[go: up one dir, main page]

CN107946591A - A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode - Google Patents

A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode Download PDF

Info

Publication number
CN107946591A
CN107946591A CN201711167152.0A CN201711167152A CN107946591A CN 107946591 A CN107946591 A CN 107946591A CN 201711167152 A CN201711167152 A CN 201711167152A CN 107946591 A CN107946591 A CN 107946591A
Authority
CN
China
Prior art keywords
sodium
nickel
salt
ion battery
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711167152.0A
Other languages
Chinese (zh)
Inventor
周朋飞
周晋
禚淑萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201711167152.0A priority Critical patent/CN107946591A/en
Publication of CN107946591A publication Critical patent/CN107946591A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种钠离子电池高镍前驱体及其与正极材料的制备方法,属于钠离子电池电极材料技术领域。其特征在于:正极材料的化学分子式为Na(Ni1‑x‑y‑zCoyAlzCuz)O2,其中0.2≥x+y+z,0.1≥x≥0.05,0.05≥y≥0.03,0.1≥z≥0.02,采用控制结晶‑共沉淀技术,制备得到镍、钴、铝、铜四种元素分布均匀、粒径分布窄的Ni1‑x‑y‑zCoyAlzCuz(OH)2微米球前驱体,将前驱体与钠盐混合均匀,通过高温固相反应进而得到高镍Na(Ni1‑x‑y‑ zCoyAlzCuz)O2正极材料。本发明操作简单,可连续化批量生产,产品具有比容量高、循环性能好等优点,具有很高的经济价值和广阔的应用前景。

The invention discloses a high-nickel precursor of a sodium ion battery and a preparation method thereof and a positive electrode material, belonging to the technical field of sodium ion battery electrode materials. It is characterized in that: the chemical molecular formula of the positive electrode material is Na(Ni 1‑x‑y‑z Co y Al z Cu z )O 2 , where 0.2≥x+y+z, 0.1≥x≥0.05, 0.05≥y≥0.03 , 0.1≥z≥0.02, using controlled crystallization-co-precipitation technology, Ni, Cobalt, Aluminum and Copper four elements with uniform distribution and narrow particle size distribution Ni 1‑x‑y‑z Co y Al z Cu z ( OH) 2 micron sphere precursor, mix the precursor with sodium salt evenly, and obtain high-nickel Na(Ni 1‑x‑y‑ z Co y Al z Cu z )O 2 positive electrode material through high-temperature solid-state reaction. The invention is easy to operate, can be produced in batches continuously, and the product has the advantages of high specific capacity, good cycle performance, etc., and has high economic value and wide application prospect.

Description

一种钠离子电池高镍前驱体及其与正极材料的制备方法A kind of high-nickel precursor of sodium ion battery and its preparation method with positive electrode material

技术领域technical field

一种钠离子电池高镍前驱体及其与正极材料的制备方法,属于钠离子电池电极材料技术领域。The invention discloses a high-nickel precursor of a sodium ion battery and a preparation method thereof and a positive electrode material, belonging to the technical field of sodium ion battery electrode materials.

背景技术Background technique

在储能领域中,锂离子电池已经占领了便携式电子设备的电源市场,并逐渐被应用到新型电动汽车的动力电源中。与此同时,随着太阳能、潮汐能、风能等可再生能源的开发,急需构建规模大、成本低、安全性高等特性的电池储能体系以满足未来可再生能源的存储、发电并网以及智能电网的快速发展。然而,受锂元素在地壳中储量(不回收的情况下,估计将在65年内被消耗殆尽)和分布(70%在南美洲地区)的制约,锂资源日益短缺且成本居高不下,严重制约锂离子电池在大规模储能领域的发展。钠与锂同属一主族,其物理化学性质类似,钠离子电池具有与锂离子电池相似的工作原理,同时钠元素的储量更为丰富(为锂元素的420倍),且分布均匀,价格低廉,因此,从降低成本的角度出发,发展钠离子电池将其用于大型储能领域具有巨大的潜力和重要的现实意义。In the field of energy storage, lithium-ion batteries have occupied the power supply market of portable electronic devices, and are gradually being applied to the power supply of new electric vehicles. At the same time, with the development of renewable energy such as solar energy, tidal energy, and wind energy, there is an urgent need to build a large-scale, low-cost, and high-security battery energy storage system to meet the needs of future renewable energy storage, power generation, and smart grid integration. The rapid development of the grid. However, constrained by lithium reserves in the earth's crust (if it is not recycled, it is estimated that it will be consumed within 65 years) and distribution (70% in South America), lithium resources are increasingly scarce and the cost remains high, seriously Restrict the development of lithium-ion batteries in the field of large-scale energy storage. Sodium and lithium belong to the same main group, and their physical and chemical properties are similar. Sodium-ion batteries have a similar working principle to lithium-ion batteries. At the same time, the reserves of sodium are more abundant (420 times that of lithium), and the distribution is uniform and the price is low. , Therefore, from the perspective of cost reduction, the development of sodium-ion batteries for large-scale energy storage has great potential and important practical significance.

目前钠离子电池的开发和发展离实用化及产业化还存在较大的距离,主要是因为钠离子的半径大且质量重(22.99g mol-1),导致其动力学缓慢,给电极材料的设计带来了较大的挑战,尤其是决定电池基本特性的正极材料。开发具有高容量、稳定性好、低成本等性质的正极材料成为钠离子电池当下研究的重点。现阶段对于正极材料的研发主要集中在层状NaxMO2(M为Co、Ni、Mn、Fe等)材料、隧道型金属氧化物、聚阴离子型化合物和普鲁士蓝类化合物等。其中,层状O3型Ni基Na(Ni-M)O2体系由于比容量高(~255mAh g-1)、电化学活性元素可调、体系丰富而成为研究的热点。然而,该类材料仍存在以下问题:(1)在电化学反应过程中发生较多的相转变,导致其循环稳定性和倍率性能差;(2)同时此类材料在空气中稳定性差,易和水分和二氧化碳发生反应,导致储存成本较高;(3)电化学活性Ni元素含量少(<80%),未表现出O3型Na(Ni-M)O2材料高比容量的特性;(4)未有高效的制备工艺满足该类材料宏量、可控制备的要求。因此,寻求有效的策略(元素掺杂和微纳结构构筑)提高电化学性能和结构稳定性以及发展宏量可控的制备技术,是层状O3型Na(Ni-M)O2体系研究的重点和难点。At present, the development and development of sodium ion batteries are still far from practical and industrialization, mainly because of the large radius of sodium ions And the mass is heavy (22.99g mol -1 ), resulting in slow kinetics, which brings great challenges to the design of electrode materials, especially the positive electrode material that determines the basic characteristics of the battery. The development of cathode materials with high capacity, good stability, and low cost has become the focus of current research on sodium-ion batteries. At present, the research and development of cathode materials mainly focus on layered Na x MO 2 (M is Co, Ni, Mn, Fe, etc.) materials, tunnel metal oxides, polyanionic compounds, and Prussian blue compounds. Among them, the layered O 3 -type Ni-based Na(Ni-M)O 2 system has become a research hotspot because of its high specific capacity (~255mAh g -1 ), adjustable electrochemical active elements, and rich system. However, this type of material still has the following problems: (1) more phase transitions occur during the electrochemical reaction, resulting in poor cycle stability and rate performance; Reacts with moisture and carbon dioxide, resulting in higher storage costs; (3) The electrochemically active Ni element content is low (<80%), and does not show the characteristics of high specific capacity of O 3 type Na(Ni-M)O 2 materials; (4) There is no efficient preparation process to meet the requirements of macro-scale and controllable preparation of such materials. Therefore, it is necessary to seek effective strategies (element doping and micro-nano structure construction) to improve electrochemical performance and structural stability , and to develop macro -controllable preparation technologies. points and difficulties.

其中,元素掺杂在Na(Ni-M)O2体系研究比较成熟、较多,其优点在于(1)提高嵌钠晶体结构的稳定性,(2)改善嵌脱机理从而提升储钠性能,但如何实现多种掺杂元素均匀分布、协同作用仍具有挑战性;而构筑微纳结构的优点在于(1)纳米粒子活性高、利于粒子/电子传导,(2)微米结构保证结构的稳定性、提供高的振实密度,但有关Na(Ni-M)O2微纳结构材料的报道较少,亟待加强研究。此外,发展宏量可控的高镍Na(Ni-M)O2(Ni>80%)制备工艺的同时实现微纳结构的设计及多元素均匀的分布具有重要的意义和应用前景。Among them, element doping in the Na(Ni-M)O 2 system is more mature and more researched, and its advantages are (1) improving the stability of the sodium intercalation crystal structure, (2) improving the intercalation and desorption mechanism to enhance the sodium storage performance , but how to achieve uniform distribution and synergistic effect of various doping elements is still challenging; and the advantages of constructing micro-nano structures are (1) high activity of nanoparticles, which is conducive to particle/electronic conduction, (2) micron structure ensures the stability of the structure properties and provide high tap density, but there are few reports on Na(Ni-M)O 2 micro-nano structure materials, and further research is urgently needed. In addition, it is of great significance and application prospect to develop a macro-controllable high-nickel Na(Ni-M)O 2 (Ni>80%) preparation process while realizing the design of micro-nano structure and uniform distribution of multi-elements.

发明内容Contents of the invention

本发明要解决的技术问题是:克服现有技术的不足,提供一种具有高的结构稳定性和优异的电化学性能且操作简单,实现连续化批量生产的钠离子电池高镍前驱体及其与正极材料的制备方法。The technical problem to be solved by the present invention is: to overcome the deficiencies of the prior art, to provide a high-nickel precursor for sodium-ion batteries and its and the preparation method of the positive electrode material.

本发明解决其技术问题所采用的技术方案是:该钠离子电池高镍前驱体,其特征在于,化学分子式为Na(Ni1-x-y-zCoyAlzCuz)O2,其中0.2≥x+y+z,0.1≥x≥0.03,0.05≥y≥0.03,0.1≥z≥0.02。The technical solution adopted by the present invention to solve the technical problem is: the high-nickel precursor of the sodium ion battery, which is characterized in that the chemical formula is Na(Ni 1-xyz Co y Al z Cu z )O 2 , where 0.2≥x+ y+z, 0.1≥x≥0.03, 0.05≥y≥0.03, 0.1≥z≥0.02.

一种上述钠离子电池高镍前驱体的制备方法,其特征在于:包括以下步骤:A preparation method for the high-nickel precursor of the above-mentioned sodium ion battery, characterized in that: comprising the following steps:

1)用镍盐、钴盐、铜盐和铝盐配制金属离子浓度为0.3-6mol·L-1的镍钴铜盐溶液;镍盐、钴盐、铜盐和铝盐中Ni:Co:Al:Cu的摩尔比为0.80-0.90:0.03-0.10:0.03-0.05:0.02-0.1;1) Prepare a nickel-cobalt-copper salt solution with a metal ion concentration of 0.3-6mol L -1 with nickel salt, cobalt salt, copper salt and aluminum salt; Ni:Co:Al in nickel salt, cobalt salt, copper salt and aluminum salt : The molar ratio of Cu is 0.80-0.90:0.03-0.10:0.03-0.05:0.02-0.1;

配制铝金属离子和氢氧化钠的混合溶液,其中Al3+完全以AlO2 -形式存在;Prepare a mixed solution of aluminum metal ions and sodium hydroxide, wherein Al 3+ exists completely in the form of AlO 2 - ;

用络合剂配置浓度为0.5-7mol·L-1的络合剂溶液;Using a complexing agent to configure a complexing agent solution with a concentration of 0.5-7mol L -1 ;

用沉淀剂配置浓度0.5-10mol·L-1的沉淀剂溶液;Prepare a precipitant solution with a concentration of 0.5-10mol L -1 with a precipitant;

2)向反应釜中加入去离子水,机械搅拌,用络合剂溶液和沉淀剂溶液调节至pH在9-12,控制体系温度恒定在30-60℃;2) Add deionized water into the reaction kettle, stir mechanically, adjust the pH to 9-12 with complexing agent solution and precipitating agent solution, and control the temperature of the system to be constant at 30-60°C;

3)将溶液镍钴铜盐溶液、铝金属离子和氢氧化钠的混合溶液和络合剂溶液同时加入反应釜内,添加沉淀剂溶液调节体系pH在9-12;3) adding the nickel-cobalt-copper salt solution, the mixed solution of aluminum metal ions and sodium hydroxide and the complexing agent solution into the reaction kettle at the same time, and adding the precipitating agent solution to adjust the pH of the system to 9-12;

4)反应结束后将得到的沉淀物过滤、洗涤,在70-200℃的真空干燥箱中干燥4-12h,得到Ni1-x-y-zCoyAlzCuz(OH)2微米球前驱体。4) After the reaction, the obtained precipitate was filtered, washed, and dried in a vacuum oven at 70-200° C. for 4-12 hours to obtain a Ni 1-xyz Co y Al z Cu z (OH) 2 microsphere precursor.

采用控制结晶-共沉淀技术,制备得到镍、钴、铝、铜四种元素分布均匀、粒径分布窄的Ni1-x-y-zCoyAlzCuz(OH)2微米球前驱体,其中高的电化学活性Ni含量可以提供高的比容量,非电化学活性Co和Al协调作用有助于提高层状结构的稳定性,而Cu可以提高材料在空气中的稳定性。通过高Ni含量和Co、Al、Cu共掺杂的协调作用,以及控制结晶-共沉淀制备的微米球形貌,使得继续制备的层状O3型高镍Na(Ni1-x-y-zCoyAlzCuz)O2具有高的结构稳定性和优异的电化学性能。本发明操作简单,实现连续化批量生产,产品具有比容量高、循环性能好等优点,具有很高的经济价值和广阔的应用前景。Using controlled crystallization-co-precipitation technology, Ni 1-xyz Co y Al z Cu z (OH) 2 micron spherical precursor with uniform distribution of nickel, cobalt, aluminum and copper elements and narrow particle size distribution was prepared, among which the high The electrochemically active Ni content can provide high specific capacity, the coordination of non-electrochemically active Co and Al helps to improve the stability of the layered structure, and Cu can improve the stability of the material in air. Through the coordinated effect of high Ni content and co-doping of Co, Al, Cu, as well as controlling the microsphere morphology prepared by crystallization-co-precipitation, the layered O 3 type high nickel Na(Ni 1-xyz Co y Al z Cu z )O 2 has high structural stability and excellent electrochemical performance. The invention has simple operation, realizes continuous batch production, and the product has the advantages of high specific capacity, good cycle performance, etc., and has high economic value and wide application prospect.

优选的,步骤1)中所述的Ni:Co:Al:Cu的摩尔比为0.83-0.86:0.05-0.08:0.035-0.04:0.04-0.06。优选的元素比例下,制备的电池正极材料结构更加的稳定。Preferably, the molar ratio of Ni:Co:Al:Cu in step 1) is 0.83-0.86:0.05-0.08:0.035-0.04:0.04-0.06. Under the preferred element ratio, the structure of the prepared battery cathode material is more stable.

优选的,步骤1)所述的镍盐、钴盐、铜盐和铝盐分别是含有相应元素的醋酸、硫酸盐、硝酸盐的一种或两种以上的混合物;所述的络合剂为氨水、柠檬酸、EDTA的一种或两种以上的混合物;沉淀剂为氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸氢钠一种或两种以上的混合物。优选的物料能够保证元素分布更均匀、产品的颗粒球形度更好,粒径分布更窄。Preferably, the nickel salt, cobalt salt, copper salt and aluminum salt described in step 1) are respectively one or more mixtures of acetic acid, sulfate, and nitrate containing corresponding elements; the complexing agent is One or more mixtures of ammonia water, citric acid, and EDTA; the precipitating agent is one or more mixtures of sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, and sodium bicarbonate. The optimized material can ensure a more uniform distribution of elements, a better particle sphericity of the product, and a narrower particle size distribution.

优选的,步骤2)中所述的机械搅拌的搅拌速度为300-900rpm,体系温度控制在40-50℃。优选的体系搅拌和温度条件能使产品的颗粒球形度更好。Preferably, the stirring speed of the mechanical stirring described in step 2) is 300-900 rpm, and the temperature of the system is controlled at 40-50°C. The optimal system stirring and temperature conditions can make the particle sphericity of the product better.

优选的,步骤3)中使用蠕动泵控制添加沉淀剂溶液时的进液流量。能够更精确的控制pH。Preferably, in step 3), a peristaltic pump is used to control the inflow flow rate when adding the precipitant solution. Allows for more precise pH control.

一种利用上述高镍前驱体制备的钠离子电池正极材料,其特征在于:化学分子式为Ni1-x-y-zCoyAlzCuz(OH)2,其中0.2≥x+y+z,0.1≥x≥0.03,0.05≥y≥0.03,0.1≥z≥0.02。A sodium-ion battery cathode material prepared by using the above-mentioned high-nickel precursor, characterized in that: the chemical molecular formula is Ni 1-xyz Co y Al z Cu z (OH) 2 , wherein 0.2≥x+y+z, 0.1≥x ≥0.03, 0.05≥y≥0.03, 0.1≥z≥0.02.

一种利用上述高镍前驱体制备钠离子电池正极材料的方法,其特征在于:将Ni1-x-y-zCoyAlzCuz(OH)2前驱体与钠盐混合均匀,先在250-550℃煅烧2-9h,升温,再在600-800℃煅烧5-15h,煅烧气氛是空气、氧气或者混合气,降温,将得到的产物研磨过筛得到Na(Ni1-x-y-zCoyAlzCuz)O2型钠离子电池正极材料。A method for preparing anode materials for sodium-ion batteries using the above-mentioned high-nickel precursors, characterized in that: uniformly mix Ni 1-xyz Co y Al z Cu z (OH) 2 precursors with sodium salts, and first heat the Calcining for 2-9 hours, heating up, and then calcining at 600-800°C for 5-15 hours, the calcining atmosphere is air, oxygen or mixed gas, cooling down, grinding and sieving the obtained product to obtain Na(Ni 1-xyz Co y Al z Cu z ) O 2 type sodium ion battery cathode material.

本发明为解决现有钠离子电池层状O3型Na(Ni-M)O2正极材料的宏量可控制备、能量密度低、容量衰减快及储存成本高的问题,提供一种钠离子电池的层状O3型钴铝铜共掺杂高镍正前驱体的制备方法,将前驱体与钠盐混合均匀,通过高温固相反应进而得到高镍Na(Ni1-x-y-zCoyAlzCuz)O2正极材料。该方法适合工业化生产,自动化程序高,产品品质稳定。制备的正极材料元素分布均匀、电化学性能好、振实密度高,有助于促进钠离子电池向实用化发展。The present invention provides a sodium ion battery to solve the problems of macro controllable preparation, low energy density, fast capacity fading and high storage cost of the layered O3 type Na(Ni-M) O2 cathode material of the existing sodium ion battery. The preparation method of the layered O 3 -type cobalt-aluminum-copper co-doped high-nickel positive precursor of the battery is to mix the precursor uniformly with the sodium salt, and then obtain the high-nickel Na(Ni 1-xyz Co y Al z Cu z )O 2 cathode material. The method is suitable for industrialized production, has high automation procedures and stable product quality. The prepared positive electrode material has uniform distribution of elements, good electrochemical performance and high tap density, which is helpful to promote the practical development of sodium-ion batteries.

优选的,所述的钠盐为硝酸钠、碳酸钠、氢氧化钠、过氧化钠、超氧化钠一种或两种以上的混合物,钠盐中Na与Ni1-x-y-zCoyAlzCuz(OH)2前驱体中Ni、Co、Al、Cu四种元素总量的摩尔比为0.95-1.05:1。优选的物料配比能够保证振实密度更高、正极材料的颗粒球形度更好,粒径分布更窄。Preferably, the sodium salt is sodium nitrate, sodium carbonate, sodium hydroxide, sodium peroxide, sodium superoxide or a mixture of two or more, and in the sodium salt, Na and Ni 1-xyz Co y Al z Cu z The molar ratio of the total amount of Ni, Co, Al, and Cu in the (OH) 2 precursor is 0.95-1.05:1. The optimal material ratio can ensure higher tap density, better particle sphericity and narrower particle size distribution of the positive electrode material.

优选的,所述升温的升温速率为1-15℃·min-1;所述降温的降温速率分为骤冷或控速5~20℃·min-1。优选的升降温速率能够保证正极材料的颗粒球形度更好,粒径分布更窄。Preferably, the heating rate of the heating is 1-15°C·min -1 ; the cooling rate of the cooling is 5-20°C·min -1 for quenching or controlled rate. The optimal heating and cooling rate can ensure better particle sphericity and narrower particle size distribution of the positive electrode material.

与现有技术相比,本发明的一种钠离子电池高镍前驱体及其与正极材料的制备方法所具有的有益效果是:(1)制备的Na(Ni1-x-y-zCoyAlzCuz)O2微米球材料各元素分布均匀、振实密度高,颗粒球形度好,粒径分布较窄。Compared with the prior art, the beneficial effects of a high-nickel precursor for a sodium ion battery of the present invention and its preparation method with positive electrode materials are: (1) prepared Na(Ni 1-xyz Co y Al z Cu z ) O 2 microsphere material has uniform distribution of elements, high tap density, good particle sphericity and narrow particle size distribution.

(2)该制备方法工艺较为简单,生产中各参数具体可调可控,能耗较低,非常适合于工业的大量、连续化生产。(2) The preparation method has a relatively simple process, specific adjustable and controllable parameters in production, low energy consumption, and is very suitable for industrial mass and continuous production.

(3)通过多种元素共同掺杂的协同作用可以显著提高材料的结构稳定性,维持充放电过程中的稳定性,使得高镍材料高容量的特性得以保持,通过此方法制备的层状O3型高镍Na(Ni1-x-y-zCoyAlzCuz)O2钠离子正极材料,在二次电池大规模储能领域具有应用前景。(3) The synergistic effect of co-doping of multiple elements can significantly improve the structural stability of the material, maintain the stability during charge and discharge, and maintain the high capacity characteristics of high-nickel materials. The layered O prepared by this method The 3- type high-nickel Na(Ni 1-xyz Co y Al z Cu z )O 2 sodium ion cathode material has application prospects in the field of large-scale energy storage of secondary batteries.

附图说明Description of drawings

图1为本发明实施例1得的Ni0.8Co0.1Al0.05Cu0.05(OH)2微米球前驱体的扫描电镜图。Fig. 1 is a scanning electron microscope image of the Ni 0.8 Co 0.1 Al 0.05 Cu 0.05 (OH) 2 microsphere precursor obtained in Example 1 of the present invention.

图2为本发明实施例1所得的Na Ni0.8Co0.1Al0.05Cu0.05O2正极材料的扫描电镜图,由图可见经过焙烧后,产物依然保持了前驱体的球状形貌。Fig. 2 is a scanning electron microscope image of the Na Ni 0.8 Co 0.1 Al 0.05 Cu 0.05 O 2 positive electrode material obtained in Example 1 of the present invention. It can be seen from the figure that after calcination, the product still maintains the spherical shape of the precursor.

图3为本发明实施例1所得的Ni0.8Co0.1Al0.05Cu0.05(OH)2微米球前驱体的X射线衍射图,发现图中的各衍射峰与氢氧化镍的标准PDF卡片相一致。Figure 3 is the X-ray diffraction pattern of the Ni 0.8 Co 0.1 Al 0.05 Cu 0.05 (OH) 2 microsphere precursor obtained in Example 1 of the present invention. It is found that the diffraction peaks in the figure are consistent with the standard PDF card of nickel hydroxide.

图4为本发明实施例1所得的Na Ni0.8Co0.1Al0.05Cu0.05O2正极材料的X射线衍射图,发现图中的各衍射峰与镍酸钠的标准PDF卡片相一致。Fig. 4 is the X-ray diffraction pattern of the Na Ni 0.8 Co 0.1 Al 0.05 Cu 0.05 O 2 positive electrode material obtained in Example 1 of the present invention. It is found that each diffraction peak in the figure is consistent with the standard PDF card of sodium nickelate.

图5为使用本发明实施例1所得的NaNi0.8Co0.1Al0.05Cu0.05O2正极材料作为正极组装成CR2032扣式电池后,测试得到的在0.1C倍率下首圈充放电曲线。Fig. 5 is the first-cycle charge-discharge curve at a rate of 0.1C after the CR2032 button battery is assembled into a CR2032 button battery using the NaNi 0.8 Co 0.1 Al 0.05 Cu 0.05 O 2 positive electrode material obtained in Example 1 of the present invention.

具体实施方式Detailed ways

下面结合具体实施例对本发明做进一步说明,其中实施例1为最佳实施。The present invention will be further described below in conjunction with specific examples, wherein Example 1 is the best implementation.

实施例1Example 1

步骤(1):配置过渡金属离子溶液,其浓度为3.5mol·L-1,其中镍钴铝铜盐为硫酸镍、硫酸钴、硫酸铝、硫酸铜,镍离子、钴离子、铝离子、铜离子的摩尔比为0.85:0.06:0.038:0.05;配络合剂氨水浓度为3mol·L-1的溶液,沉淀剂氢氧化钠浓度为5mol·L-1的溶液;将溶液置于搅拌器上进行充分的搅拌,使溶质完全地溶解;Step (1): Prepare a transition metal ion solution with a concentration of 3.5 mol·L -1 , wherein the nickel-cobalt-aluminum-copper salt is nickel sulfate, cobalt sulfate, aluminum sulfate, copper sulfate, nickel ion, cobalt ion, aluminum ion, copper The molar ratio of ions is 0.85:0.06:0.038:0.05; the complexing agent ammonia solution is 3mol L -1 solution, the precipitant sodium hydroxide solution is 5mol L -1 solution; put the solution on the stirrer Thoroughly stir to dissolve the solute completely;

步骤(2):向2L反应釜中加入200ml去离子水,设置搅拌桨的搅拌速度为700rpm,将体系温度控制在45℃,滴入3ml的浓氨水初调pH,再用沉淀剂氢氧化钠溶液调节pH到10.7;待体系稳定后,使用蠕动泵将过渡金属离子溶液、络合剂氨水和沉淀剂氢氧化钠溶液同时泵入反应釜,期间通过调节沉淀剂氢氧化钠溶液的进液速度,使pH稳定在10.7;Step (2): Add 200ml of deionized water to the 2L reaction kettle, set the stirring speed of the stirring paddle to 700rpm, control the temperature of the system at 45°C, add 3ml of concentrated ammonia water to initially adjust the pH, and then use the precipitant sodium hydroxide Adjust the pH of the solution to 10.7; after the system is stable, use a peristaltic pump to pump the transition metal ion solution, the complexing agent ammonia and the precipitant sodium hydroxide solution into the reaction kettle at the same time, and adjust the feed rate of the precipitant sodium hydroxide solution during this period. , to stabilize the pH at 10.7;

步骤(3):加料完毕后,陈化1小时,从反应釜中取出部分反应液,用去离子水抽滤洗涤数次,直至pH近中性,在真空干燥箱100℃干燥10h,得到充分干燥的Ni0.85Co0.06Al0.038Cu0.05(OH)2前驱体;Step (3): After the feeding is completed, age for 1 hour, take out part of the reaction solution from the reaction kettle, filter and wash it several times with deionized water until the pH is nearly neutral, dry it in a vacuum oven at 100°C for 10 hours, and obtain sufficient Dried Ni 0.85 Co 0.06 Al 0.038 Cu 0.05 (OH) 2 precursor;

步骤(4):取充分干燥的Ni0.85Co0.06Al0.038Cu0.05(OH)2前驱体1g制备正极材料,使用玛瑙研钵与碳酸钠进行充分地混合,其中Na:(Ni+Co+Al+Cu)=1:1,在管式炉中通入氧气气氛,以5℃·min-1的升温速度升至500℃保温5h,之后再以同样的升温速率升温至750℃,保温12h后,骤冷至室温,焙烧得到的产物经过研磨、过筛得到Na Ni0.85Co0.06Al0.038Cu0.05O2正极材料。Step (4): Take 1 g of fully dried Ni 0.85 Co 0.06 Al 0.038 Cu 0.05 (OH) 2 precursor to prepare positive electrode material, use agate mortar and sodium carbonate to fully mix, wherein Na:(Ni+Co+Al+ Cu)=1:1, put an oxygen atmosphere into the tube furnace, raise the temperature to 500°C at a heating rate of 5°C min -1 and keep it for 5 hours, then raise the temperature to 750°C at the same heating rate, and hold it for 12 hours, After cooling to room temperature, the calcined product was ground and sieved to obtain Na Ni 0.85 Co 0.06 Al 0.038 Cu 0.05 O 2 cathode material.

实施例2Example 2

步骤(1):配置过渡金属离子溶液,其浓度为2mol·L-1,其中镍钴铝铜盐为氯化镍、氯化钴、氯化铝、氯化铜的混合物,镍离子、钴离子、铝离子、铜离子的摩尔比为0.83:0.08:0.035:0.06;配络合剂EDTA浓度为5mol·L-1的溶液,沉淀剂氢氧化钠浓度为2mol·L-1的溶液;将溶液置于搅拌器上进行充分的搅拌,使溶质完全地溶解;Step (1): Prepare a transition metal ion solution with a concentration of 2mol L -1 , wherein the nickel-cobalt-aluminum-copper salt is a mixture of nickel chloride, cobalt chloride, aluminum chloride, and copper chloride, nickel ions, cobalt ions , the molar ratio of aluminum ion and copper ion is 0.83:0.08:0.035:0.06; the solution with complexing agent EDTA concentration of 5mol L -1 and the precipitant sodium hydroxide concentration of 2mol L -1 solution; the solution Put it on a stirrer and stir it fully to dissolve the solute completely;

步骤(2):向2L反应釜中加入300ml去离子水,设置搅拌桨的搅拌速度为450rpm,将体系温度控制在55℃,用沉淀剂氢氧化钠溶液调节pH到11.5;待体系稳定后,使用蠕动泵将过渡金属离子溶液,络合剂EDTA溶液和沉淀剂氢氧化钠溶液同时泵入反应釜,期间通过调节沉淀剂氢氧化钠溶液的进液速度,使pH稳定在11.5;Step (2): Add 300ml of deionized water into the 2L reactor, set the stirring speed of the stirring paddle to 450rpm, control the temperature of the system at 55°C, and adjust the pH to 11.5 with the precipitating agent sodium hydroxide solution; after the system is stable, Use a peristaltic pump to pump the transition metal ion solution, the complexing agent EDTA solution and the precipitating agent sodium hydroxide solution into the reaction kettle at the same time, during which the pH is stabilized at 11.5 by adjusting the feeding speed of the precipitating agent sodium hydroxide solution;

步骤(3):加料完毕后,陈化1小时,从反应釜中取出部分反应液,用去离子水抽滤洗涤数次,直至pH近中性,在真空干燥箱150℃干燥5h,得到充分干燥的Ni0.83Co0.08Al0.035Cu0.06(OH)2前驱体;Step (3): After the feeding is completed, age for 1 hour, take out part of the reaction solution from the reaction kettle, filter and wash it several times with deionized water until the pH is nearly neutral, dry it in a vacuum oven at 150°C for 5 hours, and obtain sufficient Dried Ni 0.83 Co 0.08 Al 0.035 Cu 0.06 (OH) 2 precursor;

步骤(4):取充分干燥的Ni0.83Co0.08Al0.035Cu0.06(OH)2前驱体1g制备正极材料,使用玛瑙研钵与氢氧化钠进行充分地混合,其中Na:(Ni+Co+Al+Cu)=1.02:1,在管式炉中通入氧气气氛,以10℃·min-1的升温速度升至520℃保温3.5h,之后再以同样的升温速率升温至650℃,保温13h后,骤冷至室温,焙烧得到的产物经过研磨、过筛得到NaNi0.83Co0.08Al0.035Cu0.06O2正极材料。Step (4): Take 1 g of fully dried Ni 0.83 Co 0.08 Al 0.035 Cu 0.06 (OH) 2 precursor to prepare the positive electrode material, and use an agate mortar to fully mix it with sodium hydroxide, where Na:(Ni+Co+Al +Cu)=1.02:1, put an oxygen atmosphere into the tube furnace, raise the temperature to 520°C at a rate of 10°C min -1 and keep it for 3.5 hours, then raise the temperature to 650°C at the same rate and keep it for 13 hours After that, it was quenched to room temperature, and the roasted product was ground and sieved to obtain NaNi 0.83 Co 0.08 Al 0.035 Cu 0.06 O 2 positive electrode material.

实施例3Example 3

步骤(1):配置过渡金属离子溶液,其浓度为4mol·L-1,其中镍钴铝铜盐为硫酸镍、硫酸钴、硫酸铝、硫酸铜,镍离子、钴离子、铝离子、铜离子的摩尔比为0.86:0.05:0.04:0.04;配络合剂EDTA浓度为1.5mol·L-1的溶液,沉淀剂氢氧化钠浓度为7mol·L-1的溶液;将溶液置于搅拌器上进行充分的搅拌,使溶质完全地溶解;Step (1): Prepare a transition metal ion solution with a concentration of 4mol·L -1 , wherein the nickel-cobalt-aluminum-copper salt is nickel sulfate, cobalt sulfate, aluminum sulfate, copper sulfate, nickel ions, cobalt ions, aluminum ions, copper ions The molar ratio is 0.86:0.05:0.04:0.04; the complexing agent EDTA concentration is 1.5mol L -1 solution, the precipitating agent sodium hydroxide concentration is 7mol L -1 solution; put the solution on the stirrer Thoroughly stir to dissolve the solute completely;

步骤(2):向2L反应釜中加入200ml去离子水,设置搅拌桨的搅拌速度为800rpm,将体系温度控制在45℃,用沉淀剂氢氧化钠溶液调节pH到10.2;待体系稳定后,使用蠕动泵将过渡金属离子溶液,络合剂EDTA溶液和沉淀剂氢氧化钠溶液同时泵入反应釜,期间通过调节沉淀剂氢氧化钠溶液的进液速度,使pH稳定在10.2;Step (2): Add 200ml of deionized water into the 2L reactor, set the stirring speed of the stirring paddle to 800rpm, control the temperature of the system at 45°C, and adjust the pH to 10.2 with the precipitating agent sodium hydroxide solution; after the system is stable, Use a peristaltic pump to pump the transition metal ion solution, the complexing agent EDTA solution and the precipitating agent sodium hydroxide solution into the reactor at the same time, during which the pH is stabilized at 10.2 by adjusting the feeding speed of the precipitating agent sodium hydroxide solution;

步骤(3):加料完毕后,陈化1小时,从反应釜中取出部分反应液,用去离子水抽滤洗涤数次,直至pH近中性,在真空干燥箱85℃干燥11h,得到充分干燥的Ni0.86Co0.05Al0.04Cu0.04(OH)2前驱体;Step (3): After the feeding is completed, age for 1 hour, take out part of the reaction solution from the reaction kettle, filter and wash it several times with deionized water until the pH is nearly neutral, dry it in a vacuum oven at 85°C for 11 hours, and obtain sufficient Dry Ni 0.86 Co 0.05 Al 0.04 Cu 0.04 (OH) 2 precursor;

步骤(4):取充分干燥的Ni0.86Co0.05Al0.04Cu0.04(OH)2前驱体1g制备正极材料,使用玛瑙研钵与过氧化钠进行充分地混合,其中Na:(Ni+Co+Al+Cu)=0.98:1,在管式炉中通入氧气气氛,以2℃·min-1的升温速度升至350℃保温8h,之后再以同样的升温速率升温至750℃,保温8h后,以15℃min-1速率至室温,焙烧得到的产物经过研磨、过筛得到NaNi0.86Co0.05Al0.04Cu0.04O2正极材料。Step (4): Take 1 g of fully dried Ni 0.86 Co 0.05 Al 0.04 Cu 0.04 (OH) 2 precursor to prepare the positive electrode material, and use an agate mortar to fully mix it with sodium peroxide, where Na:(Ni+Co+Al +Cu)=0.98:1, put an oxygen atmosphere into the tube furnace, raise the temperature to 350°C at a heating rate of 2°C min -1 and keep it for 8 hours, then raise the temperature to 750°C at the same heating rate, and keep it for 8 hours , at a rate of 15°C min -1 to room temperature, the roasted product was ground and sieved to obtain the NaNi 0.86 Co 0.05 Al 0.04 Cu 0.04 O 2 cathode material.

实施例4Example 4

步骤(1):配置过渡金属离子溶液,其浓度为6mol·L-1,其中镍钴铝铜盐为硝酸镍、硝酸钴、硝酸铝、硝酸铜的混合物,镍离子、钴离子、铝离子、铜离子的摩尔比为0.80:0.10:0.03:0.1;配络合剂柠檬酸浓度为0.5mol·L-1的溶液,沉淀剂氢氧化钠浓度为10mol·L-1的溶液;将溶液置于搅拌器上进行充分的搅拌,使溶质完全地溶解;Step (1): Prepare a transition metal ion solution with a concentration of 6mol·L -1 , wherein the nickel-cobalt-aluminum-copper salt is a mixture of nickel nitrate, cobalt nitrate, aluminum nitrate, copper nitrate, nickel ions, cobalt ions, aluminum ions, The molar ratio of copper ions is 0.80:0.10:0.03:0.1; the complexing agent citric acid concentration is 0.5mol L -1 solution, the precipitating agent sodium hydroxide concentration is 10mol L -1 solution; the solution is placed in Fully stir on the stirrer to completely dissolve the solute;

步骤(2):向2L反应釜中加入200ml去离子水,设置搅拌桨的搅拌速度为900rpm,将体系温度控制在60℃,用沉淀剂氢氧化钠溶液调节pH到9;待体系稳定后,使用蠕动泵将过渡金属离子溶液,络合剂EDTA溶液和沉淀剂氢氧化钠溶液同时泵入反应釜,期间通过调节沉淀剂氢氧化钠溶液的进液速度,使pH稳定在9;Step (2): Add 200ml of deionized water into the 2L reaction kettle, set the stirring speed of the stirring paddle to 900rpm, control the temperature of the system at 60°C, and adjust the pH to 9 with the precipitating agent sodium hydroxide solution; after the system is stable, Use a peristaltic pump to pump the transition metal ion solution, the complexing agent EDTA solution and the precipitating agent sodium hydroxide solution into the reaction kettle at the same time, during which the pH is stabilized at 9 by adjusting the feeding speed of the precipitating agent sodium hydroxide solution;

步骤(3):加料完毕后,陈化1小时,从反应釜中取出部分反应液,用去离子水抽滤洗涤数次,直至pH近中性,在真空干燥箱70℃干燥12h,得到充分干燥的Ni0.8Co0.1Al0.03Cu0.1(OH)2前驱体;Step (3): After the feeding is completed, age for 1 hour, take out part of the reaction solution from the reaction kettle, filter and wash it several times with deionized water until the pH is nearly neutral, dry it in a vacuum oven at 70°C for 12 hours, and obtain sufficient Dried Ni 0.8 Co 0.1 Al 0.03 Cu 0.1 (OH) 2 precursor;

步骤(4):取充分干燥的Ni0.8Co0.1Al0.03Cu0.1(OH)2前驱体1g制备正极材料,使用玛瑙研钵与过氧化钠进行充分地混合,其中Na:(Ni+Co+Al+Cu)=0.95,在管式炉中通入氧气气氛,以1℃·min-1的升温速度升至250℃保温9h,之后再以同样的升温速率升温至600℃,保温15h后,以20℃min-1速率至室温,焙烧得到的产物经过研磨、过筛得到NaNi0.8Co0.1Al0.03Cu0.1O2正极材料。Step (4): Take fully dried Ni 0.8 Co 0.1 Al 0.03 Cu 0.1 (OH) 2 precursor 1g to prepare positive electrode material, use agate mortar and sodium peroxide to fully mix, wherein Na:(Ni+Co+Al +Cu)=0.95, put an oxygen atmosphere into the tube furnace, raise the temperature to 250°C for 9 hours at a rate of 1°C·min -1 , and then raise the temperature to 600°C with the same rate of increase for 15 hours. From 20°C min -1 to room temperature, the roasted product was ground and sieved to obtain NaNi 0.8 Co 0.1 Al 0.03 Cu 0.1 O 2 cathode material.

实施例4Example 4

步骤(1):配置过渡金属离子溶液,其浓度为0.3mol·L-1,其中镍钴铝铜盐为醋酸镍、醋酸钴、醋酸铝、醋酸铜的混合物,镍离子、钴离子、铝离子、铜离子的摩尔比为0.90:0.03:0.05:0.02;配络合剂柠檬酸浓度为7mol·L-1的溶液,沉淀剂氢氧化钠浓度为0.5mol·L-1的溶液;将溶液置于搅拌器上进行充分的搅拌,使溶质完全地溶解;Step (1): Prepare a transition metal ion solution with a concentration of 0.3mol·L -1 , wherein the nickel-cobalt-aluminum-copper salt is a mixture of nickel acetate, cobalt acetate, aluminum acetate, and copper acetate, and nickel ions, cobalt ions, and aluminum ions , the molar ratio of copper ions is 0.90:0.03:0.05:0.02; the complexing agent citric acid concentration is 7mol L -1 solution, the precipitating agent sodium hydroxide concentration is 0.5mol L -1 solution; the solution is placed Fully stir on the stirrer to completely dissolve the solute;

步骤(2):向2L反应釜中加入200ml去离子水,设置搅拌桨的搅拌速度为300rpm,将体系温度控制在30℃,用沉淀剂氢氧化钠溶液调节pH到12;待体系稳定后,使用蠕动泵将过渡金属离子溶液,络合剂EDTA溶液和沉淀剂氢氧化钠溶液同时泵入反应釜,期间通过调节沉淀剂氢氧化钠溶液的进液速度,使pH稳定在12;Step (2): Add 200ml of deionized water into the 2L reactor, set the stirring speed of the stirring paddle to 300rpm, control the temperature of the system at 30°C, and adjust the pH to 12 with the precipitating agent sodium hydroxide solution; after the system is stable, Use a peristaltic pump to pump the transition metal ion solution, the complexing agent EDTA solution and the precipitating agent sodium hydroxide solution into the reaction kettle at the same time, during which the pH is stabilized at 12 by adjusting the feeding speed of the precipitating agent sodium hydroxide solution;

步骤(3):加料完毕后,陈化1小时,从反应釜中取出部分反应液,用去离子水抽滤洗涤数次,直至pH近中性,在真空干燥箱200℃干燥4h,得到充分干燥的Ni0.9Co0.03Al0.05Cu0.02(OH)2前驱体;Step (3): After the feeding is completed, age for 1 hour, take out part of the reaction solution from the reaction kettle, filter and wash it several times with deionized water until the pH is nearly neutral, dry it in a vacuum oven at 200°C for 4 hours, and obtain sufficient Dried Ni 0.9 Co 0.03 Al 0.05 Cu 0.02 (OH) 2 precursor;

步骤(4):取充分干燥的Ni0.9Co0.03Al0.05Cu0.02(OH)2前驱体1g制备正极材料,使用玛瑙研钵与过氧化钠进行充分地混合,其中Na:(Ni+Co+Al+Cu)=1.05,在管式炉中通入氧气气氛,以15℃·min-1的升温速度升至550℃保温2h,之后再以同样的升温速率升温至800℃,保温5h后,以5min-1速率至室温,焙烧得到的产物经过研磨、过筛得到NaNi0.9Co0.03Al0.05Cu0.02O2正极材料。Step (4): Take 1 g of fully dried Ni 0.9 Co 0.03 Al 0.05 Cu 0.02 (OH) 2 precursor to prepare the positive electrode material, and use an agate mortar to fully mix it with sodium peroxide, where Na:(Ni+Co+Al +Cu)=1.05, put an oxygen atmosphere into the tube furnace, raise the temperature to 550°C at a rate of 15°C·min -1 and keep it for 2 hours, then raise the temperature to 800°C at the same rate of increase, and hold it for 5 hours, then 5 min -1 rate to room temperature, the product obtained by roasting was ground and sieved to obtain NaNi 0.9 Co 0.03 Al 0.05 Cu 0.02 O 2 cathode material.

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例;但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention to other forms. Any skilled person who is familiar with this profession may use the technical content disclosed above to change or modify the equivalent of equivalent changes. Embodiment; But all without departing from the content of the technical solution of the present invention, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention still belong to the protection scope of the technical solution of the present invention.

Claims (9)

1.一种钠离子电池高镍前驱体,其特征在于,化学分子式为Ni1-x-y-zCoyAlzCuz(OH)2,其中0.2≥x+y+z,0.1≥x≥0.03,0.05≥y≥0.03,0.1≥z≥0.02。1. A high-nickel precursor for a sodium-ion battery, characterized in that the chemical formula is Ni 1-xyz Co y Al z Cu z (OH) 2 , wherein 0.2≥x+y+z, 0.1≥x≥0.03, 0.05 ≥y≥0.03, 0.1≥z≥0.02. 2.一种权利要求1所述的钠离子电池高镍前驱体的制备方法,其特征在于:包括以下步骤:2. a preparation method of the high-nickel precursor of sodium ion battery according to claim 1, is characterized in that: comprises the following steps: 1)用镍盐、钴盐、铜盐和铝盐配制金属离子浓度为0.3-6mol·L-1的镍钴铜盐溶液;镍盐、钴盐、铜盐和铝盐中Ni:Co:Al:Cu的摩尔比为0.80-0.90:0.03-0.10:0.03-0.05:0.02-0.1;1) Prepare a nickel-cobalt-copper salt solution with a metal ion concentration of 0.3-6mol L -1 with nickel salt, cobalt salt, copper salt and aluminum salt; Ni:Co:Al in nickel salt, cobalt salt, copper salt and aluminum salt : The molar ratio of Cu is 0.80-0.90:0.03-0.10:0.03-0.05:0.02-0.1; 配制铝金属离子和氢氧化钠的混合溶液,其中Al3+完全以AlO2 -形式存在;Prepare a mixed solution of aluminum metal ions and sodium hydroxide, wherein Al 3+ exists completely in the form of AlO 2 - ; 用络合剂配置浓度为0.5-7mol·L-1的络合剂溶液;Using a complexing agent to configure a complexing agent solution with a concentration of 0.5-7mol L -1 ; 用沉淀剂配置浓度0.5-10mol·L-1的沉淀剂溶液;Prepare a precipitant solution with a concentration of 0.5-10mol L -1 with a precipitant; 2)向反应釜中加入去离子水,机械搅拌,用络合剂溶液和沉淀剂溶液调节至pH在9-12,控制体系温度恒定在30-60℃;2) Add deionized water into the reaction kettle, stir mechanically, adjust the pH to 9-12 with complexing agent solution and precipitating agent solution, and control the temperature of the system to be constant at 30-60°C; 3)将溶液镍钴铜盐溶液、铝金属离子和氢氧化钠的混合溶液和络合剂溶液同时加入反应釜内,添加沉淀剂溶液调节体系pH在9-12;3) adding the nickel-cobalt-copper salt solution, the mixed solution of aluminum metal ions and sodium hydroxide and the complexing agent solution into the reaction kettle at the same time, and adding the precipitating agent solution to adjust the pH of the system to 9-12; 4)反应结束后将得到的沉淀物过滤、洗涤,在70-200℃的真空干燥箱中干燥4-12h,得到Ni1-x-y-zCoyAlzCuz(OH)2微米球前驱体。4) After the reaction, the obtained precipitate was filtered, washed, and dried in a vacuum oven at 70-200° C. for 4-12 hours to obtain a Ni 1-xyz Co y Al z Cu z (OH) 2 microsphere precursor. 3.根据权利要求2所述的一种钠离子电池高镍前驱体的制备方法,其特征在于:步骤1)中所述的Ni:Co:Al:Cu的摩尔比为0.83-0.86:0.05-0.08:0.035-0.04:0.04-0.06。3. the preparation method of a kind of high-nickel precursor of sodium ion battery according to claim 2, is characterized in that: the molar ratio of Ni:Co:Al:Cu described in step 1) is 0.83-0.86:0.05- 0.08:0.035-0.04:0.04-0.06. 4.根据权利要求2所述的一种高镍前驱体的制备方法,其特征在于:步骤1)所述的镍盐、钴盐、铜盐和铝盐分别是含有相应元素的醋酸、硫酸盐、硝酸盐的一种或两种以上的混合物;所述的络合剂为氨水、柠檬酸、EDTA的一种或两种以上的混合物;沉淀剂为氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸氢钠一种或两种以上的混合物。4. the preparation method of a kind of high-nickel precursor according to claim 2 is characterized in that: step 1) described nickel salt, cobalt salt, copper salt and aluminum salt are respectively the acetic acid that contains corresponding element, vitriol , one or more mixtures of nitrates; the complexing agent is one or more mixtures of ammonia, citric acid, EDTA; the precipitating agent is sodium hydroxide, potassium hydroxide, lithium hydroxide , sodium carbonate, sodium bicarbonate or a mixture of two or more. 5.根据权利要求2所述的一种钠离子电池高镍前驱体的制备方法,其特征在于:步骤2)中所述的机械搅拌的搅拌速度为300-900rpm,体系温度控制在40-50℃。5. the preparation method of a kind of high-nickel precursor of sodium ion battery according to claim 2, is characterized in that: the stirring speed of the mechanical stirring described in step 2) is 300-900rpm, and system temperature is controlled at 40-50 ℃. 6.一种利用权利要求1所述的高镍前驱体制备的钠离子电池正极材料,其特征在于:化学分子式为Na(Ni1-x-y-zCoyAlzCuz)O2,其中0.2≥x+y+z,0.1≥x≥0.03,0.05≥y≥0.03,0.1≥z≥0.02。6. A sodium-ion battery cathode material prepared by using the high-nickel precursor according to claim 1, characterized in that: the chemical molecular formula is Na(Ni 1-xyz Co y Al z Cu z )O 2 , wherein 0.2≥x +y+z, 0.1≥x≥0.03, 0.05≥y≥0.03, 0.1≥z≥0.02. 7.一种利用权利要求1所述的高镍前驱体制备钠离子电池正极材料的方法,其特征在于:将Ni1-x-y-zCoyAlzCuz(OH)2前驱体与钠盐混合均匀,先在250-550℃煅烧2-9h,升温,再在600-800℃煅烧5-15h,煅烧气氛是空气、氧气或者混合气,降温,将得到的产物研磨过筛得到Na(Ni1-x-y-zCoyAlzCuz)O2型钠离子电池正极材料。7. A method utilizing the high-nickel precursor as claimed in claim 1 to prepare anode material for sodium ion battery, characterized in that: Ni 1-xyz Co y Al z Cu z (OH) 2 precursor and sodium salt are mixed uniformly , first calcined at 250-550°C for 2-9h, raised the temperature, and then calcined at 600-800°C for 5-15h, the calcining atmosphere was air, oxygen or mixed gas, lowered the temperature, and ground and sieved the obtained product to obtain Na(Ni 1- xyz Co y Al z Cu z )O 2 type sodium ion battery cathode material. 8.根据权利要求7所述的制备钠离子电池正极材料的方法,其特征在于:所述的钠盐为硝酸钠、碳酸钠、氢氧化钠、过氧化钠、超氧化钠一种或两种以上的混合物,钠盐中Na与Ni1-x-y-zCoyAlzCuz(OH)2前驱体中Ni、Co、Al、Cu四种元素总量的摩尔比为0.95-1.05:1。8. the method for preparing sodium ion battery cathode material according to claim 7, is characterized in that: described sodium salt is sodium nitrate, sodium carbonate, sodium hydroxide, sodium peroxide, sodium superoxide one or both For the above mixture, the molar ratio of Na in the sodium salt to the total amount of Ni, Co, Al and Cu in the Ni 1-xyz Co y Al z Cu z (OH) 2 precursor is 0.95-1.05:1. 9.根据权利要求7所述的制备钠离子电池正极材料的方法,其特征在于:所述升温的升温速率为1-15℃·min-1;所述降温的降温速率分为骤冷或控速5~20℃·min-19. The method for preparing the positive electrode material of a sodium ion battery according to claim 7, characterized in that: the heating rate of the heating is 1-15°C·min −1 ; the cooling rate of the cooling is divided into quenching or controlled cooling. Speed 5~20℃·min -1 .
CN201711167152.0A 2017-11-21 2017-11-21 A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode Pending CN107946591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711167152.0A CN107946591A (en) 2017-11-21 2017-11-21 A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711167152.0A CN107946591A (en) 2017-11-21 2017-11-21 A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode

Publications (1)

Publication Number Publication Date
CN107946591A true CN107946591A (en) 2018-04-20

Family

ID=61930478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711167152.0A Pending CN107946591A (en) 2017-11-21 2017-11-21 A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode

Country Status (1)

Country Link
CN (1) CN107946591A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449435A (en) * 2018-11-01 2019-03-08 广东佳纳能源科技有限公司 The preparation method of semidefinite form positive electrode material precursor and positive electrode material precursor obtained, positive electrode, lithium ion battery and application
CN109830679A (en) * 2019-02-01 2019-05-31 中国科学院过程工程研究所 A kind of positive electrode material precursor, and its preparation method and application
CN111628164A (en) * 2020-05-22 2020-09-04 兰州理工大学 Sodium ion battery positive electrode material and preparation method thereof
CN113193188A (en) * 2021-04-30 2021-07-30 云南脉冲科技有限公司 Quaternary positive electrode material of sodium-ion battery and preparation method thereof
CN113258060A (en) * 2020-02-11 2021-08-13 中国科学院物理研究所 Sodium ion battery high-nickel layered oxide material and preparation method and application thereof
CN114361435A (en) * 2021-12-31 2022-04-15 浙江美达瑞新材料科技有限公司 Nanoscale precursor, composite cathode material and preparation method of sodium ion battery
CN114927666A (en) * 2022-06-09 2022-08-19 上海大学 Preparation method of low-cost sodium-ion battery positive electrode material
CN115072801A (en) * 2022-06-22 2022-09-20 浙江钠创新能源有限公司 Positive electrode material precursor, positive electrode material, preparation method and application thereof
CN115072741A (en) * 2022-07-08 2022-09-20 金驰能源材料有限公司 Prussian blue cathode material and continuous preparation method thereof, and sodium ion battery
CN115557546A (en) * 2022-12-06 2023-01-03 湖州超钠新能源科技有限公司 A kind of sodium ion cathode material and its preparation method and application
CN115763766A (en) * 2022-12-13 2023-03-07 广西师范大学 Na2MnPO4F-coated O3-type layered sodium-ion battery cathode material and preparation method thereof
CN116354417A (en) * 2023-04-19 2023-06-30 荆门市格林美新材料有限公司 Sodium ion precursor material and preparation method and application thereof
CN117457895A (en) * 2023-12-25 2024-01-26 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and sodium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237510A (en) * 2010-04-29 2011-11-09 比亚迪股份有限公司 Positive active material and preparation method thereof
CN102725232A (en) * 2009-12-02 2012-10-10 住友金属矿山株式会社 Nickel-cobalt-manganese composite hydroxide particle and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN103026537A (en) * 2010-03-29 2013-04-03 住友金属矿山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
CN103531778A (en) * 2013-10-28 2014-01-22 北京理工大学 Solid solution sodium-ion battery positive material and preparation method therefor
CN103553152A (en) * 2013-10-22 2014-02-05 金天能源材料有限公司 High-density spherical nickel-cobalt-aluminum precursor material and preparation method thereof
CN104661963A (en) * 2012-09-28 2015-05-27 住友金属矿山株式会社 Nickel-cobalt composite hydroxide, method for producing the same, and device for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN105098165A (en) * 2015-07-03 2015-11-25 浙江亿利泰钴镍材料有限公司 Preparation method of magnesium nickel cobalt aluminum oxide for lithium ion power battery and product thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725232A (en) * 2009-12-02 2012-10-10 住友金属矿山株式会社 Nickel-cobalt-manganese composite hydroxide particle and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN103026537A (en) * 2010-03-29 2013-04-03 住友金属矿山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
CN102237510A (en) * 2010-04-29 2011-11-09 比亚迪股份有限公司 Positive active material and preparation method thereof
CN104661963A (en) * 2012-09-28 2015-05-27 住友金属矿山株式会社 Nickel-cobalt composite hydroxide, method for producing the same, and device for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN103553152A (en) * 2013-10-22 2014-02-05 金天能源材料有限公司 High-density spherical nickel-cobalt-aluminum precursor material and preparation method thereof
CN103531778A (en) * 2013-10-28 2014-01-22 北京理工大学 Solid solution sodium-ion battery positive material and preparation method therefor
CN105098165A (en) * 2015-07-03 2015-11-25 浙江亿利泰钴镍材料有限公司 Preparation method of magnesium nickel cobalt aluminum oxide for lithium ion power battery and product thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449435A (en) * 2018-11-01 2019-03-08 广东佳纳能源科技有限公司 The preparation method of semidefinite form positive electrode material precursor and positive electrode material precursor obtained, positive electrode, lithium ion battery and application
CN109830679A (en) * 2019-02-01 2019-05-31 中国科学院过程工程研究所 A kind of positive electrode material precursor, and its preparation method and application
CN109830679B (en) * 2019-02-01 2021-04-06 中国科学院过程工程研究所 A kind of positive electrode material precursor, its preparation method and use
CN113258060A (en) * 2020-02-11 2021-08-13 中国科学院物理研究所 Sodium ion battery high-nickel layered oxide material and preparation method and application thereof
CN111628164A (en) * 2020-05-22 2020-09-04 兰州理工大学 Sodium ion battery positive electrode material and preparation method thereof
CN113193188A (en) * 2021-04-30 2021-07-30 云南脉冲科技有限公司 Quaternary positive electrode material of sodium-ion battery and preparation method thereof
WO2023124357A1 (en) * 2021-12-31 2023-07-06 浙江美达瑞新材料科技有限公司 Nanoscale precursor of sodium-ion battery, composite positive electrode material and preparation method
CN114361435A (en) * 2021-12-31 2022-04-15 浙江美达瑞新材料科技有限公司 Nanoscale precursor, composite cathode material and preparation method of sodium ion battery
CN114927666A (en) * 2022-06-09 2022-08-19 上海大学 Preparation method of low-cost sodium-ion battery positive electrode material
CN114927666B (en) * 2022-06-09 2023-10-20 上海大学 Preparation method of low-cost sodium ion battery anode material
CN115072801A (en) * 2022-06-22 2022-09-20 浙江钠创新能源有限公司 Positive electrode material precursor, positive electrode material, preparation method and application thereof
CN115072741A (en) * 2022-07-08 2022-09-20 金驰能源材料有限公司 Prussian blue cathode material and continuous preparation method thereof, and sodium ion battery
CN115072741B (en) * 2022-07-08 2023-11-17 金驰能源材料有限公司 Prussian blue cathode material and its continuous preparation method and sodium ion battery
CN115557546A (en) * 2022-12-06 2023-01-03 湖州超钠新能源科技有限公司 A kind of sodium ion cathode material and its preparation method and application
CN115763766A (en) * 2022-12-13 2023-03-07 广西师范大学 Na2MnPO4F-coated O3-type layered sodium-ion battery cathode material and preparation method thereof
CN116354417A (en) * 2023-04-19 2023-06-30 荆门市格林美新材料有限公司 Sodium ion precursor material and preparation method and application thereof
WO2024216788A1 (en) * 2023-04-19 2024-10-24 荆门市格林美新材料有限公司 Sodium ion precursor material, preparation method therefor, and use thereof
CN117457895A (en) * 2023-12-25 2024-01-26 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and sodium ion battery
CN117457895B (en) * 2023-12-25 2024-04-12 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and sodium ion battery

Similar Documents

Publication Publication Date Title
CN107946591A (en) A kind of nickelic presoma of sodium-ion battery and its preparation method with positive electrode
CN113636606B (en) Preparation method and application of nickel-rich cobalt-free single crystal cathode material of lithium ion battery
CN106564967B (en) Lithium-rich manganese-based anode material presoma, positive electrode and preparation method thereof
CN102244237B (en) A kind of synthetic method of anode material for lithium ion battery with high power capacity
CN102569780B (en) Method for preparing lithium ion battery cathode material with layered structure
CN106505193A (en) Monocrystalline nickel-cobalt lithium manganate cathode material and preparation method thereof and lithium ion battery
CN101262061A (en) Spherical aluminum-nickel-cobalt-doped lithium lithium ion battery and preparation method thereof
CN107275634B (en) A method for synthesizing spherical lithium-rich manganese-based cathode materials with high tap density and high capacity without complexing agent
CN102074679A (en) Method for preparing spherical aluminum-doped nickel lithium carbonate for lithium ion battery positive electrode material
CN103606675B (en) A kind of preparation method of lithium-nickel-cobalt-oxygen positive electrode of metal ion mixing
CN106920934A (en) The preparation method of the codoping modified ternary precursor of cobalt magnesium and positive electrode based on high-nickel material
CN103682319A (en) Constant high temperature circulation NCM 523 (nickel cobalt manganese acid lithium) ternary material and preparation method thereof
CN108054371A (en) A kind of high-tap density, high magnification and long-life lithium-rich manganese-based anode material and preparation method thereof
CN115881920A (en) Multi-strategy modified cobalt-doped cladding type monocrystal layered oxide sodium ion battery positive electrode material
KR20240018648A (en) Cobalt-free anode material doped with multiple elements by partition and method for manufacturing the same
CN108483516A (en) A kind of anode material for lithium-ion batteries and its synthetic method with superlattices ordered structure
CN111490241A (en) A lithium-rich manganese-based cathode material coated in situ with lithium phosphate and preparation method thereof
CN110085845A (en) A kind of nickel-base anode material and preparation method thereof with core-shell structure
CN111653742A (en) A kind of lithium ion battery cathode material with full gradient concentration distribution and preparation method thereof
CN107579242A (en) Method for preparing nickel-cobalt-manganese ternary material doped with trivalent cations by direct precipitation
CN111276689A (en) Preparation method of nano porous ternary precursor
CN107579223A (en) The method of nickel cobalt manganese ternary material
CN106252594A (en) A kind of ball-shaped lithium-ion battery anode material with nanoscale two-phase coexistent structure and synthetic method thereof
CN118983404A (en) Directed high-entropy doped high-nickel cobalt-free positive electrode material and preparation method thereof, and lithium-ion battery
CN114655999B (en) A method for in situ surface structure regulation of lithium-rich layered oxide cathode materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420

RJ01 Rejection of invention patent application after publication