0-15%。Further, wherein: La 2 O 3 : 20-40%; Gd 2 O 3 : 11-30%; Y 2 O 3 : 0-15%.
进一步的,其中:SiO2:4-20%;B2O3:8-24%;Li2O:0-2%;Na2O:0-10%;K2O:0-10%。Further, wherein: SiO 2 : 4-20%; B 2 O 3 : 8-24%; Li 2 O: 0-2%; Na 2 O: 0-10%; K 2 O: 0-10%.
进一步的,其中:SiO2:5-18%;和/或B2O3:10-23%;和/或La2O3:20-35%;和/或Gd2O3:11-25%;和/或Y2O3:0-10%;和/或WO3:0-10%;和/或Ta2O5:0-5%;和/或Nb2O5:0.1-6%;和/或ZrO2:1-10%;和/或ZnO:15-30%;和/或TiO2:0-5;和/或Al2O3:0-5%;和/或Li2O:0-1%;和/或Na2O:0-5%;和/或K2O:0-5%;和/或Sb2O3:0-0.5%;和/或RO:0-5%,其中,RO为MgO、CaO、SrO或BaO中的一种或多种。Further, wherein: SiO 2 : 5-18%; and/or B 2 O 3 : 10-23%; and/or La 2 O 3 : 20-35%; and/or Gd 2 O 3 : 11-25 and/or Y 2 O 3 : 0-10%; and/or WO 3 : 0-10%; and/or Ta 2 O 5 : 0-5%; and/or Nb 2 O 5 : 0.1-6 and/or ZrO 2 : 1-10%; and/or ZnO: 15-30%; and/or TiO 2 : 0-5; and/or Al 2 O 3 : 0-5%; and/or Li 2O : 0-1%; and/or Na2O : 0-5%; and/or K2O : 0-5%; and/or Sb2O3 : 0-0.5%; and/or RO: 0-5%, wherein RO is one or more of MgO, CaO, SrO or BaO.
进一步的,其中:SiO2:6-15%;和/或B2O3:12-20%;和/或La2O3:22-32%;和/或Gd2O3:12-22%;和/或Y2O3:0-8%;和/或WO3:0-7%;和/或ZrO2:2-8%;和/或ZnO:15-25%;和/或TiO2:0-2%。Further, wherein: SiO 2 : 6-15%; and/or B 2 O 3 : 12-20%; and/or La 2 O 3 : 22-32%; and/or Gd 2 O 3 : 12-22 and/or Y2O3 : 0-8%; and/or WO3: 0-7% ; and/or ZrO2 : 2-8 %; and/or ZnO: 15-25%; and/or TiO2 : 0-2%.
进一步的,其中:Ta2O5/Nb2O5:小于0.8;和/或ZnO/(SiO2+B2O3)为0.5-1.8;和/或Gd2O3/(La2O3+Gd2O3+Y2O3)为0.25-0.5;和/或SiO2/(SiO2+B2O3)为0.23-0.5;和/或Nb2O5/Gd2O3为0.02-0.35;和/或(WO3+Ta2O5+Nb2O5)/(ZrO2+TiO2)为0.1-3;和/或Nb2O5/ZnO为0.02-0.35;和/或TiO2/(TiO2+Nb2O5)为0.05-0.7;和/或ZnO/(WO3+Ta2O5+Nb2O5+TiO2)为3-15。Further, wherein: Ta 2 O 5 /Nb 2 O 5 : less than 0.8; and/or ZnO/(SiO 2 +B 2 O 3 ) is 0.5-1.8; and/or Gd 2 O 3 /(La 2 O 3 ) +Gd 2 O 3 +Y 2 O 3 ) is 0.25-0.5; and/or SiO 2 /(SiO 2 +B 2 O 3 ) is 0.23-0.5; and/or Nb 2 O 5 /Gd 2 O 3 is 0.02 -0.35; and/or (WO 3 +Ta 2 O 5 +Nb 2 O 5 )/(ZrO 2 +TiO 2 ) is 0.1-3; and/or Nb 2 O 5 /ZnO is 0.02-0.35; and/or TiO 2 /(TiO 2 +Nb 2 O 5 ) is 0.05-0.7; and/or ZnO/(WO 3 +Ta 2 O 5 +Nb 2 O 5 +TiO 2 ) is 3-15.
进一步的,其中:Ta2O5/Nb2O5:小于0.5;ZnO/(SiO2+B2O3)为0.5-1.45;和/或Gd2O3/(La2O3+Gd2O3+Y2O3)为0.25-0.45;和/或SiO2/(SiO2+B2O3)为0.25-0.45;和/或Nb2O5/Gd2O3为0.05-0.25;和/或(WO3+Ta2O5+Nb2O5)/(ZrO2+TiO2)为0.1-1;和/或Nb2O5/ZnO为0.03-0.25;和/或TiO2/(TiO2+Nb2O5)为0.1-0.6;和/或ZnO/(WO3+Ta2O5+Nb2O5+TiO2)为4-12。Further, wherein: Ta 2 O 5 /Nb 2 O 5 : less than 0.5; ZnO/(SiO 2 +B 2 O 3 ) is 0.5-1.45; and/or Gd 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ) is 0.25-0.45; and/or SiO 2 /(SiO 2 +B 2 O 3 ) is 0.25-0.45; and/or Nb 2 O 5 /Gd 2 O 3 is 0.05-0.25; and/or (WO 3 +Ta 2 O 5 +Nb 2 O 5 )/(ZrO 2 +TiO 2 ) is 0.1-1; and/or Nb 2 O 5 /ZnO is 0.03-0.25; and/or TiO 2 / ( TiO2 + Nb2O5 ) is 0.1-0.6; and/or ZnO/ ( WO3 + Ta2O5 + Nb2O5 + TiO2 ) is 4-12.
进一步的,其中:Nb2O5+ZrO2+TiO2:2-20%;La2O3+Gd2O3+Y2O3:40-55%。Further, wherein: Nb 2 O 5 +ZrO 2 +TiO 2 : 2-20%; La 2 O 3 +Gd 2 O 3 +Y 2 O 3 : 40-55%.
进一步的,其中:Nb2O5+ZrO2+TiO2:4-15%。Further, wherein: Nb 2 O 5 +ZrO 2 +TiO 2 : 4-15%.
进一步的,其中:SiO2、B2O3、La2O3、Gd2O3、Y2O3、TiO2、Nb2O5、WO3、ZrO2和ZnO的合计含量为95%以上,且不含Ta2O5。Further, wherein: the total content of SiO 2 , B 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , TiO 2 , Nb 2 O 5 , WO 3 , ZrO 2 and ZnO is 95% or more , and does not contain Ta 2 O 5 .
进一步的,其中:SiO2、B2O3、La2O3、Gd2O3、Y2O3、TiO2、Nb2O5、ZrO2和ZnO的合计含量为99%以上。Further, wherein: the total content of SiO 2 , B 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , TiO 2 , Nb 2 O 5 , ZrO 2 and ZnO is 99% or more.
进一步的,其组成按重量百分比表示,含有:Further, its composition is expressed by weight percentage and contains:
Yb2O3:0-10%;Yb 2 O 3 : 0-10%;
P2O5:0-10%;P 2 O 5 : 0-10%;
Bi2O3:0-10%;Bi 2 O 3 : 0-10%;
TeO2:0-10%;TeO 2 : 0-10%;
Ga2O3:0-10%;Ga 2 O 3 : 0-10%;
Lu2O3:0-10%;Lu 2 O 3 : 0-10%;
GeO2:0-8%;GeO 2 : 0-8%;
CeO2:0-1%;CeO 2 : 0-1%;
SnO2:0-1%;SnO 2 : 0-1%;
Sb2O3:0-1%;Sb 2 O 3 : 0-1%;
F:0-10%。F: 0-10%.
进一步的,其组成按重量百分比表示,含有:Further, its composition is expressed by weight percentage and contains:
Yb2O3:0-5%;Yb 2 O 3 : 0-5%;
P2O5:0-5%;P 2 O 5 : 0-5%;
Bi2O3:0-5%;Bi 2 O 3 : 0-5%;
TeO2:0-5%;TeO 2 : 0-5%;
Ga2O3:0-5%;Ga 2 O 3 : 0-5%;
Lu2O3:0-5%;Lu 2 O 3 : 0-5%;
GeO2:0-5%;GeO 2 : 0-5%;
CeO2:0-0.5%;CeO 2 : 0-0.5%;
SnO2:0-0.5%;SnO 2 : 0-0.5%;
Sb2O3:0-1%;Sb 2 O 3 : 0-1%;
F:0-5%。F: 0-5%.
进一步的,玻璃的透射比达到80%时对应的波长λ80为410nm以下,透射比达到5%时对应的波长λ5为350nm以下;析晶上限温度在1160℃以下;玻璃转变温度(Tg)为630℃以下;玻璃的密度(ρ)为5.00g/cm3以下。Further, when the transmittance of the glass reaches 80%, the corresponding wavelength λ 80 is below 410 nm, and when the transmittance reaches 5%, the corresponding wavelength λ 5 is below 350 nm; the crystallization upper limit temperature is below 1160 ° C; glass transition temperature (Tg) It is 630°C or less; the density (ρ) of the glass is 5.00 g/cm 3 or less.
进一步的,玻璃的透射比达到80%时对应的波长λ80为400nm以下,透射比达到5%时对应的波长λ5为340nm以下;析晶上限温度在1150℃以下;玻璃转变温度(Tg)为620℃以下;玻璃的密度(ρ)为4.90g/cm3以下Further, when the transmittance of the glass reaches 80%, the corresponding wavelength λ 80 is below 400 nm, and when the transmittance reaches 5%, the corresponding wavelength λ 5 is below 340 nm; the crystallization upper limit temperature is below 1150 ° C; glass transition temperature (Tg) Below 620℃; the density (ρ) of glass is below 4.90g/ cm3
玻璃预制件,采用上述的光学玻璃制成。The glass preform is made of the above-mentioned optical glass.
光学元件,采用上述的光学玻璃制成。The optical element is made of the above-mentioned optical glass.
本发明的有益效果是:降低Ta2O5的含量,优化了原料成本;通过合理的组分设计,使本发明的光学玻璃在实现所需的光学常数的同时利于精密模压,且具有优异的化学稳定性,以及由所述光学玻璃形成的玻璃预制件和光学元件。The beneficial effects of the invention are as follows: the content of Ta 2 O 5 is reduced, and the cost of raw materials is optimized; through reasonable component design, the optical glass of the invention can realize the required optical constant while being beneficial to precision molding, and has excellent Chemical stability, and glass preforms and optical elements formed from the optical glass.
具体实施方式Detailed ways
Ⅰ、光学玻璃Ⅰ. Optical glass
本发明光学玻璃基于对降低原料成本考虑,降低甚至不含有价格昂贵的Ta2O5含量,得到折射率为1.77-1.85,阿贝数为40-48的高折射率低色散光学玻璃。Based on the consideration of reducing the cost of raw materials, the optical glass of the present invention reduces or even does not contain expensive Ta 2 O 5 content to obtain a high refractive index and low dispersion optical glass with a refractive index of 1.77-1.85 and an Abbe number of 40-48.
下面对本发明的光学玻璃的组成进行详细说明,各玻璃组分的含量、总含量如没有特别说明,则都采用重量百分比进行表示。另外,在以下的说明中,提到规定值以下或规定值以上时,也包括该规定值。The composition of the optical glass of the present invention is described in detail below, and the content and total content of each glass component are expressed in weight percentage unless otherwise specified. In addition, in the following description, when referring to a predetermined value or less or a predetermined value or more, the predetermined value is also included.
B2O3是玻璃网络形成组分,具有提高玻璃可熔性和耐失透性,降低玻璃态转变温度和密度的作用,为了达到上述效果,本发明引入8%以上或更多的B2O3,优选引入10%以上的B2O3,更优选引入12%以上的B2O3;但当其引入量超过24%时,则玻璃稳定性下降,并且折射率下降,无法得到本发明的高折射率,因此,本发明的B2O3的含量将24%设为上限,优选上限为23%,更优选上限为20%。B 2 O 3 is a glass network forming component, which has the functions of improving the meltability and devitrification resistance of the glass, and reducing the glass transition temperature and density. In order to achieve the above effects, the present invention introduces 8% or more of B 2 O 3 , preferably 10% or more of B 2 O 3 , more preferably 12% or more of B 2 O 3 ; however, when the amount of B 2 O 3 introduced exceeds 24%, the stability of the glass decreases and the refractive index decreases, and the present invention cannot be obtained. Because of the high refractive index of the present invention, the upper limit of the content of B 2 O 3 in the present invention is 24%, preferably 23%, and more preferably 20%.
SiO2也是玻璃形成体,与B2O3所构成的疏松的链状层状网络不同,SiO2在玻璃中形成的是硅氧四面体三维网络,非常致密坚固。这样的网络加入到玻璃中,对疏松的硼氧三角体[BO3]网络进行加固,使其变得致密,从而提升玻璃的高温粘度,与此同时,硅氧四面体三维网络的加入,玻璃网络隔离La、Nb、Li等析晶阳离子的能力增强,增加了析晶阈值,使得玻璃的抗析晶性能提升,本发明玻璃中SiO2含量的下限为4%,优选为5%,更优选为6%时上述效果较好;但若SiO2的含量过大,会使玻璃的转变温度升高,并使玻璃的熔融性降低,因此其含量上限为20%,优选上限为18%,进一步优选上限为15%。SiO 2 is also a glass former. Different from the loose chain-like layered network composed of B 2 O 3 , SiO 2 forms a three-dimensional network of silicon-oxygen tetrahedron in glass, which is very dense and firm. Such a network is added to the glass to reinforce the loose boron-oxygen triangle [BO 3 ] network and make it dense, thereby increasing the high-temperature viscosity of the glass. The ability of the network to isolate La, Nb, Li and other crystallization cations is enhanced, and the crystallization threshold is increased, so that the anti-crystallization performance of the glass is improved. The lower limit of the SiO 2 content in the glass of the present invention is 4%, preferably 5%, more preferably The above effect is better when it is 6%; however, if the content of SiO 2 is too large, the transition temperature of the glass will increase and the melting property of the glass will decrease, so the upper limit of the content is 20%, preferably the upper limit is 18%, and further The preferred upper limit is 15%.
B2O3和SiO2都是玻璃网络形成组分,当其总含量低于15%时,结晶趋势增加,无法得到稳定的玻璃;当其总含量超过40%时,玻璃的光学常数会低于设计值。因此,B2O3和SiO2的总含量(B2O3+SiO2)为15-40%,优选为18-38%,更优选为20-35%。另外,本发明通过控制SiO2的含量与SiO2和B2O3的合计含量的比值SiO2/(SiO2+B2O3)在0.2-0.6内,不仅可以保证玻璃的熔融性,同时可以有效增加玻璃稳定性和高温粘度,尤其是当其SiO2/(SiO2+B2O3)值为0.23-0.5时,在维持玻璃高折射低色散光学特性以及低转变温度特性的同时,可以有效改善玻璃的抗析晶性能,进一步优选为0.25-0.45。Both B 2 O 3 and SiO 2 are glass network forming components. When their total content is less than 15%, the crystallization tendency increases, and stable glass cannot be obtained; when their total content exceeds 40%, the optical constant of the glass will be low at the design value. Therefore, the total content of B 2 O 3 and SiO 2 (B 2 O 3 +SiO 2 ) is 15-40%, preferably 18-38%, more preferably 20-35%. In addition, by controlling the ratio of the content of SiO 2 to the total content of SiO 2 and B 2 O 3 SiO 2 /(SiO 2 +B 2 O 3 ) within 0.2-0.6, the present invention can not only ensure the melting property of the glass, but also It can effectively increase the glass stability and high temperature viscosity, especially when its SiO 2 /(SiO 2 +B 2 O 3 ) value is 0.23-0.5, while maintaining the high refraction, low dispersion optical properties and low transition temperature properties of the glass, It can effectively improve the devitrification resistance of the glass, more preferably 0.25-0.45.
在本发明中,La2O3、Gd2O3、Y2O3均可以提高玻璃的折射率,当其总含量低于35%时,无法获得预期的光学常数,当其总含量超过70%时,玻璃的稳定性、耐失透性降低,因此La2O3、Gd2O3、Y2O3的总含量(La2O3+Gd2O3+Y2O3)为35-70%,优选为35-65%,进一步优选为38-60%,更进一步优选为40-55%。In the present invention, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 can all improve the refractive index of the glass. When the total content is less than 35%, the expected optical constant cannot be obtained. When the total content exceeds 70% %, the stability and devitrification resistance of the glass decrease, so the total content of La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 (La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ) is 35 -70%, preferably 35-65%, more preferably 38-60%, still more preferably 40-55%.
La2O3是获得本发明所需光学特性的必须组分,在本发明配方体系中,B2O3与La2O3的组合存在,可以有效地提高玻璃的耐失透性能,并提高玻璃的化学稳定性。当La2O3的含量小于20%时,难以实现所需要的光学特性;但当其含量超过40%时,玻璃耐失透性与熔融性能均恶化。因此,本发明的La2O3的含量为20-40%,优选范围为20-35%,更优选的范围为22-32%。La 2 O 3 is an essential component to obtain the required optical properties of the present invention. In the formulation system of the present invention, the combination of B 2 O 3 and La 2 O 3 can effectively improve the devitrification resistance of the glass and improve the Chemical stability of glass. When the content of La 2 O 3 is less than 20%, it is difficult to achieve desired optical properties; but when the content exceeds 40%, both devitrification resistance and melting properties of the glass deteriorate. Therefore, the content of La 2 O 3 in the present invention is 20-40%, preferably in the range of 20-35%, and more preferably in the range of 22-32%.
Gd2O3可以增加玻璃的折射率且不明显提高玻璃的色散,本发明中通过引入11%以上的Gd2O3与La2O3共存,可以提高形成玻璃的稳定性,并且使玻璃的化学稳定性显著增强,在维持折射率的同时,控制阿贝数的过度上升;如果其含量超过30%时,则玻璃耐失透性降低且玻璃的密度呈上升趋势。因此,本发明的Gd2O3的含量为11-30%,优选范围为11-25%,更优选范围为12-22%。Gd 2 O 3 can increase the refractive index of the glass without significantly increasing the dispersion of the glass. In the present invention, by introducing more than 11% of Gd 2 O 3 to coexist with La 2 O 3 , the stability of forming the glass can be improved, and the glass's stability can be improved. The chemical stability is significantly enhanced, and the excessive rise of Abbe number is controlled while maintaining the refractive index; if the content exceeds 30%, the devitrification resistance of the glass decreases and the density of the glass tends to increase. Therefore, the content of Gd 2 O 3 in the present invention is 11-30%, preferably in the range of 11-25%, and more preferably in the range of 12-22%.
本发明高折射低色散作用的组分优选还引入Y2O3,其在维持高折射率和高阿贝数的同时,抑制玻璃材料成本上升,并可改善玻璃的熔融性、耐失透性,还可降低玻璃析晶上限温度和比重,但若其含量超过15%,则玻璃的稳定性、耐失透性降低。因此,Y2O3含量范围为0-15%,优选范围为0-10%,更优选为0-8%。The component with high refractive index and low dispersion effect of the present invention is preferably also introduced into Y 2 O 3 , which can suppress the increase in the cost of glass materials while maintaining high refractive index and high Abbe number, and can improve the melting property and devitrification resistance of glass , the glass crystallization upper limit temperature and specific gravity can also be reduced, but if the content exceeds 15%, the stability and devitrification resistance of the glass will be reduced. Therefore, the Y2O3 content is in the range of 0-15%, preferably in the range of 0-10%, more preferably in the range of 0-8%.
在本发明中使La2O3和Gd2O3共存;或者优选使La2O3、Gd2O3和Y2O3共存;更优选Gd2O3/(La2O3+Gd2O3+Y2O3)范围为0.2-0.55,进一步优选Gd2O3/(La2O3+Gd2O3+Y2O3)范围为0.25-0.5,更进一步优选Gd2O3/(La2O3+Gd2O3+Y2O3)范围为0.25-0.45,可以最大程度克服因减少或不使用Ta2O5导致的玻璃稳定性下降的不良效果,得到具有优良的玻璃稳定性的高折射率低色散的玻璃,同时玻璃不易着色。In the present invention, La 2 O 3 and Gd 2 O 3 coexist; or preferably La 2 O 3 , Gd 2 O 3 and Y 2 O 3 coexist; more preferably Gd 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ) in the range of 0.2-0.55, more preferably Gd 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ) in the range of 0.25-0.5, still more preferably Gd 2 O 3 The range of /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ) is 0.25-0.45, which can overcome the adverse effect of glass stability reduction caused by reducing or not using Ta 2 O 5 to the greatest extent, and obtain excellent Glass-stable, high-refractive-index, low-dispersion glass, while the glass is not easily stained.
Yb2O3也是一种赋予高折射、低色散性能的组分,当其引入量超过10%时,玻璃的抗析晶性能会下降,因此其含量限定为0-10%,优选为0-5%。Yb 2 O 3 is also a component that imparts high refraction and low dispersion properties. When its introduction amount exceeds 10%, the anti-devitrification property of the glass will decrease, so its content is limited to 0-10%, preferably 0- 5%.
本发明玻璃中,Nb2O5含量超过0时,对降低液相温度有极好的效果,也具有在不使透过率变差的情况下提高玻璃折射率、抗析晶性和化学耐久性的作用,适量的Nb2O5引入,还可以在精密模压过程中有效改善玻璃的抗析晶性能;如果其含量超过8%,则玻璃色散提高,无法达到本发明玻璃的光学特性。因此,Nb2O5的含量范围为大于0但小于或等于8%,优选范围为0.1-6%。经本发明人研究发现,本发明玻璃中Nb2O5含量与Gd2O3含量的比值Nb2O5/Gd2O3为0.01-0.45时,可显著改善玻璃的化学耐久性和耐失透性,尤其是当Nb2O5/Gd2O3为0.01-0.4时,效果尤其明显,进一步优选为0.02-0.35,更进一步优选为0.05-0.25。In the glass of the present invention, when the content of Nb 2 O 5 exceeds 0, it has an excellent effect on lowering the liquidus temperature, and also improves the refractive index, devitrification resistance and chemical durability of the glass without deteriorating the transmittance. The introduction of an appropriate amount of Nb 2 O 5 can also effectively improve the anti-devitrification performance of the glass during the precision molding process; if its content exceeds 8%, the glass dispersion will increase, and the optical properties of the glass of the present invention cannot be achieved. Therefore, the content of Nb 2 O 5 is in the range of more than 0 but less than or equal to 8%, preferably in the range of 0.1-6%. The inventors found that the chemical durability and loss resistance of the glass can be significantly improved when the ratio Nb 2 O 5 /Gd 2 O 3 of the Nb 2 O 5 content to the Gd 2 O 3 content in the glass of the present invention is 0.01-0.45. Permeability, especially when Nb 2 O 5 /Gd 2 O 3 is 0.01-0.4, the effect is particularly obvious, more preferably 0.02-0.35, still more preferably 0.05-0.25.
Ta2O5可以提高玻璃的折射率、耐失透性和熔融态玻璃的粘度,但其价格昂贵,不利于原料成本的降低,因此其含量限定为8%以下,优选为5%以下,更优选为1%以下,进一步优选为不加入。Ta 2 O 5 can improve the refractive index, devitrification resistance and viscosity of molten glass, but its high price is not conducive to the reduction of raw material cost, so its content is limited to 8% or less, preferably 5% or less, more It is preferably 1% or less, and more preferably not added.
本发明光学玻璃中控制Ta2O5/Nb2O5的值小于1,在有效调节折射率和色散的同时可提高玻璃的抗析晶性能,另外,当玻璃中含有易着色成分时,优选Ta2O5/Nb2O5的值小于0.8,可有效改善玻璃的着色性能,进一步优选Ta2O5/Nb2O5的值小于0.5,更进一步优选Ta2O5/Nb2O5的值小于0.3。In the optical glass of the present invention, the value of Ta 2 O 5 /Nb 2 O 5 is controlled to be less than 1, which can effectively adjust the refractive index and dispersion while improving the anti-devitrification performance of the glass. The value of Ta 2 O 5 /Nb 2 O 5 is less than 0.8, which can effectively improve the coloring performance of the glass. It is more preferable that the value of Ta 2 O 5 /Nb 2 O 5 is less than 0.5, and it is still more preferable that Ta 2 O 5 /Nb 2 O 5 is less than 0.3.
ZnO加入本体系玻璃中,可以调整玻璃的折射率和色散,改善玻璃的抗析晶性能,降低玻璃的转变温度,提升玻璃的稳定性。ZnO还可以降低玻璃的高温粘度,使得玻璃可以在较低温度下熔炼,从而可以提升玻璃的透过率。尤其当本发明玻璃中少量含有甚至不含有氧化钽时,通过引入11%以上的ZnO,可以一定程度弥补光学常数的降低。但如果ZnO加入量过多,玻璃的抗析晶性能会下降,同时高温粘度较小,给成型带来困难。在本发明玻璃体系中,ZnO的含量若低于11%,则Tg温度达不到设计要求;若其含量高于30%,玻璃的抗析晶性能会下降,高温粘度达不到设计要求。因此,ZnO的含量下限限定为11%,优选下限为15%;ZnO的含量上限限定为30%,优选上限为25%。The addition of ZnO to the glass of this system can adjust the refractive index and dispersion of the glass, improve the anti-devitrification performance of the glass, reduce the transition temperature of the glass, and improve the stability of the glass. ZnO can also reduce the high temperature viscosity of the glass, so that the glass can be melted at a lower temperature, thereby improving the transmittance of the glass. Especially when the glass of the present invention contains a small amount of tantalum oxide or even does not contain tantalum oxide, the reduction of the optical constant can be compensated to a certain extent by introducing more than 11% of ZnO. However, if the amount of ZnO added is too large, the anti-devitrification performance of the glass will decrease, and the high temperature viscosity will be small, which will bring difficulties to the molding. In the glass system of the present invention, if the content of ZnO is lower than 11%, the Tg temperature will not meet the design requirements; if the content is higher than 30%, the anti-devitrification performance of the glass will decrease, and the high temperature viscosity will not meet the design requirements. Therefore, the lower limit of the content of ZnO is limited to 11%, preferably the lower limit is 15%; the upper limit of the content of ZnO is limited to 30%, and the upper limit is preferably 25%.
本发明为了获得较低Tg温度且稳定性好、易于熔化的玻璃,发明人通过大量试验研究发现,当ZnO/(B2O3+SiO2)的比值范围为0.3-2,优选ZnO/(B2O3+SiO2)的比值范围为0.5-1.8,进一步优选ZnO/(B2O3+SiO2)的比值范围为0.5-1.45时,玻璃的稳定性和Tg温度可达最佳平衡,获得品质较佳的产品。In order to obtain glass with lower Tg temperature, good stability and easy melting in the present invention, the inventor found through a large number of experimental studies that when the ratio of ZnO/(B 2 O 3 +SiO 2 ) is in the range of 0.3-2, preferably ZnO/( When the ratio of B 2 O 3 +SiO 2 ) is in the range of 0.5-1.8, and more preferably the ratio of ZnO/(B 2 O 3 +SiO 2 ) is in the range of 0.5-1.45, the stability of the glass and the Tg temperature can reach the best balance , to obtain better quality products.
同时,为了使玻璃在具有合适的Tg温度的情况下,具有优异的抗析晶性能,优选控制Nb2O5/ZnO的值在0.01-0.5范围内,进一步优选为0.02-0.35,更进一步优选为0.03-0.25。At the same time, in order to make the glass have excellent anti-devitrification performance under the condition of suitable Tg temperature, it is preferable to control the value of Nb 2 O 5 /ZnO in the range of 0.01-0.5, more preferably 0.02-0.35, even more preferably is 0.03-0.25.
ZrO2是一种高折射低色散氧化物,加入玻璃中可以提升玻璃的折射率并调节色散。同时,合适量的ZrO2加入玻璃中,可以提升玻璃的抗析晶性能和成玻稳定性。在本发明中,若其含量高于15%,玻璃会变得难以融化,熔炼温度会上升,容易导致玻璃内部出现夹杂物及其透过率下降。因此,其含量设置为大于0但小于或等于15%,优选为1-10%,进一步优选为2-8%。ZrO 2 is a high-refractive, low-dispersion oxide that can be added to glass to increase the refractive index of the glass and adjust dispersion. At the same time, adding a suitable amount of ZrO 2 into the glass can improve the anti-devitrification performance and glass-forming stability of the glass. In the present invention, if the content is higher than 15%, the glass becomes difficult to melt, the melting temperature increases, and inclusions appear in the glass and the transmittance decreases. Therefore, its content is set to be more than 0 but less than or equal to 15%, preferably 1-10%, more preferably 2-8%.
TiO2是一种高折射高色散氧化物,加入玻璃中可以显著提升玻璃的折射率和色散。本发明人发现,适量添加TiO2到本发明玻璃中,可以增加玻璃稳定性,尤其是抗析晶性能。但若过多的TiO2加入玻璃中,难以实现低色散的研制目标,同时玻璃的透过率会显著降低,玻璃的稳定性也会恶化。因此TiO2的含量为0-8%,优选为0-5%,进一步优选为0-2%。本发明中优选使TiO2/(TiO2+Nb2O5)的值控制在0.01-0.8,可以有效调节玻璃的析晶性能和化学耐久性,更优选TiO2/(TiO2+Nb2O5)为0.05-0.7,进一步优选TiO2/(TiO2+Nb2O5)为0.1-0.6。TiO 2 is a high-refractive, high-dispersion oxide, which can significantly improve the refractive index and dispersion of glass when added to glass. The inventors found that adding an appropriate amount of TiO 2 to the glass of the present invention can increase the glass stability, especially the anti-devitrification performance. However, if too much TiO 2 is added to the glass, it is difficult to achieve the development goal of low dispersion, and the transmittance of the glass will be significantly reduced, and the stability of the glass will also deteriorate. The content of TiO 2 is therefore 0-8%, preferably 0-5%, further preferably 0-2%. In the present invention, the value of TiO 2 /(TiO 2 +Nb 2 O 5 ) is preferably controlled at 0.01-0.8, which can effectively adjust the crystallization performance and chemical durability of the glass, more preferably TiO 2 /(TiO 2 +Nb 2 O 5 ) is 0.05-0.7, more preferably TiO 2 /(TiO 2 +Nb 2 O 5 ) is 0.1-0.6.
WO3在玻璃中的主要作用是维持光学常数,改善玻璃析晶,但其含量过高,会使玻璃透过率降低,着色度增大,且析晶性能变坏。所以,WO3的优选含量是0-15%,更优选含量是0-10%,进一步优选含量为0-7%。The main function of WO 3 in glass is to maintain the optical constant and improve the crystallization of glass, but if its content is too high, the transmittance of the glass will decrease, the degree of coloring will increase, and the crystallization performance will be deteriorated. Therefore, the preferred content of WO 3 is 0-15%, the more preferred content is 0-10%, and the further preferred content is 0-7%.
WO3、Nb2O5、ZrO2、TiO2对维持玻璃的光学常数有利,当其合计含量(WO3+Nb2O5+ZrO2+TiO2)为1-30%时,能显著提高玻璃的抗析晶性能,优选为2-20%,更优选为4-15%;尤其是当Nb2O5、ZrO2、TiO2合计量(Nb2O5+ZrO2+TiO2)为1-25%时,可进一步优化玻璃的化学耐久性和成玻璃性,优选合计量为2-20%,更优选为4-15%。WO 3 , Nb 2 O 5 , ZrO 2 , and TiO 2 are beneficial for maintaining the optical constant of the glass. When their total content (WO 3 +Nb 2 O 5 +ZrO 2 +TiO 2 ) is 1-30%, it can be significantly improved The anti-devitrification property of the glass is preferably 2-20%, more preferably 4-15%; especially when the total amount of Nb 2 O 5 , ZrO 2 and TiO 2 (Nb 2 O 5 +ZrO 2 +TiO 2 ) is When the content is 1-25%, the chemical durability and vitrification of the glass can be further optimized, and the total amount is preferably 2-20%, more preferably 4-15%.
WO3和TiO2的过量引入,都会使玻璃的透过率降低,然而二者又对玻璃的抗析晶性能有着较好的作用,通过发明人对本系统光学玻璃的研究发现,当(WO3+Ta2O5+Nb2O5)/(ZrO2+TiO2)控制在0.1-5范围内时,不仅可以很好的满足透过率与析晶性能的平衡,而且可以进一步优化玻璃的化学稳定性,进一步优选(WO3+Ta2O5+Nb2O5)/(ZrO2+TiO2)的值为0.1-3,更进一步优选(WO3+Ta2O5+Nb2O5)/(ZrO2+TiO2)的值为0.1-1。尤其的,本发明人为使玻璃在具有优异的抗析晶性能和高折射低色散的光学特性的同时,保证玻璃具有良好的透过率和低成本优势,通过大量实验研究发现,通过控制ZnO/(WO3+Ta2O5+Nb2O5+TiO2)在1.8以上,优选为3-15,更进一步优选为4-12,可以达到前述目标。The excessive introduction of WO 3 and TiO 2 will reduce the transmittance of the glass, but both have a good effect on the anti-devitrification performance of the glass. When +Ta 2 O 5 +Nb 2 O 5 )/(ZrO 2 +TiO 2 ) is controlled in the range of 0.1-5, it can not only satisfy the balance between transmittance and crystallization performance, but also further optimize the glass For chemical stability, the value of (WO 3 +Ta 2 O 5 +Nb 2 O 5 )/(ZrO 2 +TiO 2 ) is more preferably 0.1-3, and more preferably (WO 3 +Ta 2 O 5 +Nb 2 O The value of 5 )/(ZrO 2 +TiO 2 ) is 0.1-1. In particular, the inventors have made the glass have excellent anti-devitrification properties and optical properties of high refraction and low dispersion, while ensuring that the glass has good transmittance and low cost advantages. (WO 3 +Ta 2 O 5 +Nb 2 O 5 +TiO 2 ) is 1.8 or more, preferably 3-15, more preferably 4-12, and the aforementioned objective can be achieved.
少量引入Al2O3能改善形成玻璃的稳定性和化学稳定性,但其含量超过10%时,显示玻璃熔融性变差、耐失透性降低的倾向,因此本发明Al2O3的含量为0-10%,优选为0-5%,更优选为0-1%,进一步优选不引入。A small amount of Al 2 O 3 can improve the stability and chemical stability of glass formation, but when its content exceeds 10%, it shows the tendency of poor glass melting and devitrification resistance, so the content of Al 2 O 3 in the present invention It is 0-10%, preferably 0-5%, more preferably 0-1%, and further preferably not introduced.
Rn2O为选自Li2O、Na2O、K2O中的一种或多种,其可以改善玻璃的熔融性,并降低玻璃的Tg温度。当玻璃中Rn2O含量限定在10%以下时,可使玻璃折射率不易降低,耐失透性稳定,因此,Rn2O含量限定为0-10%,优选为0-5%,更优选为0-2%。Rn 2 O is one or more selected from Li 2 O, Na 2 O, and K 2 O, which can improve the melting property of glass and lower the Tg temperature of glass. When the content of Rn 2 O in the glass is limited to less than 10%, the refractive index of the glass can not be easily reduced, and the devitrification resistance is stable. Therefore, the content of Rn 2 O is limited to 0-10%, preferably 0-5%, more preferably 0-2%.
Li2O加入到玻璃组分中,可以有效降低玻璃的Tg温度。但是低软化点光学玻璃通常使用铂或铂合金器皿熔炼,在高温熔炼过程中,玻璃组分中的Li+容易腐蚀铂或铂合金器皿,造成成品玻璃中产生较多的含铂异物,导致玻璃的品质下降。另外本发明中,超过2%的Li2O会使玻璃的析晶性能急剧下降,因此,其含量限定为0-2%,优选为0-1%。The addition of Li 2 O to the glass component can effectively reduce the Tg temperature of the glass. However, low softening point optical glass is usually smelted with platinum or platinum alloy utensils. During the high temperature smelting process, Li + in the glass component is easy to corrode platinum or platinum alloy utensils, resulting in more platinum-containing foreign matter in the finished glass, resulting in glass quality decreased. In addition, in the present invention, Li 2 O exceeding 2% will sharply decrease the crystallization performance of the glass, so the content is limited to 0-2%, preferably 0-1%.
Na2O和K2O是对降低Tg有效的任意成分,如果其含量过多,则容易导致失透温度上升而难以玻璃化,因此其含量分别限定为0-10%,更优选为0-5%,进一步优选为0-1%。Na 2 O and K 2 O are arbitrary components effective for lowering Tg. If their content is too large, the devitrification temperature is likely to rise and vitrification is difficult. Therefore, their content is limited to 0-10%, and more preferably 0-10%. 5%, more preferably 0-1%.
RO(RO为MgO、CaO、SrO或BaO中的一种或多种)可以改善玻璃的熔融性,调整玻璃光性,但当其含量超过10%时,玻璃的耐失透性降低,因此本发明中,RO含量为0-10%,更优选范围为0-5%,进一步优选为0-1%,更进一步优选为不引入。RO (RO is one or more of MgO, CaO, SrO or BaO) can improve the melting property of the glass and adjust the optical properties of the glass, but when its content exceeds 10%, the devitrification resistance of the glass decreases, so this In the invention, the RO content is 0-10%, more preferably 0-5%, still more preferably 0-1%, and still more preferably not introduced.
P2O5是可以提高玻璃的耐失透性的任选成分,特别是通过使P2O5的含量为10%以下,可抑制玻璃的化学耐久性尤其是耐水性的降低。因此,相对于氧化物换算组成的玻璃总质量,其含量限定为10%以下,优选为5%以下,更优选3%以下,进一步优选不引入。P 2 O 5 is an optional component that can improve the devitrification resistance of glass, and in particular, by setting the content of P 2 O 5 to 10% or less, reduction in chemical durability, especially water resistance, of glass can be suppressed. Therefore, the content is limited to 10% or less, preferably 5% or less, more preferably 3% or less, and further preferably not incorporated with respect to the total mass of the glass in terms of oxide composition.
Bi2O3是可以适量提高玻璃折射率,降低玻璃化温度的任选成分,当其含量超过10%时,玻璃耐失透性降低,因此其含量限定为10%以下,优选为5%以下,进一步优选为1%以下,更进一步优选不引入。Bi 2 O 3 is an optional component that can appropriately increase the refractive index of glass and lower the glass transition temperature. When its content exceeds 10%, the devitrification resistance of the glass decreases, so its content is limited to 10% or less, preferably 5% or less. , more preferably 1% or less, and still more preferably not introduced.
GeO2是具有提高玻璃折射率且增加耐失透性效果的成分,是本发明光学玻璃的任选成分,然而其价格高昂,过多引入达不到本发明降低生产成本的目的,因此其含量限定为8%以下,优选为5%以下,进一步限定为2%以下,更进一步选择不引入。GeO 2 is a component that has the effect of increasing the refractive index of the glass and increasing the devitrification resistance. It is an optional component of the optical glass of the present invention. However, its price is high, and its excessive introduction cannot achieve the purpose of reducing the production cost of the present invention. Therefore, its content It is limited to 8% or less, preferably 5% or less, further limited to 2% or less, and further selected not to be introduced.
本发明中若引入10%以下的Lu2O3,可以与其他稀土类组分协同作用,从而进一步提高玻璃的稳定性,但其价格昂贵,引入玻璃中则不利于降低生产成本,故其含量限定为10%以下,优选为5%以下,进一步优选为3%以下,更进一步优选为不引入。In the present invention, if less than 10% of Lu 2 O 3 is introduced, it can synergize with other rare earth components, thereby further improving the stability of the glass, but it is expensive, and its introduction into the glass is not conducive to reducing the production cost, so its content It is limited to 10% or less, preferably 5% or less, more preferably 3% or less, and still more preferably not incorporated.
作为本发明任选成分,通过控制Ga2O3在10%以下,可提高玻璃的耐失透性,并且能够增加玻璃的磨耗度,因此其含量优选为10%以下,进一步优选为5%以下,更进一步优选为3%以下,进一步优选不引入。As an optional component of the present invention, by controlling Ga 2 O 3 to be 10% or less, the devitrification resistance of the glass can be improved, and the abrasion degree of the glass can be increased. Therefore, its content is preferably 10% or less, and more preferably 5% or less. , more preferably 3% or less, and more preferably not introduced.
TeO2是提高玻璃的折射率并降低玻璃的转变温度的任选成分,当其含量过多时,易与铂金坩埚反应,不利于设备的使用寿命。因此TeO2含量限定为10%以下,优选为5%以下,更优选为不引入。TeO 2 is an optional component that increases the refractive index of the glass and reduces the transition temperature of the glass. When its content is too large, it is easy to react with the platinum crucible, which is not conducive to the service life of the equipment. Therefore, the TeO 2 content is limited to 10% or less, preferably 5% or less, and more preferably not incorporated.
通过少量添加Sb2O3、SnO2、CeO2组分可以提高玻璃的澄清效果,但当Sb2O3含量超过1%时,玻璃有澄清性能降低的倾向,同时由于其强氧化作用促进了熔制玻璃的铂金或铂合金器皿的腐蚀以及成型模具的恶化,因此本发明优选Sb2O3的添加量为0-1%,更优选为0-0.5%,进一步优选不加入。SnO2也可以作为澄清剂来添加,但当其含量超过1%时,则玻璃会着色,或者当加热、软化玻璃并进行模压成形等再次成形时,Sn会成为晶核生成的起点,产生失透的倾向。因此本发明的SnO2的含量优选为0-1%,更优选为0-0.5%,进一步优选不添加。CeO2的作用及添加量比例与SnO2一致,其含量优选为0-1%,更优选为0-0.5%,进一步优选不添加。By adding a small amount of Sb 2 O 3 , SnO 2 and CeO 2 components, the clarification effect of the glass can be improved, but when the content of Sb 2 O 3 exceeds 1%, the clarification performance of the glass tends to decrease, and at the same time, due to its strong oxidation, it promotes Corrosion of platinum or platinum alloy utensils for melting glass and deterioration of forming molds, so the preferred addition amount of Sb 2 O 3 in the present invention is 0-1%, more preferably 0-0.5%, and further preferably not added. SnO 2 can also be added as a clarifying agent, but when its content exceeds 1%, the glass will be colored, or when the glass is heated, softened and reshaped by press molding, Sn will become the starting point for the formation of crystal nuclei, resulting in loss of Tendency to penetrate. Therefore, the content of SnO 2 in the present invention is preferably 0-1%, more preferably 0-0.5%, and further preferably not added. The function and addition ratio of CeO 2 are the same as those of SnO 2 , and its content is preferably 0-1%, more preferably 0-0.5%, and further preferably not added.
F是低色散化、降低玻璃化转变温度有效的组分,但当其过量含有时,显示玻璃折射率显著降低,或玻璃融液的挥发性增大,玻璃融液成型时会产生纹理,或挥发导致的折射率变动增大的倾向。F作为原料可以使用YF3、LaF3、GdF3、ZrF4、ZnF2、碱金属氟化物或碱土金属氟化物引入。本发明优选F的含量占光学玻璃总含量为0-10%,更优选为0-5%,进一步优选为不引入。F is a component effective for low dispersion and lowering the glass transition temperature, but when it is contained in excess, it shows that the refractive index of the glass is significantly reduced, or the volatility of the glass melt increases, and the glass melt is textured when it is formed, or There is a tendency for the change in refractive index due to volatilization to increase. F can be introduced using YF 3 , LaF 3 , GdF 3 , ZrF 4 , ZnF 2 , alkali metal fluoride or alkaline earth metal fluoride as a raw material. In the present invention, the content of F preferably accounts for 0-10% of the total content of the optical glass, more preferably 0-5%, and further preferably not introduced.
为了较好的达到本发明的目的,玻璃中各组分按重量百分比表示,优选SiO2、B2O3、La2O3、Gd2O3、Y2O3、TiO2、Nb2O5、WO3、ZrO2和ZnO的合计含量为95%以上,且不含Ta2O5;更优选SiO2、B2O3、La2O3、Gd2O3、Y2O3、TiO2、Nb2O5、WO3、ZrO2和ZnO的合计含量为99%以上;进一步优选SiO2、B2O3、La2O3、Gd2O3、Y2O3、TiO2、Nb2O5、ZrO2和ZnO的合计含量为99%以上。In order to better achieve the purpose of the present invention, each component in the glass is expressed by weight percentage, preferably SiO 2 , B 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , TiO 2 , Nb 2 O 5. The total content of WO 3 , ZrO 2 and ZnO is 95% or more, and does not contain Ta 2 O 5 ; more preferably SiO 2 , B 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , The total content of TiO 2 , Nb 2 O 5 , WO 3 , ZrO 2 and ZnO is 99% or more; more preferably SiO 2 , B 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , TiO 2 The total content of , Nb 2 O 5 , ZrO 2 and ZnO is 99% or more.
[关于不应含有的成分][About ingredients that should not be contained]
在不损害本发明的玻璃特性的范围内,根据需要能够添加上述未曾提及的其他成分。但是V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属成分,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不包含。Other components not mentioned above can be added as needed within a range not impairing the glass properties of the present invention. However, even when transition metal components such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo are contained in small amounts alone or in combination, the glass will be colored and absorb at specific wavelengths in the visible light region. As a result, the property of the visible light transmittance improvement effect of the present invention is weakened, and therefore, it is preferable not to actually contain the optical glass that requires transmittance at wavelengths in the visible light region in particular.
Pb、Th、Cd、Tl、Os、Be以及Se的阳离子,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。The cations of Pb, Th, Cd, Tl, Os, Be, and Se have tended to be used under control as harmful chemical substances in recent years, and they are environmentally friendly not only in the glass manufacturing process, but also in the processing process and disposal after commercialization. measures are required. Therefore, when considering the influence on the environment, it is preferable not to actually contain them except for unavoidable mixing. Thereby, the optical glass becomes practically free of substances that pollute the environment. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special measures for environmental measures.
下面,对本发明的光学玻璃的特性进行说明。Next, the characteristics of the optical glass of the present invention will be described.
[光学玻璃的光学常数][Optical constants of optical glass]
本发明的光学玻璃是高折射率低色散玻璃,高折射率低色散玻璃制成的透镜多与高折射率高色散玻璃制成的透镜相组合,用于色差校正。本发明的光学玻璃从赋予适于其用途的光学特性的角度考虑,玻璃折射率(nd)的范围为1.77-1.85,优选的范围为1.78-1.84,更优选的范围为1.785-1.84;本发明玻璃的阿贝数(νd)的范围为40-48,优选范围为41-47。The optical glass of the invention is high-refractive-index and low-dispersion glass, and lenses made of high-refractive-index and low-dispersion glass are often combined with lenses made of high-refractive-index and high-dispersion glass for chromatic aberration correction. The optical glass of the present invention has a refractive index (nd) in the range of 1.77-1.85, preferably in the range of 1.78-1.84, and more preferably in the range of 1.785-1.84, from the viewpoint of imparting optical properties suitable for its use; the present invention The Abbe number (ν d ) of the glass is in the range of 40-48, preferably in the range of 41-47.
[光学玻璃的转变温度][Transition temperature of optical glass]
光学玻璃在某一温度区间会逐渐由固态变成可塑态。转变温度是指玻璃试样从室温升温至驰垂温度,其低温区域和高温区域直线部分延长线相交的交点所对应的温度。Optical glass will gradually change from solid state to plastic state in a certain temperature range. The transition temperature refers to the temperature corresponding to the intersection of the extension line of the straight line part of the low temperature region and the high temperature region when the glass sample is heated from room temperature to the sag temperature.
本发明玻璃的转变温度(Tg)在630℃以下,优选620℃以下,更优选615℃以下,进一步优选为610℃以下。The transition temperature (Tg) of the glass of the present invention is 630°C or lower, preferably 620°C or lower, more preferably 615°C or lower, and further preferably 610°C or lower.
[光学玻璃的着色][Coloring of Optical Glass]
本发明玻璃的短波透射光谱特性用着色度(λ80/λ5)表示。λ80是指玻璃透射比达到80%时对应的波长,λ5是指玻璃透射比达到5%时对应的波长。其中,λ80的测定是使用具有彼此平行且光学抛光的两个相对平面的厚度为10±0.1nm的玻璃,测定从280nm到700nm的波长域内的分光透射率并表现出透射率80%的波长。所谓分光透射率或透射率是在向玻璃的上述表面垂直地入射强度Iin的光,透过玻璃并从一个平面射出强度Iout的光的情况下通过Iout/Iin表示的量,并且也包含了玻璃的上述表面上的表面反射损失的透射率。玻璃的折射率越高,表面反射损失越大。因此,在高折射率玻璃中,λ80的值小意味着玻璃自身的着色极少。The short-wave transmission spectral characteristics of the glasses of the present invention are expressed by the degree of coloration (λ 80 /λ 5 ). λ 80 refers to the corresponding wavelength when the glass transmittance reaches 80%, and λ 5 refers to the corresponding wavelength when the glass transmittance reaches 5%. Among them, the measurement of λ 80 is to measure the spectral transmittance in the wavelength range from 280nm to 700nm using glass with a thickness of 10±0.1nm having two opposite planes that are parallel to each other and optically polished and exhibit a transmittance of 80%. . The so-called spectral transmittance or transmittance is the amount expressed by I out /I in when light of the intensity I in is incident perpendicularly to the above-mentioned surface of the glass, passes through the glass, and emits light of the intensity I out from one plane, and The transmittance of the surface reflection loss on the above-mentioned surface of the glass is also included. The higher the refractive index of the glass, the greater the surface reflection loss. Therefore, in a high-refractive-index glass, a small value of λ 80 means that the coloring of the glass itself is very small.
本发明的光学玻璃λ80小于或等于410nm,优选λ80的范围为小于或等于405nm,更优选λ80的范围为小于或等于400nm,进一步优选的λ80的范围为小于或等于395nm,再进一步优选的λ80的范围为小于或等于390nm。λ5小于或等于350nm,优选λ5的范围为小于或等于345nm,更优选λ5的范围为小于或等于340nm,进一步优选的λ5的范围为小于或等于335nm。The optical glass λ 80 of the present invention is less than or equal to 410 nm, preferably the range of λ 80 is less than or equal to 405 nm, more preferably the range of λ 80 is less than or equal to 400 nm, the further preferred range of λ 80 is less than or equal to 395 nm, and further The preferred range for λ 80 is less than or equal to 390 nm. λ 5 is less than or equal to 350 nm, preferably the range of λ 5 is less than or equal to 345 nm, more preferably the range of λ 5 is less than or equal to 340 nm, further preferably the range of λ 5 is less than or equal to 335 nm.
[光学玻璃的密度][density of optical glass]
光学玻璃的密度是温度为20℃时单位体积的质量,单位以g/cm3表示。The density of optical glass is the mass per unit volume when the temperature is 20°C, and the unit is expressed in g/cm 3 .
本发明玻璃的密度(ρ)在5.00g/cm3以下,优选为4.90g/cm3以下。The density (ρ) of the glass of the present invention is 5.00 g/cm 3 or less, preferably 4.90 g/cm 3 or less.
[析晶上限温度][Crystallization upper limit temperature]
采用梯温炉法测定玻璃的析晶性能,将玻璃制成180*10*10mm的样品,侧面抛光,放入带有温度梯度的炉内保温4小时后取出,在显微镜下观察玻璃析晶情况,玻璃出现晶体对应的最高温度即为玻璃的析晶上限温度。玻璃的析晶上限温度越低,则玻璃在高温时稳定性越强,生产的工艺性能越好。The crystallization performance of the glass was measured by the temperature gradient furnace method. The glass was made into a 180*10*10mm sample, the side was polished, placed in a furnace with a temperature gradient for 4 hours and then taken out, and the crystallization of the glass was observed under a microscope. , the maximum temperature corresponding to the appearance of crystals in the glass is the upper limit temperature of crystallization of the glass. The lower the crystallization upper limit temperature of the glass, the stronger the stability of the glass at high temperature and the better the production process performance.
本发明玻璃的析晶温度在1160℃以下,优选为1155℃以下,进一步优选为1150℃以下,更进一步优选为1140℃以下。The crystallization temperature of the glass of the present invention is 1160°C or lower, preferably 1155°C or lower, more preferably 1150°C or lower, and still more preferably 1140°C or lower.
Ⅱ、玻璃预制件与光学元件Ⅱ. Glass preforms and optical components
下面,描述本发明的光学预制件与光学元件。Next, the optical preform and the optical element of the present invention are described.
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有高折射率低色散特性;本发明的光学元件具有高折射率低色散特性,能够以低成本提供光学价值高的各种透镜、棱镜等光学元件。Both the glass preform and the optical element of the present invention are formed from the optical glass of the present invention described above. The glass preform of the present invention has the characteristics of high refractive index and low dispersion; the optical element of the present invention has the characteristics of high refractive index and low dispersion, and can provide various optical elements such as lenses and prisms with high optical value at low cost.
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。Examples of lenses include various lenses such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses whose lens surfaces are spherical or aspherical.
这种透镜通过与高折射率高色散玻璃制成的透镜组合,可校正色差,适合作为色差校正用的透镜。另外,对于光学体系的紧凑化也是有效的透镜。This lens can correct chromatic aberration by combining with a lens made of high refractive index and high dispersion glass, and is suitable as a lens for chromatic aberration correction. In addition, it is also an effective lens for the compactness of the optical system.
对于棱镜来说,由于折射率高,因此通过组合在摄像光学体系中,通过弯曲光路,朝向所需的方向,即可实现紧凑、广角的光学体系。For prisms, due to their high refractive index, a compact and wide-angle optical system can be realized by combining them in the imaging optical system and bending the optical path toward the desired direction.
实施例Example
采用如下实施例对本发明进行解释,但本发明不应局限于这些实施例。The present invention is explained by the following examples, but the present invention should not be limited to these examples.
生产光学玻璃的熔融和成型方法可以采用本领域技术人员公知的技术。将玻璃原料(碳酸盐、硝酸盐、硫酸盐、氢氧化物、氧化物、硼酸等)按照玻璃氧化物的配比称重配合并混合均匀后,投入熔炼装置中(如铂金坩埚),然后在1150~1400℃采取适当的搅拌、澄清、均化后,降温至1250℃以下,浇注或漏注在成型模具中,最后经退火、加工等后期处理,或者通过精密压型技术直接压制成型。The melting and forming methods for producing optical glass may employ techniques well known to those skilled in the art. The glass raw materials (carbonates, nitrates, sulfates, hydroxides, oxides, boric acid, etc.) are weighed and mixed according to the proportion of glass oxides and mixed evenly, then put into the melting device (such as platinum crucible), and then After appropriate stirring, clarification, and homogenization at 1150-1400 °C, the temperature is lowered to below 1250 °C, poured or leaked in the forming mold, and finally subjected to post-processing such as annealing, processing, or direct compression molding by precision pressing technology.
[光学玻璃实施例][Optical glass example]
另外,通过以下所示的方法定义本发明的各玻璃的特性,并将测定结果表示在表1~表6中,其中,用A1表示SiO2+B2O3的值,A2表示La2O3+Gd2O3+Y2O3的值,A3表示WO3+Nb2O5+ZrO2+TiO2的值,K1表示Ta2O5/Nb2O5的值,K2表示SiO2/(SiO2+B2O3),K3表示Nb2O5/Gd2O3的值,K4表示Gd2O3/(La2O3+Gd2O3+Y2O3)的值,K5表示(WO3+Ta2O5+Nb2O5)/(ZrO2+TiO2)的值,K6表示ZnO/(SiO2+B2O3)的值,K7表示Nb2O5/ZnO的值,K8表示TiO2/(TiO2+Nb2O5)的值,K9表示ZnO/(WO3+Ta2O5+Nb2O5+TiO2)。In addition, the characteristics of each glass of the present invention are defined by the methods shown below, and the measurement results are shown in Tables 1 to 6, where A1 represents the value of SiO 2 +B 2 O 3 and A2 represents La 2 O The value of 3 +Gd 2 O 3 +Y 2 O 3 , A3 represents the value of WO 3 +Nb 2 O 5 +ZrO 2 +TiO 2 , K1 represents the value of Ta 2 O 5 /Nb 2 O 5 , K2 represents the value of SiO 2 /(SiO 2 +B 2 O 3 ), K3 represents the value of Nb 2 O 5 /Gd 2 O 3 , K4 represents the value of Gd 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ) , K5 represents the value of (WO 3 +Ta 2 O 5 +Nb 2 O 5 )/(ZrO 2 +TiO 2 ), K6 represents the value of ZnO/(SiO 2 +B 2 O 3 ), and K7 represents the value of Nb 2 O 5 /ZnO, K8 represents the value of TiO 2 /(TiO 2 +Nb 2 O 5 ), and K9 represents ZnO/(WO 3 +Ta 2 O 5 +Nb 2 O 5 +TiO 2 ).
(1)折射率nd和阿贝数νd(1) Refractive index nd and Abbe number νd
折射率与阿贝数按照GB/T7962.1-2010规定的方法进行测试。The refractive index and Abbe number are tested according to the method specified in GB/T7962.1-2010.
(2)玻璃着色度(λ80/λ5)(2) Glass tinting degree (λ 80 /λ 5 )
使用具有彼此相对的两个光学抛光平面的厚度为10±0.1mm的玻璃样品,测定分光透射率,根据其结果而计算得出。Using a glass sample with a thickness of 10±0.1 mm having two optically polished planes facing each other, the spectral transmittance was measured and calculated from the results.
(3)玻璃转变温度(Tg)(3) Glass transition temperature (Tg)
按GB/T7962.16-2010规定的方法进行测量。Measure according to the method specified in GB/T7962.16-2010.
(4)玻璃的密度(ρ)(4) Density of glass (ρ)
按GB/T7962.20-2010规定的方法进行测量。Measure according to the method specified in GB/T7962.20-2010.
(5)析晶上限温度(5) Crystallization upper limit temperature
采用梯温炉法测定玻璃的析晶性能,将玻璃制成180*10*10mm的样品,侧面抛光,放入带有温度梯度的炉内保温4小时后取出,在显微镜下观察玻璃析晶情况,玻璃出现晶体对应的最高温度即为玻璃的析晶上限温度。The crystallization performance of the glass was measured by the temperature gradient furnace method. The glass was made into a 180*10*10mm sample, the side was polished, placed in a furnace with a temperature gradient for 4 hours and then taken out, and the crystallization of the glass was observed under a microscope. , the maximum temperature corresponding to the appearance of crystals in the glass is the upper limit temperature of crystallization of the glass.
(6)玻璃生产成型中的析晶情况(6) Crystallization in glass production and molding
玻璃在熔融、澄清、均化后,通过铂金或铂合金出料管流出到成型模具中成型为块料或型料,玻璃冷却后观察玻璃内部和表面,玻璃内部或表面出现晶体表明玻璃析晶性能不足。玻璃内部和表面没有析晶晶体出现用“A”表示,内部或表面有析晶晶体出现用“O”表示。After the glass is melted, clarified and homogenized, it flows out through the platinum or platinum alloy discharge pipe into the forming mold to be formed into blocks or shapes. After the glass is cooled, observe the inside and surface of the glass, and the appearance of crystals inside or on the surface of the glass indicates that the glass is crystallized. Insufficient performance. The absence of devitrified crystals inside and on the surface of the glass is indicated by "A", and the appearance of devitrified crystals inside or on the surface is indicated by "O".
表1Table 1
表2Table 2
表3table 3
表4Table 4
表5table 5
表6Table 6
[玻璃预制件实施例][Example of glass preform]
将表1中实施例1-10所得到的光学玻璃切割成预定大小,再在表面上均匀地涂布脱模剂,然后将其加热、软化,进行加压成型,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜的预制件。The optical glass obtained in Examples 1-10 in Table 1 is cut into a predetermined size, and then a release agent is uniformly coated on the surface, and then heated and softened, and subjected to pressure molding to make a concave meniscus lens, Prefabricated parts of various lenses and prisms such as convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, plano-concave lenses, etc.
[光学元件实施例][Optical element example]
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部的变形的同时进行微调,使得折射率等光学特性达到所需值。These preforms obtained in the above-mentioned glass preform examples are annealed, and the internal deformation of the glass is reduced while fine-tuning is performed, so that the optical properties such as the refractive index can reach desired values.
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得光学元件的表面上还可涂布防反射膜。Next, each preform is ground and polished to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens. An antireflection film may also be coated on the surface of the obtained optical element.
本发明为低成本且化学稳定性优异的高折射低色散性的光学玻璃,折射率为1.77-1.85,阿贝数为40-48,以及所述玻璃形成的光学元件,能够满足现代新型光电产品的需要。The present invention is low-cost, high-refractive and low-dispersion optical glass with excellent chemical stability, the refractive index is 1.77-1.85, the Abbe number is 40-48, and the optical element formed by the glass can meet the requirements of modern new optoelectronic products needs.
Claims (23)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610861598.2A CN107879620B (en) | 2016-09-29 | 2016-09-29 | Optical glass, glass preforms and optical components |
| JP2017164228A JP6632156B2 (en) | 2016-09-29 | 2017-08-29 | Optical glass, glass preforms and optical elements |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610861598.2A CN107879620B (en) | 2016-09-29 | 2016-09-29 | Optical glass, glass preforms and optical components |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107879620A CN107879620A (en) | 2018-04-06 |
| CN107879620B true CN107879620B (en) | 2020-12-29 |
Family
ID=61769560
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610861598.2A Active CN107879620B (en) | 2016-09-29 | 2016-09-29 | Optical glass, glass preforms and optical components |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP6632156B2 (en) |
| CN (1) | CN107879620B (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110963700B (en) * | 2018-09-28 | 2022-11-22 | 成都光明光电股份有限公司 | Optical glass, preform thereof, optical element and optical instrument |
| CN111285601B (en) * | 2018-12-07 | 2022-03-08 | 成都光明光电股份有限公司 | Heavy lanthanum flint glass and prefabricated member, optical element and optical instrument thereof |
| CN111285602B (en) * | 2018-12-07 | 2022-03-08 | 成都光明光电股份有限公司 | Heavy lanthanum flint glass and prefabricated member, optical element and optical instrument thereof |
| CN109734304B (en) * | 2019-03-28 | 2021-12-07 | 成都光明光电股份有限公司 | Optical glass, glass preform, optical element and optical instrument |
| CN109761489B (en) * | 2019-03-28 | 2022-04-12 | 成都光明光电股份有限公司 | Optical glass |
| CN109775982B (en) * | 2019-03-28 | 2022-04-15 | 成都光明光电股份有限公司 | Optical glass |
| CN109987835B (en) * | 2019-04-28 | 2021-12-07 | 成都光明光电股份有限公司 | Optical glass, glass preform, optical element and optical instrument |
| CN110963701A (en) * | 2019-12-24 | 2020-04-07 | 成都光明光电股份有限公司 | Optical glass, glass preform, optical element and optical instrument |
| CN111925117A (en) * | 2020-06-05 | 2020-11-13 | 哈尔滨工程大学 | Ho3+Doped ZBYA fluoride glasses |
| CN113603361B (en) * | 2021-09-14 | 2022-12-13 | 成都光明光电股份有限公司 | Phosphate optical glass |
| CN117401902A (en) * | 2023-09-08 | 2024-01-16 | 湖北新华光信息材料有限公司 | Optical glass and preparation method thereof and optical components |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3958999A (en) * | 1971-07-30 | 1976-05-25 | Hoya Glass Works, Ltd. | Optical glass |
| DE3102690A1 (en) * | 1981-01-28 | 1982-08-26 | Schott Glaswerke, 6500 Mainz | CdO and ThO2-free optical glass having a refractive index of 1.75-1.82 and an Abbe number of 37-48 |
| CN1792918A (en) * | 2004-10-12 | 2006-06-28 | Hoya株式会社 | Optical glass, precision press-molding preform, process for the production of the preform, optical element and process for the production of the optical element |
| US20130072372A1 (en) * | 2007-09-28 | 2013-03-21 | Ohara Inc. | Optical glass |
| CN105461218A (en) * | 2014-09-30 | 2016-04-06 | Hoya株式会社 | Glass, glass material for press molding, optical element blank, and optical element |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5678447A (en) * | 1979-11-29 | 1981-06-27 | Minolta Camera Co Ltd | Optical glass |
| JP2875709B2 (en) * | 1993-04-22 | 1999-03-31 | 株式会社オハラ | Optical glass |
| JP4141739B2 (en) * | 2001-10-22 | 2008-08-27 | 株式会社住田光学ガラス | Optical glass for precision press molding |
| JP3883547B2 (en) * | 2004-03-23 | 2007-02-21 | 泉陽硝子工業株式会社 | Glass composition |
| JP4756554B2 (en) * | 2006-03-23 | 2011-08-24 | Hoya株式会社 | Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof |
| CN1935717B (en) * | 2006-10-17 | 2010-10-06 | 成都光明光电股份有限公司 | Optical glass for high-refractivity low dispersion precision die mould |
| JP5601557B2 (en) * | 2007-02-28 | 2014-10-08 | 日本電気硝子株式会社 | Optical glass |
| JP2013087047A (en) * | 2011-10-21 | 2013-05-13 | Ohara Inc | Optical glass, optical element, and preform |
| JP6618692B2 (en) * | 2015-03-17 | 2019-12-11 | Hoya株式会社 | Optical glass and optical element |
-
2016
- 2016-09-29 CN CN201610861598.2A patent/CN107879620B/en active Active
-
2017
- 2017-08-29 JP JP2017164228A patent/JP6632156B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3958999A (en) * | 1971-07-30 | 1976-05-25 | Hoya Glass Works, Ltd. | Optical glass |
| DE3102690A1 (en) * | 1981-01-28 | 1982-08-26 | Schott Glaswerke, 6500 Mainz | CdO and ThO2-free optical glass having a refractive index of 1.75-1.82 and an Abbe number of 37-48 |
| CN1792918A (en) * | 2004-10-12 | 2006-06-28 | Hoya株式会社 | Optical glass, precision press-molding preform, process for the production of the preform, optical element and process for the production of the optical element |
| US20130072372A1 (en) * | 2007-09-28 | 2013-03-21 | Ohara Inc. | Optical glass |
| CN105461218A (en) * | 2014-09-30 | 2016-04-06 | Hoya株式会社 | Glass, glass material for press molding, optical element blank, and optical element |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6632156B2 (en) | 2020-01-22 |
| JP2018052801A (en) | 2018-04-05 |
| CN107879620A (en) | 2018-04-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10343947B2 (en) | Optical glass, glass preform and optical element | |
| CN107879620B (en) | Optical glass, glass preforms and optical components | |
| US10252934B2 (en) | Optical glass, glass preform and optical element | |
| TWI610899B (en) | Optical glass, glass preforms, optical components | |
| CN105461218B (en) | Glass, glass materials for press molding, optical element blanks and optical elements | |
| TWI639570B (en) | Optical glass and optical components | |
| TWI610898B (en) | Optical glass, glass preforms and optical components | |
| CN108249755A (en) | Optical glass | |
| TWI651288B (en) | Optical glass and optical components | |
| JP7213952B2 (en) | Optical glass, glass preforms or optical elements made of optical glass, and optical equipment | |
| CN110835229B (en) | Optical glass, glass preform, optical element and optical instrument having the same | |
| JP6280284B1 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
| CN108191228A (en) | Optical glass | |
| CN109179985B (en) | Optical glass and optical element | |
| CN109455925B (en) | Low-softening-point optical glass and glass prefabricated member, element and instrument thereof | |
| CN109650716B (en) | Colorless optical glass and glass prefabricated member, element and instrument thereof | |
| JP7165810B2 (en) | Optical glass, glass preforms or optical elements made of optical glass, and optical equipment | |
| CN111453989A (en) | Lanthanide optical glass and glass preform, element and instrument thereof | |
| CN107162404B (en) | Optical glass and optical element | |
| CN111453988A (en) | Optical glass and glass prefabricated member, element and instrument thereof | |
| JP2018065748A (en) | Glass, glass material for press molding, optical element blank, and optical element |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |