CN108110008B - Semiconductor element and manufacturing method thereof and manufacturing method of memory - Google Patents
Semiconductor element and manufacturing method thereof and manufacturing method of memory Download PDFInfo
- Publication number
- CN108110008B CN108110008B CN201611054276.3A CN201611054276A CN108110008B CN 108110008 B CN108110008 B CN 108110008B CN 201611054276 A CN201611054276 A CN 201611054276A CN 108110008 B CN108110008 B CN 108110008B
- Authority
- CN
- China
- Prior art keywords
- channel
- isolation material
- substrate
- layer
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 123
- 238000002955 isolation Methods 0.000 claims abstract description 99
- 239000000758 substrate Substances 0.000 claims abstract description 54
- 230000009969 flowable effect Effects 0.000 claims abstract description 25
- 239000012530 fluid Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 35
- 238000007667 floating Methods 0.000 claims description 21
- 239000003989 dielectric material Substances 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 description 15
- 238000005530 etching Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76229—Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Element Separation (AREA)
Abstract
本发明公开了一种半导体元件及其制造方法与存储器的制造方法。半导体元件的制造方法包括:于基底及其上的材料层中形成第一与第二沟道,第一沟道的宽度小于第二沟道;形成覆盖材料层并填满第一与第二沟道的流动性隔离材料;移除第二沟道中的部分流动性隔离材料,使第二沟道侧壁上的流动性隔离材料的厚度介于
至之间;于流动性隔离材料上形成非流动性隔离材料。The present invention discloses a semiconductor element and a manufacturing method thereof and a manufacturing method of a memory. The manufacturing method of the semiconductor element comprises: forming a first channel and a second channel in a substrate and a material layer thereon, wherein the width of the first channel is smaller than that of the second channel; forming a covering material layer and a flow isolation material filling the first and second channels; removing part of the flow isolation material in the second channel so that the thickness of the flow isolation material on the sidewall of the second channel is between 1000 and 2000 mm; and removing the flow isolation material from the second channel so that the flow isolation material on the sidewall of the second channel is between 1000 and 2000 mm.
to between; forming a non-flowable isolation material on the flowable isolation material.Description
技术领域technical field
本发明是有关于一种半导体元件及其制造方法与存储器的制造方法。The present invention relates to a semiconductor element, a method for manufacturing the same, and a method for manufacturing a memory.
背景技术Background technique
在目前的半导体工艺中,通常将隔离结构形成于基底中,以定义出有源区与周边区。对于非易失性存储器的工艺来说,占有大布局面积的隔离结构之间定义出存储单元区,且存储单元区中也会存在占有较小布局面积的隔离结构。随着元件的尺寸持续缩小,在形成上述隔离结构时,将隔离材料填入形成于基底中的沟道中,以避免所形成的隔离结构中具有孔隙。目前以发展出各种用于隔离结构的技术,以提升元件的效能。In current semiconductor processes, isolation structures are usually formed in a substrate to define active regions and peripheral regions. For the non-volatile memory technology, a memory cell region is defined between the isolation structures occupying a large layout area, and an isolation structure occupying a smaller layout area also exists in the memory cell region. As the size of the device continues to shrink, when forming the above-mentioned isolation structure, the isolation material is filled into the trenches formed in the substrate to avoid voids in the formed isolation structure. At present, various technologies for isolation structures have been developed to improve device performance.
发明内容SUMMARY OF THE INVENTION
本发明提供一种半导体元件的制造方法,其可避免形成隔离结构时对沟道的侧壁与底部造成损坏,且可避免隔离结构产生的应力造成差排的问题。The present invention provides a method for manufacturing a semiconductor element, which can avoid damage to the sidewall and bottom of a trench when forming an isolation structure, and can avoid the problem of misalignment caused by the stress generated by the isolation structure.
本发明提供一种半导体元件,其由上述的制造方法来形成。The present invention provides a semiconductor element formed by the above-described manufacturing method.
本发明提供一种存储器的制造方法,其可制造具有较佳可靠度的存储器。The present invention provides a method for manufacturing a memory, which can manufacture a memory with better reliability.
本发明的半导体元件的制造方法,包括以下步骤:于基底上形成材料层;于所述材料层与所述基底中形成第一沟道与第二沟道,且所述第一沟道的宽度小于所述第二沟道的宽度;形成流动性隔离材料,覆盖所述材料层并填满所述第一沟道与所述第二沟道;移除所述第二沟道中的部分所述流动性隔离材料,使得位于所述第二沟道的侧壁上的所述流动性隔离材料的厚度介于至之间;于所述流动性隔离材料上形成非流动性隔离材料。The manufacturing method of the semiconductor element of the present invention includes the following steps: forming a material layer on a substrate; forming a first channel and a second channel in the material layer and the substrate, and the width of the first channel is less than the width of the second channel; forming a fluid isolation material, covering the material layer and filling the first channel and the second channel; removing part of the second channel fluid isolation material such that the thickness of the fluid isolation material on the sidewall of the second channel is between to between; forming a non-flowable insulation material on the flowable insulation material.
在本发明的半导体元件的制造方法的一实施例中,上述位于所述第二沟道的底部上的所述流动性隔离材料的厚度例如大于 In an embodiment of the method for manufacturing a semiconductor element of the present invention, the thickness of the fluid isolation material on the bottom of the second channel is, for example, greater than
在本发明的半导体元件的制造方法的一实施例中,上述在形成所述第一沟道与所述第二沟道之后以及在形成所述流动性隔离材料之前,于所述基底与所述材料层上形成缓冲层。In an embodiment of the method for manufacturing a semiconductor device of the present invention, after forming the first channel and the second channel and before forming the fluid isolation material, the substrate and the A buffer layer is formed on the material layer.
在本发明的半导体元件的制造方法的一实施例中,更包括对所述流动性隔离材料进行固化处理。In an embodiment of the method for manufacturing a semiconductor element of the present invention, the method further includes curing the fluid isolation material.
在本发明的半导体元件的制造方法的一实施例中,上述位于所述第二沟道的底部上的所述流动性隔离材料的顶表面与所述基底的顶表面之间的距离例如大于所述基底的顶表面与所述第二沟道的底部之间的距离的1/3。In an embodiment of the method for manufacturing a semiconductor device of the present invention, the distance between the top surface of the fluid isolation material on the bottom of the second channel and the top surface of the substrate is, for example, greater than 1/3 of the distance between the top surface of the substrate and the bottom of the second channel.
本发明的半导体元件,包括材料层、第一隔离材料层以及第二隔离材料层。材料层配置于基底上,其中所述材料层与所述基底中具有第一沟道与第二沟道,且所述第一沟道的宽度小于所述第二沟道的宽度。第一隔离材料层配置于所述第一沟道中以及所述第二沟道的侧壁与底部上。第二隔离材料层配置于所述第二沟道中的所述第一隔离材料层上。此外,位于所述第二沟道的侧壁上的所述第一隔离材料层的厚度介于至之间。The semiconductor element of the present invention includes a material layer, a first isolation material layer and a second isolation material layer. The material layer is disposed on the substrate, wherein the material layer and the substrate have a first channel and a second channel, and the width of the first channel is smaller than the width of the second channel. The first isolation material layer is disposed in the first channel and on the sidewalls and the bottom of the second channel. A second isolation material layer is disposed on the first isolation material layer in the second channel. In addition, the thickness of the first isolation material layer on the sidewall of the second channel is between to between.
在本发明的半导体元件的一实施例中,上述的所述第一隔离材料层的位于所述第二沟道的底部上的部分的厚度例如大于 In an embodiment of the semiconductor device of the present invention, the thickness of the portion of the first isolation material layer located on the bottom of the second channel is, for example, greater than
在本发明的半导体元件的一实施例中,上述位于所述第二沟道的底部上的所述第一隔离材料层的顶表面与所述基底的顶表面之间的距离例如大于所述基底的顶表面与所述第二沟道的底部之间的距离的1/3。In an embodiment of the semiconductor device of the present invention, the distance between the top surface of the first isolation material layer on the bottom of the second channel and the top surface of the substrate is, for example, greater than that of the substrate 1/3 of the distance between the top surface of the second channel and the bottom of the second channel.
本发明的存储器的制造方法,包括以下步骤:于基底上依序形成栅介电材料层与栅极材料层;于所述基底、所述栅介电材料层与所述栅极材料层中形成多个第一沟道与多个第二沟道,同时于所述基底上定义出栅介电层与浮置栅极,且所述第一沟道的宽度小于所述第二沟道的宽度;填满流动性隔离材料于所述第一沟道与所述第二沟道;移除所述第二沟道中的部分所述流动性隔离材料,使得位于所述第二沟道的侧壁上的所述流动性隔离材料的厚度介于至之间;于所述第二沟道中的所述流动性隔离材料上形成非流动性隔离材料;移除所述第一沟道中的部分所述流动性隔离材料;于所述浮置栅极上形成栅间介电层;以及于所述栅间介电层上形成控制栅极。The manufacturing method of the memory of the present invention includes the following steps: sequentially forming a gate dielectric material layer and a gate material layer on a substrate; forming on the substrate, the gate dielectric material layer and the gate material layer A plurality of first channels and a plurality of second channels, a gate dielectric layer and a floating gate are defined on the substrate, and the width of the first channels is smaller than the width of the second channels Filling the first channel and the second channel with a fluid isolation material; removing part of the fluid isolation material in the second channel so that it is located on the sidewall of the second channel The thickness of the fluid barrier material on the to between; forming a non-fluid isolation material on the fluid isolation material in the second channel; removing a portion of the fluid isolation material in the first channel; on the floating gate forming an inter-gate dielectric layer; and forming a control gate on the inter-gate dielectric layer.
在本发明的存储器的制造方法的一实施例中,上述位于所述第二沟道的底部上的所述流动性隔离材料的顶表面与所述基底的顶表面之间的距离例如大于所述基底的顶表面与所述第二沟道的底部之间的距离的1/3。In an embodiment of the method for manufacturing a memory of the present invention, the distance between the top surface of the fluid isolation material on the bottom of the second channel and the top surface of the substrate is, for example, greater than the distance 1/3 of the distance between the top surface of the substrate and the bottom of the second channel.
基于上述,在本发明中,在以流动性隔离材料填入较大的沟道之后,先移除沟道中的部分流动性隔离材料再进行后续工艺。如此一来,可有效地释放应力以解决隔离材料所造成的差排问题,进而提高元件的可靠度。Based on the above, in the present invention, after filling the larger trench with the fluid isolation material, part of the fluid isolation material in the trench is first removed before performing subsequent processes. In this way, the stress can be effectively released to solve the problem of misalignment caused by the isolation material, thereby improving the reliability of the device.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
附图说明Description of drawings
图1A至图1F为依据本发明实施例的非易失性存储器的制造流程剖面示意图。1A to 1F are schematic cross-sectional views illustrating a manufacturing process of a non-volatile memory according to an embodiment of the present invention.
【符号说明】【Symbol Description】
100:基底100: base
102:栅介电材料层102: Gate dielectric material layer
102a:栅介电层102a: gate dielectric layer
104:栅极材料层104: Gate material layer
104a:浮置栅极104a: floating gate
106:第一沟道106: first channel
108:第二沟道108: Second channel
110:缓冲层110: Buffer layer
112:流动性隔离材料112: Fluid isolation material
114:图案化掩模层114: Patterned mask layer
116、118:隔离结构116, 118: Isolation structure
120:栅间介电层120: Inter-gate dielectric layer
122:控制栅极122: Control Gate
D1、D2:距离D1, D2: distance
T1、T2:厚度T1, T2: Thickness
具体实施方式Detailed ways
图1A至图1F为依据本发明实施例的非易失性存储器的制造流程剖面示意图。1A to 1F are schematic cross-sectional views illustrating a manufacturing process of a non-volatile memory according to an embodiment of the present invention.
首先,请参照图1A,于基底100上形成材料层。基底100例如是硅基底。在本实施例中,材料层包括依序形成于基底100上的栅介电材料层102与栅极材料层104。在其他实施例中,若待形成的半导体元件不为非易失性存储器,则上述的材料层可视实际需求而为其他类型的膜层。在本实施例中,栅介电材料层102例如为氧化层,而栅极材料层104例如为多晶硅层或金属层。在非易失性存储器的实施例中,在存储器区中,栅介电材料层102作为隧穿介电层。电子可穿过隧穿介电层而储存于浮置栅极中。在逻辑元件区中,栅介电材料层102作为场效晶体管(field effect transistor,FET)的栅介电层。在一些实施例中,于栅极材料层104上形成硬掩模层(未绘示)。上述的硬掩模层可包括氧或氮的组成物。First, referring to FIG. 1A , a material layer is formed on the
然后,请参照图1B,于基底100、栅介电材料层102与栅极材料层104中形成多个第一沟道106与多个第二沟道108,其中第一沟道106的宽度小于第二沟道108的宽度。在图1B中,为了使图式清楚,仅绘示出两个第一沟道106与两个第二沟道108,然而第一沟道106与第二沟道108的数量并不限于此。在本实施例中,第二沟道108围绕第一沟道106,且第一沟道106与第二沟道108将基底100定义出具有第一沟道106的存储单元区以及具有第二沟道108的周边区。第一沟道106与第二沟道108的形成方法例如是对栅极材料层104、栅介电材料层102与基底100进行图案化工艺。此外,在进行上述图案化工艺之后,栅极材料层104与栅介电材料层102分别被定义成浮置栅极104a与栅介电层102a。Then, referring to FIG. 1B , a plurality of
接着,请参照图1C,于基底100上选择性地形成缓冲层110。在本实施例中,缓冲层110共形地形成于基底100上,以覆盖浮置栅极104a、栅介电层102a与基底100。缓冲层110例如为氧化物层,其形成方法例如为进行原子层沉积(ALD)工艺或高温氧化(HTO)工艺。缓冲层110的厚度例如介于至之间。然后,于基底100上形成流动性隔离材料112,以覆盖浮置栅极104a并填满第一沟道106与第二沟道108。流动性隔离材料112例如是氧化物材料,其例如是通过旋转涂布的方式形成于基底100上。流动性隔离材料112可包括硅酸盐或甲基硅倍半氧烷(methylsilsesquioxane,MSQ)。由于流动性隔离材料112与一般以沉积工艺所形成的材料相比具有较高的流动性,因此可以有效地填入第一沟道106与第二沟道108中,不会因流动性不佳而于填入宽度较小的第一沟道106之后产生孔隙。之后,可对流动性隔离材料112进行半固化处理。上述的半固化处理例如是在200℃至300℃的温度以及水蒸气或氧气下进行10分钟至30分钟。Next, referring to FIG. 1C , a
特别一提的是,在本实施例中,由于在形成流动性隔离材料112之前先形成有缓冲层110,因此可避免流动性隔离材料112在工艺期间进入浮置栅极104a、栅介电层102a或基底100中而导致元件可靠度降低的问题。In particular, in this embodiment, since the
此外,在对流动性隔离材料112进行半固化处理时,位于较宽的第二沟道108中的流动性隔离材料112会产生较大的应力,因此会使周围的基底100与浮置栅极104a产生差排问题。因此,在以下步骤中,移除第二沟道108中的部分流动性隔离材料112以释放应力。In addition, when the
然后,请参照图1D,于经半固化处理的流动性隔离材料112上形成图案化掩模层114。图案化掩模层114暴露出第二沟道108上方的部分流动性隔离材料112,例如暴露出第二沟道108中央部分上方的流动性隔离材料112。图案化掩模层114例如是图案化光刻胶层。接着,以图案化掩模层为蚀刻掩模,进行非等向性蚀刻工艺,移除部分被暴露出的流动性隔离材料112。详细地说,在移除部分被暴露出的流动性隔离材料112之后,保留于第二沟道108中的流动性隔离材料112需符合以下条件:于第二沟道108的侧壁上的流动性隔离材料112的厚度T1介于至之间,且于第二沟道108的侧壁上的流动性隔离材料112的厚度T1实质上是均一的;位于第二沟道108的底部上的流动性隔离材料112的顶表面与基底100的顶表面之间的距离D1大于基底100的顶表面与第二沟道108的底部之间的距离D2的1/3。此外,在本实施例中,位于第二沟道108的底部上的流动性隔离材料112的厚度T2例如大于 Then, referring to FIG. 1D , a patterned
当厚度T1超过时,将无法有效地达成释放应力的目的。当厚度T1少于时,第二沟道108的侧壁处的基底100、栅介电层102a与浮置栅极104a有可能在蚀刻工艺中受到损坏,且在基底100或浮置栅极104a中具有掺质的情况下可能会有掺质漏失的问题。此外,在距离D1未大于距离D2的1/3的情况下,第二沟道108中保留有过多的流动性隔离材料112,因此也无法有效地达成释放应力的目的。然而,厚度T2较佳需大于以避免第二沟道108下方的基底100在蚀刻工艺中受到损坏。换句话说,当厚度T1、厚度T2与距离D1在上述范围内时,可以有效地达到释放应力的目的,且可避免基底100、栅介电层102a与浮置栅极104a在蚀刻工艺中受到损坏,以及可防止基底100或浮置栅极104a中的掺质漏失,进而提高后续所形成的元件的可靠度。When the thickness T1 exceeds , it will not be able to effectively achieve the purpose of stress relief. When the thickness T1 is less than , the
接着,请参照图1E,在移除第二沟道108中的部分流动性隔离材料112之后,移除图案化掩模层114。然后,对流动性隔离材料112进行固化处理。上述的固化处理例如是多阶段固化处理:先于300℃至500℃的温度以及水蒸气或氧气下进行10分钟至30分钟,然后于500℃至800℃的温度以及水蒸气或氧气下进行10分钟至30分钟,之后于800℃至1100℃的温度以及氮气下进行30分钟至60分钟。Next, referring to FIG. 1E , after removing part of the
然后,于第二沟道108中的经固化的流动性隔离材料112上形成非流动性隔离材料,且非流动性隔离材料填满第二沟道108。上述的非流动性隔离材料例如是高密度等离子体氧化物材料或以增强高深宽比沟填工艺(enhanced high aspect ratio process,eHARP)所形成的氧化物材料。然后,进行平坦化工艺(如化学机械研磨工艺),移除第二沟道108外的非流动性隔离材料、经固化的流动性隔离材料112与缓冲层110,直到暴露出浮置栅极104a。如此一来,第二沟道108中形成有隔离结构116(即保留于第二沟道108中的经固化的流动性隔离材料112)与位于隔离结构116上的隔离结构118(即保留于第二沟道108中的非流动性隔离材料)。Then, a non-flowable isolation material is formed on the cured
之后,请参照图1F,移除第一沟道106中的部分隔离结构116与部分缓冲层110,以暴露出第一沟道106周围的浮置栅极104a的至少部分侧壁。然后,于浮置栅极104a的顶表面与侧壁上形成栅间介电层120。栅间介电层120的形成方法例如是进行化学气相沉积工艺,以于浮置栅极104a的顶表面与侧壁上共形地形成多层结构。栅间介电层120可包括两层氧化层以及位于其间的氮化层。之后,于栅间介电层120上形成控制栅极122。控制栅极122的材料例如是多晶硅,其形成方法例如是进行化学气相沉积工艺。第一沟道106中所移除的隔离结构116与缓冲层110可使浮置栅极104a与控制栅极122的接触面积增加。因此,可提高浮置栅极104a与控制栅极122之间的耦合率(coupling ratio),使得元件可具有较佳的效能。After that, referring to FIG. 1F , part of the
在本实施例中,以形成非易失性存储器为例来说明本发明的半导体元件的制造方法。然而,本发明的半导体元件不限于非易失性存储器。在上述实施例中,视实际需求对材料层进行替换,依据图1A至图1E所述的步骤即可用来形成其他类型的半导体元件。举例来说,当上述材料层为多晶硅层时,依据图1A至图1E所述的步骤并搭配适当的工艺,即可形成隔离结构以及位于隔离结构所定义出的基底的有源区上的金属氧化物半导体晶体管。In this embodiment, the method of manufacturing the semiconductor element of the present invention will be described by taking the formation of a nonvolatile memory as an example. However, the semiconductor element of the present invention is not limited to the nonvolatile memory. In the above-mentioned embodiments, the material layers are replaced according to actual needs, and the steps described in FIGS. 1A to 1E can be used to form other types of semiconductor elements. For example, when the above-mentioned material layer is a polysilicon layer, the isolation structure and the metal on the active region of the substrate defined by the isolation structure can be formed according to the steps described in FIG. 1A to FIG. 1E with appropriate processes. oxide semiconductor transistors.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视随附的权利要求范围所界定的为准。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611054276.3A CN108110008B (en) | 2016-11-25 | 2016-11-25 | Semiconductor element and manufacturing method thereof and manufacturing method of memory |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611054276.3A CN108110008B (en) | 2016-11-25 | 2016-11-25 | Semiconductor element and manufacturing method thereof and manufacturing method of memory |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108110008A CN108110008A (en) | 2018-06-01 |
| CN108110008B true CN108110008B (en) | 2020-07-28 |
Family
ID=62205137
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611054276.3A Active CN108110008B (en) | 2016-11-25 | 2016-11-25 | Semiconductor element and manufacturing method thereof and manufacturing method of memory |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108110008B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11502165B2 (en) * | 2020-07-08 | 2022-11-15 | Nanya Technology Corporation | Semiconductor device with flowable layer and method for fabricating the same |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6329253B1 (en) * | 1999-11-05 | 2001-12-11 | Chartered Semiconductor Manufacturing Ltd. | Thick oxide MOS device used in ESD protection circuit |
| CN103474353A (en) * | 2012-06-08 | 2013-12-25 | 中芯国际集成电路制造(上海)有限公司 | Fin and STI structure manufacturing method |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4621414A (en) * | 1985-03-04 | 1986-11-11 | Advanced Micro Devices, Inc. | Method of making an isolation slot for integrated circuit structure |
| JPH11186379A (en) * | 1997-12-19 | 1999-07-09 | Sony Corp | Manufacture of semiconductor device |
| JP3691963B2 (en) * | 1998-05-28 | 2005-09-07 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
| JP2003031650A (en) * | 2001-07-13 | 2003-01-31 | Toshiba Corp | Method for manufacturing semiconductor device |
| US6500712B1 (en) * | 2002-06-17 | 2002-12-31 | Mosel Vitelic, Inc. | Fabrication of dielectric in trenches formed in a semiconductor substrate for a nonvolatile memory |
| KR20060001196A (en) * | 2004-06-30 | 2006-01-06 | 주식회사 하이닉스반도체 | Device Separator Formation Method of Semiconductor Device |
| KR100816749B1 (en) * | 2006-07-12 | 2008-03-27 | 삼성전자주식회사 | Device isolation films, nonvolatile memory devices including the device isolation films, and device isolation films and methods of forming nonvolatile memory devices |
-
2016
- 2016-11-25 CN CN201611054276.3A patent/CN108110008B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6329253B1 (en) * | 1999-11-05 | 2001-12-11 | Chartered Semiconductor Manufacturing Ltd. | Thick oxide MOS device used in ESD protection circuit |
| CN103474353A (en) * | 2012-06-08 | 2013-12-25 | 中芯国际集成电路制造(上海)有限公司 | Fin and STI structure manufacturing method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108110008A (en) | 2018-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100799024B1 (en) | Manufacturing Method of NAND Flash Memory Device | |
| CN104952479B (en) | embedded non-volatile memory | |
| US7910453B2 (en) | Storage nitride encapsulation for non-planar sonos NAND flash charge retention | |
| US20130102124A1 (en) | Method of manufacturing semiconductor device | |
| CN104425507B (en) | Flash memory structure and forming method thereof | |
| TWI555179B (en) | Isolation structure and manufacturing method thereof having non-volatile memory | |
| TWI624032B (en) | Semiconductor component and method of manufacturing same | |
| JP2005530357A (en) | Floating gate extended with conductive spacer | |
| CN108735670B (en) | A semiconductor device and its manufacturing method and electronic device | |
| CN108110008B (en) | Semiconductor element and manufacturing method thereof and manufacturing method of memory | |
| US10354924B2 (en) | Semiconductor memory device and method of manufacturing the same | |
| US8766350B2 (en) | Semiconductor device and method for fabricating semiconductor device | |
| US6562682B1 (en) | Method for forming gate | |
| CN103208458B (en) | Manufacturing method of embedded flash memory | |
| US9899396B1 (en) | Semiconductor device, fabricating method thereof, and fabricating method of memory | |
| CN101388363B (en) | Non-volatile memory and its manufacturing method | |
| JP2014187132A (en) | Semiconductor device | |
| TWI629749B (en) | Semiconductor device, manufacturing method thereof and manufacturing method of memory | |
| CN109427808A (en) | Semiconductor memory element and method for manufacturing the same | |
| TWI469269B (en) | Method of forming word line of embedded flash memory | |
| KR20060008594A (en) | Manufacturing Method of NAND Flash Memory Device | |
| US20090170263A1 (en) | Method of manufacturing flash memory device | |
| KR100958632B1 (en) | Manufacturing Method of Flash Memory Device | |
| CN100403515C (en) | Method of manufacturing semiconductor device | |
| TWI848574B (en) | Semiconductor structure and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |