CN108008531A - A kind of raman laser light path matching system based on Mach-Zehnder interferometer - Google Patents
A kind of raman laser light path matching system based on Mach-Zehnder interferometer Download PDFInfo
- Publication number
- CN108008531A CN108008531A CN201711239345.2A CN201711239345A CN108008531A CN 108008531 A CN108008531 A CN 108008531A CN 201711239345 A CN201711239345 A CN 201711239345A CN 108008531 A CN108008531 A CN 108008531A
- Authority
- CN
- China
- Prior art keywords
- laser
- fiber
- phase
- laser light
- mach
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于马赫曾德干涉仪的拉曼激光光程匹配系统,属于冷原子重力仪技术领域。The invention relates to a Raman laser optical path matching system based on a Mach-Zehnder interferometer, and belongs to the technical field of cold atom gravimeters.
背景技术Background technique
拉曼激光是用于冷原子重力仪的两束具有固定频率差和相位差的激光,这两束激光的拍频的相位噪声称为拉曼激光的相位噪声。冷原子重力仪基于物质波的干涉效应,可以对重力加速度、重力梯度等进行高精密测量。超高精度的冷原子重力仪要求拉曼激光具有超低相位噪声。The Raman laser is two laser beams with a fixed frequency difference and phase difference used in the cold atom gravimeter. The phase noise of the beat frequency of the two laser beams is called the phase noise of the Raman laser. Based on the interference effect of matter waves, the cold atom gravimeter can perform high-precision measurements of gravitational acceleration and gravitational gradient. Ultra-high-precision cold-atom gravimeters require Raman lasers with ultra-low phase noise.
一种方法是使用两个独立的激光器产生两束激光,通过光锁相环的方法将它们的拍频锁定到一个超稳晶振的输出信号上,从而实现具有低相位噪声的拉曼激光。另一种方法是只使用一个激光器,通过分束器将它的输出激光分成两束,其中一束通过电光调制器进行频率的偏移,该电光调制器由超稳晶振驱动,从而产生具有一定频率差的两束激光。然后通过相位反馈系统将这两束激光的拍频锁定到超稳晶振上,以抑制由于激光光源、振动以及温度变化等带来的噪声。One method is to use two independent lasers to generate two laser beams, and lock their beat frequency to the output signal of an ultra-stable crystal oscillator through an optical phase-locked loop method, thereby realizing Raman laser with low phase noise. Another method is to use only one laser, and split its output laser into two beams through a beam splitter, one of which is shifted in frequency by an electro-optic modulator driven by an ultra-stable crystal oscillator to generate a laser beam with a certain Two laser beams with different frequencies. Then, the beat frequency of the two laser beams is locked to the ultra-stable crystal oscillator through the phase feedback system to suppress the noise caused by the laser light source, vibration and temperature changes.
冷原子重力仪有两种工作模式。一种是速度不敏感模式,该模式下与原子团作用的两束激光的传输方向相同,因此由于原子下落速度引起的这两束激光的多普勒频移大小几乎相同,相互抵消。其结果是原子的下落速度以及原子团本身的速度分布对重力仪的测量精度影响很小。然而,由于两束激光方向相同,原子受激吸收和受激发射的光子的方向也相同,导致原子获得的总动量很小。其结果是被激发的原子和未被激发的原子在动量空间的分离很小,从而使得重力仪的灵敏度很低。The cold atom gravimeter has two working modes. One is the speed-insensitive mode. In this mode, the propagation direction of the two laser beams acting on the atomic group is the same, so the Doppler frequency shift of the two laser beams caused by the falling speed of the atoms is almost the same and cancels each other out. As a result, the falling velocity of the atoms and the velocity distribution of the atomic cluster itself have little effect on the measurement accuracy of the gravimeter. However, since the directions of the two laser beams are the same, the directions of the stimulated absorption and stimulated emission of photons of the atoms are also the same, resulting in the atoms gaining very little total momentum. The result is very little separation in momentum space between excited and unexcited atoms, making the gravimeters very insensitive.
另一种是速度敏感模式,该模式下与原子团作用的两束激光的传输方向相反,由于原子下落速度引起的这两束激光的多普勒频移大小几乎相同,但是符号相反。因此在工作过程中需要对其中一束激光的频率进行调节以抵消该多普勒频移的影响。不过,由于两束激光方向相反,原子受激吸收和受激发射的光子的方向也相反,因此原子获得的总动量很大。其结果是被激发的原子和未被激发的原子在动量空间的分离很大,从而使得重力仪的灵敏度很高。The other is velocity-sensitive mode. In this mode, the propagation direction of the two laser beams interacting with the atomic group is opposite. The Doppler frequency shift of the two laser beams caused by the falling velocity of the atoms is almost the same, but the sign is opposite. Therefore, it is necessary to adjust the frequency of one of the laser beams in order to counteract the influence of the Doppler frequency shift during the working process. However, since the directions of the two laser beams are opposite, the directions of the stimulated absorption and stimulated emission of photons of the atoms are also opposite, so the total momentum acquired by the atoms is very large. The result is a large separation in momentum space between excited and unexcited atoms, which makes the gravimeter highly sensitive.
一般的冷原子重力仪都使用速度敏感模式。为了实现两束传输方向相反的激光,通常是先使两束激光同向传输穿过原子团,然后使用反射镜对这两束激光进行垂直反射,再一次穿过原子团。与原子相互作用的激光为初始的某一束激光和被反射的另外一束激光。在这个过程中,被反射的激光会经历额外的光程,而在其经历这些额外的光程的过程中激光器积累的相位抖动会恶化拉曼激光的相位噪声。并且,由于该额外的光程并不出现在相位反馈回路当中,因此该相位噪声无法被相位反馈回路抑制。最终导致原子重力仪的固有噪声增大,测量精度降低。General cold atom gravimeters use velocity sensitive mode. In order to realize two laser beams with opposite transmission directions, usually the two laser beams are transmitted in the same direction through the atomic group, and then the mirrors are used to reflect the two laser beams vertically, and then pass through the atomic group again. The lasers that interact with the atoms are an initial beam of laser light and another beam of laser light that is reflected. During this process, the reflected laser light experiences additional optical paths, and the phase jitter accumulated by the laser during these additional optical paths deteriorates the phase noise of the Raman laser. Moreover, since the extra optical path does not appear in the phase feedback loop, the phase noise cannot be suppressed by the phase feedback loop. Ultimately, the inherent noise of the atomic gravimeter increases and the measurement accuracy decreases.
发明内容Contents of the invention
本发明的目的是为了解决上述问题,提出一种基于马赫曾德干涉仪的拉曼激光光程匹配系统,该系统利用一个光纤的马赫曾德干涉仪实现了相位反馈回路中两束激光之间的光程匹配,使得相位反馈回路与原子团探测到的来自激光光源的相位噪声一致,从而通过反馈回路可以抑制激光器的相位噪声对拉曼激光的影响。The purpose of the present invention is to solve the above problems, and propose a Raman laser optical path matching system based on a Mach-Zehnder interferometer. The optical path is matched, so that the phase feedback loop is consistent with the phase noise from the laser source detected by the atomic group, so that the influence of the phase noise of the laser on the Raman laser can be suppressed through the feedback loop.
一种基于马赫曾德干涉仪的拉曼激光光程匹配系统,包括激光光源、第一1/2λ波片、第一偏振分光棱镜、电光调制器、第一45°反射镜、Fabry-Perot标准具、第二1/2λ波片、第二45°反射镜、第三1/2λ波片、第二偏振分光棱镜、第一光纤耦合器、第一保偏光纤、光纤准直器、激光分束器、声光调制器、激光扩束器、第一1/4λ波片、第一原子团、第二原子团、第二1/4λ波片、零度反射镜、第二光纤耦合器、光纤偏振分束器、第二保偏光纤、第三保偏光纤、高速光开关、第四保偏光纤、第五保偏光纤、Y波导、光纤偏振合束器、高速光电探测器、反馈电路系统。A Raman laser optical path matching system based on Mach-Zehnder interferometer, including laser light source, first 1/2λ wave plate, first polarization beam splitter prism, electro-optic modulator, first 45° mirror, Fabry-Perot standard Tool, the second 1/2λ wave plate, the second 45° mirror, the third 1/2λ wave plate, the second polarization beam splitter prism, the first fiber coupler, the first polarization maintaining fiber, fiber collimator, laser splitter Beamer, acousto-optic modulator, laser beam expander, first 1/4λ wave plate, first atomic group, second atomic group, second 1/4λ wave plate, zero-degree mirror, second fiber coupler, fiber polarization splitter Beamer, second polarization-maintaining fiber, third polarization-maintaining fiber, high-speed optical switch, fourth polarization-maintaining fiber, fifth polarization-maintaining fiber, Y waveguide, fiber polarization beam combiner, high-speed photodetector, feedback circuit system.
激光光源输出激光通过第一1/2λ波片后进入第一偏振分光棱镜,第一偏振分光棱镜将输入激光分为透射激光和反射激光。其中透过第一偏振分光棱镜的透射激光进入电光调制器,电光调制器的输出激光由载波、所需的一阶调制边带以及高阶调制边带组成。电光调制器的输出激光由第一45°反射镜反射后进入Fabry-Perot标准具,Fabry-Perot标准具滤除多余的激光频率成份,其输出激光为所需的一阶调制边带。Fabry-Perot标准具的输出激光经过第二1/2λ波片后被第二偏振分光棱镜反射,该反射激光输入到第一光纤耦合器;其中被第一偏振分光棱镜反射的激光由第二45°反射镜反射后透过第三1/2λ波片,第三1/2λ波片的输出激光透过第二偏振分光棱镜后输入到第一光纤耦合器。第一光纤耦合器的输出端通过第一保偏光纤与光纤准直器相连,光纤准直器的输出激光进入激光分束器,激光分束器将输入激光分为功率较大的反射激光和功率较小的透射激光。其中,反射激光进入声光调制器,声光调制器作为高速光脉冲调制器产生所需的脉冲激光。声光调制器的输出激光进入激光扩束器,激光扩束器的输出激光先后经过第一1/4λ波片、第一原子团、第二原子团、第二1/4λ波片后被零度反射镜反射,然后再先后通过第二1/4λ波片、第二原子团、第一原子团;其中,透射激光进入第二光纤耦合器,第二光纤耦合器的输出端与光纤偏振分束器的输入端相连,光纤偏振合束器的左输出端通过第二保偏光纤与光纤偏振合束器的左输入端相连。光纤偏振合束器的右输出端通过第三保偏光纤与高速光开关的输入端相连,高速光开关的左右两个输出端分别通过第四保偏光纤、第五保偏光纤与Y波导的左右两个输入端相连。Y波导的输出端与光纤偏振合束器的右侧输入端相连,光纤偏振合束器的输出激光进入高速光电探测器。高速光电探测器的输出端与反馈电路系统的输入端相连,反馈电路系统的输出端与电光调制器的调制信号输入端相连。The output laser light from the laser light source passes through the first 1/2λ wave plate and enters the first polarization beam splitter prism, and the first polarization beam splitter prism divides the input laser light into transmitted laser light and reflected laser light. The transmitted laser light passing through the first polarization splitter prism enters the electro-optic modulator, and the output laser light of the electro-optic modulator is composed of a carrier wave, required first-order modulation sidebands and high-order modulation sidebands. The output laser of the electro-optic modulator is reflected by the first 45° mirror and enters the Fabry-Perot etalon. The Fabry-Perot etalon filters out the redundant laser frequency components, and the output laser is the required first-order modulation sideband. The output laser light of the Fabry-Perot etalon is reflected by the second polarization beam splitter after passing through the second 1/2λ wave plate, and the reflected laser light is input to the first fiber coupler; wherein the laser light reflected by the first polarization beam splitter is sent by the second 45 After being reflected by the °reflector, it passes through the third 1/2λ wave plate, and the output laser light from the third 1/2λ wave plate passes through the second polarization beam splitter and then is input to the first fiber coupler. The output end of the first fiber coupler is connected to the fiber collimator through the first polarization-maintaining fiber, and the output laser light of the fiber collimator enters the laser beam splitter, and the laser beam splitter divides the input laser light into reflected laser light with higher power and A transmitted laser with less power. Among them, the reflected laser light enters the acousto-optic modulator, and the acousto-optic modulator acts as a high-speed optical pulse modulator to generate the required pulsed laser light. The output laser of the acousto-optic modulator enters the laser beam expander, and the output laser of the laser beam expander passes through the first 1/4λ wave plate, the first atomic group, the second atomic group, and the second 1/4λ wave plate, and then is zero-degree reflector reflection, and then successively pass through the second 1/4λ wave plate, the second atomic group, and the first atomic group; where the transmitted laser light enters the second fiber coupler, the output end of the second fiber coupler and the input end of the fiber polarization beam splitter The left output end of the fiber polarization beam combiner is connected to the left input end of the fiber polarization beam combiner through the second polarization maintaining fiber. The right output end of the fiber polarization beam combiner is connected to the input end of the high-speed optical switch through the third polarization-maintaining optical fiber, and the left and right output ends of the high-speed optical switch are respectively connected to the fourth polarization-maintaining optical fiber, the fifth polarization-maintaining optical fiber and the Y waveguide The left and right inputs are connected. The output end of the Y waveguide is connected to the right input end of the fiber polarization beam combiner, and the output laser light of the fiber polarization beam combiner enters the high-speed photodetector. The output end of the high-speed photodetector is connected with the input end of the feedback circuit system, and the output end of the feedback circuit system is connected with the modulation signal input end of the electro-optic modulator.
在通常的拉曼激光系统中,为了消除激光光源、振动和温度等对相位噪声的影响,一般将两束激光的相位差通过锁相环锁定到一个超稳晶振上。最优的方案是使原子与光电探测器分别探测到的两束激光的相位差完全一致,这样的话拉曼激光的相位噪声就完全由超稳晶振的相位噪声以及锁相环的性能决定。然而,工作在速度敏感模式下的冷原子重力仪由于某一束激光经历了垂直反射过程必然会产生一段额外的光程;而且由于原子团在最高点和最低点会与拉曼激光进行两次相互作用,这就使得这段额外的光程具有两个固定的数值。因为激光光源具有相位噪声,这个额外的光程会导致激光光源的相位噪声无法相互抵消从而传递到拉曼激光的相位噪声当中。为此,需要使得光电探测器接收到的两束激光之间也产生一个光程差,使其等于由于垂直反射导致的额外光程。并且该光程差是可变的,从而使得原子团在最高点和最低点均可实现光程匹配。此时,光电探测器探测到的相位噪声与原子团感受到的相位噪声一致,从而可以通过反馈电路系统实现相位噪声的抑制。In a common Raman laser system, in order to eliminate the influence of the laser light source, vibration and temperature on the phase noise, the phase difference of the two laser beams is generally locked to an ultra-stable crystal oscillator through a phase-locked loop. The optimal solution is to make the phase difference of the two laser beams detected by the atom and the photodetector exactly the same, so that the phase noise of the Raman laser is completely determined by the phase noise of the ultra-stable crystal oscillator and the performance of the phase-locked loop. However, the cold atom gravimeter working in the speed-sensitive mode will inevitably produce an extra optical path due to a laser beam undergoing a vertical reflection process; function, which makes this extra optical path have two fixed values. Because the laser light source has phase noise, this extra optical path will cause the phase noise of the laser light source to not cancel each other out and be transferred to the phase noise of the Raman laser. For this reason, it is necessary to generate an optical path difference between the two laser beams received by the photodetector, which is equal to the additional optical path caused by vertical reflection. And the optical path difference is variable, so that the atomic group can achieve optical path matching at the highest point and the lowest point. At this time, the phase noise detected by the photodetector is consistent with the phase noise felt by the atomic group, so that the phase noise can be suppressed through the feedback circuit system.
这里,使用一个全光纤的马赫曾德干涉仪,干涉仪的输入端通过光纤偏振分束器将输入的两束激光分离后分别进入干涉仪的两臂上,干涉仪的右臂通过微机械光开关可以实现两种长度之间的迅速切换。通过设定右臂与左臂之间的光纤长度差来实现对由于垂直反射导致的光程差的匹配,然后利用相位反馈环路对来自激光光源的相位噪声进行抑制,从而抑制了激光光源的相位噪声对冷原子重力仪的测量精度的影响。Here, an all-fiber Mach-Zehnder interferometer is used. The input end of the interferometer splits the input two beams of laser light through a fiber optic polarization beam splitter and enters the two arms of the interferometer respectively. The right arm of the interferometer passes through a micromechanical optical The switch enables rapid switching between the two lengths. The optical path difference caused by vertical reflection is matched by setting the fiber length difference between the right arm and the left arm, and then the phase noise from the laser light source is suppressed by using the phase feedback loop, thereby suppressing the laser light source The effect of phase noise on the measurement accuracy of a cold-atom gravimeter.
本发明的优点:Advantages of the present invention:
(1)实现了全光纤的光程匹配系统,抑制了激光光源的相位噪声对冷原子重力仪的影响;(1) An all-fiber optical path matching system is realized, which suppresses the influence of the phase noise of the laser light source on the cold atom gravimeter;
(2)利用光纤光路实现光程匹配,其引入的额外的相位噪声很低;(2) The optical path matching is realized by using the optical fiber optical path, and the additional phase noise introduced by it is very low;
附图说明Description of drawings
图1是基于马赫曾德干涉仪的拉曼激光光程匹配系统框图;Figure 1 is a block diagram of a Raman laser optical path matching system based on a Mach-Zehnder interferometer;
图2是光程匹配示意图;Fig. 2 is a schematic diagram of optical path matching;
图3是上抛型原子重力仪时序示意图;Figure 3 is a schematic diagram of the time sequence of the throw-up atomic gravimeter;
图中:In the picture:
1-激光光源 2-第一1/2λ波片 3-第一偏振分光棱镜1-Laser light source 2-The first 1/2λ wave plate 3-The first polarization beam splitter prism
4-电光调制器 5-第一45°反射镜 6-Fabry-Perot标准具4-Electro-optic modulator 5-First 45° mirror 6-Fabry-Perot etalon
7-第二1/2λ波片 8-第二45°反射镜 9-第三1/2λ波片7-Second 1/2λ wave plate 8-Second 45° mirror 9-Third 1/2λ wave plate
10-第二偏振分光棱镜 11-第一光纤耦合器 12-第一保偏光纤10-Second polarization beam splitter 11-First fiber coupler 12-First polarization maintaining fiber
13-光纤准直器 14-激光分束器 15-声光调制器13-Fiber optic collimator 14-Laser beam splitter 15-Acousto-optic modulator
16-激光扩束器 17-第一1/4λ波片 18-第一原子团16- Laser beam expander 17- The first 1/4λ wave plate 18- The first atomic group
19-第二原子团 20-第二1/4λ波片 21-零度反射镜19-Second atomic group 20-Second 1/4λ wave plate 21-Zero-degree mirror
22-第二光纤耦合器 23-光纤偏振分束器 24-第二保偏光纤22-Second Fiber Coupler 23-Fiber Polarization Beam Splitter 24-Second Polarization Maintaining Fiber
25-第三保偏光纤 26-高速光开关 27-第四保偏光纤25-The third polarization-maintaining fiber 26-High-speed optical switch 27-The fourth polarization-maintaining fiber
28-第五保偏光纤 29-Y波导 30-光纤偏振合束器28-Fifth polarization maintaining fiber 29-Y waveguide 30-Fiber polarization beam combiner
31-高速光电探测器 32-反馈电路系统31-High-speed photodetector 32-Feedback circuit system
具体实施方式Detailed ways
下面将结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
一种基于马赫曾德干涉仪的拉曼激光光程匹配系统,如图1所示,包括激光光源1、第一1/2λ波片2、第一偏振分光棱镜3、电光调制器4、第一45°反射镜5、Fabry-Perot标准具6、第二1/2λ波片7、第二45°反射镜8、第三1/2λ波片9、第二偏振分光棱镜10、第一光纤耦合器11、第一保偏光纤12、光纤准直器13、激光分束器14、声光调制器15、激光扩束器16、第一1/4λ波片17、第一原子团18、第二原子团19、第二1/4λ波片20、零度反射镜21、第二光纤耦合器22、光纤偏振分束器23、第二保偏光纤24、第三保偏光纤25、高速光开关26、第四保偏光纤27、第五保偏光纤28、Y波导29、光纤偏振合束器30、高速光电探测器31、反馈电路系统32;A Raman laser optical path matching system based on Mach-Zehnder interferometer, as shown in Fig. A 45° reflector 5, a Fabry-Perot etalon 6, a second 1/2λ wave plate 7, a second 45° reflector 8, a third 1/2λ wave plate 9, a second polarizing beam splitter 10, and a first optical fiber Coupler 11, first polarization maintaining fiber 12, fiber collimator 13, laser beam splitter 14, acousto-optic modulator 15, laser beam expander 16, first 1/4λ wave plate 17, first atomic group 18, the first Diatomic group 19, second 1/4λ wave plate 20, zero-degree mirror 21, second fiber coupler 22, fiber polarization beam splitter 23, second polarization-maintaining fiber 24, third polarization-maintaining fiber 25, high-speed optical switch 26 , the fourth polarization-maintaining optical fiber 27, the fifth polarization-maintaining optical fiber 28, the Y waveguide 29, the optical fiber polarization beam combiner 30, the high-speed photodetector 31, the feedback circuit system 32;
激光光源1输出激光通过第一1/2λ波片2后进入第一偏振分光棱镜3,第一偏振分光棱镜3将输入激光分为透射激光和反射激光。其中透过第一偏振分光棱镜3的激光进入电光调制器4,电光调制器4的输出激光由载波、所需的一阶调制边带以及高阶调制边带组成。电光调制器4的输出激光由第一45°反射镜5反射后进入Fabry-Perot标准具6,Fabry-Perot标准具6滤除多余的激光频率成份,其输出激光为所需的一阶调制边带。Fabry-Perot标准具6的输出激光经过第二1/2λ波片7后被第二偏振分光棱镜10反射,该反射激光输入到第一光纤耦合器11;其中被第一偏振分光棱镜3反射的激光由第二45°反射镜8反射后透过第三1/2λ波片9,第三1/2λ波片9的输出激光透过第二偏振分光棱镜10后输入到第一光纤耦合器11。第一光纤耦合器11的输出端通过第一保偏光纤12与光纤准直器13相连,光纤准直器13的输出激光进入激光分束器14,激光分束器14将输入激光分为功率较大的反射激光和功率较小的透射激光。其中,反射激光进入声光调制器15,声光调制器15作为高速光开关产生所需的脉冲激光。声光调制器15的输出激光进入激光扩束器16,激光扩束器16的输出激光先后经过第一1/4λ波片17、第一原子团18、第二原子团19、第二1/4λ波片20后被零度反射镜21反射,然后再先后通过第二1/4λ波片20、第二原子团19、第一原子团19;其中,透射激光进入第二光纤耦合器22,第二光纤耦合器22的输出端与光纤偏振分束器23的输入端相连,光纤偏振分束器23的左输出端通过第二保偏光纤24与光纤偏振合束器30的左输入端相连。光纤偏振分束器23的右输出端通过第三保偏光纤25与高速光开关26的输入端相连,高速光开关26的左右两个输出端分别通过第四保偏光纤27、第五保偏光纤28与Y波导29的左右两个输入端相连。Y波导29的输出端与光纤偏振合束器30的右侧输入端相连,光纤偏振合束器30的输出激光进入高速光电探测器31。高速光电探测器31的输出端与反馈电路系统32的输入端相连,反馈电路系统32的输出端与电光调制器4的调制信号输入端相连。The output laser light from the laser light source 1 passes through the first 1/2λ wave plate 2 and then enters the first polarization beam splitter 3. The first polarization beam splitter prism 3 divides the input laser light into transmitted laser light and reflected laser light. The laser light passing through the first polarization splitter prism 3 enters the electro-optic modulator 4, and the output laser light of the electro-optic modulator 4 is composed of a carrier wave, required first-order modulation sidebands and higher-order modulation sidebands. The output laser of the electro-optic modulator 4 enters the Fabry-Perot etalon 6 after being reflected by the first 45° reflector 5, and the Fabry-Perot etalon 6 filters out redundant laser frequency components, and the output laser is the required first-order modulation edge bring. The output laser light of the Fabry-Perot etalon 6 is reflected by the second polarization beam splitter prism 10 after passing through the second 1/2λ wave plate 7, and the reflected laser light is input into the first fiber coupler 11; The laser light is reflected by the second 45° reflector 8 and passes through the third 1/2λ wave plate 9, and the output laser light of the third 1/2λ wave plate 9 passes through the second polarization beam splitter prism 10 and then is input to the first fiber coupler 11 . The output end of the first fiber coupler 11 is connected with the fiber collimator 13 through the first polarization-maintaining fiber 12, and the output laser light of the fiber collimator 13 enters the laser beam splitter 14, and the laser beam splitter 14 divides the input laser light into power Larger reflected laser and less powerful transmitted laser. Wherein, the reflected laser light enters the acousto-optic modulator 15, and the acousto-optic modulator 15 acts as a high-speed optical switch to generate the required pulsed laser light. The output laser light of the acousto-optic modulator 15 enters the laser beam expander 16, and the output laser light of the laser beam expander 16 successively passes through the first 1/4λ wave plate 17, the first atomic group 18, the second atomic group 19, and the second 1/4λ wave plate The plate 20 is reflected by the zero-degree reflector 21, and then successively passes through the second 1/4λ wave plate 20, the second atomic group 19, and the first atomic group 19; wherein, the transmitted laser light enters the second fiber coupler 22, and the second fiber coupler The output end of 22 is connected to the input end of the fiber polarization beam splitter 23, and the left output end of the fiber polarization beam splitter 23 is connected to the left input end of the fiber polarization beam combiner 30 through the second polarization maintaining fiber 24. The right output end of the fiber polarization beam splitter 23 is connected to the input end of the high-speed optical switch 26 through the third polarization-maintaining optical fiber 25, and the left and right output ends of the high-speed optical switch 26 respectively pass through the fourth polarization-maintaining optical fiber 27 and the fifth polarization-maintaining optical fiber 27. The optical fiber 28 is connected to the left and right input ends of the Y waveguide 29 . The output end of the Y waveguide 29 is connected to the right input end of the fiber polarization beam combiner 30 , and the output laser light of the fiber polarization beam combiner 30 enters the high-speed photodetector 31 . The output end of the high-speed photodetector 31 is connected to the input end of the feedback circuit system 32 , and the output end of the feedback circuit system 32 is connected to the modulation signal input end of the electro-optic modulator 4 .
工作过程:work process:
一种基于马赫曾德干涉仪的拉曼激光光程匹配系统,激光光源的输出激光的频率为ω,EOM调制频率为ωm。假设被调制的激光(在图2中以Lup表示)在t时刻从下往上激发原子,而未被调制的激光(在图2中以Ldown表示)经过垂直反射后从上往下激发原子,垂直反射导致的额外光程记为ΔL。这里忽略扩束之前这两束激光的光程差,且只考虑激光光源的相位噪声的影响,那么在同一时刻与原子相互作用的两束激光可分别表示为:A Raman laser optical path matching system based on Mach-Zehnder interferometer, the output laser frequency of the laser light source is ω, and the EOM modulation frequency is ω m . Assume that the modulated laser (denoted by L up in Figure 2) excites atoms from bottom to top at time t, while the unmodulated laser (denoted by L down in Figure 2) excites atoms from top to bottom after vertical reflection For atoms, the additional optical path caused by vertical reflection is denoted as ΔL. Here, the optical path difference of the two laser beams before beam expansion is ignored, and only the influence of the phase noise of the laser light source is considered, then the two laser beams interacting with atoms at the same time can be expressed as:
其中,E1,E2分别为从下往上和从上往下激发原子的激光的振幅,φ0(t)为激光光源的相位抖动,是随机变量;τ0=ΔL/c是垂直反射导致的时间延时,c是光速。那么,原子感受到的这两束激光的相位差为:Among them, E 1 and E 2 are the amplitudes of the laser that excite atoms from bottom to top and from top to bottom respectively, φ 0 (t) is the phase jitter of the laser light source, which is a random variable; τ 0 =ΔL/c is the vertical reflection The resulting time delay, c is the speed of light. Then, the phase difference between the two laser beams felt by the atom is:
ΔΦ(t)=ωmt+ωτ0+φ0(t)-φ0(t-τ0) (3)ΔΦ(t)=ω m t+ωτ 0 +φ 0 (t)-φ 0 (t-τ 0 ) (3)
其中,ΔФ为两束激光的相位差,φ0(t)-φ0(t-τ0)是影响重力仪测量精度的误差项。一方面可以通过减小延时τ0也就是减小垂直反射的距离可以减小该项,但是受到重力仪几何结构和分离时间的限制,延时τ0很难减小。另一方面,可以通过反馈系统将该误差项反馈到某一束激光的相位中,实现误差项的实时跟踪补偿。这里,首先使用光电探测器检测这两束激光的拍频,然后将拍频信号与参考频率源进行鉴频、鉴相,将该相位误差信号提取出来,然后通过反馈电路将该相位误差信号反馈回EOM的调制信号,从而改变上路激光的相位,实现该相位误差的消除。具体来说,与原子同一时刻,光电探测器接收到的两束激光的相位分别为:Among them, ΔФ is the phase difference between the two laser beams, and φ 0 (t)-φ 0 (t-τ 0 ) is an error term affecting the measurement accuracy of the gravimeter. On the one hand, this item can be reduced by reducing the delay τ 0 , that is, reducing the distance of the vertical reflection. However, due to the limitation of the geometric structure of the gravimeter and the separation time, the delay τ 0 is difficult to reduce. On the other hand, the error term can be fed back to the phase of a laser beam through the feedback system to realize real-time tracking compensation of the error term. Here, the photodetector is first used to detect the beat frequency of the two laser beams, and then the beat frequency signal and the reference frequency source are subjected to frequency discrimination and phase discrimination, and the phase error signal is extracted, and then the phase error signal is fed back through the feedback circuit The modulation signal of the EOM is returned, thereby changing the phase of the laser on the upper road, and realizing the elimination of the phase error. Specifically, at the same time as the atom, the phases of the two laser beams received by the photodetector are:
这里,以前述Lup作为参考激光。其中,E1′,E2′分别为光电探测器接收到的两束激光的振幅,τ1是被调制的激光经过光纤马赫曾德干涉仪的左臂到达光电探测器与参考激光的时差;τ2是未被调制的激光经过光纤马赫曾德干涉仪的右臂到达光电探测器与参考激光的时差。那么,探测器感受到的这两束激光的相位差为:Here, the aforementioned L up is used as a reference laser. Among them, E 1 ′, E 2 ′ are the amplitudes of the two laser beams received by the photodetector respectively, and τ 1 is the time difference between the modulated laser light reaching the photodetector and the reference laser through the left arm of the fiber Mach-Zehnder interferometer; τ2 is the time difference between the unmodulated laser passing through the right arm of the fiber Mach-Zehnder interferometer and reaching the photodetector and the reference laser. Then, the phase difference between the two laser beams felt by the detector is:
ΔΦ′(t)=ωm(t-τ1)+ω(τ1-τ2)+φ0(t-τ1)-φ0(t-τ2) (6)ΔΦ′(t)=ω m (t-τ 1 )+ω(τ 1 -τ 2 )+φ 0 (t-τ 1 )-φ 0 (t-τ 2 ) (6)
其中,ΔФ′为探测器感受到的这两束激光的相位差,ωmt项在鉴频过程中被消除,恒定的相位项无需考虑,只关心φ0(t-τ1)-φ0(t-τ2)。为了使反馈的相位误差信号与原子感受到的相位误差一致,必须使得τ1=0以及τ2=τ0,这就要求仔细设计光纤马赫曾德干涉仪两臂的长度以及它们的光程差,使其等于未被调制的激光由于垂直反射而多走的光程。考虑到原子团在上下两个位置处分别与激光相互作用,此时通过切换高速光开关可以实现光纤马赫曾德干涉仪的两种光程差的切换。具体来说,光纤马赫曾德干涉仪的设置如图2所示,其两臂长度应该满足下式:Among them, ΔФ′ is the phase difference between the two laser beams felt by the detector, the ω m t term is eliminated in the frequency discrimination process, and the constant phase term does not need to be considered, only φ 0 (t-τ 1 )-φ 0 (t-τ 2 ). In order to make the feedback phase error signal consistent with the phase error felt by the atoms, τ 1 = 0 and τ 2 = τ 0 must be made, which requires careful design of the length of the two arms of the fiber optic Mach-Zehnder interferometer and their optical path difference , making it equal to the extra optical path of the unmodulated laser due to vertical reflection. Considering that the atomic group interacts with the laser at the upper and lower positions respectively, at this time, the switching of the two optical path differences of the fiber Mach-Zehnder interferometer can be realized by switching the high-speed optical switch. Specifically, the setup of the fiber optic Mach-Zehnder interferometer is shown in Figure 2, and the length of its two arms should satisfy the following formula:
La=L0+2ΔLa (7)L a =L 0 +2ΔL a (7)
Lb=L0+2ΔLb (8)L b =L 0 +2ΔL b (8)
其中,L0为光纤马赫曾德干涉仪左臂的光程,La、Lb分别为高速光开关在左侧导通和右侧导通时光纤马赫曾德干涉仪右臂的光程,ΔLa、ΔLb分别为原子团处于最高点和最低点时与零度反射镜的距离。Among them, L 0 is the optical path of the left arm of the fiber optic Mach-Zehnder interferometer, L a and L b are the optical paths of the right arm of the fiber optic Mach-Zehnder interferometer when the high-speed optical switch is turned on on the left and on the right, respectively, ΔL a and ΔL b are the distances from the zero-degree reflector when the atomic group is at the highest point and the lowest point, respectively.
如果在关注的频段范围内反馈环路增益为K,那么经过反馈后剩余的相位误差项约为:If the feedback loop gain is K in the frequency band of interest, then the remaining phase error term after feedback is approximately:
其中,φr为剩余相位误差。此时,剩余的相位误差仅由环路增益决定。Among them, φ r is the residual phase error. At this point, the remaining phase error is determined only by the loop gain.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711239345.2A CN108008531B (en) | 2017-11-30 | 2017-11-30 | A Raman laser optical path matching system based on Mach-Zehnder interferometer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711239345.2A CN108008531B (en) | 2017-11-30 | 2017-11-30 | A Raman laser optical path matching system based on Mach-Zehnder interferometer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108008531A true CN108008531A (en) | 2018-05-08 |
| CN108008531B CN108008531B (en) | 2019-12-10 |
Family
ID=62055381
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711239345.2A Active CN108008531B (en) | 2017-11-30 | 2017-11-30 | A Raman laser optical path matching system based on Mach-Zehnder interferometer |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108008531B (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111562001A (en) * | 2020-04-22 | 2020-08-21 | 中国科学院西安光学精密机械研究所 | A dual-channel four-channel polarization interference imaging system and method |
| CN112857591A (en) * | 2021-01-08 | 2021-05-28 | 中国船舶重工集团公司第七0七研究所 | Single laser source optical fiber laser system for cold atom interferometer |
| CN113514046A (en) * | 2021-07-08 | 2021-10-19 | 北京航空航天大学 | Atomic spin precession signal detection device and method based on Mach-Zehnder interference |
| CN113959426A (en) * | 2021-11-19 | 2022-01-21 | 中国船舶重工集团公司第七0七研究所 | Raman light parallelism adjusting device and method for atomic interference gyroscope |
| CN115291293A (en) * | 2022-08-19 | 2022-11-04 | 中国科学院长春光学精密机械与物理研究所 | Novel shear interference detection device and detection method for suppressing skylight background noise |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070165216A1 (en) * | 2006-01-17 | 2007-07-19 | Honeywell International Inc. | Out-of-fluid sensor |
| CN103401135A (en) * | 2013-08-02 | 2013-11-20 | 北京工业大学 | Method and device for amplifying laser by adopting raman frequency conversion |
| CN103701022A (en) * | 2013-12-19 | 2014-04-02 | 北京工业大学 | Double-resonant-cavity all-optical-fiber mode-locked pulse laser |
| CN104298045A (en) * | 2014-08-19 | 2015-01-21 | 北京航空航天大学 | Raman laser system and optical path difference automatic adjusting method based on frequency modulation continuous wave |
| CN104682187A (en) * | 2015-03-09 | 2015-06-03 | 北京航空航天大学 | Automatic compensation device of phase noise of Raman laser system based on closed loop feedback and method thereof |
-
2017
- 2017-11-30 CN CN201711239345.2A patent/CN108008531B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070165216A1 (en) * | 2006-01-17 | 2007-07-19 | Honeywell International Inc. | Out-of-fluid sensor |
| CN103401135A (en) * | 2013-08-02 | 2013-11-20 | 北京工业大学 | Method and device for amplifying laser by adopting raman frequency conversion |
| CN103701022A (en) * | 2013-12-19 | 2014-04-02 | 北京工业大学 | Double-resonant-cavity all-optical-fiber mode-locked pulse laser |
| CN104298045A (en) * | 2014-08-19 | 2015-01-21 | 北京航空航天大学 | Raman laser system and optical path difference automatic adjusting method based on frequency modulation continuous wave |
| CN104682187A (en) * | 2015-03-09 | 2015-06-03 | 北京航空航天大学 | Automatic compensation device of phase noise of Raman laser system based on closed loop feedback and method thereof |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111562001A (en) * | 2020-04-22 | 2020-08-21 | 中国科学院西安光学精密机械研究所 | A dual-channel four-channel polarization interference imaging system and method |
| CN111562001B (en) * | 2020-04-22 | 2021-04-20 | 中国科学院西安光学精密机械研究所 | A dual-channel four-channel polarization interference imaging system and method |
| CN112857591A (en) * | 2021-01-08 | 2021-05-28 | 中国船舶重工集团公司第七0七研究所 | Single laser source optical fiber laser system for cold atom interferometer |
| CN112857591B (en) * | 2021-01-08 | 2022-10-25 | 中国船舶重工集团公司第七0七研究所 | Single laser source optical fiber laser system for cold atom interferometer |
| CN113514046A (en) * | 2021-07-08 | 2021-10-19 | 北京航空航天大学 | Atomic spin precession signal detection device and method based on Mach-Zehnder interference |
| CN113514046B (en) * | 2021-07-08 | 2022-11-25 | 北京航空航天大学 | Device and method for detecting atomic spin precession signal based on Mach-Zehnder interference |
| CN113959426A (en) * | 2021-11-19 | 2022-01-21 | 中国船舶重工集团公司第七0七研究所 | Raman light parallelism adjusting device and method for atomic interference gyroscope |
| CN113959426B (en) * | 2021-11-19 | 2023-04-28 | 中国船舶重工集团公司第七0七研究所 | Raman light parallelism adjusting device and method for atomic interferometer gyroscope |
| CN115291293A (en) * | 2022-08-19 | 2022-11-04 | 中国科学院长春光学精密机械与物理研究所 | Novel shear interference detection device and detection method for suppressing skylight background noise |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108008531B (en) | 2019-12-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108008531A (en) | A kind of raman laser light path matching system based on Mach-Zehnder interferometer | |
| Wang et al. | Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion | |
| CN102305591B (en) | Multi-frequency synchronization phase laser ranging device and method based on dual-acousto-optic shift frequency | |
| JP4801194B2 (en) | Low frequency signal light transmission system and low frequency signal light transmission method | |
| JP2010505095A (en) | Method and apparatus for generating a synthetic wavelength | |
| KR102414411B1 (en) | System and method for generating dual entanglements of frequency bin entanglement and polarization entanglement in atomic ensemble | |
| JP6074764B2 (en) | Optical frequency comb stabilized light source and method | |
| US10741989B2 (en) | All-fiber bidirectional synchronously pumped ultrafast ring oscillator for precision sensing | |
| CN113097842B (en) | Polarization maintaining fiber-based ultrastable laser system | |
| CN104950311A (en) | OEO (optoelectronic oscillator) based wide-range and high-precision absolute distance measurement system with self-calibration function | |
| JPH03180704A (en) | laser interferometer | |
| NL1032008C2 (en) | Active control and detection of two almost orthogonal polarizations in a fiber for heterodyne interferometry. | |
| US11378401B2 (en) | Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof | |
| JP2018179662A (en) | Optical transmission system | |
| CN112018591B (en) | Ultra-stable microwave generation device based on dual-frequency fiber interferometer-stabilized frequency laser | |
| JP7296151B2 (en) | Optical fiber gyroscope light source device and optical fiber gyroscope using the same | |
| CN112066969B (en) | Dual-light source self-injection locked resonant micro-optical electromechanical gyroscope based on optical phase-locked loop | |
| US20090060525A1 (en) | All-optical polarization-independent clock recovery | |
| US20110310919A1 (en) | Laser System Provided With a Frequency Servo | |
| CN116914547A (en) | Rubidium atom interferometer laser system | |
| WO2024121920A1 (en) | Frequency stabilization circuit, frequency stabilization method, and optical comb generator | |
| US11456086B1 (en) | High-bandwidth atom-interferometric gravimetry and accelerometry | |
| RU2723230C1 (en) | Laser system with laser frequency stabilization | |
| JP2014209517A (en) | Optical frequency comb generating device and optical frequency comb frequency stabilizing method | |
| JPH0447214A (en) | Optical fiber gyroscope |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |