[go: up one dir, main page]

CN108133031A - A kind of method and device of filtered recommendation video candidate result - Google Patents

A kind of method and device of filtered recommendation video candidate result Download PDF

Info

Publication number
CN108133031A
CN108133031A CN201711486750.4A CN201711486750A CN108133031A CN 108133031 A CN108133031 A CN 108133031A CN 201711486750 A CN201711486750 A CN 201711486750A CN 108133031 A CN108133031 A CN 108133031A
Authority
CN
China
Prior art keywords
video
recommended
bloom filter
user
filtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711486750.4A
Other languages
Chinese (zh)
Other versions
CN108133031B (en
Inventor
王品周
杨田镁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sohu New Media Information Technology Co Ltd
Original Assignee
Beijing Sohu New Media Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sohu New Media Information Technology Co Ltd filed Critical Beijing Sohu New Media Information Technology Co Ltd
Priority to CN201711486750.4A priority Critical patent/CN108133031B/en
Publication of CN108133031A publication Critical patent/CN108133031A/en
Application granted granted Critical
Publication of CN108133031B publication Critical patent/CN108133031B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/70Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F16/73Querying
    • G06F16/735Filtering based on additional data, e.g. user or group profiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本发明实施例中公开了一种过滤推荐视频候选结果的方法及装置,接收用户发送的包括用户标识ID的视频推荐服务调用请求,从Redis数据库中确定与用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;从推荐视频候选结果中确定待过滤视频;查询第一布隆过滤器实例以及第二布隆过滤器实例中是否包含待过滤视频,如果包含,则确定待过滤视频为待推荐视频,并将待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐待过滤视频。基于上述方法及装置,能够提高过滤推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频时的准确率及效率。

The embodiment of the present invention discloses a method and device for filtering recommended video candidate results, which receives a video recommendation service call request including a user ID sent by a user, and determines from the Redis database that the user ID corresponds to a system history recommendation The first Bloom filter instance of the video and the second Bloom filter instance of the recommended video containing the user's historical consumption; determine the video to be filtered from the recommended video candidate results; query the first Bloom filter instance and the second Bloom filter instance Whether the video to be filtered is included in the Bloom filter instance, if it is included, it is determined that the video to be filtered is the video to be recommended, and the video to be filtered is added to the first Bloom filter instance, if not included, then it is determined that the video to be filtered is not recommended Filter videos. Based on the above method and device, it is possible to improve the accuracy and efficiency of filtering recommended videos in the system history and recommended videos consumed by users in the recommended video candidate results.

Description

一种过滤推荐视频候选结果的方法及装置A method and device for filtering recommended video candidate results

技术领域technical field

本发明涉及视频推荐技术领域,具体涉及一种过滤推荐视频候选结果的方法及装置。The present invention relates to the technical field of video recommendation, in particular to a method and device for filtering recommended video candidate results.

背景技术Background technique

视频推荐系统中,需要从推荐引擎计算出的推荐视频候选结果中取得最终推荐给用户的结果。根据具体需求场景,视频推荐系统用户每次刷新都应该是不同的视频推荐结果,用户已经观看或者收藏、点赞等消费过的推荐视频不应该继续推荐给用户,因此每次调用视频推荐服务都需要高效地从推荐视频候选结果中选择与系统历史推荐视频及用户历史消费的推荐视频不重复的数据。In the video recommendation system, it is necessary to obtain the final recommendation to the user from the recommended video candidate results calculated by the recommendation engine. According to the specific demand scenario, every time the video recommendation system user refreshes, it should be a different video recommendation result. The recommended video that the user has already watched, favorited, liked, etc. should not continue to be recommended to the user, so every time the video recommendation service is called It is necessary to efficiently select data from recommended video candidate results that is not repeated with the system's historically recommended videos and user's historically consumed recommended videos.

业界目前实现的视频推荐系统,都需要解决对推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频进行过滤的问题。目前解决上述问题的常规方案是把所有的系统历史推荐视频及用户历史消费的推荐视频保存在一个存储在Redis数据库内的数据集合中,然后逐个判断推荐视频候选结果中的候选推荐视频是否已经存在上述数据集合中,若存在,则不推荐该候选推荐视频。The video recommendation systems currently implemented in the industry all need to solve the problem of filtering the recommended videos in the system history and the recommended videos consumed by the user in the recommended video candidate results. The current conventional solution to the above problem is to store all recommended videos in system history and recommended videos consumed by users in a data set stored in the Redis database, and then judge whether the candidate recommended videos in the recommended video candidate results already exist In the above data set, if it exists, the candidate recommended video is not recommended.

但是,现有技术中,是存储完整的视频ID到上述数据集合中,随着用户使用视频推荐系统的时间增长,该用户调用视频推荐系统推荐服务的次数以及播放收藏等消费推荐视频行为的次数也相应增多,而视频ID位数又很长,进而导致上述数据集合所占用Redis数据库的存储空间也会越来越庞大。而Redis数据库的数据结构是基于哈希算法的,也就是说,上述数据集合的存储结构是基于哈希函数的,而哈希函数在数据量很大的情况下会出现哈希冲突,因此,数据集合所占用Redis数据库的存储空间过大时,会导致对推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频进行过滤的准确率低。However, in the prior art, the complete video ID is stored in the above data set. As the user’s time of using the video recommendation system increases, the number of times the user calls the video recommendation system’s recommendation service and the number of times the user consumes recommended video behaviors such as playing favorites It also increases accordingly, and the number of video ID digits is very long, which in turn causes the storage space of the Redis database occupied by the above data collection to become larger and larger. The data structure of the Redis database is based on the hash algorithm, that is to say, the storage structure of the above data collection is based on the hash function, and the hash function will cause hash conflicts when the amount of data is large. Therefore, When the storage space of the Redis database occupied by the data set is too large, the accuracy of filtering the recommended videos in the system history and the recommended videos consumed by the user in the recommended video candidate results is low.

另外,推荐视频候选结果中往往有多个候选视频推荐,由于上述数据集合存储在Redis数据库内,而逐个判断推荐视频候选结果中的候选推荐视频是否已经存在上述数据集合中,需要多次调用Redis数据库的操作函数,会导致对推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频进行过滤的效率较低。In addition, there are often multiple candidate video recommendations in the recommended video candidate results. Since the above data sets are stored in the Redis database, it is necessary to call Redis multiple times to determine whether the candidate recommended videos in the recommended video candidate results already exist in the above data set. The operation function of the database will result in low efficiency in filtering the recommended videos of the system history and the recommended videos consumed by the user in the recommended video candidate results.

发明内容Contents of the invention

有鉴于此,本发明实施例提供一种推荐候选结果过滤方法及装置,能够解决现有技术中过滤推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频时的准确率较低及效率较低的问题。In view of this, the embodiments of the present invention provide a method and device for filtering recommended candidate results, which can solve the problem of low accuracy and low accuracy when filtering recommended videos in the system history and recommended videos consumed by users in the prior art among the recommended video candidate results. The problem of low efficiency.

为实现上述目的,本发明实施例提供如下技术方案:In order to achieve the above purpose, embodiments of the present invention provide the following technical solutions:

一种过滤推荐视频候选结果的方法,包括:A method for filtering recommended video candidate results, comprising:

接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;receiving a video recommendation service invocation request sent by a user, the video recommendation service invocation request including a user identification ID;

从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;From the Redis database, determine the first Bloom filter instance containing the system history recommended video and the second Bloom filter instance containing the recommended video consumed by the user history corresponding to the user ID;

从推荐视频候选结果中确定待过滤视频;Determine the video to be filtered from the recommended video candidate results;

查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。Query whether the video to be filtered is contained in the first Bloom filter instance and the second Bloom filter instance, if so, determine that the video to be filtered is a video to be recommended, and set the video to be filtered The video is added to the first Bloom filter instance, if not included, it is determined that the video to be filtered is not recommended.

可选的,在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,所述方法还包括:Optionally, after determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance, the method further includes:

判断所述第一布隆过滤器实例中包括的系统历史推荐视频的数量是否达到第一预设阈值,如果达到,则重置所述第一布隆过滤器实例。Judging whether the number of system history recommended videos included in the first Bloom filter instance reaches a first preset threshold, and if so, resetting the first Bloom filter instance.

可选的,所述视频推荐服务调用请求包括用户请求推荐视频的数量,则在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,所述方法还包括:Optionally, if the video recommendation service invocation request includes the number of recommended videos requested by the user, then after determining that the video to be filtered is the video to be recommended, and adding the video to be filtered to the first Bloom filter After the implementer instance, the method also includes:

判断向所述用户推荐视频的数量是否大于所述用户请求推荐视频的数量,如果不大于,则返回执行从推荐视频候选结果中确定待过滤视频的步骤并顺序执行,直至从推荐视频候选结果中确定待过滤视频的次数达到第二预设阈值为止,生成最终的视频推荐结果发送给所述用户;如果大于,则直接生成最终的视频推荐结果发送给所述用户。Judging whether the number of recommended videos to the user is greater than the number of recommended videos requested by the user, if not, return to the step of determining the video to be filtered from the recommended video candidate results and perform sequentially until the video is selected from the recommended video candidate results When it is determined that the number of videos to be filtered reaches a second preset threshold, a final video recommendation result is generated and sent to the user; if it is greater than, a final video recommendation result is directly generated and sent to the user.

可选的,在生成最终的视频推荐结果发送给所述用户之后,所述方法还包括:Optionally, after generating the final video recommendation result and sending it to the user, the method further includes:

监测所述用户对所述最终的视频推荐结果中的推荐视频的消费事件;monitoring the user's consumption event of the recommended video in the final video recommendation result;

当监测到所述用户对所述最终的视频推荐结果中的任一推荐视频的消费事件时,将该推荐视频添加至所述第二布隆过滤器实例。When the user's consumption event of any recommended video in the final video recommendation result is detected, the recommended video is added to the second Bloom filter instance.

可选的,所述从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例,包括:Optionally, determining from the Redis database the first Bloom filter instance containing recommended videos in system history and the second Bloom filter instance containing recommended videos consumed in user history corresponding to the user ID ,include:

生成与所述用户ID对应的存储键值;generating a storage key value corresponding to the user ID;

根据所述存储键值从Redis数据库中读取与所述用户ID对应的布隆过滤器序列化字符串;Read the Bloom filter serialization string corresponding to the user ID from the Redis database according to the stored key value;

如果读取成功,则根据所述序列化字符串获取字节数组后反序列化得到所述第一布隆过滤器实例和所述第二布隆过滤器实例;If the reading is successful, obtain the byte array according to the serialized string and deserialize to obtain the first Bloom filter instance and the second Bloom filter instance;

如果读取失败,则新建所述第一布隆过滤器实例和所述第二布隆过滤器实例。If the reading fails, create the first Bloom filter instance and the second Bloom filter instance.

一种过滤推荐视频候选结果的装置,包括:A device for filtering recommended video candidate results, comprising:

接收模块,用于接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;The receiving module is used to receive the video recommendation service call request sent by the user, and the video recommendation service call request includes the user identification ID;

布隆过滤器实例确定模块,用于从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;The Bloom filter instance determination module is used to determine from the Redis database that the first Bloom filter instance containing the system history recommended video and the second Bloom filter instance containing the recommended video consumed by the user history corresponding to the user ID Long filter instance;

待过滤视频确定模块,用于从推荐视频候选结果中确定待过滤视频;The video to be filtered determination module is used to determine the video to be filtered from the recommended video candidate results;

处理模块,用于查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。A processing module, configured to query whether the first Bloom filter instance and the second Bloom filter instance contain the video to be filtered, and if so, determine that the video to be filtered is a video to be recommended, and Add the video to be filtered to the first Bloom filter instance, if not included, determine that the video to be filtered is not recommended.

可选的,所述处理模块还用于:Optionally, the processing module is also used for:

在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,判断所述第一布隆过滤器实例中包括的系统历史推荐视频的数量是否达到第一预设阈值,如果达到,则重置所述第一布隆过滤器实例。After determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance, determining the system history recommendation included in the first Bloom filter instance Whether the number of videos reaches a first preset threshold, and if so, resets the first Bloom filter instance.

可选的,所述处理模块还用于:Optionally, the processing module is also used for:

视频推荐服务调用请求包括用户请求推荐视频的数量,则在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,判断向所述用户推荐视频的数量是否大于所述用户请求推荐视频的数量,如果不大于,则返回执行从推荐视频候选结果中确定待过滤视频的步骤并顺序执行,直至从推荐视频候选结果中确定待过滤视频的次数达到第二预设阈值为止,生成最终的视频推荐结果发送给所述用户;如果大于,则直接生成最终的视频推荐结果发送给所述用户。The video recommendation service call request includes the number of recommended videos requested by the user, then after determining that the video to be filtered is the video to be recommended, and adding the video to be filtered to the first Bloom filter instance, it is determined to Whether the number of videos recommended by the user is greater than the number of videos recommended by the user, if not, return to the step of determining the video to be filtered from the recommended video candidate results and execute in sequence until the video to be filtered is determined from the recommended video candidate results Until the number of times of filtering videos reaches a second preset threshold, a final video recommendation result is generated and sent to the user; if it is greater than, a final video recommendation result is directly generated and sent to the user.

可选的,所述处理模块还用于:Optionally, the processing module is also used for:

在生成最终的视频推荐结果发送给所述用户之后,监测所述用户对所述最终的视频推荐结果中的推荐视频的消费事件;当监测到所述用户对所述最终的视频推荐结果中的任一推荐视频的消费事件时,将该推荐视频添加至所述第二布隆过滤器实例。After generating the final video recommendation result and sending it to the user, monitor the user's consumption event of the recommended video in the final video recommendation result; When any recommended video consumption event occurs, the recommended video is added to the second Bloom filter instance.

可选的,所述布隆过滤器实例确定模块,具体用于:Optionally, the Bloom filter instance determination module is specifically used for:

生成与所述用户ID对应的存储键值;generating a storage key value corresponding to the user ID;

根据所述存储键值从Redis数据库中读取与所述用户ID对应的布隆过滤器序列化字符串;Read the Bloom filter serialization string corresponding to the user ID from the Redis database according to the stored key value;

如果读取成功,则根据所述序列化字符串获取字节数组后反序列化得到所述第一布隆过滤器实例和所述第二布隆过滤器实例;If the reading is successful, obtain the byte array according to the serialized string and deserialize to obtain the first Bloom filter instance and the second Bloom filter instance;

如果读取失败,则新建所述第一布隆过滤器实例和所述第二布隆过滤器实例。If the reading fails, create the first Bloom filter instance and the second Bloom filter instance.

基于上述技术方案,本发明实施例中公开了一种过滤推荐视频候选结果的方法及装置,接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;从推荐视频候选结果中确定待过滤视频;查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。基于上述方法及装置,能够提高过滤推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频时的准确率及效率。Based on the above technical solution, the embodiments of the present invention disclose a method and device for filtering recommended video candidate results, receiving a video recommendation service invocation request sent by a user, and the video recommendation service invocation request includes a user identification ID; from the Redis database Determining the first Bloom filter instance containing the system history recommended video and the second Bloom filter instance containing the recommended video consumed by the user history corresponding to the user ID; Video; query whether the first Bloom filter instance and the second Bloom filter instance contain the video to be filtered, if so, determine that the video to be filtered is a video to be recommended, and the The video to be filtered is added to the first Bloom filter instance, if not included, it is determined that the video to be filtered is not recommended. Based on the above method and device, it is possible to improve the accuracy and efficiency of filtering recommended videos in the system history and recommended videos consumed by users in the recommended video candidate results.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.

图1为本发明实施例提供的一种过滤推荐视频候选结果的方法的流程示意图;FIG. 1 is a schematic flowchart of a method for filtering recommended video candidate results provided by an embodiment of the present invention;

图2为本发明实施例提供的又一种过滤推荐视频候选结果的方法的流程示意图;FIG. 2 is a schematic flowchart of another method for filtering recommended video candidate results provided by an embodiment of the present invention;

图3为本发明实施例提供的再一种过滤推荐视频候选结果的方法的流程示意图;FIG. 3 is a schematic flowchart of another method for filtering recommended video candidate results provided by an embodiment of the present invention;

图4为本发明实施例提供的一种过滤推荐视频候选结果的装置的结构示意图。Fig. 4 is a schematic structural diagram of an apparatus for filtering recommended video candidate results provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

视频推荐系统中,需要从推荐引擎计算出的推荐视频候选结果中取得最终推荐给用户的结果。根据具体需求场景,视频推荐系统用户每次刷新都应该是不同的视频推荐结果,用户已经观看或者收藏、点赞等消费过的推荐视频不应该继续推荐给用户,因此每次调用视频推荐服务都需要高效地从推荐视频候选结果中选择与系统历史推荐视频及用户历史消费的推荐视频不重复的数据。In the video recommendation system, it is necessary to obtain the final recommendation to the user from the recommended video candidate results calculated by the recommendation engine. According to the specific demand scenario, every time the video recommendation system user refreshes, it should be a different video recommendation result. The recommended video that the user has already watched, favorited, liked, etc. should not continue to be recommended to the user, so every time the video recommendation service is called It is necessary to efficiently select data from recommended video candidate results that is not repeated with the system's historically recommended videos and user's historically consumed recommended videos.

Redis是一个使用ANSI C编写的开源、支持网络、基于内存、可选持久性的键值对存储数据库。它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的数据模型。Redis提供了五种不同类型的数据结构,各式各样的问题都可以很自然地映射到这些数据结构上:通过复制、持久化(persistence)和客户端分片(client-side sharding)等特性,用户可以很方便地将Redis扩展成一个能够包含数百GB数据、每秒钟处理上百万次请求的系统。Redis is an open source, network-enabled, in-memory, optional persistent key-value store database written in ANSI C. Not only is it powerful, but it also has replication features and a unique data model for solving problems. Redis provides five different types of data structures, and various problems can be naturally mapped to these data structures: through features such as replication, persistence, and client-side sharding , users can easily expand Redis into a system that can contain hundreds of gigabytes of data and process millions of requests per second.

业界目前实现的视频推荐系统,都需要解决对推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频进行过滤的问题。目前解决上述问题的常规方案是把所有的系统历史推荐视频及用户历史消费的推荐视频保存在一个存储在Redis数据库内的数据集合中,然后逐个判断推荐视频候选结果中的候选推荐视频是否已经存在上述数据集合中,若存在,则不推荐该候选推荐视频。The video recommendation systems currently implemented in the industry all need to solve the problem of filtering the recommended videos in the system history and the recommended videos consumed by the user in the recommended video candidate results. The current conventional solution to the above problem is to store all recommended videos in system history and recommended videos consumed by users in a data set stored in the Redis database, and then judge whether the candidate recommended videos in the recommended video candidate results already exist In the above data set, if it exists, the candidate recommended video is not recommended.

Redis数据库提供的集合存储结构,是一种不含重复元素的数据结构。Redis数据库中存储系统历史推荐视频和用户历史消费的推荐视频两种命名空间,每个命名空间下有每一位用户和其对应的一组视频ID的键值对。也就是说,现有技术中,是存储完整的视频ID到上述数据集合中,随着用户使用视频推荐系统的时间增长,该用户调用视频推荐系统推荐服务的次数以及播放收藏等消费推荐视频行为的次数也相应增多,而视频ID位数又很长,进而导致上述数据集合所占用Redis数据库的存储空间也会越来越庞大。而Redis数据库的数据结构是基于哈希算法的,也就是说,上述数据集合的存储结构是基于哈希函数的,而哈希函数在数据量很大的情况下会出现哈希冲突,因此,数据集合所占用Redis数据库的存储空间过大时,会导致对推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频进行过滤的准确率低。The collection storage structure provided by the Redis database is a data structure that does not contain repeated elements. In the Redis database, there are two namespaces for storing system-historical recommended videos and user-historically consumed recommended videos. Each namespace has key-value pairs for each user and its corresponding set of video IDs. That is to say, in the prior art, the complete video ID is stored in the above-mentioned data set. As the user’s time of using the video recommendation system increases, the number of times the user calls the video recommendation system’s recommendation service and consumes recommended video behaviors such as playing favorites The number of times also increases accordingly, and the number of video ID digits is very long, which leads to the storage space of the Redis database occupied by the above data collection will also become larger and larger. The data structure of the Redis database is based on the hash algorithm, that is to say, the storage structure of the above data collection is based on the hash function, and the hash function will cause hash conflicts when the amount of data is large. Therefore, When the storage space of the Redis database occupied by the data set is too large, the accuracy of filtering the recommended videos in the system history and the recommended videos consumed by the user in the recommended video candidate results is low.

另外,推荐视频候选结果中往往有多个候选视频推荐,由于上述数据集合存储在Redis数据库内,而逐个判断推荐视频候选结果中的候选推荐视频是否已经存在上述数据集合中,需要多次调用Redis数据库的操作函数,会导致对推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频进行过滤的效率较低。In addition, there are often multiple candidate video recommendations in the recommended video candidate results. Since the above data sets are stored in the Redis database, it is necessary to call Redis multiple times to determine whether the candidate recommended videos in the recommended video candidate results already exist in the above data set. The operation function of the database will result in low efficiency in filtering the recommended videos of the system history and the recommended videos consumed by the user in the recommended video candidate results.

因此,本发明提供了一种过滤推荐视频候选结果的方法及装置,以解决现有技术中过滤推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频时的准确率较低及效率较低的问题。下面将通过以下实施例对本发明提供的过滤推荐视频候选结果的方法及装置进行详细说明。Therefore, the present invention provides a method and device for filtering recommended video candidate results, so as to solve the problem of low accuracy and efficiency when filtering system history recommended videos and user historically consumed recommended videos in the prior art. lower question. The method and device for filtering recommended video candidate results provided by the present invention will be described in detail below through the following embodiments.

请参阅附图1,图1为本发明实施例提供的一种过滤推荐视频候选结果的方法的流程示意图,该方法包括如下步骤:Please refer to accompanying drawing 1, Fig. 1 is a schematic flow diagram of a method for filtering recommended video candidate results provided by an embodiment of the present invention, the method includes the following steps:

步骤S100,接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID。Step S100, receiving a video recommendation service invocation request sent by a user, where the video recommendation service invocation request includes a user identification ID.

步骤S110,从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例。Step S110, determining from the Redis database a first Bloom filter instance containing recommended videos in the system history and a second Bloom filter instance containing recommended videos consumed by the user in the history corresponding to the user ID.

为保证视频推荐系统的时间性能,本实施例中使用Redis数据库存储布隆过滤器。In order to ensure the time performance of the video recommendation system, the Redis database is used in this embodiment to store the Bloom filter.

布隆过滤器的核心实现是一个超大的位数组和几个哈希函数。假设位数组的长度为m,哈希函数的个数为k,将m位的位数组每一位都置为0,当有一条数据要写入布隆过滤器时,使用k个不同的哈希函数,对该条数据进行哈希值计算,并确保得到的哈希值位于{1,m}这个区间。则现在k个哈希函数会得到k个哈希值,在位数组中将这些值所对应的位全部置为1,则此时该条数据就已经写入到布隆过滤器中了。当再有数据加入到布隆过滤器中时,如果发现某位已经是1,就跳过。The core implementation of a Bloom filter is a very large bit array and several hash functions. Assuming that the length of the bit array is m and the number of hash functions is k, each bit of the m-bit bit array is set to 0. When there is a piece of data to be written into the Bloom filter, k different hash functions are used. Hash function, calculate the hash value of the piece of data, and ensure that the obtained hash value is in the interval {1, m}. Now k hash functions will get k hash values, and all the bits corresponding to these values are set to 1 in the bit array, then the piece of data has been written into the Bloom filter at this time. When more data is added to the Bloom filter, if it is found that a certain bit is already 1, skip it.

当要查询布隆过滤器中是否包含某条数据时,同样适用这k个哈希函数进行哈希计算,得到k个哈希值,对这k个哈希值在位数组中查看对应位的值是否为1,如果这k位中存在不为1的值,则证明布隆过滤器中不存在该条数据,如果所得k位的值全为1,则证明该条数据可能包含在布隆过滤器中。When it is necessary to query whether a piece of data is contained in the Bloom filter, the k hash functions are also used for hash calculation to obtain k hash values, and the k hash values are checked in the bit array for the corresponding bits. Whether the value is 1, if there is a value other than 1 in these k bits, it proves that the piece of data does not exist in the Bloom filter, if the values of the obtained k bits are all 1, it proves that the piece of data may be included in the Bloom filter in the filter.

对于判断是否存在某条数据是存在误差的,若布隆过滤器判断存在某条数据则可能存在该数据,如果判断不存在某条数据则一定不存在某条数据,对于这种误差视频推荐系统是可以容忍的。There is an error in judging whether a piece of data exists. If the Bloom filter judges that there is a piece of data, the data may exist. If it judges that there is no piece of data, it must not exist. For this kind of error, the video recommendation system is tolerable.

步骤S120,从推荐视频候选结果中确定待过滤视频。Step S120, determining the video to be filtered from the recommended video candidate results.

步骤S130,查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则执行步骤S140,如果不包含,则执行步骤S150。Step S130, query whether the video to be filtered is included in the first Bloom filter instance and the second Bloom filter instance, if yes, execute step S140, if not, execute step S150.

步骤S140,确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例。Step S140, determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance.

步骤S150,确定不推荐所述待过滤视频。Step S150, determining that the video to be filtered is not recommended.

本发明实施例中公开了一种过滤推荐视频候选结果的方法,接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;从推荐视频候选结果中确定待过滤视频;查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。基于上述方法,能够提高过滤推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频时的准确率及效率。The embodiment of the present invention discloses a method for filtering recommended video candidate results, receiving a video recommendation service invocation request sent by a user, and the video recommendation service invocation request includes a user identification ID; Correspondingly, the first Bloom filter instance containing recommended videos in the system history and the second Bloom filter instance containing recommended videos consumed by users in history; determine the video to be filtered from the recommended video candidate results; query the first Whether the video to be filtered is included in the Bloom filter instance and the second Bloom filter instance, and if so, it is determined that the video to be filtered is a video to be recommended, and the video to be filtered is added to the If the first Bloom filter instance does not contain it, it is determined that the video to be filtered is not recommended. Based on the above method, the accuracy and efficiency of filtering recommended videos in system history and recommended videos consumed by users in history in the recommended video candidate results can be improved.

请参阅附图2,图2为本发明实施例提供的又一种过滤推荐视频候选结果的方法的流程示意图,该方法包括如下步骤:Please refer to accompanying drawing 2, Fig. 2 is the schematic flow chart of another kind of method for filtering recommended video candidate result provided by the embodiment of the present invention, this method comprises the following steps:

步骤S200,接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID。Step S200, receiving a video recommendation service invocation request sent by a user, where the video recommendation service invocation request includes a user identification ID.

步骤S210,从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例。Step S210, determining from the Redis database a first Bloom filter instance containing recommended videos in the system history and a second Bloom filter instance containing recommended videos consumed by the user in the history corresponding to the user ID.

该步骤具体包括:生成与所述用户ID对应的存储键值;根据所述存储键值从Redis数据库中读取与所述用户ID对应的布隆过滤器序列化字符串;如果读取成功,则根据所述序列化字符串获取字节数组后反序列化得到所述第一布隆过滤器实例和所述第二布隆过滤器实例;如果读取失败,则新建所述第一布隆过滤器实例和所述第二布隆过滤器实例。新建或者反序列化布隆过滤器实例时需要指定所建立布隆过滤器实例的预估容量大小和精确度,这些参数和生成布隆过滤器实例的占用存储空间有关。This step specifically includes: generating a storage key value corresponding to the user ID; reading the Bloom filter serialization string corresponding to the user ID from the Redis database according to the storage key value; if the read is successful, Then obtain the byte array according to the serialized string and deserialize to obtain the first Bloom filter instance and the second Bloom filter instance; if the reading fails, create the first Bloom filter filter instance and the second bloom filter instance. When creating or deserializing a Bloom filter instance, you need to specify the estimated capacity and accuracy of the created Bloom filter instance. These parameters are related to the storage space occupied by the generated Bloom filter instance.

步骤S220,从推荐视频候选结果中确定待过滤视频。Step S220, determining the video to be filtered from the recommended video candidate results.

步骤S230,查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则执行步骤S240和步骤S250,如果不包含,则执行步骤S260。Step S230, query whether the video to be filtered is included in the first Bloom filter instance and the second Bloom filter instance, if yes, execute step S240 and step S250, if not, execute step S230 S260.

步骤S240,确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例。Step S240, determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance.

步骤S250,判断所述第一布隆过滤器实例中包括的系统历史推荐视频的数量是否达到第一预设阈值,如果达到,则重置所述第一布隆过滤器实例。Step S250, judging whether the number of system history recommended videos included in the first Bloom filter instance reaches a first preset threshold, and if so, resetting the first Bloom filter instance.

第一预设阈值是基于视频推荐引擎保底数据候选集大小的The first preset threshold is based on the size of the video recommendation engine's guaranteed data candidate set

步骤S260,确定不推荐所述待过滤视频。In step S260, it is determined that the video to be filtered is not recommended.

本发明实施例公开的一种过滤推荐视频候选结果的方法,在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,所述方法还包括:判断所述第一布隆过滤器实例中包括的系统历史推荐视频的数量是否达到第一预设阈值,如果达到,则重置所述第一布隆过滤器实例,能够进一步避免第一布隆过滤器实例中包括的系统历史推荐视频的数量过多导致过滤推荐视频候选结果中的系统历史推荐视频的准确率较低的问题。In a method for filtering recommended video candidate results disclosed in an embodiment of the present invention, after determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance, The method further includes: judging whether the number of system history recommended videos included in the first Bloom filter instance reaches a first preset threshold, and if so, resetting the first Bloom filter instance, which can Further avoiding the problem that too many system history recommended videos included in the first Bloom filter instance lead to a low accuracy rate of filtering the system history recommended videos in the recommended video candidate results.

请参阅附图3,图3为本发明实施例提供的再一种过滤推荐视频候选结果的方法的流程示意图,该方法包括如下步骤:Please refer to accompanying drawing 3, and Fig. 3 is the schematic flowchart of another kind of method for filtering recommended video candidate results provided by the embodiment of the present invention, and this method comprises the following steps:

步骤S300,接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID及用户请求推荐视频的数量。Step S300, receiving a video recommendation service invocation request sent by a user, the video recommendation service invocation request including the user ID and the number of recommended videos requested by the user.

步骤S310,从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例。Step S310, determining from the Redis database a first Bloom filter instance containing recommended videos in the system history and a second Bloom filter instance containing recommended videos consumed by the user in the history corresponding to the user ID.

该步骤具体包括:生成与所述用户ID对应的存储键值;根据所述存储键值从Redis数据库中读取与所述用户ID对应的布隆过滤器序列化字符串;如果读取成功,则根据所述序列化字符串获取字节数组后反序列化得到所述第一布隆过滤器实例和所述第二布隆过滤器实例;如果读取失败,则新建所述第一布隆过滤器实例和所述第二布隆过滤器实例。This step specifically includes: generating a storage key value corresponding to the user ID; reading the Bloom filter serialization string corresponding to the user ID from the Redis database according to the storage key value; if the read is successful, Then obtain the byte array according to the serialized string and deserialize to obtain the first Bloom filter instance and the second Bloom filter instance; if the reading fails, create the first Bloom filter filter instance and the second bloom filter instance.

步骤S320,从推荐视频候选结果中确定待过滤视频。Step S320, determining the video to be filtered from the recommended video candidate results.

步骤S330,查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则执行步骤S340至步骤S370,如果不包含,则执行步骤S380。Step S330, query whether the video to be filtered is contained in the first Bloom filter instance and the second Bloom filter instance, if yes, perform steps S340 to S370, if not, perform step S330 S380.

步骤S340,确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例。Step S340, determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance.

步骤S350,判断向所述用户推荐视频的数量是否大于所述用户请求推荐视频的数量,如果不大于,则返回执行从推荐视频候选结果中确定待过滤视频的步骤并顺序执行,直至从推荐视频候选结果中确定待过滤视频的次数达到第二预设阈值为止,生成最终的视频推荐结果发送给所述用户;如果大于,则直接生成最终的视频推荐结果发送给所述用户。Step S350, judging whether the number of recommended videos to the user is greater than the number of recommended videos requested by the user, if not, return to the step of determining the video to be filtered from the recommended video candidate results and execute in sequence until the recommended video Until the number of times of the video to be filtered in the candidate results reaches a second preset threshold, a final video recommendation result is generated and sent to the user; if greater, the final video recommendation result is directly generated and sent to the user.

步骤S360,监测所述用户对所述最终的视频推荐结果中的推荐视频的消费事件。Step S360, monitoring the user's consumption event of the recommended video in the final video recommendation result.

步骤S370,当监测到所述用户对所述最终的视频推荐结果中的任一推荐视频的消费事件时,将该推荐视频添加至所述第二布隆过滤器实例。Step S370, when the user's consumption event of any recommended video in the final video recommendation result is detected, add the recommended video to the second Bloom filter instance.

用户消费视频事件会被使用该视频推荐系统的视频客户端收集并发送到kafka中,视频推荐系统收集这些消费事件并解析,根据所得的用户ID从Redis数据库中读取相应用户的第二布隆过滤器实例的序列化字符串,同上,若成功读取第二布隆过滤器实例的序列化字符串则从该字符串反序列化出第二布隆过滤器实例,若不存在第二布隆过滤器实例的序列化字符串则新建第二布隆过滤器实例。然后将该消费事件中包含的用户消费的视频ID添加到第二布隆过滤器实例中,然后序列化该第二布隆过滤器实例为序列化字符串存储到Redis数据库的对应位置。The video consumption events of users will be collected by the video client using the video recommendation system and sent to Kafka. The video recommendation system collects and parses these consumption events, and reads the corresponding user’s second Bloom from the Redis database according to the obtained user ID. The serialized string of the filter instance, as above, if the serialized string of the second Bloom filter instance is successfully read, the second Bloom filter instance will be deserialized from the string, if there is no second Bloom filter instance The serialized string of the Bloom filter instance creates a second Bloom filter instance. Then add the video ID consumed by the user contained in the consumption event to the second Bloom filter instance, and then serialize the second Bloom filter instance as a serialized string and store it in the corresponding position of the Redis database.

步骤S380,确定不推荐所述待过滤视频。In step S380, it is determined that the video to be filtered is not recommended.

本实施例公开的过滤推荐视频候选结果的方法,在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,所述方法还包括:判断向所述用户推荐视频的数量是否大于所述用户请求推荐视频的数量,如果不大于,则返回执行从推荐视频候选结果中确定待过滤视频的步骤并顺序执行,直至从推荐视频候选结果中确定待过滤视频的次数达到第二预设阈值为止,生成最终的视频推荐结果发送给所述用户;如果大于,则直接生成最终的视频推荐结果发送给所述用户。在生成最终的视频推荐结果发送给所述用户之后,所述方法还包括:监测所述用户对所述最终的视频推荐结果中的推荐视频的消费事件;当监测到所述用户对所述最终的视频推荐结果中的任一推荐视频的消费事件时,将该推荐视频添加至所述第二布隆过滤器实例。能够进一步提高过滤推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频时的准确率及效率。In the method for filtering recommended video candidate results disclosed in this embodiment, after determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance, the method It also includes: judging whether the number of recommended videos to the user is greater than the number of recommended videos requested by the user, and if not, return to the step of determining the video to be filtered from the recommended video candidate results and perform sequentially until the recommended video Until the number of times of the video to be filtered in the candidate results reaches a second preset threshold, a final video recommendation result is generated and sent to the user; if greater, the final video recommendation result is directly generated and sent to the user. After generating the final video recommendation result and sending it to the user, the method further includes: monitoring the user's consumption event of the recommended video in the final video recommendation result; When there is a consumption event of any recommended video in the recommended video results, the recommended video is added to the second Bloom filter instance. It is possible to further improve the accuracy and efficiency of filtering recommended videos in the system history and recommended videos consumed by users in the recommended video candidate results.

请参阅附图4,图4为本发明实施例提供的一种过滤推荐视频候选结果的装置的结构示意图,该装置包括:Please refer to accompanying drawing 4. Fig. 4 is a schematic structural diagram of an apparatus for filtering recommended video candidate results provided by an embodiment of the present invention. The apparatus includes:

接收模块100,用于接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;The receiving module 100 is configured to receive a video recommendation service call request sent by a user, and the video recommendation service call request includes a user identification ID;

布隆过滤器实例确定模块110,用于从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;The Bloom filter instance determination module 110 is used to determine from the Redis database the first Bloom filter instance containing the system history recommended video and the second Bloom filter instance containing the recommended video consumed by the user history corresponding to the user ID. Bloom filter instance;

待过滤视频确定模块120,用于从推荐视频候选结果中确定待过滤视频;The video to be filtered determining module 120 is used to determine the video to be filtered from the recommended video candidate results;

处理模块130,用于查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。A processing module 130, configured to inquire whether the first Bloom filter instance and the second Bloom filter instance contain the video to be filtered, and if so, determine that the video to be filtered is a video to be recommended, And adding the video to be filtered to the first Bloom filter instance, if not included, it is determined that the video to be filtered is not recommended.

可选的,所述处理模块130还用于:Optionally, the processing module 130 is also used for:

在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,判断所述第一布隆过滤器实例中包括的系统历史推荐视频的数量是否达到第一预设阈值,如果达到,则重置所述第一布隆过滤器实例。After determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance, determining the system history recommendation included in the first Bloom filter instance Whether the number of videos reaches a first preset threshold, and if so, resets the first Bloom filter instance.

可选的,所述处理模块130还用于:Optionally, the processing module 130 is also used for:

视频推荐服务调用请求包括用户请求推荐视频的数量,则在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,判断向所述用户推荐视频的数量是否大于所述用户请求推荐视频的数量,如果不大于,则返回执行从推荐视频候选结果中确定待过滤视频的步骤并顺序执行,直至从推荐视频候选结果中确定待过滤视频的次数达到第二预设阈值为止,生成最终的视频推荐结果发送给所述用户;如果大于,则直接生成最终的视频推荐结果发送给所述用户。The video recommendation service call request includes the number of recommended videos requested by the user, then after determining that the video to be filtered is the video to be recommended, and adding the video to be filtered to the first Bloom filter instance, it is determined to Whether the number of videos recommended by the user is greater than the number of videos recommended by the user, if not, return to the step of determining the video to be filtered from the recommended video candidate results and execute in sequence until the video to be filtered is determined from the recommended video candidate results Until the number of times of filtering videos reaches a second preset threshold, a final video recommendation result is generated and sent to the user; if it is greater than, a final video recommendation result is directly generated and sent to the user.

可选的,所述处理模块130还用于:Optionally, the processing module 130 is also used for:

在生成最终的视频推荐结果发送给所述用户之后,监测所述用户对所述最终的视频推荐结果中的推荐视频的消费事件;当监测到所述用户对所述最终的视频推荐结果中的任一推荐视频的消费事件时,将该推荐视频添加至所述第二布隆过滤器实例。After generating the final video recommendation result and sending it to the user, monitor the user's consumption event of the recommended video in the final video recommendation result; When any recommended video consumption event occurs, the recommended video is added to the second Bloom filter instance.

可选的,所述布隆过滤器实例确定模块110,具体用于:Optionally, the Bloom filter instance determination module 110 is specifically used for:

生成与所述用户ID对应的存储键值;generating a storage key value corresponding to the user ID;

根据所述存储键值从Redis数据库中读取与所述用户ID对应的布隆过滤器序列化字符串;Read the Bloom filter serialization string corresponding to the user ID from the Redis database according to the stored key value;

如果读取成功,则根据所述序列化字符串获取字节数组后反序列化得到所述第一布隆过滤器实例和所述第二布隆过滤器实例;If the reading is successful, obtain the byte array according to the serialized string and deserialize to obtain the first Bloom filter instance and the second Bloom filter instance;

如果读取失败,则新建所述第一布隆过滤器实例和所述第二布隆过滤器实例。If the reading fails, create the first Bloom filter instance and the second Bloom filter instance.

需要说明的是,上述各个模块的具体功能实现已在方法实施例中详细说明,本实施例不再赘述。It should be noted that the implementation of the specific functions of the above modules has been described in detail in the method embodiments, and will not be repeated in this embodiment.

综上所述:In summary:

本发明实施例中公开了一种过滤推荐视频候选结果的方法及装置,接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;从推荐视频候选结果中确定待过滤视频;查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。基于上述方法及装置,能够提高过滤推荐视频候选结果中的系统历史推荐视频及用户历史消费的推荐视频时的准确率及效率。The embodiment of the present invention discloses a method and device for filtering recommended video candidate results, receiving a video recommendation service call request sent by a user, the video recommendation service call request includes a user identification ID; The ID corresponds to the first Bloom filter instance containing recommended videos in system history and the second Bloom filter instance containing recommended videos consumed by users in history; determine the video to be filtered from the recommended video candidate results; query the Whether the video to be filtered is included in the first Bloom filter instance and the second Bloom filter instance, if so, it is determined that the video to be filtered is a video to be recommended, and the video to be filtered is added to If the first Bloom filter instance does not contain it, it is determined that the video to be filtered is not recommended. Based on the above method and device, it is possible to improve the accuracy and efficiency of filtering recommended videos in the system history and recommended videos consumed by users in the recommended video candidate results.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and for the related information, please refer to the description of the method part.

专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in conjunction with the embodiments disclosed herein may be directly implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (10)

1.一种过滤推荐视频候选结果的方法,其特征在于,包括:1. A method for filtering recommended video candidate results, comprising: 接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;receiving a video recommendation service invocation request sent by a user, the video recommendation service invocation request including a user identification ID; 从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;From the Redis database, determine the first Bloom filter instance containing the system history recommended video and the second Bloom filter instance containing the recommended video consumed by the user history corresponding to the user ID; 从推荐视频候选结果中确定待过滤视频;Determine the video to be filtered from the recommended video candidate results; 查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。Query whether the video to be filtered is contained in the first Bloom filter instance and the second Bloom filter instance, if so, determine that the video to be filtered is a video to be recommended, and set the video to be filtered The video is added to the first Bloom filter instance, if not included, it is determined that the video to be filtered is not recommended. 2.根据权利要求1所述的方法,其特征在于,在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,所述方法还包括:2. The method according to claim 1, wherein, after determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance, the The method also includes: 判断所述第一布隆过滤器实例中包括的系统历史推荐视频的数量是否达到第一预设阈值,如果达到,则重置所述第一布隆过滤器实例。Judging whether the number of system history recommended videos included in the first Bloom filter instance reaches a first preset threshold, and if so, resetting the first Bloom filter instance. 3.根据权利要求1所述的方法,其特征在于,所述视频推荐服务调用请求包括用户请求推荐视频的数量,则在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,所述方法还包括:3. The method according to claim 1, wherein the video recommendation service invocation request includes the number of recommended videos requested by the user, then determining that the video to be filtered is a video to be recommended, and adding the video to be recommended After the filtered video is added to the first Bloom filter instance, the method further includes: 判断向所述用户推荐视频的数量是否大于所述用户请求推荐视频的数量,如果不大于,则返回执行从推荐视频候选结果中确定待过滤视频的步骤并顺序执行,直至从推荐视频候选结果中确定待过滤视频的次数达到第二预设阈值为止,生成最终的视频推荐结果发送给所述用户;如果大于,则直接生成最终的视频推荐结果发送给所述用户。Judging whether the number of recommended videos to the user is greater than the number of recommended videos requested by the user, if not, return to the step of determining the video to be filtered from the recommended video candidate results and perform sequentially until the video is selected from the recommended video candidate results When it is determined that the number of videos to be filtered reaches a second preset threshold, a final video recommendation result is generated and sent to the user; if it is greater than, a final video recommendation result is directly generated and sent to the user. 4.根据权利要求3所述的方法,其特征在于,在生成最终的视频推荐结果发送给所述用户之后,所述方法还包括:4. The method according to claim 3, characterized in that, after generating the final video recommendation result and sending it to the user, the method further comprises: 监测所述用户对所述最终的视频推荐结果中的推荐视频的消费事件;monitoring the user's consumption event of the recommended video in the final video recommendation result; 当监测到所述用户对所述最终的视频推荐结果中的任一推荐视频的消费事件时,将该推荐视频添加至所述第二布隆过滤器实例。When the user's consumption event of any recommended video in the final video recommendation result is detected, the recommended video is added to the second Bloom filter instance. 5.根据权利要求1至4中任意一项所述的方法,其特征在于,所述从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例,包括:5. The method according to any one of claims 1 to 4, wherein the first Bloom filter instance containing system history recommended videos corresponding to the user ID is determined from the Redis database and a second Bloom filter instance containing recommended videos that the user has consumed historically, including: 生成与所述用户ID对应的存储键值;generating a storage key value corresponding to the user ID; 根据所述存储键值从Redis数据库中读取与所述用户ID对应的布隆过滤器序列化字符串;Read the Bloom filter serialization string corresponding to the user ID from the Redis database according to the stored key value; 如果读取成功,则根据所述序列化字符串获取字节数组后反序列化得到所述第一布隆过滤器实例和所述第二布隆过滤器实例;If the reading is successful, obtain the byte array according to the serialized string and deserialize to obtain the first Bloom filter instance and the second Bloom filter instance; 如果读取失败,则新建所述第一布隆过滤器实例和所述第二布隆过滤器实例。If the reading fails, create the first Bloom filter instance and the second Bloom filter instance. 6.一种过滤推荐视频候选结果的装置,其特征在于,包括:6. A device for filtering recommended video candidate results, comprising: 接收模块,用于接收用户发送的视频推荐服务调用请求,所述视频推荐服务调用请求包括用户标识ID;The receiving module is used to receive the video recommendation service call request sent by the user, and the video recommendation service call request includes the user identification ID; 布隆过滤器实例确定模块,用于从Redis数据库中确定与所述用户ID相对应的包含有系统历史推荐视频的第一布隆过滤器实例和包含有用户历史消费的推荐视频的第二布隆过滤器实例;The Bloom filter instance determination module is used to determine from the Redis database that the first Bloom filter instance containing the system history recommended video and the second Bloom filter instance containing the recommended video consumed by the user history corresponding to the user ID Long filter instance; 待过滤视频确定模块,用于从推荐视频候选结果中确定待过滤视频;The video to be filtered determination module is used to determine the video to be filtered from the recommended video candidate results; 处理模块,用于查询所述第一布隆过滤器实例以及所述第二布隆过滤器实例中是否包含所述待过滤视频,如果包含,则确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例,如果不包含,则确定不推荐所述待过滤视频。A processing module, configured to query whether the first Bloom filter instance and the second Bloom filter instance contain the video to be filtered, and if so, determine that the video to be filtered is a video to be recommended, and Add the video to be filtered to the first Bloom filter instance, if not included, determine that the video to be filtered is not recommended. 7.根据权利要求6所述的装置,其特征在于,所述处理模块还用于:7. The device according to claim 6, wherein the processing module is also used for: 在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,判断所述第一布隆过滤器实例中包括的系统历史推荐视频的数量是否达到第一预设阈值,如果达到,则重置所述第一布隆过滤器实例。After determining that the video to be filtered is a video to be recommended, and adding the video to be filtered to the first Bloom filter instance, determining the system history recommendation included in the first Bloom filter instance Whether the number of videos reaches a first preset threshold, and if so, resets the first Bloom filter instance. 8.根据权利要求6所述的装置,其特征在于,所述处理模块还用于:8. The device according to claim 6, wherein the processing module is also used for: 视频推荐服务调用请求包括用户请求推荐视频的数量,则在所述确定所述待过滤视频为待推荐视频,并将所述待过滤视频添加至所述第一布隆过滤器实例之后,判断向所述用户推荐视频的数量是否大于所述用户请求推荐视频的数量,如果不大于,则返回执行从推荐视频候选结果中确定待过滤视频的步骤并顺序执行,直至从推荐视频候选结果中确定待过滤视频的次数达到第二预设阈值为止,生成最终的视频推荐结果发送给所述用户;如果大于,则直接生成最终的视频推荐结果发送给所述用户。The video recommendation service call request includes the number of recommended videos requested by the user, then after determining that the video to be filtered is the video to be recommended, and adding the video to be filtered to the first Bloom filter instance, it is determined to Whether the number of videos recommended by the user is greater than the number of videos recommended by the user, if not, return to the step of determining the video to be filtered from the recommended video candidate results and execute in sequence until the video to be filtered is determined from the recommended video candidate results Until the number of times of filtering videos reaches a second preset threshold, a final video recommendation result is generated and sent to the user; if it is greater than, a final video recommendation result is directly generated and sent to the user. 9.根据权利要求8所述的装置,其特征在于,所述处理模块还用于:9. The device according to claim 8, wherein the processing module is also used for: 在生成最终的视频推荐结果发送给所述用户之后,监测所述用户对所述最终的视频推荐结果中的推荐视频的消费事件;当监测到所述用户对所述最终的视频推荐结果中的任一推荐视频的消费事件时,将该推荐视频添加至所述第二布隆过滤器实例。After generating the final video recommendation result and sending it to the user, monitor the user's consumption event of the recommended video in the final video recommendation result; When any recommended video consumption event occurs, the recommended video is added to the second Bloom filter instance. 10.根据权利要求6至9中任意一项所述的装置,其特征在于,所述布隆过滤器实例确定模块,具体用于:10. The device according to any one of claims 6 to 9, wherein the Bloom filter instance determination module is specifically used for: 生成与所述用户ID对应的存储键值;generating a storage key value corresponding to the user ID; 根据所述存储键值从Redis数据库中读取与所述用户ID对应的布隆过滤器序列化字符串;Read the Bloom filter serialization string corresponding to the user ID from the Redis database according to the stored key value; 如果读取成功,则根据所述序列化字符串获取字节数组后反序列化得到所述第一布隆过滤器实例和所述第二布隆过滤器实例;If the reading is successful, obtain the byte array according to the serialized string and deserialize to obtain the first Bloom filter instance and the second Bloom filter instance; 如果读取失败,则新建所述第一布隆过滤器实例和所述第二布隆过滤器实例。If the reading fails, create the first Bloom filter instance and the second Bloom filter instance.
CN201711486750.4A 2017-12-29 2017-12-29 Method and device for filtering recommended video candidate result Active CN108133031B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711486750.4A CN108133031B (en) 2017-12-29 2017-12-29 Method and device for filtering recommended video candidate result

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711486750.4A CN108133031B (en) 2017-12-29 2017-12-29 Method and device for filtering recommended video candidate result

Publications (2)

Publication Number Publication Date
CN108133031A true CN108133031A (en) 2018-06-08
CN108133031B CN108133031B (en) 2021-01-29

Family

ID=62394162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711486750.4A Active CN108133031B (en) 2017-12-29 2017-12-29 Method and device for filtering recommended video candidate result

Country Status (1)

Country Link
CN (1) CN108133031B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110209874A (en) * 2019-04-24 2019-09-06 北京奇艺世纪科技有限公司 Information processing method, device, electronic equipment and storage medium
CN110781386A (en) * 2019-10-10 2020-02-11 支付宝(杭州)信息技术有限公司 Information recommendation method and device, and bloom filter creation method and device
CN110784729A (en) * 2019-10-25 2020-02-11 广州华多网络科技有限公司 Live broadcast room entrance pipeline data processing method, device, equipment and storage medium
CN111159436A (en) * 2018-11-07 2020-05-15 腾讯科技(深圳)有限公司 Method and device for recommending multimedia content and computing equipment
CN111698126A (en) * 2020-04-28 2020-09-22 武汉旷视金智科技有限公司 Information monitoring method, system and computer readable storage medium
CN111711860A (en) * 2020-05-14 2020-09-25 北京奇艺世纪科技有限公司 Video recommendation filtering method, device, server and storage medium
CN111857850A (en) * 2020-07-21 2020-10-30 掌阅科技股份有限公司 Filter initialization method, electronic device and storage medium
CN112347355A (en) * 2020-11-11 2021-02-09 广州酷狗计算机科技有限公司 Data processing method, device, server and storage medium
CN112528125A (en) * 2020-12-23 2021-03-19 北京明略软件系统有限公司 Method and device for avoiding content repeated recommendation, electronic equipment and storage medium
CN112818019A (en) * 2021-01-29 2021-05-18 北京思特奇信息技术股份有限公司 Query request filtering method applied to Redis client and Redis client
CN113536034A (en) * 2021-09-17 2021-10-22 飞狐信息技术(天津)有限公司 Data writing method and data reading method based on bloom filter
CN114173176A (en) * 2021-11-17 2022-03-11 聚好看科技股份有限公司 A server, display device and media asset filtering method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192461A (en) * 2002-12-12 2004-07-08 Sony Corp Information processor, information processing method, information processing system, recording medium, and program
CN105718455A (en) * 2014-12-01 2016-06-29 阿里巴巴集团控股有限公司 Data query method and apparatus
CN105740266A (en) * 2014-12-10 2016-07-06 国际商业机器公司 Data deduplication method and device
CN106294462A (en) * 2015-06-01 2017-01-04 Tcl集团股份有限公司 A kind of method and system obtaining recommendation video
CN106326431A (en) * 2016-08-25 2017-01-11 乐视控股(北京)有限公司 Information recommendation method and device
CN106445944A (en) * 2015-08-06 2017-02-22 阿里巴巴集团控股有限公司 Data query request processing method and apparatus, and electronic device
CN107038213A (en) * 2017-02-28 2017-08-11 华为技术有限公司 A kind of method and device of video recommendations
CN107454442A (en) * 2017-09-07 2017-12-08 广州优视网络科技有限公司 A kind of method and apparatus for recommending video
CN107645667A (en) * 2017-09-21 2018-01-30 广州华多网络科技有限公司 Video recommendation method, system and server apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192461A (en) * 2002-12-12 2004-07-08 Sony Corp Information processor, information processing method, information processing system, recording medium, and program
CN105718455A (en) * 2014-12-01 2016-06-29 阿里巴巴集团控股有限公司 Data query method and apparatus
CN105740266A (en) * 2014-12-10 2016-07-06 国际商业机器公司 Data deduplication method and device
CN106294462A (en) * 2015-06-01 2017-01-04 Tcl集团股份有限公司 A kind of method and system obtaining recommendation video
CN106445944A (en) * 2015-08-06 2017-02-22 阿里巴巴集团控股有限公司 Data query request processing method and apparatus, and electronic device
CN106326431A (en) * 2016-08-25 2017-01-11 乐视控股(北京)有限公司 Information recommendation method and device
CN107038213A (en) * 2017-02-28 2017-08-11 华为技术有限公司 A kind of method and device of video recommendations
CN107454442A (en) * 2017-09-07 2017-12-08 广州优视网络科技有限公司 A kind of method and apparatus for recommending video
CN107645667A (en) * 2017-09-21 2018-01-30 广州华多网络科技有限公司 Video recommendation method, system and server apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANLIN LU 等: "BloomStore: Bloom-Filter based Memory-efficient Key-Value Store for Indexing of Data Deduplication", 《2012 IEEE 28TH SYMPOSIUM ON MASS STORAGE SYSTEMS》 *
黄涛: "布隆过滤器在网页去重中的研究与应用", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111159436B (en) * 2018-11-07 2023-12-12 腾讯科技(深圳)有限公司 Method, device and computing equipment for recommending multimedia content
CN111159436A (en) * 2018-11-07 2020-05-15 腾讯科技(深圳)有限公司 Method and device for recommending multimedia content and computing equipment
CN110209874A (en) * 2019-04-24 2019-09-06 北京奇艺世纪科技有限公司 Information processing method, device, electronic equipment and storage medium
CN110781386A (en) * 2019-10-10 2020-02-11 支付宝(杭州)信息技术有限公司 Information recommendation method and device, and bloom filter creation method and device
CN110784729A (en) * 2019-10-25 2020-02-11 广州华多网络科技有限公司 Live broadcast room entrance pipeline data processing method, device, equipment and storage medium
CN111698126A (en) * 2020-04-28 2020-09-22 武汉旷视金智科技有限公司 Information monitoring method, system and computer readable storage medium
CN111698126B (en) * 2020-04-28 2021-10-01 武汉旷视金智科技有限公司 Information monitoring method, system and computer readable storage medium
CN111711860A (en) * 2020-05-14 2020-09-25 北京奇艺世纪科技有限公司 Video recommendation filtering method, device, server and storage medium
CN111857850A (en) * 2020-07-21 2020-10-30 掌阅科技股份有限公司 Filter initialization method, electronic device and storage medium
CN112347355A (en) * 2020-11-11 2021-02-09 广州酷狗计算机科技有限公司 Data processing method, device, server and storage medium
CN112347355B (en) * 2020-11-11 2024-10-11 广州酷狗计算机科技有限公司 Data processing method, device, server and storage medium
CN112528125A (en) * 2020-12-23 2021-03-19 北京明略软件系统有限公司 Method and device for avoiding content repeated recommendation, electronic equipment and storage medium
CN112818019B (en) * 2021-01-29 2024-02-02 北京思特奇信息技术股份有限公司 Query request filtering method applied to Redis client and Redis client
CN112818019A (en) * 2021-01-29 2021-05-18 北京思特奇信息技术股份有限公司 Query request filtering method applied to Redis client and Redis client
CN113536034A (en) * 2021-09-17 2021-10-22 飞狐信息技术(天津)有限公司 Data writing method and data reading method based on bloom filter
CN114173176A (en) * 2021-11-17 2022-03-11 聚好看科技股份有限公司 A server, display device and media asset filtering method
CN114173176B (en) * 2021-11-17 2023-07-14 聚好看科技股份有限公司 A server, a display device, and a media asset filtering method

Also Published As

Publication number Publication date
CN108133031B (en) 2021-01-29

Similar Documents

Publication Publication Date Title
CN108133031A (en) A kind of method and device of filtered recommendation video candidate result
US12056583B2 (en) Target variable distribution-based acceptance of machine learning test data sets
CN110825733B (en) Multi-sampling-stream-oriented time series data management method and system
CN107562915A (en) Read the method, apparatus and equipment and computer-readable recording medium of small documents
CN109522273B (en) Method and device for realizing data writing
CN108268344A (en) A kind of data processing method and device
CN114116614A (en) Log storage method, device, computer equipment and storage medium
CN118963671A (en) Data storage method, system, device and computer readable storage medium
CN111930741A (en) Database partitioning method and device and transaction request data reading and writing system
CN118250206A (en) High concurrency pressure testing method and related device based on flow playback
CN107273430B (en) A data storage method and device
CN115291804B (en) Memory and hard disk integrated storage data processing method, system, equipment and medium
CN113220992B (en) A method, system and medium for recommending information flow content
CN112445869A (en) Data quality inspection method and device
CN117172839A (en) Resource data processing method, device, computer equipment and storage medium
CN105630991B (en) ID automatic generation method and device
CN116737373A (en) Load balancing method, device, computer equipment and storage medium
CN116204311A (en) Pod cluster capacity expansion and contraction method and device, computer equipment and storage medium
CN111104528B (en) Picture acquisition method and device and client
CN108363819B (en) Query engine matching method, device, server group and readable storage medium
CN110209679B (en) data storage method and terminal equipment for improving access efficiency
CN108959499A (en) Distributed file system performance analysis method, device, equipment and storage medium
CN117591035B (en) Data set processing method, device and computer readable storage medium
CN119759254A (en) Request processing method, device, computer equipment, readable storage medium and program product
CN116932779B (en) Knowledge graph data processing method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant