CN108081255A - A kind of robot zero point correction method and device - Google Patents
A kind of robot zero point correction method and device Download PDFInfo
- Publication number
- CN108081255A CN108081255A CN201611047078.4A CN201611047078A CN108081255A CN 108081255 A CN108081255 A CN 108081255A CN 201611047078 A CN201611047078 A CN 201611047078A CN 108081255 A CN108081255 A CN 108081255A
- Authority
- CN
- China
- Prior art keywords
- robot
- axis
- zero point
- zero
- teaching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0081—Programme-controlled manipulators with leader teach-in means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/1005—Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种机器人零点校准方法,包括:在机器人轴的零点位置丢失后,获取所述机器人轴的粗定位零点位置;以所述粗定位零点位置为起点,按照原始轨迹运行机器人,获取运行后的所述机器人轴的第一实际位置;将运行后的所述机器人轴示教到轨迹对中位置,获取示教后的所述机器人轴的第二实际位置;根据所述第一实际位置和所述第二实际位置,对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。相应的,本发明还公开了一种机器人零点校准装置。采用本发明实施例,能够快速、准确地校准机器人的零点位置。
The invention discloses a robot zero point calibration method, comprising: after the zero point position of the robot shaft is lost, obtaining the rough positioning zero point position of the robot shaft; starting from the rough positioning zero point position, running the robot according to the original track, obtaining The first actual position of the robot axis after running; teach the robot axis after running to the track centering position, and obtain the second actual position of the robot axis after teaching; according to the first actual position position and the second actual position, fine-tuning the rough positioning zero position to obtain the zero position of the robot axis. Correspondingly, the invention also discloses a robot zero point calibration device. By adopting the embodiment of the present invention, the zero point position of the robot can be calibrated quickly and accurately.
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种机器人零点校准方法及装置。The invention relates to the field of computer technology, in particular to a robot zero point calibration method and device.
背景技术Background technique
随着设备自动化水平的提高,现代化生产工业对设备修复时间的要求逐步缩短。ABB机器人作为现代化生产应用的一部分,当电机需要更换或外力导致机器人零点丢失时,由于初始零点示教为目视设定,而每次观察不可能完全一致,从而导致再次采用目视设定会与初始设定零点位置存在偏差,放大到工具侧时,偏差约为±2mm以上,不能满足自动化生产精度要求。而重新示教机器人程序中每个轨迹点的位置,但是重新对不同工件进行轨迹示教,由于工件较多,导致耗时较长。而如果联系厂家,让专业的技术人员到现场进行技术支持,等待时间较长,使用专用工具时间长,且会产生技术支援费用。With the improvement of equipment automation level, the requirements of modern production industry for equipment repair time are gradually shortened. As part of the modern production application of the ABB robot, when the motor needs to be replaced or the robot’s zero point is lost due to external force, since the initial zero point teaching is a visual setting, and each observation cannot be completely consistent, resulting in the re-use of the visual setting will be difficult. There is a deviation from the initial set zero position. When enlarged to the tool side, the deviation is about ±2mm or more, which cannot meet the precision requirements of automated production. However, re-teaching the position of each trajectory point in the robot program, but re-teaching the trajectory for different workpieces, will take a long time due to the large number of workpieces. However, if you contact the manufacturer and let professional technicians go to the scene for technical support, the waiting time will be longer, the time for using special tools will be longer, and technical support costs will be generated.
发明内容Contents of the invention
本发明实施例提出一种机器人零点校准方法及装置,能够快速、准确地校准机器人的零点位置。Embodiments of the present invention provide a robot zero point calibration method and device, which can quickly and accurately calibrate the zero point position of the robot.
本发明实施例提供一种机器人零点校准方法,包括:An embodiment of the present invention provides a robot zero point calibration method, including:
在机器人轴的零点位置丢失后,,获取所述机器人轴的粗定位零点位置;After the zero position of the robot axis is lost, obtain the rough positioning zero position of the robot axis;
以所述粗定位零点位置为起点,按照原始轨迹运行机器人,获取运行后的所述机器人轴的第一实际位置;Taking the rough positioning zero position as a starting point, running the robot according to the original trajectory, and obtaining the first actual position of the robot shaft after running;
将运行后的所述机器人轴示教到轨迹对中位置,获取示教后的所述机器人轴的第二实际位置;Teach the robot shaft after running to the centering position of the trajectory, and obtain the second actual position of the robot shaft after teaching;
根据所述第一实际位置和所述第二实际位置,对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。Fine-tuning the rough positioning zero position according to the first actual position and the second actual position to obtain the zero position of the robot axis.
进一步地,所述在机器人轴更换电机后,获取所述机器人轴的零点粗定位位置,具体包括:Further, after the motor of the robot shaft is replaced, obtaining the rough positioning position of the zero point of the robot shaft specifically includes:
在机器人轴的零点位置丢失后,,接收操作人员发出的对所述机器人轴进行示教的第一控制指令;After the zero position of the robot axis is lost, receiving a first control instruction for teaching the robot axis sent by the operator;
根据所述第一控制指令移动所述机器人轴,以将所述机器人轴示教到机器人基座的凹槽对中位置;moving the robot axis according to the first control command to teach the robot axis to a groove-centered position of the robot base;
获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的粗定位零点位置。The position of the axis of the robot after teaching is obtained, and the obtained position is used as the rough positioning zero position of the robot.
进一步地,所述将运行后的所述机器人轴示教到轨迹对中位置,获取示教后的所述机器人轴的第二实际位置,具体包括:Further, the teaching the robot axis after running to the trajectory centering position, and obtaining the second actual position of the robot axis after teaching specifically includes:
接收操作人员发出的对所述机器人轴示教的第二控制指令;receiving a second control command issued by an operator to teach the axis of the robot;
根据所述第二控制指令移动所述机器人轴,以将所述机器人轴示教到轨迹对中位置;moving the robot axis according to the second control command to teach the robot axis to a trajectory centered position;
获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的第二实际位置。Acquiring the position of the axis of the robot after teaching, and using the acquired position as the second actual position of the robot.
进一步地,所述根据所述第一实际位置和所述第二实际位置,对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置,具体包括:Further, according to the first actual position and the second actual position, fine-tuning the rough positioning zero point position to obtain the zero point position of the robot axis specifically includes:
计算所述第一实际位置和所述第二实际位置的差值;calculating a difference between said first actual position and said second actual position;
根据所述差值对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。Fine-tuning the rough positioning zero point position according to the difference value to obtain the zero point position of the robot axis.
优选地,所述差值为弧度值。Preferably, the difference is a radian value.
相应地,本发明实施例还提供一种机器人零点校准装置,包括:Correspondingly, the embodiment of the present invention also provides a robot zero point calibration device, including:
粗定位模块,用于在机器人轴的零点位置丢失后,,获取所述机器人轴的粗定位零点位置;The rough positioning module is used to obtain the rough positioning zero position of the robot shaft after the zero position of the robot shaft is lost;
运行模块,用于以所述粗定位零点位置为起点,按照原始轨迹运行机器人,获取运行后的所述机器人轴的第一实际位置;The running module is used to start from the rough positioning zero position, run the robot according to the original trajectory, and obtain the first actual position of the robot axis after running;
示教模块,用于将运行后的所述机器人轴示教到轨迹对中位置,获取示教后的所述机器人轴的第二实际位置;以及,A teaching module, configured to teach the robot axis after running to the centering position of the trajectory, and acquire the second actual position of the robot axis after teaching; and,
微调模块,用于根据所述第一实际位置和所述第二实际位置,对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。A fine-tuning module, configured to fine-tune the rough positioning zero point position according to the first actual position and the second actual position, and obtain the zero point position of the robot axis.
进一步地,所述粗定位模块具体包括:Further, the coarse positioning module specifically includes:
第一控制指令单元,用于在机器人轴的零点位置丢失后,,接收操作人员发出的对所述机器人轴进行示教的第一控制指令;The first control instruction unit is configured to receive a first control instruction for teaching the robot axis sent by the operator after the zero position of the robot axis is lost;
第一示教单元,用于根据所述第一控制指令移动所述机器人轴,以将所述机器人轴示教到机器人基座的凹槽对中位置;以及,a first teaching unit, configured to move the robot axis according to the first control instruction, so as to teach the robot axis to the centering position of the groove of the robot base; and,
粗定位零点位置获取单元,用于获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的粗定位零点位置。The rough positioning zero position acquiring unit is configured to acquire the position of the axis of the robot after teaching, and use the acquired position as the rough positioning zero position of the robot.
进一步地,所述示教模块具体包括:Further, the teaching module specifically includes:
第二控制指令单元,用于接收操作人员发出的对所述机器人轴示教的第二控制指令;a second control command unit, configured to receive a second control command issued by an operator to teach the robot axis;
第二示教单元,用于根据所述第二控制指令移动所述机器人轴,以将所述机器人轴示教到轨迹对中位置;以及,a second teaching unit, configured to move the robot axis according to the second control instruction, so as to teach the robot axis to a trajectory centering position; and,
第二实际位置获取单元,用于获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的第二实际位置。The second actual position acquiring unit is configured to acquire the taught position of the axis of the robot, and use the acquired position as the second actual position of the robot.
进一步地,所述微调模块具体包括:Further, the fine-tuning module specifically includes:
差值计算单元,用于计算所述第一实际位置和所述第二实际位置的差值;以及,a difference calculation unit for calculating a difference between the first actual position and the second actual position; and,
微调单元,用于根据所述差值对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。A fine-tuning unit, configured to fine-tune the rough positioning zero point position according to the difference, and obtain the zero point position of the robot axis.
优选地,所述差值为弧度值。Preferably, the difference is a radian value.
实施本发明实施例,具有如下有益效果:Implementing the embodiment of the present invention has the following beneficial effects:
本发明实施例提供的机器人零点校准方法及装置,能够在机器人轴的零点位置丢失后,先对机器人轴的零点位置进行粗定位,再按照原始轨迹运行机器人,获取机器人轴的运行误差,进而根据该误差调整粗定位零点位置,以获取机器人轴实际的零点位置,无需重新示教机器人轨迹,也不需要专业工具,即可实现机器人零点位置的快速、准确校准,达到原有程序轨迹的精确性保障,且节约成本。The robot zero point calibration method and device provided by the embodiments of the present invention can roughly locate the zero point position of the robot shaft after the zero point position of the robot shaft is lost, and then run the robot according to the original trajectory to obtain the running error of the robot shaft, and then according to This error adjusts the rough positioning zero point position to obtain the actual zero point position of the robot axis. It does not need to re-teach the robot trajectory and does not require professional tools to achieve fast and accurate calibration of the robot zero point position to achieve the accuracy of the original program trajectory. protection and cost savings.
附图说明Description of drawings
图1是本发明提供的机器人零点校准方法的一个实施例的流程示意图;Fig. 1 is a schematic flow chart of an embodiment of the robot zero point calibration method provided by the present invention;
图2是本发明提供的机器人零点校准装置的一个实施例的结构示意图。Fig. 2 is a structural schematic diagram of an embodiment of a robot zero point calibration device provided by the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
参见图1,本发明提供的机器人零点校准方法的一个实施例的流程示意图,包括:Referring to Fig. 1, a schematic flow chart of an embodiment of the robot zero point calibration method provided by the present invention, including:
S1、在机器人轴的零点位置丢失后,,获取所述机器人轴的粗定位零点位置;S1. After the zero position of the robot axis is lost, obtain the rough positioning zero position of the robot axis;
S2、以所述粗定位零点位置为起点,按照原始轨迹运行机器人,获取运行后的所述机器人轴的第一实际位置;S2. Starting from the rough positioning zero position, run the robot according to the original trajectory, and obtain the first actual position of the robot axis after running;
S3、将运行后的所述机器人轴示教到轨迹对中位置,获取示教后的所述机器人轴的第二实际位置;S3. Teach the robot axis after running to the centering position of the trajectory, and obtain the second actual position of the robot axis after teaching;
S4、根据所述第一实际位置和所述第二实际位置,对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。S4. According to the first actual position and the second actual position, fine-tune the zero point position of the rough positioning to obtain the zero point position of the robot axis.
需要说明的是,在机器人更换电机或外力导致机器人零点丢失后,需要对机器人中丢失零点的机器人轴重新进行零点校准。先对该机器人轴进行手动示教,粗定位出该机器人轴的零点位置,获得该机器人轴的粗定位零点位置。进而,以该粗定位零点位置为起始点,按照原始轨迹使机器人运行到轨迹中的任意一点,记录下运行后的机器人轴的第一实际位置。由于机器人轴的粗定位零点位置与初始的零点位置具有偏差,使得机器人轴运行后的第一实际位置与轨迹对中位置具有偏差,通过手动示教将机器人轴从第一实际位置调整到轨迹对中位置,并记录下此时机器人轴的第二实际位置。最后,根据机器人轴运行后的第一实际位置和示教后的第二轨迹位置,即可相应地对机器人轴的粗定位零点位置进行调整,以调整为机器人轴初始的零点位置。采用先粗定位再微调的方式来校准机器人零点位置,使零点位置的校准更加快速、准确。It should be noted that after the robot replaces the motor or the robot zero point is lost due to external force, it is necessary to re-calibrate the zero point of the robot axis that lost the zero point in the robot. Manually teach the robot axis first, roughly locate the zero point position of the robot axis, and obtain the rough positioning zero point position of the robot axis. Furthermore, with the rough positioning zero position as the starting point, the robot is run to any point in the track according to the original track, and the first actual position of the axis of the robot after running is recorded. Due to the deviation between the rough positioning zero position of the robot axis and the initial zero position, the first actual position of the robot axis after running has a deviation from the track alignment position. Adjust the robot axis from the first actual position to the track alignment position by manual teaching. middle position, and record the second actual position of the robot axis at this time. Finally, according to the first actual position of the robot axis after running and the second track position after teaching, the rough positioning zero position of the robot axis can be adjusted accordingly to adjust to the initial zero position of the robot axis. The zero point position of the robot is calibrated by first rough positioning and then fine adjustment, so that the calibration of the zero point position is faster and more accurate.
进一步地,所述在机器人轴更换电机后,获取所述机器人轴的零点粗定位位置,具体包括:Further, after the motor of the robot shaft is replaced, obtaining the rough positioning position of the zero point of the robot shaft specifically includes:
在机器人轴的零点位置丢失后,接收操作人员发出的对所述机器人轴进行示教的第一控制指令;After the zero point position of the robot axis is lost, receiving a first control instruction for teaching the robot axis sent by the operator;
根据所述第一控制指令移动所述机器人轴,以将所述机器人轴示教到机器人基座的凹槽对中位置;moving the robot axis according to the first control command to teach the robot axis to a groove-centered position of the robot base;
获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的粗定位零点位置。The position of the axis of the robot after teaching is obtained, and the obtained position is used as the rough positioning zero position of the robot.
需要说明的是,在机器人轴的零点位置丢失后,操作人员在操作端对该机器人轴进行示教操作,以对机器人轴的零点位置进行粗定位。操作人员目视机器人基座的凹槽对中位置,旋转操作端的示教旋钮,以移动机器人轴,使机器人轴示教到凹槽对中位置。其中,凹槽对中位置与机器人轴初始的零点位置相近。示教后,操作人员在操作端点击校准功能按钮,对机器人内部数据进行更新,即对机器人轴的零点位置进行重新定义,以将机器人轴的零点位置定义为机器人轴示教后的当前位置,从而实现机器人轴的零点位置粗定位。It should be noted that after the zero point position of the robot shaft is lost, the operator performs a teaching operation on the robot shaft at the operating end to roughly locate the zero point position of the robot shaft. The operator visually observes the centering position of the groove on the robot base, and rotates the teaching knob at the operating end to move the axis of the robot so that the axis of the robot can be taught to the centering position of the groove. Wherein, the centering position of the groove is close to the initial zero position of the robot axis. After teaching, the operator clicks the calibration function button on the operation end to update the internal data of the robot, that is, to redefine the zero point position of the robot axis, so that the zero point position of the robot axis is defined as the current position of the robot axis after teaching, In this way, the rough positioning of the zero position of the robot axis can be realized.
进一步地,所述将运行后的所述机器人轴示教到轨迹对中位置,获取示教后的所述机器人轴的第二实际位置,具体包括:Further, the teaching the robot axis after running to the trajectory centering position, and obtaining the second actual position of the robot axis after teaching specifically includes:
接收操作人员发出的对所述机器人轴示教的第二控制指令;receiving a second control command issued by an operator to teach the axis of the robot;
根据所述第二控制指令移动所述机器人轴,以将所述机器人轴示教到轨迹对中位置;moving the robot axis according to the second control command to teach the robot axis to a trajectory centered position;
获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的第二实际位置。Acquiring the position of the axis of the robot after teaching, and using the acquired position as the second actual position of the robot.
需要说明的是,以粗定位零点位置为起始点,仍按照原轨迹来运行机器人,使得机器人运行后的位置出现偏移。例如,以实际的零点位置为起始点运行机器人到P点,机器人轴位于轨迹对中位置,包括但不限于销和销座的对中、销和销孔的对中、两个方形平面的对中等。而以粗定位零点位置为起始点重新运行机器人到P点,机器人轴出现偏移,即销和销座不对中、销和销孔不对中、两个方形平面不对中等。通过示教器读取出此时机器人轴的第一实际位置,用L1表示。进而,通过操作人员对运行后的机器人进行手动示教。操作人员目视轨迹对中位置,旋转操作端的示教旋钮,以移动机器人轴,使机器人轴示教到轨迹对中位置,例如,通过旋转示教旋钮,使销和销座、销和销孔或两个方形平面等处于对中状态。通过示教器读取出此时机器人轴的第二实际位置,用L2表示。It should be noted that, starting from the rough positioning zero position, the robot is still running according to the original trajectory, so that the position of the robot after running is offset. For example, start from the actual zero point position to run the robot to point P, and the axis of the robot is at the centering position of the trajectory, including but not limited to the centering of pins and pin seats, the centering of pins and pin holes, and the alignment of two square planes. medium. However, when the robot is re-run to point P with the rough positioning zero point as the starting point, the robot axis will deviate, that is, the pin and the pin seat are misaligned, the pin and the pin hole are misaligned, and the two square planes are misaligned. The first actual position of the robot axis at this time is read out through the teaching pendant, represented by L1. Furthermore, the operator manually teaches the running robot. The operator looks at the centered position of the trajectory and rotates the teaching knob on the operating end to move the robot axis so that the axis of the robot can be taught to the centered position of the trajectory. For example, by rotating the teaching knob, the pin and the pin seat, the pin and the pin hole Or two square planes, etc. are in the centered state. Read out the second actual position of the robot axis at this time through the teaching pendant, represented by L2.
进一步地,所述根据所述第一实际位置和所述第二实际位置,对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置,具体包括:Further, according to the first actual position and the second actual position, fine-tuning the rough positioning zero point position to obtain the zero point position of the robot axis specifically includes:
计算所述第一实际位置和所述第二实际位置的差值;calculating a difference between said first actual position and said second actual position;
根据所述差值对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。Fine-tuning the rough positioning zero point position according to the difference value to obtain the zero point position of the robot axis.
需要说明的是,在读取出机器人轴的第一实际位置L1和第二实际位置L2后,计算第一实际位置L1和第二实际位置L2之间的差值X1=L2-L1,并根据该差值X1对粗定位零点位置进行微调。其中,若粗定位零点位置比实际零点位置向机器人转轴的正向偏差X1位置,则X1为负值;若粗定位零点位置比实际零点位置向机器人转轴负向偏差X1位置,则X1为正值。例如,第一实际位置L1=0.36884弧度,第二实际位置L2=0.39403弧度,即可计算出粗定位零点位置所需微调的值X1=L2-L1=0.39403-0.36884=0.02519弧度。在对粗定位零点位置微调后,操作人员在操作端点击校准功能按钮,以对机器人轴的零点位置进行重新定义,获取精调后的机器人轴的零点位置。It should be noted that, after reading out the first actual position L1 and the second actual position L2 of the robot axis, calculate the difference X1=L2-L1 between the first actual position L1 and the second actual position L2, and according to The difference X1 fine-tunes the coarse positioning zero position. Among them, if the rough positioning zero position deviates X1 from the actual zero position to the robot shaft in the positive direction, then X1 is a negative value; if the rough positioning zero position deviates X1 from the actual zero position to the robot shaft in the negative direction, then X1 is a positive value . For example, the first actual position L1=0.36884 radians, and the second actual position L2=0.39403 radians, then the fine-tuning value X1=L2-L1=0.39403-0.36884=0.02519 radians required for the rough positioning zero position can be calculated. After fine-tuning the zero position of the rough positioning, the operator clicks the calibration function button on the operating end to redefine the zero position of the robot axis and obtain the fine-tuned zero position of the robot axis.
优选地,所述差值为弧度值。Preferably, the difference is a radian value.
需要说明的是,在通过示教器读取机器人轴的第一实际位置和第二实际位置时,操作人员操作示教器以使第一实际位置和第二实际位置以弧度形式进行显示,从而计算出的第一实际位置和第二实际位置的差值为弧度值,进而根据弧度值来对粗定位零点位置进行精调,使调整后的零点位置精确到±0.5mm,调整地更加精确。It should be noted that when reading the first actual position and the second actual position of the robot shaft through the teaching pendant, the operator operates the teaching pendant to display the first actual position and the second actual position in arcs, so that The calculated difference between the first actual position and the second actual position is the radian value, and then the rough positioning zero point position is fine-tuned according to the radian value, so that the adjusted zero point position is accurate to ±0.5mm, and the adjustment is more accurate.
本发明实施例提供的机器人零点校准方法,能够在机器人轴的零点位置丢失后,先对机器人轴的零点位置进行粗定位,再按照原始轨迹运行机器人,获取机器人轴的运行误差,进而根据该误差调整粗定位零点位置,以获取机器人轴实际的零点位置,无需重新示教机器人轨迹,也不需要专业工具,即可实现机器人零点位置的快速、准确校准,且节约成本。The robot zero point calibration method provided by the embodiment of the present invention can roughly locate the zero point position of the robot shaft after the zero point position of the robot shaft is lost, and then run the robot according to the original trajectory to obtain the running error of the robot shaft, and then according to the error Adjust the zero point position of coarse positioning to obtain the actual zero point position of the robot axis, without re-teaching the robot trajectory, and without professional tools, to achieve fast and accurate calibration of the robot zero point position, and save costs.
相应的,本发明还提供一种机器人零点校准装置,能够实现上述实施例中的机器人零点校准方法的所有流程。Correspondingly, the present invention also provides a robot zero point calibration device, which can realize all the processes of the robot zero point calibration method in the above-mentioned embodiments.
参见图2,是本发明提供的机器人零点校准装置的一个实施例的结构示意图,包括:Referring to Fig. 2, it is a structural schematic diagram of an embodiment of the robot zero point calibration device provided by the present invention, including:
粗定位模块1,用于在机器人轴的零点位置丢失后,,获取所述机器人轴的粗定位零点位置;The rough positioning module 1 is used to obtain the rough positioning zero position of the robot shaft after the zero position of the robot shaft is lost;
运行模块2,用于以所述粗定位零点位置为起点,按照原始轨迹运行机器人,获取运行后的所述机器人轴的第一实际位置;The running module 2 is used to start from the rough positioning zero position, run the robot according to the original trajectory, and obtain the first actual position of the robot axis after running;
示教模块3,用于将运行后的所述机器人轴示教到轨迹对中位置,获取示教后的所述机器人轴的第二实际位置;以及,The teaching module 3 is used to teach the robot shaft after running to the centering position of the trajectory, and obtain the second actual position of the robot shaft after teaching; and,
微调模块4,用于根据所述第一实际位置和所述第二实际位置,对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。The fine-tuning module 4 is configured to fine-tune the zero point position of the coarse positioning according to the first actual position and the second actual position, and obtain the zero point position of the robot axis.
进一步地,所述粗定位模块具体包括:Further, the coarse positioning module specifically includes:
第一控制指令单元,用于在机器人轴的零点位置丢失后,,接收操作人员发出的对所述机器人轴进行示教的第一控制指令;The first control instruction unit is configured to receive a first control instruction for teaching the robot axis sent by the operator after the zero position of the robot axis is lost;
第一示教单元,用于根据所述第一控制指令移动所述机器人轴,以将所述机器人轴示教到机器人基座的凹槽对中位置;以及,a first teaching unit, configured to move the robot axis according to the first control instruction, so as to teach the robot axis to the centering position of the groove of the robot base; and,
粗定位零点位置获取单元,用于获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的粗定位零点位置。The rough positioning zero position acquiring unit is configured to acquire the position of the axis of the robot after teaching, and use the acquired position as the rough positioning zero position of the robot.
进一步地,所述示教模块具体包括:Further, the teaching module specifically includes:
第二控制指令单元,用于接收操作人员发出的对所述机器人轴示教的第二控制指令;a second control command unit, configured to receive a second control command issued by an operator to teach the robot axis;
第二示教单元,用于根据所述第二控制指令移动所述机器人轴,以将所述机器人轴示教到轨迹对中位置;以及,a second teaching unit, configured to move the robot axis according to the second control instruction, so as to teach the robot axis to a trajectory centering position; and,
第二实际位置获取单元,用于获取示教后的所述机器人轴的位置,并将获取的位置作为所述机器人的第二实际位置。The second actual position acquiring unit is configured to acquire the taught position of the axis of the robot, and use the acquired position as the second actual position of the robot.
进一步地,所述微调模块具体包括:Further, the fine-tuning module specifically includes:
差值计算单元,用于计算所述第一实际位置和所述第二实际位置的差值;以及,a difference calculation unit for calculating a difference between the first actual position and the second actual position; and,
微调单元,用于根据所述差值对所述粗定位零点位置进行微调,获取所述机器人轴的零点位置。A fine-tuning unit, configured to fine-tune the rough positioning zero point position according to the difference, and obtain the zero point position of the robot axis.
优选地,所述差值为弧度值。Preferably, the difference is a radian value.
本发明实施例提供的机器人零点校准装置,能够在机器人轴的零点位置丢失后,先对机器人轴的零点位置进行粗定位,再按照原始轨迹运行机器人,获取机器人轴的运行误差,进而根据该误差调整粗定位零点位置,以获取机器人轴实际的零点位置,无需重新示教机器人轨迹,也不需要专业工具,即可实现机器人零点位置的快速、准确校准,达到原有程序轨迹的精确性保障,且节约成本。The robot zero point calibration device provided by the embodiment of the present invention can roughly locate the zero point position of the robot shaft after the zero point position of the robot shaft is lost, and then run the robot according to the original trajectory to obtain the running error of the robot shaft, and then according to the error Adjust the zero point position of the rough positioning to obtain the actual zero point position of the robot axis, without re-teaching the robot trajectory, and without professional tools, the rapid and accurate calibration of the robot zero point position can be achieved, and the accuracy of the original program trajectory can be guaranteed. And save costs.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above description is a preferred embodiment of the present invention, and it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered Be the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611047078.4A CN108081255B (en) | 2016-11-23 | 2016-11-23 | A robot zero point calibration method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611047078.4A CN108081255B (en) | 2016-11-23 | 2016-11-23 | A robot zero point calibration method and device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108081255A true CN108081255A (en) | 2018-05-29 |
| CN108081255B CN108081255B (en) | 2019-10-15 |
Family
ID=62171140
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611047078.4A Active CN108081255B (en) | 2016-11-23 | 2016-11-23 | A robot zero point calibration method and device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108081255B (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109108969A (en) * | 2018-08-21 | 2019-01-01 | 珠海格力智能装备有限公司 | Robot zero point processing method and device |
| CN110793553A (en) * | 2019-11-07 | 2020-02-14 | 歌尔股份有限公司 | Zero point positioning method, system, servo motor and storage medium |
| CN111015723A (en) * | 2019-12-31 | 2020-04-17 | 深圳市优必选科技股份有限公司 | Robot joint positioning method, device, robot and storage medium |
| CN114161420A (en) * | 2021-12-13 | 2022-03-11 | 库卡机器人制造(上海)有限公司 | Robot assembly, control method thereof, control device thereof, and readable storage medium |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5829008A (en) * | 1981-08-12 | 1983-02-21 | Mitsubishi Electric Corp | Controler for robot |
| US4403281A (en) * | 1981-04-03 | 1983-09-06 | Cincinnati Milacron Industries, Inc. | Apparatus for dynamically controlling the tool centerpoint of a robot arm off a predetermined path |
| CN102806560A (en) * | 2012-08-24 | 2012-12-05 | 电子科技大学 | Method capable of automatically eliminating motion accumulated error of robot |
| CN105091807A (en) * | 2014-04-30 | 2015-11-25 | 鸿富锦精密工业(深圳)有限公司 | Robot tool coordinate system correction method |
-
2016
- 2016-11-23 CN CN201611047078.4A patent/CN108081255B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4403281A (en) * | 1981-04-03 | 1983-09-06 | Cincinnati Milacron Industries, Inc. | Apparatus for dynamically controlling the tool centerpoint of a robot arm off a predetermined path |
| JPS5829008A (en) * | 1981-08-12 | 1983-02-21 | Mitsubishi Electric Corp | Controler for robot |
| CN102806560A (en) * | 2012-08-24 | 2012-12-05 | 电子科技大学 | Method capable of automatically eliminating motion accumulated error of robot |
| CN105091807A (en) * | 2014-04-30 | 2015-11-25 | 鸿富锦精密工业(深圳)有限公司 | Robot tool coordinate system correction method |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109108969A (en) * | 2018-08-21 | 2019-01-01 | 珠海格力智能装备有限公司 | Robot zero point processing method and device |
| CN110793553A (en) * | 2019-11-07 | 2020-02-14 | 歌尔股份有限公司 | Zero point positioning method, system, servo motor and storage medium |
| CN111015723A (en) * | 2019-12-31 | 2020-04-17 | 深圳市优必选科技股份有限公司 | Robot joint positioning method, device, robot and storage medium |
| CN111015723B (en) * | 2019-12-31 | 2021-07-27 | 深圳市优必选科技股份有限公司 | Robot joint positioning method and device, robot and storage medium |
| CN114161420A (en) * | 2021-12-13 | 2022-03-11 | 库卡机器人制造(上海)有限公司 | Robot assembly, control method thereof, control device thereof, and readable storage medium |
| CN114161420B (en) * | 2021-12-13 | 2023-11-14 | 库卡机器人制造(上海)有限公司 | Robot assembly, control method and control device thereof, and readable storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108081255B (en) | 2019-10-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250058470A1 (en) | Method of teaching robot and robot system | |
| US11059169B2 (en) | Method of controlling robot, method of teaching robot, and robot system | |
| CN108081255B (en) | A robot zero point calibration method and device | |
| US9221176B2 (en) | Robot system and method for controlling the same | |
| US20180297198A1 (en) | Teaching point correcting method, program, recording medium, robot apparatus, imaging point creating method, and imaging point creating apparatus | |
| CN105196311B (en) | A kind of zero point quick calibrating method of six-joint robot | |
| KR101673978B1 (en) | Robotic Arm System and Method for calibrating Parallelism of the Same | |
| US11289303B2 (en) | Calibrating method and calibrating system | |
| CN110815201B (en) | The method of coordinate correction of robot arm | |
| WO2020135389A1 (en) | Motor compensation method and device, driver, and system | |
| CN114833832B (en) | Robot hand-eye calibration method, device, equipment and readable storage medium | |
| US11340576B2 (en) | Method and apparatus for estimating system error of commissioning tool of industrial robot | |
| CN107953333B (en) | Control method and system for calibrating tool at tail end of manipulator | |
| CN100461048C (en) | Method of calibrating an ophthalmic-lens-drilling machine, device for implementing one such method and ophthalmic-lens-machining apparatus comprising one such device | |
| CN109311163B (en) | Method for correcting motion control command of robot and related equipment | |
| JP2015205368A (en) | Component picking method, robot apparatus, program, and recording medium | |
| KR102430643B1 (en) | Method and Apparatus for revising position of stage in semiconductor device processing | |
| JP2018079548A (en) | Drill blade phase measurement device and drill blade phase measurement method | |
| KR101438657B1 (en) | Method of measuring industrial robot jig | |
| CN111267108B (en) | Industrial robot joint zero calibration structure and calibration method | |
| CN116572255B (en) | Coordinate origin calibration method, calibration device and medium | |
| JP6507792B2 (en) | Robot and robot system | |
| JP2008166410A (en) | Positioning calibration method, and mounting device applying the same | |
| CN110561400A (en) | Efficient and accurate positioning system and method for parts uniformly distributed on circumference | |
| CN112435350B (en) | A machining trajectory deformation compensation method and system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information |
Address after: 511434, No. 633, Jinshan Avenue East Road, Guangzhou, Guangdong, Panyu District Applicant after: Guangzhou Automobile Passenger Car Co.,Ltd. Address before: Panyu District Hualong Town Jinshan Road Guangzhou road 511434 No. 633 in Guangdong Province Applicant before: GUANGZHOU AUTOMOBILE GROUP MOTOR Co.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: No. 633, Jinshan Avenue East Road, Guangzhou, Guangdong, Panyu District Patentee after: Guangzhou Automobile Group Co.,Ltd. Country or region after: China Address before: No. 633, Jinshan Avenue East Road, Guangzhou, Guangdong, Panyu District Patentee before: Guangzhou Automobile Passenger Car Co.,Ltd. Country or region before: China |