CN108122203B - Geometric parameter correction method, device, equipment and system - Google Patents
Geometric parameter correction method, device, equipment and system Download PDFInfo
- Publication number
- CN108122203B CN108122203B CN201611073139.4A CN201611073139A CN108122203B CN 108122203 B CN108122203 B CN 108122203B CN 201611073139 A CN201611073139 A CN 201611073139A CN 108122203 B CN108122203 B CN 108122203B
- Authority
- CN
- China
- Prior art keywords
- image
- projection
- position coordinates
- dimensional
- geometric parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/416—Exact reconstruction
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
本申请提供一种几何参数的校正方法、装置、设备及系统,所述方法包括:获取校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;确定校正模体中的小球球心在二维投影图像中的物理投影位置坐标;利用物理投影位置坐标获得一组全局系统几何参数;根据全局系统几何参数对所有二维投影图像进行重建,得到校正模体的三维重建图像;确定三维重建图像中小球球心在获取的二维投影图像上的虚拟投影位置坐标;计算物理投影位置坐标与虚拟投影位置坐标的残差;利用残差对不同机架角度下的几何参数进行校正。本申请利用小球球心的物理投影坐标与小球球心的虚拟投影坐标之间的残差对不同机架角度的系统几何参数进行补偿,修正了几何参数估计误差。
The present application provides a method, device, device and system for calibrating geometric parameters. The method includes: acquiring multiple two-dimensional projection images projected by a calibration phantom onto a detector at different gantry angles; The physical projection position coordinates of the center of the small ball in the 2D projection image; a set of global system geometric parameters are obtained by using the physical projection position coordinates; all 2D projection images are reconstructed according to the global system geometric parameters, and the 3D calibration phantom is obtained. Reconstruct the image; determine the virtual projection position coordinates of the center of the ball in the 3D reconstructed image on the acquired 2D projection image; calculate the residuals between the physical projection position coordinates and the virtual projection position coordinates; parameters are corrected. The present application uses the residual difference between the physical projection coordinates of the ball center and the virtual projection coordinates of the ball center to compensate the system geometric parameters of different gantry angles, and corrects the geometric parameter estimation errors.
Description
技术领域technical field
本申请涉及医疗成像技术,特别涉及一种几何参数的校正方法、装置、设备及系统。The present application relates to medical imaging technology, and in particular, to a method, device, device and system for calibrating geometric parameters.
背景技术Background technique
锥形束投照计算机重组断层影像(Cone Beam Computed Tomography,CBCT)成像系统一般包含一个X-ray放射源、一个探测板和一个旋转机架。其中,X-ray放射源和探测板附加到旋转机架上,随着旋转机架的旋转而旋转。CBCT成像原理是围绕三维物体旋转机架获取物体在多个角度下的投影图像,然后应用锥束投影图重建算法重建出物体三维图像。The Cone Beam Computed Tomography (CBCT) imaging system generally includes an X-ray radiation source, a detection plate and a rotating gantry. Among them, the X-ray radiation source and the detection plate are attached to the rotating gantry and rotate with the rotation of the rotating gantry. The principle of CBCT imaging is to rotate the gantry around the three-dimensional object to obtain the projection images of the object at multiple angles, and then apply the cone beam projection image reconstruction algorithm to reconstruct the three-dimensional image of the object.
CBCT成像系统在重建图像时,需要获得成像系统准确的几何系统参数信息,CBCT系统的几何参数是指描述系统的X-ray光源、物体和探测器之间的角度和位置的几何参量,如X-ray放射源到探测板的距离,X-ray放射源到旋转轴的距离,探测板的倾斜和旋转角度等。由于X-ray放射源和探测板的重力,这些参数随着旋转机架的旋转而变化,也就是说在不同旋转机架角度下,成像系统的几何系统参数是不同的。不准确的CBCT几何系统参数信息将导致重建图像出现几何伪影,降低重建图像质量。因此,CBCT系统的几何参数校正具有提高重建图像质量,防止出现图像伪影的重要意义。When reconstructing an image, the CBCT imaging system needs to obtain accurate geometric system parameter information of the imaging system. The geometric parameters of the CBCT system refer to the geometric parameters that describe the angle and position between the X-ray light source, object and detector of the system, such as X -The distance from the ray radiation source to the detection plate, the distance from the X-ray radiation source to the rotation axis, the inclination and rotation angle of the detection plate, etc. Due to the gravity of the X-ray radiation source and the detection plate, these parameters change with the rotation of the rotating gantry, that is to say, the geometric system parameters of the imaging system are different under different rotating gantry angles. Inaccurate CBCT geometric system parameter information will cause geometric artifacts in reconstructed images and reduce the quality of reconstructed images. Therefore, the geometric parameter correction of CBCT system is of great significance to improve the quality of reconstructed images and prevent image artifacts.
目前,通用的做法为:将一个带有若干标记点的校正模体放置在X-ray放射源和探测板之间,旋转机架得到该校正模体在不同角度的2D投影图,再根据2D投影图像中的标记点与成像系统的几何参数预先设定的几何关系,计算得到成像系统的几何参数。其中,具体的实现过程为:At present, the common practice is to place a calibration phantom with several marked points between the X-ray radiation source and the detection plate, rotate the gantry to obtain 2D projection images of the calibration phantom at different angles, and then according to the 2D The geometric relationship between the marker points in the projection image and the geometric parameters of the imaging system is preset, and the geometric parameters of the imaging system are calculated. Among them, the specific implementation process is as follows:
第一种方案是:校正模体是包含24个相同大小金属小球的圆柱形模体,这些小球形成两个与圆柱模体同轴的圆环,每个圆环由均匀分布的12个小球组成,其中,要求小球的位置误差不超过25μm。之后,将校正模体放在X-ray放射源和探测板之间,使校正模体的中心与等中心对齐,校正模体的轴方向与旋转机架的旋转轴对齐。旋转机架以1度的间隔旋转,在每个机架角度分别采集一幅校正模体的2D投影图。对于每一幅投影图做如下处理:首先,确定小球投影在投影图中的位置坐标;然后,在定义的投影坐标系和探测器坐标系下,利用模体坐标系下小球位置坐标和投影图上小球位置坐标的关系,给出直接计算系统几何参数的解析表达式,并计算出系统几何参数;最后,通过将各个角度下的X-ray放射源的坐标拟合成圆形轨迹,重新建立一个投影系统坐标系,并重新计算在此投影系统坐标系下的所有角度下的几何参数。但是,这种方案中,对校正模体中小球的相对位置精度要求比较严格,小球的相对位置偏差影响最后的系统几何参数的计算精度。The first solution is: the calibration phantom is a cylindrical phantom containing 24 metal spheres of the same size, these spheres form two rings coaxial with the cylindrical phantom, each ring consists of 12 evenly distributed It is composed of small balls, wherein the position error of the small balls is required to be no more than 25μm. After that, the calibration phantom is placed between the X-ray radiation source and the detection plate, so that the center of the calibration phantom is aligned with the isocenter, and the axis direction of the calibration phantom is aligned with the rotation axis of the rotating gantry. The rotating gantry was rotated at 1-degree intervals, and a 2D projection image of the calibration phantom was acquired at each gantry angle. For each projection image, do the following processing: first, determine the position coordinates of the projection of the ball in the projection image; then, in the defined projection coordinate system and detector coordinate system, use the position coordinates of the ball in the phantom coordinate system and The relationship between the position and coordinates of the ball on the projection map is given, and the analytical expression for directly calculating the geometric parameters of the system is given, and the geometric parameters of the system are calculated; finally, by fitting the coordinates of the X-ray radiation source at various angles into a circular trajectory , re-establish a projection system coordinate system, and recalculate the geometric parameters at all angles under this projection system coordinate system. However, in this scheme, the requirements for the relative positional accuracy of the small balls in the calibration phantom are relatively strict, and the relative positional deviation of the small balls affects the calculation accuracy of the final system geometric parameters.
第二种方案:通常假设CBCT的系统几何参数在不同机架角度下是一组固定的全局参数,然后利用校正模体中的标记点位置信息和其投影图像的位置信息关系,计算得到这一组全局参数。但是,这种方法的假设条件在实际中通常是不成立的,利用计算的全局参数重建三维图像会引入几何伪影,降低图像质量。The second scheme: It is usually assumed that the system geometric parameters of CBCT are a set of fixed global parameters at different gantry angles, and then the relationship between the position information of the marker points in the calibration phantom and the position information of its projected image is used to calculate this. Group global parameters. However, the assumptions of this method are usually not established in practice, and the reconstruction of 3D images with calculated global parameters will introduce geometric artifacts and reduce image quality.
因此,如何降低校正模体精度要求并且能精确计算出成像系统几何参数,是目前有待解决的技术问题。Therefore, how to reduce the accuracy requirements of the correction phantom and accurately calculate the geometric parameters of the imaging system is a technical problem to be solved at present.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请提供一种几何参数的校正方法、装置、设备及系统,在降低校正模体精度要求的同时,修正了不同机架角度下的几何参数的估计误差。In view of this, the present application provides a method, device, device and system for calibrating geometric parameters, which can correct the estimation errors of geometric parameters under different gantry angles while reducing the accuracy requirements of the calibration phantom.
具体地,本申请是通过如下技术方案实现的:Specifically, the application is achieved through the following technical solutions:
第一方面提供一种几何参数的校正方法,包括:A first aspect provides a method for calibrating geometric parameters, including:
获取校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;Acquire multiple 2D projection images of the calibration phantom projected onto the detector at different gantry angles;
确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体中;determining the physical projection position coordinates of the center of the ball in the two-dimensional projection image, and the ball is embedded in the calibration phantom;
利用所述物理投影位置坐标获得一组全局系统几何参数;Obtaining a set of global system geometric parameters using the physical projected position coordinates;
根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;Reconstructing all two-dimensional projection images according to the global system geometric parameters to obtain a three-dimensional reconstructed image of the correction phantom;
确定所述三维重建图像中所述小球球心在获取的二维投影图像上的虚拟投影位置坐标;determining the virtual projection position coordinates of the spherical center of the small ball on the acquired two-dimensional projection image in the three-dimensional reconstructed image;
获得所述物理投影位置坐标与所述虚拟投影位置坐标的残差;obtaining the residual between the physical projection position coordinates and the virtual projection position coordinates;
利用所述残差对不同机架角度下的几何参数进行校正。The geometric parameters under different gantry angles are corrected by using the residuals.
第二方面提供一种几何参数的校正装置,包括:A second aspect provides a device for calibrating geometric parameters, comprising:
获取单元,用于获取校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;an acquisition unit, used for acquiring multiple two-dimensional projection images of the correction phantom projected onto the detector under different gantry angles;
第一确定单元,用于确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体中;a first determining unit, configured to determine the physical projection position coordinates of the center of the small ball in the two-dimensional projection image, and the small ball is embedded in the calibration phantom;
第一获得单元,用于利用所述物理投影位置坐标获得出一组全局系统几何参数;a first obtaining unit, configured to obtain a set of global system geometric parameters by using the physical projection position coordinates;
重建单元,用于根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;a reconstruction unit, configured to reconstruct all two-dimensional projection images according to the global system geometric parameters to obtain a three-dimensional reconstructed image of the correction phantom;
第二确定单元,用于确定所述三维重建图像中所述小球球心在所述获取的二维投影图像中的虚拟投影位置坐标;a second determining unit, configured to determine the virtual projection position coordinates of the spherical center of the small ball in the acquired two-dimensional projection image in the three-dimensional reconstructed image;
第二获得单元,用于获得所述物理投影位置坐标与所述虚拟投影位置坐标的残差;a second obtaining unit, configured to obtain a residual between the physical projection position coordinates and the virtual projection position coordinates;
校正单元,用于利用所述残差对不同机架角度下的几何参数进行校正。A correction unit, configured to use the residual to correct geometric parameters at different gantry angles.
第三方面提供一种图像处理设备,包括:处理器;以及用于存储所述处理器可执行指令的存储器;其中,A third aspect provides an image processing device, comprising: a processor; and a memory for storing instructions executable by the processor; wherein,
所述处理器被配置为:The processor is configured to:
获取所述校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;acquiring multiple two-dimensional projection images of the calibration phantom projected onto the detector under different gantry angles;
确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体中;determining the physical projection position coordinates of the center of the ball in the two-dimensional projection image, and the ball is embedded in the calibration phantom;
利用所述物理投影位置坐标获得一组全局系统几何参数;Obtaining a set of global system geometric parameters using the physical projected position coordinates;
根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;Reconstructing all two-dimensional projection images according to the global system geometric parameters to obtain a three-dimensional reconstructed image of the correction phantom;
确定所述三维重建图像中所述小球球心在获取的二维投影图像上的虚拟投影位置坐标;determining the virtual projection position coordinates of the spherical center of the small ball on the acquired two-dimensional projection image in the three-dimensional reconstructed image;
获得所述物理投影位置坐标与所述虚拟投影位置坐标的残差;利用所述残差对不同机架角度下的几何参数进行校正。Obtain the residual of the physical projection position coordinates and the virtual projection position coordinates; use the residual to correct geometric parameters at different gantry angles.
第四方面提供一种成像系统,包括:旋转机架,附加在所述旋转机架上的放射源和探测器,其特征在于,还包括:A fourth aspect provides an imaging system, comprising: a rotating gantry, a radiation source and a detector attached to the rotating gantry, and further comprising:
校正模体,用于放置在所述放射源和所述探测器之间,其中,所述校正模体包括多个金属小球,所有金属小球近似组成一条直线,相邻金属小球之间的间隔近似相等;A calibration phantom is used to be placed between the radiation source and the detector, wherein the calibration phantom includes a plurality of metal spheres, all the metal spheres approximately form a straight line, and the adjacent metal spheres are arranged between adjacent metal spheres. The interval is approximately equal;
图像处理设备,用于获取所述校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体中;利用所述物理投影位置坐标获得一组全局系统几何参数;根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;确定所述三维重建图像中所述小球球心在获取的二维投影图像上的虚拟投影位置坐标;获得所述物理投影位置坐标与所述虚拟投影位置坐标的残差;利用所述残差对不同机架角度下的几何参数进行校正。an image processing device for acquiring a plurality of two-dimensional projection images projected by the correction phantom onto the detector at different gantry angles; determining the physical projection position coordinates of the center of the sphere in the two-dimensional projection images, The small ball is embedded in the correction phantom; a set of global system geometric parameters is obtained by using the physical projection position coordinates; all two-dimensional projection images are reconstructed according to the global system geometric parameters to obtain the correction phantom the three-dimensional reconstructed image; determine the virtual projection position coordinates of the ball center in the three-dimensional reconstructed image on the acquired two-dimensional projection image; obtain the residual between the physical projection position coordinates and the virtual projection position coordinates; The geometric parameters under different gantry angles are corrected by using the residuals.
本申请实施例中,采集校正模体在不同机架角度下的二维投影图像,并确定在获取的二维投影图像中的小球球心物理投影的位置坐标,然后利用所述小球球心物理投影位置坐标与CBCT成像系统几何参数的解析关系计算出一组全局系统几何参数。然后利用这组全局几何参数对所有二维投影图像进行重建,得到校正模体的三维重建图像;然后,确定三维重建图像中小球球心的位置坐标,并计算三维重建图像中的小球球心在各个采集机架角度下投影到获取的二维投影图像的虚拟投影位置坐标。最后,计算采集的小球球心的物理投影坐标与计算的小球球心的虚拟投影坐标之间的残差,并根据该残差修正各个机架角度下的几何参数估计误差。由此可见,本申请实施例中,通过对校正模体在不同机架角度下的投影图像进行解析,并计算出一组固定不变的全局系统几何参数,不需要标记校正模体中小球之间精确的相对位置,这极大的方便了算法的实现,降低了成本;同时,利用采集的小球的物理投影坐标与计算的小球虚拟投影坐标之间的残差对不同机架角度的系统几何参数进行补偿,修正了系统几何参数固定不变这一假设引起的几何参数估计误差。In the embodiment of the present application, the two-dimensional projection images of the calibration phantom at different gantry angles are collected, and the position coordinates of the physical projection of the center of the small ball in the acquired two-dimensional projection image are determined, and then the small ball is used. The analytic relationship between the physical projection position coordinates of the heart and the geometric parameters of the CBCT imaging system calculates a set of global system geometric parameters. Then use this set of global geometric parameters to reconstruct all 2D projection images to obtain 3D reconstructed images of the corrected phantom; then, determine the position coordinates of the center of the ball in the 3D reconstructed image, and calculate the center of the ball in the 3D reconstructed image The virtual projection position coordinates projected to the acquired two-dimensional projection image under each acquisition rack angle. Finally, calculate the residual between the collected physical projection coordinates of the ball center and the calculated virtual projection coordinates of the ball center, and correct the geometric parameter estimation error at each gantry angle according to the residual. It can be seen that, in the embodiment of the present application, by analyzing the projection images of the calibration phantom at different gantry angles, and calculating a set of fixed global system geometric parameters, there is no need to mark the difference between the spheres in the calibration phantom. The precise relative position between the balls greatly facilitates the implementation of the algorithm and reduces the cost; at the same time, the residual difference between the collected physical projection coordinates of the ball and the calculated virtual projection coordinates of the ball is used to determine the difference between the different gantry angles. The system geometric parameters are compensated to correct the geometric parameter estimation errors caused by the assumption that the system geometric parameters are fixed.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not limiting of the present application.
附图说明Description of drawings
图1是本申请实施例提供的一种成像系统的结构示意图;FIG. 1 is a schematic structural diagram of an imaging system provided by an embodiment of the present application;
图2是本申请实施例提供的一种校正模体的结构示意图;2 is a schematic structural diagram of a calibration phantom provided by an embodiment of the present application;
图3是本申请实施例提供的一种几何参数的校正方法的流程图;3 is a flowchart of a method for calibrating geometric parameters provided by an embodiment of the present application;
图4A是本申请实施例提供的CBCT系统的表示几何系统参数的示意图;4A is a schematic diagram of a geometric system parameter of a CBCT system provided by an embodiment of the present application;
图4B是本申请实施例提供的CBCT系统的表示几何系统参数的另一示意图;FIG. 4B is another schematic diagram representing the geometric system parameters of the CBCT system provided by the embodiment of the present application;
图5A是本申请本实施例提供的校正模体中每个小球运动的一个圆形运动轨迹的示意图;5A is a schematic diagram of a circular motion trajectory of each small ball in the calibration phantom provided by this embodiment of the present application;
图5B是本申请实施例提供的校正模体中每个小球的圆形运动轨迹在平板探测器上的投影为一个椭圆形轨迹的示意图;5B is a schematic diagram of the projection of the circular motion trajectory of each ball in the calibration phantom provided by the embodiment of the present application on the flat panel detector as an elliptical trajectory;
图6是本申请实施例提供的相似三角关系的示意图;6 is a schematic diagram of a similar triangular relationship provided by an embodiment of the present application;
图7是本申请实施例提供的射线源到旋转轴的距离的计算原理示意图;7 is a schematic diagram of the calculation principle of the distance from the ray source to the rotation axis provided by the embodiment of the present application;
图8是本申请提供的几何参数的校正装置所在设备的一种硬件结构图;Fig. 8 is a kind of hardware structure diagram of the equipment where the correction device of the geometric parameter provided by the application is located;
图9是本申请实施例提供的一种几何参数的校正装置的结构示意图;9 is a schematic structural diagram of a device for calibrating geometric parameters provided by an embodiment of the present application;
图10是本申请实施例提供的一种几何参数的校正装置的另一结构示意图。FIG. 10 is another schematic structural diagram of a device for calibrating geometric parameters provided by an embodiment of the present application.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with this application. Rather, they are merely examples of apparatus and methods consistent with some aspects of the present application as recited in the appended claims.
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in this application is for the purpose of describing particular embodiments only and is not intended to limit the application. As used in this application and the appended claims, the singular forms "a," "the," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。It should be understood that although the terms first, second, third, etc. may be used in this application to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other. For example, the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information without departing from the scope of the present application. Depending on the context, the word "if" as used herein can be interpreted as "at the time of" or "when" or "in response to determining."
为了便于理解,在说明本申请实施例之前,先简单介绍下本申请涉及到的应用架构。For ease of understanding, before describing the embodiments of the present application, the application architecture involved in the present application is briefly introduced.
请参阅图1,是本申请实施例提供的一种成像系统的结构示意图;所述成像系统,比如,锥形束投照计算机重组断层影像(CBCT,Come beam computer tomography)成像系统,该成像系统一般包括:图像处理设备10,旋转机架11,附加在所述旋转机架11上的放射源(比如X-ray放射源)12,探测器13和校正模体14,旋转机架11可以围绕着旋转轴15旋转;其中,Please refer to FIG. 1 , which is a schematic structural diagram of an imaging system provided by an embodiment of the present application; the imaging system, for example, a cone beam computer reconstruction tomography (CBCT, Come beam computer tomography) imaging system, the imaging system Generally, it includes: an image processing device 10, a rotating gantry 11, a radiation source (such as an X-ray radiation source) 12 attached to the rotating gantry 11, a detector 13 and a calibration phantom 14, and the rotating gantry 11 can surround rotates about the axis of rotation 15; wherein,
校正模体14,用于放置在放射源12和探测器13之间,其中,校正模体14含有若干个金属小球,所有金属小球近似组成一条直线,相邻金属小球之间的间隔可以相等,也可以近似相等。The calibration phantom 14 is used to be placed between the
需要说明的是,在放置校正模体14时,应尽量使校正模体14与旋转机架11的旋转轴平行但不同轴,以保证校正模体14中的金属小球投影全部在探测器13上。It should be noted that, when placing the calibration phantom 14, try to make the calibration phantom 14 and the rotation axis of the rotating frame 11 parallel but not on the same axis to ensure that all projections of the metal balls in the calibration phantom 14 are on the detector. 13 on.
其中,本实施例提供的一种校正模体可以是一个长为约28cm直径为6mm的棍状物体,该校正模体中以嵌入21个金属小球为例,每个金属小球的直径为3mm金属小球、相邻金属小球之间的距可以为10mm,也可以近似等于10mm,当然,可以根据需要进行适应性调整。也就是说,相邻金属小球的间距要求不必特别精确。具体如图2所示,图2为本申请实施例提供的一种校正模体的结构示意图,图2中,相邻金属小球之间的间距以相等为例,具体应用中不限于此。Wherein, a calibration phantom provided in this embodiment may be a stick-shaped object with a length of about 28 cm and a diameter of 6 mm. In the calibration phantom, 21 metal balls are embedded as an example, and the diameter of each metal ball is The distance between the 3mm metal ball and the adjacent metal balls can be 10mm, or approximately equal to 10mm, of course, it can be adaptively adjusted as needed. That is to say, the spacing requirements of adjacent metal balls do not have to be particularly precise. Specifically, as shown in FIG. 2, FIG. 2 is a schematic structural diagram of a calibration phantom provided by an embodiment of the present application. In FIG. 2, the distance between adjacent metal balls is taken as an example, and the specific application is not limited to this.
其中,图像处理设备10,分别与探测器和校正模体连接,可以应用到各种计算机上,用于获取所述校正模体14在不同机架角度下投影到探测器上的多幅二维投影图像;确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体14中;利用所述物理投影位置坐标获得一组全局系统几何参数;根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;确定所述三维重建图像中所述小球球心在获取的二维投影图像上的虚拟投影位置坐标;获得所述物理投影位置坐标与所述虚拟投影位置坐标的残差;利用所述残差对不同机架角度下的几何参数进行校正。The image processing device 10 is connected to the detector and the calibration phantom respectively, and can be applied to various computers to obtain multiple two-dimensional images of the calibration phantom 14 projected onto the detector at different gantry angles. projection image; determine the physical projection position coordinates of the center of the ball in the two-dimensional projection image, the ball is embedded in the calibration phantom 14; use the physical projection position coordinates to obtain a set of global system geometric parameters Reconstructing all two-dimensional projection images according to the global system geometric parameters to obtain a three-dimensional reconstructed image of the correction phantom; determining the position of the spherical center of the sphere on the acquired two-dimensional projection image in the three-dimensional reconstructed image virtual projection position coordinates; obtain residuals between the physical projection position coordinates and the virtual projection position coordinates; use the residuals to correct geometric parameters at different gantry angles.
其中,图像处理设备10对图像处理的过程详见下述图3至图8所对应的实施例,在此不再赘述。The process of image processing by the image processing device 10 can be seen in the embodiments corresponding to FIG. 3 to FIG. 8 below, which will not be repeated here.
请参阅图3,是本申请实施例提供的一种几何参数的校正方法的流程图,所述方法包括:Please refer to FIG. 3 , which is a flowchart of a method for calibrating geometric parameters provided by an embodiment of the present application. The method includes:
步骤301:获取校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;Step 301: Acquire multiple two-dimensional projection images of the calibration phantom projected onto the detector at different gantry angles;
其中,该步骤中的校正模体如图2所示,在此不再赘述。The calibration phantom in this step is shown in FIG. 2 , which is not repeated here.
该步骤中,需要先将校正模体放在放射源和探测器之间,以便于成像系统能采集校正模体在不同角度下投影到探测器上的二维(即2D)投影图像。需要说明的是,在摆放校正模体时,应尽量使校正模体与旋转机架的旋转轴平行但不同轴,并且保证校正模体中的金属小球(下文统称为小球)投影全部在探测器上。In this step, the correction phantom needs to be placed between the radiation source and the detector, so that the imaging system can acquire two-dimensional (ie 2D) projection images projected by the correction phantom onto the detector at different angles. It should be noted that when placing the calibration phantom, try to make the calibration phantom and the rotation axis of the rotating frame parallel but not on the axis, and ensure that the metal ball (hereinafter collectively referred to as the ball) in the calibration phantom is projected. All on the detector.
该步骤中,成像系统旋转扫描一圈,就可以获得校正模体在不同机架角度下投影到探测器上的二维投影图像,其具体过程对于本领域技术人员来说,已是熟知技术,在此不再赘述。In this step, the imaging system rotates and scans a circle, and then the two-dimensional projection images of the correction phantom projected onto the detector under different gantry angles can be obtained. The specific process is well known to those skilled in the art. It is not repeated here.
步骤302:确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体中;Step 302: Determine the physical projection position coordinates of the center of the small ball in the two-dimensional projection image, and the small ball is embedded in the calibration phantom;
其中,物理投影位置坐标用表示,m=1,2,…M,n=1,2,…,N,其中M是获取的二维投影图像的总张数,N是小球的个数。Among them, the physical projection position coordinates are used Represents, m=1,2,...M,n=1,2,...,N, where M is the total number of acquired two-dimensional projection images, and N is the number of small balls.
该步骤中,一种确定方式为:In this step, a determination method is as follows:
首先,对二维投影图像进行高斯滤波去除随机噪声得到滤波图像;其具体的实现过程对于本领域技术人员来说,已是熟知技术,在此不再赘述。First, Gaussian filtering is performed on the two-dimensional projection image to remove random noise to obtain a filtered image; the specific implementation process thereof is a well-known technology for those skilled in the art, and will not be repeated here.
其次,根据所述滤波图像计算出小球投影的轮廓;Secondly, calculate the outline of the projection of the ball according to the filtered image;
具体实现时,可以对滤波图像采用分水岭分割算法初步计算出小球投影的轮廓,并用小球周围背景的像素值填充其轮廓,得到背景图像;In the specific implementation, the watershed segmentation algorithm can be used for the filtered image to initially calculate the outline of the projection of the small ball, and fill the outline with the pixel values of the background around the small ball to obtain a background image;
再后,用滤波图像减去背景图像得到无背景图像;Then, subtract the background image from the filtered image to obtain a background-free image;
最后,采用Canny边缘检测算法对无背景图像进行边缘检测,得到小球投影的边缘,并将边缘拟合成圆,圆心即为小球的物理投影位置坐标。Finally, the Canny edge detection algorithm is used to detect the edge of the background-free image, and the edge of the ball projection is obtained, and the edge is fitted into a circle, and the center of the circle is the physical projection position coordinate of the ball.
另一种确定方式为:先利用已训练好的卷积神经网络对所述二维投影图像进行分割,然后计算分割出图像中小球球心的物理投影位置坐标,其具体的计算过程对于本领域技术人员来说,已是熟知技术,在此不再赘述。Another determination method is: firstly use the trained convolutional neural network to segment the two-dimensional projection image, and then calculate the physical projection position coordinates of the center of the small ball in the segmented image. For the skilled person, the technology is already well-known and will not be repeated here.
步骤303:利用所述物理投影位置坐标计算出一组全局系统几何参数;Step 303: using the physical projection position coordinates to calculate a set of global system geometric parameters;
其中,一组全局系统几何参数可以用R,D,(u0,v0),η表示,具体如图4A图4B所示,图4A和图4B分别为本实施例提供的CBCT系统的表示几何系统参数的示意图;Among them, a set of global system geometric parameters can be represented by R, D, (u 0 , v 0 ), n, as shown in FIG. 4A and FIG. 4B , and FIG. 4A and FIG. 4B are representations of the CBCT system provided by this embodiment, respectively. A schematic diagram of the parameters of the geometric system;
如图4A所示,R为放射源到旋转轴z轴的垂直距离;D为放射源垂直旋转轴z轴到探测器的距离;(u0,v0)为放射源垂直旋转轴z轴在探测器上的垂直投影点坐标;如图4B所示,η为探测器绕垂直投影点(u0,v0)的旋转角度。As shown in Figure 4A, R is the vertical distance from the radiation source to the z-axis of the rotation axis; D is the distance from the z-axis of the vertical rotation axis of the radiation source to the detector; (u 0 , v 0 ) is the vertical rotation axis of the radiation source z-axis at The coordinates of the vertical projection point on the detector; as shown in Figure 4B, η is the rotation angle of the detector around the vertical projection point (u 0 , v 0 ).
由于运动是相互的,放射源和探测板围绕旋转轴旋转一周而校正模体静止不动,可以看作放射源和探测板静止不动而校正模体围绕旋转轴旋转一周,下文中的所有分析都是在此运动模型下进行的。此时,校正模体中的每个小球的运动为一个圆形运动轨迹,而每个小球的圆形运动轨迹在平板探测器上的投影为一个椭圆形轨迹,如图5A和5B所示。图5A为本实施例提供的校正模体中每个小球运动的一个圆形运动轨迹的示意图;图5B为本实施例提供的校正模体中每个小球的圆形运动轨迹在平板探测器上的投影为一个椭圆形轨迹的示意图。Since the motion is mutual, the radiation source and the detection plate rotate around the axis of rotation once while the calibration phantom is stationary. It can be considered that the radiation source and the detection plate are stationary and the calibration phantom rotates around the axis of rotation once. All the analysis below All are carried out under this motion model. At this time, the motion of each ball in the calibration phantom is a circular motion trajectory, and the projection of the circular motion trajectory of each small ball on the flat panel detector is an elliptical trajectory, as shown in Figures 5A and 5B Show. 5A is a schematic diagram of a circular motion trajectory of each ball in the calibration phantom provided by this embodiment; The projection on the device is a schematic diagram of an elliptical trajectory.
下面分别提供计算出了一组全局系统几何参数R,D,u0,v0,η的实现过程。The realization process of calculating a set of global system geometric parameters R, D, u 0 , v 0 , η is provided below.
在图5A和图5B中,小球i的圆形轨迹与x轴和y轴的交点分别为θi1、θi2、θi3和θi4,它们在探测板投影的椭圆形轨迹分别为Ai1(ui1,vi1)、Ai2(ui2,vi2)、Ai3(ui3,vi3)和Ai4(ui4,vi4),Ai1、Ai2、Ai3和Ai4分别为椭圆轨迹的短轴极值点和长轴极值点。In Fig. 5A and Fig. 5B, the intersections of the circular trajectory of the ball i with the x-axis and the y-axis are θ i1 , θ i2 , θ i3 and θ i4 , respectively, and their elliptical trajectories projected on the detection board are respectively A i1 (u i1 ,v i1 ), A i2 (u i2 ,v i2 ), A i3 (u i3 ,v i3 ) and A i4 (u i4 ,v i4 ), A i1 , A i2 , A i3 and A i4 respectively are the extreme points of the short axis and the extreme point of the long axis of the elliptical trajectory.
然后,再结合图6中所示的相似三角关系的示意图,可以得到如下关系式:Then, combined with the schematic diagram of the similar triangular relationship shown in Figure 6, the following relationship can be obtained:
其中,A0为放射源垂直旋转轴z轴在探测器上的投影点。Among them, A 0 is the projection point of the z-axis of the vertical rotation axis of the radiation source on the detector.
将上述两式相加减可得:Adding and subtracting the above two formulas can be obtained:
然后有:Then there is:
此外,由图6还可以很明显地得出下式:In addition, from Figure 6, the following formula can also be clearly drawn:
于是可得:So you can get:
由上式可知,v0与D呈线性关系,且此直线的参数可以通过计算N个小球的极值点得到。可以得到N个下面的数值对(Yi,Xi),It can be seen from the above formula that v 0 has a linear relationship with D, and the parameters of this straight line can be obtained by calculating the extreme points of N small balls. The N following value pairs (Y i ,X i ) can be obtained,
之后可以用一条直线X=v0+D·Y来拟合上述数值对(Yi,Xi),从而可以求出几何参数v0和D。Then, a straight line X=v 0 +D·Y can be used to fit the above-mentioned pair of values (Y i , X i ), so that the geometric parameters v 0 and D can be obtained.
下面来计算u0和η,首先计算投影图中每个小球形成的椭圆轨迹的中心坐标。椭圆轨迹的中心坐标可以通过上述的四个极值点的横坐标和纵坐标来得到,具体公式如下:Next, to calculate u 0 and η, first calculate the center coordinates of the elliptical trajectory formed by each ball in the projection image. The center coordinates of the elliptical trajectory can be obtained from the abscissa and ordinate of the above four extreme points. The specific formula is as follows:
而后可以用u=k+tanη·v来拟合上述所求椭圆轨迹中心点(ui0,vi0)。当求出k和tanη后,可以将前面得到的v0代入u=k+tanη·v来得到u0,而η可由tan η的值得到。Then, u=k+tanη·v can be used to fit the center point (u i0 , v i0 ) of the ellipse trajectory obtained above. When k and tanη are obtained, u 0 can be obtained by substituting the previously obtained v 0 into u=k+tanη·v, and η can be obtained from the value of tan η.
射线源到旋转轴的距离R的计算原理示意图如图7所示。其中,下标1和2分别代表校正模体中的某两个小球,l为已知的两个小球间的距离,h为两个小球圆形轨迹的垂直距离,r1和r2分别为小球1和小球2的圆形轨迹的半径。于是有A schematic diagram of the calculation principle of the distance R from the ray source to the rotation axis is shown in Fig. 7 . Among them, the
其中,α1=θ10-θ14,α2=θ20-θ24,θ10和θ20为小球1和2的初始位置角度,θ14和θ24为小球1和2的一个极值点。Among them, α 1 =θ 10 -θ 14 , α 2 =θ 20 -θ 24 , θ 10 and θ 20 are the initial position angles of
从前面的步骤中已知如下关系式From the previous steps, the following relation is known
利用上述比例关系及已知的两个小球间距离l可以求得R,具体公式如下:Using the above proportional relationship and the known distance l between two small balls, R can be obtained. The specific formula is as follows:
至此,计算出了一组全局系统几何参数R,D,u0,v0,η。So far, a set of global system geometric parameters R, D, u 0 , v 0 , η have been calculated.
步骤304:根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;Step 304: Reconstruct all 2D projection images according to the global system geometric parameters to obtain a 3D reconstructed image of the correction phantom;
该步骤中,根据计算出的一组全局系统几何参数,利用FDK算法对所有二维投影图像进行重建,得到校正模体的3D重建图像。其中,利用FDK算法对所有二维投影图像进行重建的过程对于本领域技术人员来说已是熟知技术,在此不再赘述。In this step, according to the calculated set of global system geometric parameters, the FDK algorithm is used to reconstruct all two-dimensional projection images to obtain a 3D reconstructed image of the correction phantom. The process of reconstructing all two-dimensional projection images by using the FDK algorithm is a well-known technology for those skilled in the art, and details are not described herein again.
步骤305:确定所述三维重建图像中所述小球球心在获取的二维投影图像上的虚拟投影位置坐标;Step 305: Determine the virtual projection position coordinates of the center of the small ball in the 3D reconstructed image on the acquired 2D projection image;
一种确定方式为:先确定三维重建图像中小球球心的三维位置坐标;具体过程为:A determination method is: first determine the three-dimensional position coordinates of the center of the small ball in the three-dimensional reconstructed image; the specific process is:
首先,对三维重建图像进行阈值滤波,将像素值低于预先给定阈值的三维像素点设置为0;First, perform threshold filtering on the three-dimensional reconstructed image, and set the three-dimensional pixel points whose pixel value is lower than the predetermined threshold to 0;
其次,对于三维重建图像中的每个像素(x0,y0,z0),其中,x0中0表示迭代重建前的像素,若每个像素及其相邻的8个像素的值均不为0,则迭代计算每个像素(x0±k,y0±k,z0±k)邻域内的重心,其中,k是邻域范围的大小,且大于小球的半径,,如下式所示Secondly, for each pixel (x 0 , y 0 , z 0 ) in the 3D reconstructed image, where 0 in x 0 represents the pixel before iterative reconstruction, if the values of each pixel and its adjacent 8 pixels are both If it is not 0, then iteratively calculate the center of gravity in the neighborhood of each pixel (x 0 ±k, y 0 ±k, z 0 ±k), where k is the size of the neighborhood range and is greater than the radius of the sphere, as follows shown in the formula
i=1,2,…,li=1,2,...,l
其中,xi,yi,zi中的i表示迭代第i次的像素。I(x,y,z)是阈值滤波后三维重建图像在(x,y,z)处的像素值,l为迭代次数。并将最终计算得到三维重建图像中的某个小球球心的三维位置坐标记为(xn,yn,zn),n=1,2,…,N,其中N是小球的个数,本实例可以以21为例。Among them, i in x i , y i , and zi represents the pixel of the i-th iteration. I(x, y, z) is the pixel value at (x, y, z) of the 3D reconstructed image after threshold filtering, and l is the number of iterations. And mark the three-dimensional position coordinates of the center of a small ball in the finally calculated three-dimensional reconstructed image as (x n , y n , z n ), n=1,2,...,N, where N is the number of small balls number, this example can take 21 as an example.
然后,根据全局系统几何参数R,D,u0,v0,η,应用前向投影计算三维重建图像中若干小球球心在获取的二维投影图像中的虚拟投影位置坐标。Then, according to the global system geometric parameters R, D, u 0 , v 0 , η , forward projection is used to calculate the virtual projection position coordinates of the centers of several spheres in the 3D reconstructed image in the acquired 2D projection image.
其中,若干小球球心用(xn,yn,zn)表示,n=1,2,…,N;虚拟投影位置坐标用表示,m=1,2,…M,n=1,2,…,N,其中M是获取的二维投影图像的总张数,N是小球的个数。Among them, the centers of several small balls are represented by (x n , y n , z n ), n=1,2,...,N; the virtual projection position coordinates are represented by Represents, m=1,2,...M,n=1,2,...,N, where M is the total number of acquired two-dimensional projection images, and N is the number of small balls.
步骤306:计算所述二维投影图像中小球球心的物理投影位置坐标与所述三维重建图像中小球球心在二维投影图像中的虚拟投影位置坐标的残差;Step 306: Calculate the residual difference between the physical projection position coordinates of the ball center in the two-dimensional projection image and the virtual projection position coordinates of the ball center in the three-dimensional reconstructed image in the two-dimensional projection image;
其中,物理投影位置坐标用表示,残差用 表示,如下式所示Among them, the physical projection position coordinates are used means that the residual is represented, as shown in the following formula
残差(residuals)产生的主要原因是,在步骤303中假设系统几何模型在机架的旋转过程中是静止不动的,而在实际中系统几何模型随着机架旋转而变化,例如由于重力的原因探测器的位置会随机架旋转而发生变化。从另一个角度来看,步骤303中的CBCT成像系统几何模型是实际成像系统的简单近似模型,也就是,本实施例中的几何参数只是对系统几何模型的一个近似描述。因此,残差是一个系统性的误差,是可以通过建立模型来描述的。The main reason for the generation of residuals is that in
步骤307:利用所述残差对不同机架角度下的几何参数进行校正。Step 307: Use the residual to correct geometric parameters at different gantry angles.
该步骤中,先对所述残差进行曲线拟合,得到拟合的所述残差与机架角度的关系曲线;然后,利用拟合的所述关系曲线对不同机架角度下的几何参数进行补偿,修正不同机架角度下几何参数的误差。In this step, curve fitting is first performed on the residual to obtain the fitted relationship curve between the residual and the gantry angle; Compensation is performed to correct the errors of geometric parameters under different frame angles.
下面以对放射源垂直旋转轴在探测器上的垂直投影点坐标(u0,v0)进行校正为例。The following is an example of calibrating the vertical projection point coordinates (u 0 , v 0 ) of the vertical rotation axis of the radiation source on the detector.
残差是一个系统性的误差,是机架角度的正弦函数。残差满足如下公式The residual is a systematic error that is a sine function of the gantry angle. The residuals satisfy the following formula
Δu(θ)=au cos(buθ+cu)+du Δu(θ)=a u cos(b u θ+c u )+d u
Δv(θ)=av cos(bvθ+cv)+dv Δv(θ)=a v cos(b v θ+c v )+d v
上述残差与机架角度的关系曲线可以通过对 The relationship between the residuals and the gantry angle can be obtained by comparing
n=1,2,…,N进行曲线拟合得到。利用上述关系对垂直投影点坐标(u0,v0)进行校正,于是得到随机架角度变化的垂直投影点坐标:n=1,2,...,N is obtained by curve fitting. Use the above relationship to correct the vertical projection point coordinates (u 0 , v 0 ), and then obtain the vertical projection point coordinates of the random frame angle change:
u0(θ)=u0+Δu(θ)u 0 (θ)=u 0 +Δu(θ)
v0(θ)=v0+Δv(θ)v 0 (θ)=v 0 +Δv(θ)
所述随机架角度变化的垂直投影点坐标是对步骤303中静态系统几何模型的一个修正,对机架旋转过程中系统几何参数偏离全局几何参数的补偿。The vertical projection point coordinates of the random gantry angle change are a correction to the static system geometric model in
本申请实施例中,采集校正模体在不同机架角度下的二维投影图像,并确定在采集的二维投影图像中小球球心的物理投影位置坐标,然后利用所述小球球心的物理投影位置坐标在一个静态的简单的几何模型下,直接获得一组全局系统几何参数。然后利用这组全局几何参数对所有二维投影图像进行重建,得到校正模体的三维重建图像;然后,再确定三维重建图像中小球球心的位置坐标,并计算三维重建图像中的小球球心在各个机架角度下采集的二维投影图像上的虚拟投影位置坐标。最后,计算采集的二维图像中小球球心的物理投影位置坐标与三维重建图像中的小球球心在各个机架角度下采集的二维投影图像上的虚拟投影位置坐标的残差,并根据该残差修正各个机架角度下的几何参数。由此可见,本申请实施例中,利用校正模体在不同机架角度下的投影图像运用解析法,计算出一组固定不变的全局系统几何参数,不需要标记校正模体中小球之间精确的相对位置,这极大的方便了算法的实现,降低了成本;同时,利用采集的小球的物理投影坐标与计算的小球虚拟投影坐标之间的残差对不同机架角度的系统几何参数进行补偿,修正了系统几何参数固定不变这一假设引起的几何参数估计误差。In the embodiment of the present application, two-dimensional projection images of the calibration phantom at different gantry angles are collected, and the physical projection position coordinates of the center of the small ball in the collected two-dimensional projection image are determined, and then the The physical projection position coordinates directly obtain a set of global system geometric parameters under a static simple geometric model. Then use this set of global geometric parameters to reconstruct all 2D projection images to obtain 3D reconstructed images of the corrected phantom; then, determine the position coordinates of the center of the sphere in the 3D reconstructed image, and calculate the sphere in the 3D reconstructed image. The virtual projection position coordinates of the center on the 2D projection image collected at each gantry angle. Finally, calculate the residuals between the physical projection position coordinates of the ball center in the collected 2D image and the virtual projection position coordinates of the ball center in the 3D reconstructed image on the 2D projection images collected at each gantry angle, and The geometric parameters at each gantry angle are corrected according to the residual. It can be seen that, in the embodiment of the present application, a set of fixed and invariable global system geometric parameters is calculated by using the projected images of the calibration phantom at different gantry angles using the analytical method, and there is no need to mark the space between the small balls in the calibration phantom. Accurate relative position, which greatly facilitates the implementation of the algorithm and reduces the cost; at the same time, the residual difference between the collected physical projection coordinates of the ball and the calculated virtual projection coordinates of the ball is used for the system of different gantry angles. The geometric parameters are compensated to correct the geometric parameter estimation errors caused by the assumption that the system geometric parameters are fixed.
与前述几何参数的校正方法的实施例相对应,本申请还提供了一种几何参数的校正装置的实施例。Corresponding to the foregoing embodiments of the geometric parameter calibration method, the present application further provides an embodiment of a geometric parameter calibration device.
本申请提供的几何参数的校正装置的实施例可以应用在设备上。装置实施例可以通过软件实现,也可以通过硬件或者软硬件结合的方式实现。以软件实现为例,作为一个逻辑意义上的装置,是通过其所在设备的处理器将非易失性存储器中对应的计算机程序指令读取到内存中运行形成的。从硬件层面而言,如图8所示,为本申请提供的几何参数的校正装置所在设备的一种硬件结构图,除了图8所示的处理器、内存、网络接口、以及非易失性存储器之外,实施例中装置所在的设备通常根据该设备的实际功能,还可以包括其他硬件,对此不再赘述。The embodiments of the geometric parameter correction device provided in this application can be applied to equipment. The apparatus embodiment may be implemented by software, or may be implemented by hardware or a combination of software and hardware. Taking software implementation as an example, a device in a logical sense is formed by reading the corresponding computer program instructions in the non-volatile memory into the memory for operation by the processor of the device where it is located. From the perspective of hardware, as shown in FIG. 8 , it is a hardware structure diagram of the device where the geometric parameter correction device provided by the present application is located, except for the processor, memory, network interface, and non-volatile shown in FIG. 8 . In addition to the memory, the device in which the apparatus in the embodiment is located generally may also include other hardware according to the actual function of the device, and details are not described herein again.
请参考图9,为本申请实施例提供的一种几何参数的校正装置的结构示意图,所述装置包括:获取单元91,第一确定单元92,第一获得单元93,重建单元94,第二确定单元95,第二获得单元96和校正单元97,其中,Please refer to FIG. 9 , which is a schematic structural diagram of an apparatus for calibrating geometric parameters provided by an embodiment of the present application. The apparatus includes: an
获取单元91,用于获取校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;an
第一确定单元92,用于确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体中;a first determining
第一获得单元93,用于利用所述物理投影位置坐标计算出一组全局系统几何参数;a first obtaining
重建单元94,用于根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;A
第二确定单元95,用于确定所述三维重建图像中所述小球球心在各个机架角度下采集的二维投影图像上的虚拟投影位置坐标;The second determining
第二获得单元96,用于计算所述物理投影位置坐标与所述虚拟投影位置坐标的残差;a second obtaining
校正单元97,用于利用所述残差对不同机架角度下的几何参数进行校正补偿。The
可选的,在另一实施例中,该实施例在上述实施例的基础上,所述第一确定单元91包括:滤波单元911,第一计算单元912,填充单元913,第二计算单元914,边缘检测单元915和第一拟合单元916,其结构示意图如图10。其中,Optionally, in another embodiment, based on the foregoing embodiment, the first determining
滤波单元911,用于对所述二维投影图像进行高斯滤波得到滤波图像;A
第一计算单元912,用于根据所述滤波图像计算出小球投影的轮廓;a
填充单元913,用于利用小球周围背景的像素值填充所述轮廓,得到背景图像;Filling
第二计算单元914,用于将所述滤波图像减去背景图像得到无背景图像;The
边缘检测915,用于对所述无背景图像进行边缘检测,得到小球投影的边缘;
第一拟合单元916,用于将所述边缘拟合成圆,圆心为小球的物理投影位置坐标。The first
可选的,在另一实施例中,该实施例在上述实施例的基础上,所述第一确定单元91包括:分割单元和位置坐标计算单元(图中未示),其中,Optionally, in another embodiment, on the basis of the foregoing embodiment, the first determining
分割单元,用于利用训练好的卷积神经网络对所述二维投影图像进行分割,得到所述二维投影图像的小球;a segmentation unit for segmenting the two-dimensional projection image by using the trained convolutional neural network to obtain a ball of the two-dimensional projection image;
位置坐标计算单元,用于计算分割出图像中小球球心的物理投影位置坐标。The position coordinate calculation unit is used to calculate the physical projection position coordinates of the center of the small ball in the segmented image.
可选的,在另一实施例中,该实施例在上述实施例的基础上,所述第一获得单元93,具体用于在机架旋转过程中,利用所述物理投影位置坐标在一个静态的系统几何模型下,解析计算出一组全局系统几何参数,其中,所述全局系统几何参数包括:放射源到旋转轴的垂直距离,放射源垂直旋转轴到探测器的距离,放射源垂直旋转轴在探测器上的垂直投影点坐标和探测器绕垂直投影轴的旋转角度。Optionally, in another embodiment, based on the foregoing embodiment, the first obtaining
可选的,在另一实施例中,该实施例在上述实施例的基础上,所述第二确定单元95包括:确定子单元和投影单元(图中未示),其中,Optionally, in another embodiment, based on the foregoing embodiment, the
确定子单元,用于确定三维重建图像中小球球心的三维位置坐标;A determination subunit, used to determine the three-dimensional position coordinates of the center of the small ball in the three-dimensional reconstructed image;
投影单元,用于根据所述三维位置坐标计算三维重建图像中小球球心在各个机架角度下采集的二维投影图像上的虚拟投影位置坐标。The projection unit is configured to calculate, according to the three-dimensional position coordinates, the virtual projection position coordinates on the two-dimensional projection images of the spherical centers of the small balls in the three-dimensional reconstructed image collected at various gantry angles.
可选的,在另一实施例中,该实施例在上述实施例的基础上,第二获得单元96包括:第二拟合单元和补偿单元(图中未示),其中,Optionally, in another embodiment, based on the foregoing embodiment, the second obtaining
第二拟合单元,用于对所述残差和不同机架角度进行曲线拟合,得到拟合的所述残差与机架角度的关系曲线;a second fitting unit, configured to perform curve fitting on the residual and different gantry angles to obtain the fitted relationship curve between the residual and the gantry angle;
补偿单元,用于利用拟合的所述关系曲线对不同机架角度下的几何参数进行补偿,修正不同机架角度下几何参数的误差。The compensation unit is used for compensating the geometric parameters under different gantry angles by using the fitted relation curve, and correcting the errors of the geometric parameters under different gantry angles.
上述装置中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。For details of the implementation process of the functions and functions of each unit in the above device, please refer to the implementation process of the corresponding steps in the above method, which will not be repeated here.
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。For the apparatus embodiments, since they basically correspond to the method embodiments, reference may be made to the partial descriptions of the method embodiments for related parts. The device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the present application. Those of ordinary skill in the art can understand and implement it without creative effort.
本申请实施例还提供一种图像处理设备,包括:处理器;以及用于存储所述处理器可执行指令的存储器;其中,所述处理器被配置为:Embodiments of the present application further provide an image processing device, including: a processor; and a memory for storing instructions executable by the processor; wherein the processor is configured to:
获取所述校正模体在不同机架角度下投影到探测器上的多幅二维投影图像;acquiring multiple two-dimensional projection images of the calibration phantom projected onto the detector under different gantry angles;
确定小球球心在所述二维投影图像中的物理投影位置坐标,所述小球嵌在所述校正模体中;determining the physical projection position coordinates of the center of the ball in the two-dimensional projection image, and the ball is embedded in the calibration phantom;
利用所述物理投影位置坐标获得一组全局系统几何参数;Obtaining a set of global system geometric parameters using the physical projected position coordinates;
根据所述全局系统几何参数对所有二维投影图像进行重建,得到所述校正模体的三维重建图像;Reconstructing all two-dimensional projection images according to the global system geometric parameters to obtain a three-dimensional reconstructed image of the correction phantom;
确定所述三维重建图像中所述小球球心在获取的二维投影图像上的虚拟投影位置坐标;determining the virtual projection position coordinates of the spherical center of the small ball on the acquired two-dimensional projection image in the three-dimensional reconstructed image;
获得所述物理投影位置坐标与所述虚拟投影位置坐标的残差;利用所述残差对不同机架角度下的几何参数进行校正。Obtain the residual of the physical projection position coordinates and the virtual projection position coordinates; use the residual to correct geometric parameters at different gantry angles.
该实施例中,处理器所执行的各个步骤的实现过程详见上述,在此不再赘述。In this embodiment, the implementation process of each step executed by the processor is detailed in the above, which is not repeated here.
本申请实施例中,通过对校正模体在不同机架角度下的投影图像进行解析,并计算出一组固定不变的全局系统几何参数,不需要标记校正模体中小球之间精确的相对位置,这极大的方便了算法的实现,降低了成本;同时,利用采集的小球的物理投影坐标与计算的小球虚拟投影坐标之间的残差对不同机架角度的系统几何参数进行补偿,修正了系统几何参数固定不变这一假设引起的几何参数估计误差。In the embodiment of the present application, by analyzing the projection images of the calibration phantom at different gantry angles, and calculating a set of fixed and invariable global system geometric parameters, it is not necessary to mark the exact relative relationship between the spheres in the calibration phantom. position, which greatly facilitates the implementation of the algorithm and reduces the cost; at the same time, the system geometric parameters of different gantry angles are calculated by using the residual between the collected physical projection coordinates of the ball and the calculated virtual projection coordinates of the ball. Compensation, which corrects the geometric parameter estimation error caused by the assumption that the system geometric parameters are fixed.
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。Those skilled in the art can clearly understand that the technology in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solutions in the embodiments of the present invention may be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products may be stored in a storage medium, such as ROM/RAM , magnetic disk, optical disk, etc., including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or some parts of the embodiments of the present invention.
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present application shall be included in the present application. within the scope of protection.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611073139.4A CN108122203B (en) | 2016-11-29 | 2016-11-29 | Geometric parameter correction method, device, equipment and system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611073139.4A CN108122203B (en) | 2016-11-29 | 2016-11-29 | Geometric parameter correction method, device, equipment and system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108122203A CN108122203A (en) | 2018-06-05 |
| CN108122203B true CN108122203B (en) | 2020-04-07 |
Family
ID=62226571
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611073139.4A Expired - Fee Related CN108122203B (en) | 2016-11-29 | 2016-11-29 | Geometric parameter correction method, device, equipment and system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108122203B (en) |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109146800B (en) * | 2018-07-23 | 2019-08-13 | 广州华端科技有限公司 | Cone beam computed tomography method for correcting image and system |
| CN111248934B (en) * | 2018-11-30 | 2023-09-29 | 辽宁开普医疗系统有限公司 | Method and system for mechanical correction of CBCT system |
| CN109671128B (en) * | 2018-12-07 | 2023-06-30 | 广州华端科技有限公司 | Data processing in image reconstruction process, image reconstruction method and device |
| CN109717889A (en) * | 2018-12-14 | 2019-05-07 | 深圳市深图医学影像设备有限公司 | Oral cavity cone-beam CT system geometric parameter calibration model, method and system |
| CN109549661B (en) * | 2018-12-29 | 2022-11-15 | 北京纳米维景科技有限公司 | Detector geometric correction phantom and correction method |
| CN109820531B (en) * | 2019-01-30 | 2023-04-25 | 东软医疗系统股份有限公司 | Cone beam type CT geometric parameter correction method and device |
| CN109875591B (en) * | 2019-03-14 | 2020-05-29 | 浙江大学 | A Geometric Calibration Method of Cone Beam CT System |
| CN110084855B (en) * | 2019-04-19 | 2020-12-15 | 合肥中科离子医学技术装备有限公司 | Improved CBCT geometric parameter calibration method |
| CN110025327B (en) * | 2019-05-29 | 2024-05-07 | 明峰医疗系统股份有限公司 | PET/CT registration device and method |
| CN110327064A (en) * | 2019-06-19 | 2019-10-15 | 东软医疗系统股份有限公司 | Source image distance detecting method, device and equipment |
| CN110353713A (en) * | 2019-07-16 | 2019-10-22 | 上海联影医疗科技有限公司 | The determination method and apparatus of geometric correction die body, reconstruction image geometric parameter |
| CN110766629B (en) * | 2019-10-17 | 2022-03-01 | 广州华端科技有限公司 | CBCT system geometric correction method, device, computer equipment and storage medium |
| CN111161173B (en) * | 2019-12-18 | 2020-11-06 | 北京城市网邻信息技术有限公司 | Image correction information acquisition method, image correction information acquisition device, image correction information model construction method, image correction information model construction device, and medium |
| CN110974280A (en) * | 2019-12-23 | 2020-04-10 | 常州博恩中鼎医疗科技有限公司 | Geometric parameter accurate automatic correction method suitable for cone beam CT |
| CN111419257B (en) * | 2020-04-07 | 2022-11-22 | 南京安科医疗科技有限公司 | Automatic positioning method of calibration phantom, scanning system and readable storage medium |
| WO2022027545A1 (en) * | 2020-08-07 | 2022-02-10 | 西安大医集团股份有限公司 | Image data processing method, and isocenter verification method and system for radiotherapy apparatus |
| CN112233157B (en) * | 2020-10-14 | 2022-03-08 | 俐玛精密测量技术(苏州)有限公司 | Frequency domain correction method for micro-nano CT system turntable error |
| CN112991464B (en) * | 2021-03-19 | 2023-04-07 | 山东大学 | Point cloud error compensation method and system based on three-dimensional reconstruction of stereoscopic vision |
| CN113286053B (en) * | 2021-05-14 | 2022-08-30 | 广州广电银通金融电子科技有限公司 | File scanning method, equipment, medium and product |
| CN115501500B (en) * | 2021-06-23 | 2025-04-22 | 西安大医集团股份有限公司 | Jitter offset determination method, image calibration method, device, system and medium |
| CN113808211A (en) * | 2021-08-09 | 2021-12-17 | 中科超精(南京)科技有限公司 | Geometric correction die body for image guidance system and manufacturing method |
| CN113643428A (en) * | 2021-08-17 | 2021-11-12 | 北京唯迈医疗设备有限公司 | A full-parameter geometric calibration method suitable for multi-degree-of-freedom cone-beam CT |
| CN115690192A (en) * | 2021-09-07 | 2023-02-03 | 于留青 | Imaging geometric relation online calibration method and related product |
| CN113782174B (en) * | 2021-11-12 | 2022-02-18 | 极限人工智能有限公司 | CT machine checking method and device, electronic equipment and readable storage medium |
| CN113876346B (en) * | 2021-11-16 | 2024-06-07 | 佗道医疗科技有限公司 | Iterative correction method for inclined image |
| CN114612569A (en) * | 2022-02-23 | 2022-06-10 | 广州华端科技有限公司 | Method and device for processing marker overlapping in geometric calibration |
| CN114460110B (en) * | 2022-03-08 | 2023-06-06 | 中国电子科技集团公司第三十八研究所 | A Servo System Error Compensation Method |
| CN114712728B (en) * | 2022-03-31 | 2024-12-20 | 西安大医集团股份有限公司 | Projection parameter correction method and computer equipment |
| CN115409736B (en) * | 2022-09-16 | 2023-06-20 | 深圳市宝润科技有限公司 | Geometric correction method for medical digital X-ray photographic system and related equipment |
| CN116831607B (en) * | 2023-09-01 | 2023-12-01 | 赛诺威盛科技(北京)股份有限公司 | Correction device and correction method for medical imaging equipment and medical imaging equipment |
| CN117392025B (en) * | 2023-12-11 | 2024-02-23 | 浙江大学杭州国际科创中心 | X-ray cone beam CT pose correction method, system and device |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7950849B2 (en) * | 2005-11-29 | 2011-05-31 | General Electric Company | Method and device for geometry analysis and calibration of volumetric imaging systems |
| CN103729827A (en) * | 2012-10-11 | 2014-04-16 | 南京普爱射线影像设备有限公司 | Method for correcting three-dimensional reconstruction overlapped artifact of image intensifier C-shaped arm X-ray system |
| CN103969269A (en) * | 2013-01-31 | 2014-08-06 | Ge医疗系统环球技术有限公司 | Method and device for geometric calibration of CT scanner |
| CN104665862A (en) * | 2015-02-16 | 2015-06-03 | 清华大学 | Method for eliminating geometrical artifacts from CBCT (Cone Beam Computed Tomography) and CBCT system using method for eliminating geometrical artifacts from CBCT |
| CN105769233A (en) * | 2016-02-29 | 2016-07-20 | 江苏美伦影像系统有限公司 | Geometric correction method |
| CN105869130A (en) * | 2016-04-20 | 2016-08-17 | 广州华端科技有限公司 | CT system geometric correction effect verification method and device |
| CN105931202A (en) * | 2016-04-20 | 2016-09-07 | 广州华端科技有限公司 | Geometric correction die body correction method and system |
| CN105997126A (en) * | 2016-05-25 | 2016-10-12 | 重庆大学 | Cone beam CT system geometric parameter calibration model and method |
| CN106127697A (en) * | 2016-06-07 | 2016-11-16 | 哈尔滨工业大学 | Unmanned aerial vehicle onboard imaging EO-1 hyperion geometric correction method |
-
2016
- 2016-11-29 CN CN201611073139.4A patent/CN108122203B/en not_active Expired - Fee Related
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7950849B2 (en) * | 2005-11-29 | 2011-05-31 | General Electric Company | Method and device for geometry analysis and calibration of volumetric imaging systems |
| CN103729827A (en) * | 2012-10-11 | 2014-04-16 | 南京普爱射线影像设备有限公司 | Method for correcting three-dimensional reconstruction overlapped artifact of image intensifier C-shaped arm X-ray system |
| CN103969269A (en) * | 2013-01-31 | 2014-08-06 | Ge医疗系统环球技术有限公司 | Method and device for geometric calibration of CT scanner |
| CN104665862A (en) * | 2015-02-16 | 2015-06-03 | 清华大学 | Method for eliminating geometrical artifacts from CBCT (Cone Beam Computed Tomography) and CBCT system using method for eliminating geometrical artifacts from CBCT |
| CN105769233A (en) * | 2016-02-29 | 2016-07-20 | 江苏美伦影像系统有限公司 | Geometric correction method |
| CN105869130A (en) * | 2016-04-20 | 2016-08-17 | 广州华端科技有限公司 | CT system geometric correction effect verification method and device |
| CN105931202A (en) * | 2016-04-20 | 2016-09-07 | 广州华端科技有限公司 | Geometric correction die body correction method and system |
| CN105997126A (en) * | 2016-05-25 | 2016-10-12 | 重庆大学 | Cone beam CT system geometric parameter calibration model and method |
| CN106127697A (en) * | 2016-06-07 | 2016-11-16 | 哈尔滨工业大学 | Unmanned aerial vehicle onboard imaging EO-1 hyperion geometric correction method |
Non-Patent Citations (2)
| Title |
|---|
| 医用锥束CT射束硬化校正方法研究与实现;钱贝贝;《中国优秀硕士学位论文全文数据库 信息科技辑》;20150515(第05期);I138-1034 * |
| 锥束工业CT系统几何参数误差校正算法研究;池明辉;《中国优秀硕士学位论文全文数据库 信息科技辑》;20160615(第06期);I138-1315 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108122203A (en) | 2018-06-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108122203B (en) | Geometric parameter correction method, device, equipment and system | |
| US11478214B2 (en) | Geometric calibration for cone beam CT using line fiducials | |
| CN106994023B (en) | The geometric parameter of Conebeam computed tomography imaging system determines method | |
| CN111248934B (en) | Method and system for mechanical correction of CBCT system | |
| CN110602990B (en) | Patient movement correction method for cone beam computed tomography | |
| JP6735667B2 (en) | Calibration apparatus and method for computed tomography | |
| CN109671128B (en) | Data processing in image reconstruction process, image reconstruction method and device | |
| WO2017181471A1 (en) | Calibration method and system for geometric calibration phantom | |
| CN102743184A (en) | Geometrical parameter calibration method of X-ray cone beam computed tomography system | |
| CN105431885B (en) | Target is in the case where scanning outside FoV to the iteration CT image reconstruction of roi | |
| US9196064B2 (en) | Image reconstruction method and device for tilted helical scan | |
| Lesaint et al. | Calibration for circular cone-beam CT based on consistency conditions | |
| Niebler et al. | Projection‐based improvement of 3D reconstructions from motion‐impaired dental cone beam CT data | |
| CN102488528B (en) | Correcting method for geometric parameters of tomography | |
| US8755586B2 (en) | Image reconstruction including shift-variant blur compensation | |
| CN107016655A (en) | Cone-beam CL geometry population parameter iteration correction methods | |
| Bögel et al. | Respiratory Motion Compensation Using Diaphragm Tracking for Cone‐Beam C‐Arm CT: A Simulation and a Phantom Study | |
| Xu et al. | A graphical method for determining the in-plane rotation angle in geometric calibration of circular cone-beam CT systems | |
| CN114119801B (en) | Three-dimensional digital subtraction angiography method, device, electronic equipment and storage medium | |
| CN113963056B (en) | CT image reconstruction method, device, electronic equipment and storage medium | |
| WO2008099314A2 (en) | Apparatus and method for determining high density shadows in projection data | |
| CN116529756A (en) | Monitoring method, device and computer storage medium | |
| CN113520426B (en) | Coaxiality measurement method, medical equipment frame adjustment method, equipment and medium | |
| Detchev et al. | Image matching and surface registration for 3D reconstruction of a scoliotic torso | |
| CN113963058B (en) | On-line calibration method and device for CT (computed tomography) of preset track, electronic equipment and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20220325 Address after: 110167 No. 177-1 Innovation Road, Hunnan District, Shenyang City, Liaoning Province Patentee after: Shenyang Neusoft Medical Systems Co.,Ltd. Address before: Room 117 and 119, 1000 Ziyue Road, Minhang District, Shanghai, 200241 Patentee before: Shanghai Neusoft Medical Technology Co.,Ltd. |
|
| TR01 | Transfer of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200407 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |