CN108173642A - A hardware implementation method of AES against high-order differential power attack - Google Patents
A hardware implementation method of AES against high-order differential power attack Download PDFInfo
- Publication number
- CN108173642A CN108173642A CN201810234498.6A CN201810234498A CN108173642A CN 108173642 A CN108173642 A CN 108173642A CN 201810234498 A CN201810234498 A CN 201810234498A CN 108173642 A CN108173642 A CN 108173642A
- Authority
- CN
- China
- Prior art keywords
- linear
- aes
- multiplication
- shiftrows
- mixcolumns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000009467 reduction Effects 0.000 claims description 5
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000012886 linear function Methods 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000000873 masking effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 2
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/002—Countermeasures against attacks on cryptographic mechanisms
- H04L9/003—Countermeasures against attacks on cryptographic mechanisms for power analysis, e.g. differential power analysis [DPA] or simple power analysis [SPA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0618—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
- H04L9/0631—Substitution permutation network [SPN], i.e. cipher composed of a number of stages or rounds each involving linear and nonlinear transformations, e.g. AES algorithms
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Storage Device Security (AREA)
Abstract
Description
技术领域technical field
本发明属于集成电路技术领域,具体涉及一种抗高阶差分功耗攻击的AES硬件实现方法。The invention belongs to the technical field of integrated circuits, and in particular relates to an AES hardware implementation method against high-order differential power consumption attacks.
背景技术Background technique
高级加密标准(AES)是美国国家标准技术研究所2001发布的加密技术,由于它难于被正面攻击和利于利用硬件实现而被广泛的使用。AES加密一直以来正面都难以破解,但是差分功耗攻击(DPA)技术使得通过对功耗的分析便可以得到密钥。The Advanced Encryption Standard (AES) is an encryption technology released by the National Institute of Standards and Technology in 2001. It is widely used because it is difficult to be attacked frontally and it is beneficial to realize by hardware. AES encryption has always been difficult to crack from the front, but the Differential Power Attack (DPA) technology makes it possible to obtain the key by analyzing the power consumption.
DPA是通过统计分析和分段攻击的方式来找出密钥的。首先,攻击者选择一个函数的某一个位,这个函数是明文与部分密钥计算的结果。常见的选择是AES加密或解密的第一轮的字节代换的输出的某一位。或者第一次密钥与明文异或操作的结果的某位也可以被选择。通过按部就班的执行攻击的每一个步骤,攻击者可以找出密钥的部分位。在最坏的情况下,攻击者需要测试部分密钥的所有可能情况,但是因为攻击者是对密钥分段进行攻击,因此实际的攻击强度指数性减少。比如说,如果攻击者选择AES加密的第一轮的第一个Sbox(密码学中的非线性替换组件)输出的第一位进行攻击,则每次攻击的对象是8位子密钥,则他在最坏情况下需要做256次猜测,如果密钥的总位数是128,则他需要分16次攻击。总数是256*16,即212。而如果直接对128位密钥进行猜测,强度为2128,而这个强度在有意义的时间范围内是无法被攻击出来的。DPA finds out the key through statistical analysis and segmentation attack. First, the attacker selects a certain bit of a function that is the result of computing the plaintext with a partial key. A common choice is a certain bit of the output of the first round of byte substitution for AES encryption or decryption. Or a certain bit of the result of the XOR operation between the key and the plaintext for the first time can also be selected. By performing each step of the attack step by step, the attacker can find out some bits of the key. In the worst case, the attacker needs to test all possible cases of part of the key, but because the attacker is attacking the key fragments, the actual attack strength is reduced exponentially. For example, if the attacker chooses the first bit of the output of the first Sbox (non-linear replacement component in cryptography) of the first round of AES encryption to attack, then the object of each attack is an 8-bit subkey, then he In the worst case, 256 guesses are required, and if the total number of bits in the key is 128, he needs to divide the attack into 16. The total is 256*16, or 2 12 . And if the 128-bit key is directly guessed, the strength is 2 128 , and this strength cannot be attacked within a meaningful time range.
针对DPA攻击,IBM团队在论文[CRYPTO 1999]中提出了利用掩膜的方案可以有效的抑制边信道信息的泄露,但是实现的方案难以用硬件实现。格拉茨技术大学在论文[ACNS2006] 提出利用随机数来掩盖边信道信息的泄露,但是后来发现效果并不理想。论文[Chari-Jutla-Rao-Rohatgi CRYPTO'99]提出的抗DPA方案也被证明在某些条件下才能够成立。抗d阶DPA攻击的Ishai-Sahai-Wagner Scheme(ISW)防护方案被Ishai证明只有d/2阶安全的。经典的RP10算法也在Sbox的d加掩过程中出现了d/2阶的安全泄露。并且ISW算法对于硬件实现而言面积过大,RP10算法随着阶数的增加,算法复杂度指数增长,也不利于硬件实现。In response to DPA attacks, the IBM team proposed in the paper [CRYPTO 1999] that a scheme using a mask can effectively suppress the leakage of side channel information, but the implementation scheme is difficult to implement with hardware. Graz University of Technology proposed in the paper [ACNS2006] to use random numbers to cover up the leakage of side channel information, but it was found that the effect was not satisfactory. The anti-DPA scheme proposed in the paper [Chari-Jutla-Rao-Rohatgi CRYPTO'99] has also been proved to be established under certain conditions. The Ishai-Sahai-Wagner Scheme (ISW) protection scheme against d-order DPA attack is proved by Ishai to be only d/2-order safe. The classic RP10 algorithm also has a d/2 order security leak in the d-masking process of Sbox. Moreover, the ISW algorithm is too large for hardware implementation, and the complexity of the algorithm increases exponentially with the increase of the order of the RP10 algorithm, which is not conducive to hardware implementation.
发明内容Contents of the invention
本发明的目的,就是针对上述问题,提出了一种新的抗高阶的AES硬件实现方法,可以有效的隐藏密钥。The purpose of the present invention is to propose a new anti-high-order AES hardware implementation method for the above-mentioned problems, which can effectively hide the key.
本发明所采用的技术方案为:The technical scheme adopted in the present invention is:
抗高阶差分功耗攻击的AES硬件实现方法,其特征在于,包括以下步骤:The AES hardware implementation method of anti-high-order differential power consumption attack is characterized in that, comprising the following steps:
a、将AES的加密的输入明文x分为d+1个随机变量的异或和:a. Divide the encrypted input plaintext x of AES into the XOR sum of d+1 random variables:
x=x0+x1+…+xd (1)x=x 0 +x 1 +...+x d (1)
b、对于AES加密电路中的行移位、列混淆和轮秘钥加的模块,按照线性函数进行抗d阶加掩:b. For the modules of row shifting, column confusion and round key addition in the AES encryption circuit, anti-d-order masking is performed according to the linear function:
addRound(x)=addRound(x0)+addRound(x1)+…+addRound(xd) (2)addRound(x)=addRound(x 0 )+addRound(x 1 )+…+addRound(x d ) (2)
shiftRows(x)=shiftRows(x0)+shiftRows(x1)+…+shiftRows(xd) (3)shiftRows(x)=shiftRows(x 0 )+shiftRows(x 1 )+…+shiftRows(x d ) (3)
mixColumns(x)=mixColumns(x0)+mixColumns(x1)+…+mixColumns(xd) (4)mixColumns(x)=mixColumns(x 0 )+mixColumns(x 1 )+…+mixColumns(x d ) (4)
其中,shiftRows代表AES电路的行移位,mixColumns代表AES电路的列混淆,addRoundKey代表AES电路的轮密钥加;Among them, shiftRows represents the row shift of the AES circuit, mixColumns represents the column confusion of the AES circuit, and addRoundKey represents the round key addition of the AES circuit;
c、对非线性部分Sbox,非线性部分Sbox的抗DPA设计为本发明的核心,主要思想就是将复杂的非线性的Sbox分解为低维度的非线性部分和线性部分,从而减少对非线性部分加掩的复杂性,将其分解为低维度的非线性部分和线性部分,具体为:c, to the non-linear part Sbox, the anti-DPA design of the non-linear part Sbox is the core of the present invention, and the main idea is exactly to decompose the complicated non-linear Sbox into the non-linear part and the linear part of low dimension, thereby reduce the non-linear part The complexity of masking is decomposed into low-dimensional nonlinear parts and linear parts, specifically:
Sbox是将128比特的数据分解为8bit的并行数据来处理的,即x=(x0,x1,…,x7),每个 8bit的数据处理都是一样的,所以对其中的第一个8bitx0进行说明:Sbox decomposes 128-bit data into 8-bit parallel data for processing, that is, x=(x 0 ,x 1 ,…,x 7 ), each 8-bit data processing is the same, so the first 8bitx 0 for explanation:
c1、将Sbox分解为仿射变换Af以及GF(28)域的乘法逆Inv:c1. Decompose Sbox into affine transformation Af and multiplicative inverse Inv of GF(2 8 ) domain:
Sbox(x)=Af(Inv(x)) (5)Sbox(x)=Af(Inv(x)) (5)
c2、仿射变换Af是线性运算,采用下式进行加掩:c2. The affine transformation Af is a linear operation, and the following formula is used for masking:
Af(x)=Af(x0+x1+…+xd) (6)Af(x)=Af(x 0 +x 1 +…+x d ) (6)
c3、将GF(28)域的乘法逆运算降维到GF((24)2)域,降维之后获得线性部分GF(28)域映射、 GF(24)的常量乘法×λ以及加法,非线性部分GF(24)的乘法逆Inv4和乘法Mult,线性部分的加掩与前述步骤同理;c3. Reduce the multiplication inverse operation of GF(2 8 ) domain to GF((2 4 ) 2 ) domain, and obtain the linear part GF(2 8 ) domain mapping, constant multiplication of GF(2 4 )×λ after dimension reduction And addition, the multiplicative inverse Inv4 of the nonlinear part GF(2 4 ) and the multiplicative Mult, the masking of the linear part is the same as the previous steps;
c4、GF(24)的乘法Mult的加掩过程如下:The masking process of the multiplication Mult of c4 and GF(2 4 ) is as follows:
c41、设置a,b分别是两个乘数,a=a0+a1+…+ad,b=b0+b1+…+bd;c41. Setting a and b are two multipliers respectively, a=a 0 +a 1 +...+a d , b=b 0 +b 1 +...+b d ;
c42、设置参数i,从i=0到d,迭代执行步骤c43:c42, setting parameter i, from i=0 to d, iteratively executing step c43:
c43、设置参数j,从j=i+1到d,r代表随机数,n是随机数种子,迭代执行:c43, set parameter j, from j=i+1 to d, r represents random number, n is random number seed, execute iteratively:
ri,j←rand(n)r i, j ← rand(n)
c44、从i=0到d,c是a和b的乘积,迭代执行:c44, from i=0 to d, c is the product of a and b, execute iteratively:
ci←ajbi c i ← a j b i
c45、从i=0到d,在约束条件j≠i下,迭代执行:c45. From i=0 to d, under the constraint condition j≠i, execute iteratively:
c5、GF(24)的乘法逆加掩如下式:The multiplicative inverse of c5 and GF(2 4 ) is masked as follows:
x-1=x14=x2x4x8 (7)x -1 = x 14 = x 2 x 4 x 8 (7)
x2,x4,x8是线性的,采用线性加掩方式。x 2 , x 4 , and x 8 are linear, and adopt a linear masking method.
本发明的有益效果为,本发明具有抗d阶DPA攻击的效果,并且无任何的低阶泄露;算法的复杂的较低,线性部分只有O(d),非线性部分只有O(d(d-1));并且本方法极其适合专用集成电路(ASIC)实现,非常容易就可以用折叠和插入流水的算法让其适用于不同速率的场景。The beneficial effects of the present invention are that the present invention has the effect of resisting d-order DPA attacks, and does not have any low-order leakage; the complexity of the algorithm is relatively low, and the linear part only has O(d), and the nonlinear part only has O(d(d -1)); and this method is extremely suitable for application-specific integrated circuit (ASIC) implementation, and it is very easy to use the algorithm of folding and inserting pipelines to make it applicable to scenarios of different rates.
附图说明Description of drawings
图1Sbox从GF(28)域降到GF(24)电路结构图;Fig.1 The circuit structure diagram of Sbox dropping from GF(2 8 ) domain to GF(2 4 );
图2GF(24)的平方运算电路图;The square operation circuit diagram of Fig. 2GF(2 4 );
图3GF(24)的常数乘法运算电路图;The constant multiplication operation circuit diagram of Fig. 3GF (2 4 );
图4GF(24)的乘法运算结构图;The multiplication operation structure diagram of Fig. 4GF(2 4 );
图5GF(24)的乘法的抗d阶DPA攻击防护;The anti-d-order DPA attack protection of the multiplication of Fig. 5GF(2 4 );
图6GF(24)的乘法逆的抗d阶DPA攻击防护。Fig. 6 Defense against d-order DPA attack of the multiplicative inverse of GF(2 4 ).
具体实施方式Detailed ways
下面结合附图给出本发明的具体实现方法:Provide concrete implementation method of the present invention below in conjunction with accompanying drawing:
本发明的方案中,随机数的产生使用线性反馈移位寄存器(LSFR)生成,然后将输入明文表示为d+1个随机数的和;In the solution of the present invention, the generation of random numbers is generated using a linear feedback shift register (LSFR), and then the input plaintext is expressed as the sum of d+1 random numbers;
shiftRows、mixColumns、addRoundKey都是AES电路的原始算法模块,可以根据算法标准直接参考实现;shiftRows, mixColumns, and addRoundKey are the original algorithm modules of the AES circuit, which can be directly referenced and implemented according to the algorithm standard;
Sbox降维的电路实现框图如图1所示。图2、图3、图4分别表示图1中对应框图的实现。降维之后,再对电路的线性模块用发明内容的方法处理,非线性模块用下面描述的方法处理:The circuit implementation block diagram of Sbox dimensionality reduction is shown in Figure 1. FIG. 2 , FIG. 3 , and FIG. 4 respectively represent the realization of the corresponding block diagram in FIG. 1 . After dimension reduction, the linear module of the circuit is processed by the method described in the content of the invention, and the nonlinear module is processed by the method described below:
图5实现了一个抗d=4阶的GF(24)乘法抗DPA方案。其中x=x0+x1+x2+x3, y=y0+y1+y2+y3。代表GF(24)域的普通乘法,代表GF(24)域的加法运算,r代表随机数。输出 Fig. 5 implements a GF(2 4 ) multiplicative anti-DPA scheme against d=4th order. Where x=x 0 +x 1 +x 2 +x 3 , y=y 0 +y 1 +y 2 +y 3 . represents the ordinary multiplication of the GF(2 4 ) field, represents the addition operation of the GF(2 4 ) field, and r represents a random number. output
图6实现GF(24)的乘法逆的抗DPA攻击。X就是GF(24)域的数,这里代表GF(24)域的平方运算。如果z=X4=z1+z2+z3+z4,那么refresh模块代表刷新一下z分量的随机数,使得z=X4=z5+z6+z7+z8,这样就能和X2的随机数分量的相关性去除,从而抗DPA攻击。Figure 6 realizes the anti-DPA attack of the multiplicative inverse of GF(2 4 ). X is the number in the field of GF(2 4 ), where Represents the square operation of the GF(2 4 ) field. If z=X 4 =z 1 +z 2 +z 3 +z 4 , then the refresh module means to refresh the random number of the z component, so that z=X 4 =z 5 +z 6 +z 7 +z 8 , so that The correlation with the random number component of X 2 can be removed, so as to resist DPA attack.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810234498.6A CN108173642A (en) | 2018-03-21 | 2018-03-21 | A hardware implementation method of AES against high-order differential power attack |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810234498.6A CN108173642A (en) | 2018-03-21 | 2018-03-21 | A hardware implementation method of AES against high-order differential power attack |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108173642A true CN108173642A (en) | 2018-06-15 |
Family
ID=62512114
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810234498.6A Pending CN108173642A (en) | 2018-03-21 | 2018-03-21 | A hardware implementation method of AES against high-order differential power attack |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108173642A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109936437A (en) * | 2019-04-10 | 2019-06-25 | 衡阳师范学院 | An anti-power attack method based on d+1 order mask |
| CN116866038A (en) * | 2023-07-12 | 2023-10-10 | 北京兆讯恒达技术有限公司 | Dynamic mask encryption method and dynamic mask encryption device |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101729241A (en) * | 2008-10-23 | 2010-06-09 | 国民技术股份有限公司 | AES encryption method for resisting differential power attacks |
| US20120069998A1 (en) * | 2010-09-17 | 2012-03-22 | Endo Tsukasa | Encryption device |
| US20160269175A1 (en) * | 2015-03-09 | 2016-09-15 | Qualcomm Incorporated | Cryptographic cipher with finite subfield lookup tables for use in masked operations |
| CN106788974A (en) * | 2016-12-22 | 2017-05-31 | 深圳国微技术有限公司 | Mask S boxes, packet key computing unit, device and corresponding building method |
| CN107070633A (en) * | 2017-03-20 | 2017-08-18 | 江苏大学 | A kind of AES mask encryption methods of anti-high-order power consumption analysis |
-
2018
- 2018-03-21 CN CN201810234498.6A patent/CN108173642A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101729241A (en) * | 2008-10-23 | 2010-06-09 | 国民技术股份有限公司 | AES encryption method for resisting differential power attacks |
| US20120069998A1 (en) * | 2010-09-17 | 2012-03-22 | Endo Tsukasa | Encryption device |
| US20160269175A1 (en) * | 2015-03-09 | 2016-09-15 | Qualcomm Incorporated | Cryptographic cipher with finite subfield lookup tables for use in masked operations |
| CN106788974A (en) * | 2016-12-22 | 2017-05-31 | 深圳国微技术有限公司 | Mask S boxes, packet key computing unit, device and corresponding building method |
| CN107070633A (en) * | 2017-03-20 | 2017-08-18 | 江苏大学 | A kind of AES mask encryption methods of anti-high-order power consumption analysis |
Non-Patent Citations (2)
| Title |
|---|
| HEESEOK KIM: "《A Fast and Provably Secure Higher-Order Masking of AES S-Box》", 《CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS,CHES 2011》 * |
| MATTHIEU RIVAIN: "《rovably Secure Higher-Order Masking of AES》", 《CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS,CHES 2010》 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109936437A (en) * | 2019-04-10 | 2019-06-25 | 衡阳师范学院 | An anti-power attack method based on d+1 order mask |
| CN109936437B (en) * | 2019-04-10 | 2020-01-31 | 衡阳师范学院 | An anti-power attack method based on d+1 order mask |
| CN116866038A (en) * | 2023-07-12 | 2023-10-10 | 北京兆讯恒达技术有限公司 | Dynamic mask encryption method and dynamic mask encryption device |
| CN116866038B (en) * | 2023-07-12 | 2024-06-11 | 北京兆讯恒达技术有限公司 | Dynamic mask encryption method and dynamic mask encryption device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Canright et al. | A very compact “perfectly masked” S-box for AES | |
| CN106788974A (en) | Mask S boxes, packet key computing unit, device and corresponding building method | |
| Rivain et al. | Higher-order masking and shuffling for software implementations of block ciphers | |
| Goubin et al. | Protecting AES with Shamir’s secret sharing scheme | |
| KR101783495B1 (en) | Low-complexity electronic circuit protected by customized masking | |
| Biryukov et al. | On reverse-engineering S-boxes with hidden design criteria or structure | |
| US8515057B2 (en) | Method and device for executing crytographic calculation | |
| US8199909B2 (en) | Method and device for carrying out a cryptographic calculation | |
| US10903978B2 (en) | Method of encryption with dynamic diffusion and confusion layers | |
| CN104967509B (en) | It is a kind of to take turns ZUC stream cipher algorithm mask means of defence of the output for arithmetic mask | |
| CN104301095A (en) | DES round operation method and circuit | |
| Zodpe et al. | A Survey on Various Cryptanalytic Attacks on the AES Algorithm. | |
| Huang et al. | Low area-overhead low-entropy masking scheme (LEMS) against correlation power analysis attack | |
| CN105656622A (en) | White-box password nonlinear coding protection method based on combination of table look-up and disturbance scrambling | |
| CN109936437B (en) | An anti-power attack method based on d+1 order mask | |
| KR20050076015A (en) | Finite field multiplier | |
| CN108173642A (en) | A hardware implementation method of AES against high-order differential power attack | |
| CN106936822B (en) | Mask implementation method and system for resisting high-order bypass analysis aiming at SMS4 | |
| Jamal et al. | Image encryption based on elliptic curve points and linear fractional transformation | |
| CN106788978B (en) | Argument decomposition limit gate mask method | |
| Lin et al. | A new Feistel-type white-box encryption scheme | |
| CN111931176A (en) | Method and device for defending side channel attack and readable storage medium | |
| Chen et al. | A circuit design of sms4 against chosen plaintext attack | |
| CN115694781A (en) | A SM4 Second-Order Threshold Masking Method | |
| Montoya et al. | Energy-efficient masking of the trivium stream cipher |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180615 |