CN108190950B - Preparation method of zirconium dioxide - Google Patents
Preparation method of zirconium dioxide Download PDFInfo
- Publication number
- CN108190950B CN108190950B CN201810116917.6A CN201810116917A CN108190950B CN 108190950 B CN108190950 B CN 108190950B CN 201810116917 A CN201810116917 A CN 201810116917A CN 108190950 B CN108190950 B CN 108190950B
- Authority
- CN
- China
- Prior art keywords
- tower
- tail gas
- zirconium dioxide
- absorption tower
- zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 91
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims abstract description 80
- 239000000203 mixture Substances 0.000 claims abstract description 57
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 51
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000001257 hydrogen Substances 0.000 claims abstract description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 50
- 239000007787 solid Substances 0.000 claims abstract description 50
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000001301 oxygen Substances 0.000 claims abstract description 42
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 42
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 238000002485 combustion reaction Methods 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 239000003570 air Substances 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 96
- 238000010521 absorption reaction Methods 0.000 claims description 78
- 239000000428 dust Substances 0.000 claims description 58
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 44
- 239000007788 liquid Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 26
- 238000003795 desorption Methods 0.000 claims description 19
- 150000002431 hydrogen Chemical class 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 8
- 239000003480 eluent Substances 0.000 claims description 7
- 238000006392 deoxygenation reaction Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000012320 chlorinating reagent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 2
- 239000005052 trichlorosilane Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Gas Separation By Absorption (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于二氧化锆生产技术领域,具体涉及一种二氧化锆的制备方法。The invention belongs to the technical field of zirconium dioxide production, and in particular relates to a preparation method of zirconium dioxide.
背景技术Background technique
根据工艺的不同,氧化锆的制备工艺可分为化学法(湿法工艺)和电熔法(干法工艺)两种,电熔法是将锆英砂和焦炭或石油焦通过一步电弧炉在2300℃的高温下熔炼而获得氧化锆。化学法是首先将锆英砂转化为氧氯化锆,氧氯化锆再在高温下分解生成氧化锆。电熔法的主要缺点是产品纯度较低,目前国内生产的电熔锆纯度平均在98.5%,限制了电熔氧化锆在高端产品领域中的应用。化学法制备氧化锆过程工艺复杂,同时还会产生大量的废液,生产成本高。According to different processes, the preparation process of zirconia can be divided into chemical method (wet process) and electrofusion method (dry process). Zirconium oxide is obtained by smelting at a high temperature of 2300°C. The chemical method is to first convert zircon sand into zirconium oxychloride, and then zirconium oxychloride is decomposed at high temperature to form zirconium oxide. The main disadvantage of the electrofusion method is that the product purity is low. At present, the average purity of fused zirconium produced in China is 98.5%, which limits the application of fused zirconia in the field of high-end products. The process of chemically preparing zirconia is complicated, and at the same time, a large amount of waste liquid is generated, and the production cost is high.
现有技术均采用四氯化锆水解的方法来制备氧化锆,工艺复杂。因此开发一种新的二氧化锆制备方法成了本领域技术人员难以克服的技术壁垒。The prior art all adopts the method of hydrolysis of zirconium tetrachloride to prepare zirconia, and the process is complicated. Therefore, developing a new method for preparing zirconium dioxide has become a technical barrier that is difficult for those skilled in the art to overcome.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种二氧化锆的制备方法,解决了传统化学法制备二氧化锆过程中工艺复杂,生产成本高的问题。The technical problem to be solved by the present invention is to provide a preparation method of zirconium dioxide for the above-mentioned deficiencies in the prior art, which solves the problems of complicated process and high production cost in the process of preparing zirconium dioxide by traditional chemical method.
解决本发明技术问题所采用的技术方案是提供一种二氧化锆的制备方法,包括以下步骤:The technical scheme adopted to solve the technical problem of the present invention is to provide a preparation method of zirconium dioxide, comprising the following steps:
1)将固体四氯化锆在蒸发器内加热升华为气态四氯化锆;1) heating and subliming solid zirconium tetrachloride into gaseous zirconium tetrachloride in an evaporator;
2)将气态四氯化锆与氢气、氧气或空气在燃烧器内进行点火,燃烧反应生成固体二氧化锆、氯化氢,反应后得到第一混合物。2) Ignite gaseous zirconium tetrachloride and hydrogen, oxygen or air in the burner, and generate solid zirconium dioxide and hydrogen chloride through combustion reaction, and obtain the first mixture after the reaction.
优选的是,所述步骤2)中燃烧器内的温度为500~1000℃。Preferably, the temperature in the burner in the step 2) is 500-1000°C.
优选的是,所述步骤2)中,点火反应后,反应放热使得燃烧器内的温度保持在500~1000℃。通过调节燃烧反应器内的氧气的进气量来控制燃烧器内的温度为500~1000℃。Preferably, in the step 2), after the ignition reaction, the reaction exotherm keeps the temperature in the burner at 500-1000°C. The temperature in the combustor is controlled to be 500-1000°C by adjusting the intake air amount of oxygen in the combustion reactor.
优选的是,所述步骤1)中蒸发器内的加热温度为400~550℃。Preferably, the heating temperature in the evaporator in the step 1) is 400-550°C.
优选的是,在所述步骤2)之后还包括以下步骤:Preferably, the following steps are also included after the step 2):
3)将第一混合物通入到第一除尘器中进行除尘,第一混合物中的固体二氧化锆被分离下来,并得到分离开的第一除尘尾气。3) Passing the first mixture into the first dust collector for dust removal, the solid zirconium dioxide in the first mixture is separated, and the separated first dust removal tail gas is obtained.
优选的是,步骤2)中当气态四氯化锆与氢气、氧气在燃烧器内进行点火时,氢气的摩尔数:氧气的摩尔数:四氯化锆的摩尔数=(2~2.5):1:(1~1.1)。第一混合物包括:二氧化锆含量(固体)、氯化氢、四氯化锆、氢气、微量氧气、微量水蒸汽。Preferably, in step 2), when gaseous zirconium tetrachloride, hydrogen and oxygen are ignited in the burner, the number of moles of hydrogen: the number of moles of oxygen: the number of moles of zirconium tetrachloride=(2~2.5): 1: (1 to 1.1). The first mixture includes: zirconium dioxide content (solids), hydrogen chloride, zirconium tetrachloride, hydrogen, traces of oxygen, traces of water vapor.
优选的是,四氯化锆的沸点<第一除尘器内的温度<二氧化锆的沸点。Preferably, the boiling point of zirconium tetrachloride<the temperature in the first dust collector<the boiling point of zirconium dioxide.
优选的是,第一除尘器内的温度为400~1000℃。常温常压下,四氯化锆的沸点为331℃,二氧化锆的沸点为4300℃。Preferably, the temperature in the first dust collector is 400-1000°C. At normal temperature and pressure, the boiling point of zirconium tetrachloride is 331°C, and the boiling point of zirconium dioxide is 4300°C.
优选的是,所述步骤3)后还包括以下步骤:Preferably, after the step 3), the following steps are also included:
4)将第一除尘尾气通入到冷却器中进行冷却,将第一除尘尾气中的气态四氯化锆冷却为固体四氯化锆,得到冷却混合物;冷却混合物包括:氯化氢、四氯化锆、氢气、微量氧气、微量水蒸汽、微量二氧化锆。4) pass the first dedusting tail gas into the cooler for cooling, and cool the gaseous zirconium tetrachloride in the first dedusting tail gas into solid zirconium tetrachloride to obtain a cooling mixture; the cooling mixture comprises: hydrogen chloride, zirconium tetrachloride , hydrogen, trace oxygen, trace water vapor, trace zirconium dioxide.
5)将冷却混合物通入第二除尘器进行除尘,冷却混合物中的固体四氯化锆被分离下来,并得到分离开的第二除尘尾气;第二除尘尾气包括:氯化氢、氢气、微量氧气。5) Passing the cooling mixture into the second dust collector for dust removal, the solid zirconium tetrachloride in the cooling mixture is separated, and the separated second dust removal tail gas is obtained; the second dust removal tail gas includes: hydrogen chloride, hydrogen and trace oxygen.
6)将第二除尘尾气通入除氧器进行除氧,得到除氧器尾气,除氧器尾气包括氯化氢和氢气。除氧器尾气包括:氯化氢、氢气。6) Passing the second dedusting tail gas into the deaerator for deoxygenation to obtain the deaerator tail gas, and the deaerator tail gas includes hydrogen chloride and hydrogen. The tail gas of the deaerator includes: hydrogen chloride and hydrogen.
优选的是,所述步骤4)中经过冷却器进行冷却的温度为150~220℃。Preferably, in the step 4), the temperature for cooling through the cooler is 150-220°C.
优选的是,当步骤2)中气态四氯化锆与氢气、空气在燃烧器内进行点火时,氢气的摩尔数:空气中氧气的摩尔数:四氯化锆的摩尔数=(2~2.5):(1~1.5):1。第一混合物包括:氯化氢、氮气、二氧化锆(固体)、微量氧气、微量水蒸汽、微量氢气。Preferably, when gaseous zirconium tetrachloride, hydrogen and air are ignited in the burner in step 2), the number of moles of hydrogen: the number of moles of oxygen in the air: the number of moles of zirconium tetrachloride=(2~2.5 ):(1~1.5):1. The first mixture includes: hydrogen chloride, nitrogen, zirconium dioxide (solid), traces of oxygen, traces of water vapor, traces of hydrogen.
优选的是,所述步骤3)后还包括以下步骤:Preferably, after the step 3), the following steps are also included:
4)将第一除尘尾气通入到吸收塔吸附氯化氢,在吸收塔的塔釜得到吸收塔的塔釜液,在吸收塔的塔顶得到吸收塔尾气,将吸收塔尾气进行放空;第一除尘尾气包括:氯化氢、氮气、氧气、微量水蒸气、微量氢气。4) pass the first dedusting tail gas into the absorption tower to absorb hydrogen chloride, obtain the tower still liquid of the absorption tower at the tower still of the absorption tower, obtain the absorption tower tail gas at the tower top of the absorption tower, and vent the absorption tower tail gas; the first dedusting The tail gas includes: hydrogen chloride, nitrogen, oxygen, trace water vapor, trace hydrogen.
吸收塔尾气包括:氮气、氧气、微量水分、微量氢气。The tail gas of the absorption tower includes: nitrogen, oxygen, trace moisture, trace hydrogen.
5)将吸收塔的塔釜液通入解析塔解析氯化氢,在解析塔的塔顶得到解析塔尾气,解析塔尾气包括氯化氢。解析塔尾气包括:氯化氢、水。5) Passing the tower bottom liquid of the absorption tower into the desorption tower to decompose hydrogen chloride, and obtains the desorption tower tail gas at the top of the desorption tower, and the desorption tower tail gas includes hydrogen chloride. The tail gas of the analytical tower includes: hydrogen chloride and water.
优选的是,所述步骤5)之后还包括以下步骤:Preferably, the step 5) also includes the following steps after:
6)将解析塔的塔釜液和/或吸收塔的塔釜液通入到吸收塔的塔顶,作为吸收塔的淋洗液。6) Passing the tower still liquid of the desorption tower and/or the tower still liquid of the absorption tower into the tower top of the absorption tower as the eluent of the absorption tower.
本发明还提供一种二氧化锆的制备装置,包括:The present invention also provides a preparation device of zirconium dioxide, comprising:
蒸发器,用于将固体四氯化锆加热升华为气态四氯化锆;Evaporator for heating and subliming solid zirconium tetrachloride into gaseous zirconium tetrachloride;
燃烧器,与蒸发器连接,燃烧器用于气态四氯化锆与氢气、氧气或空气在燃烧器内进行点火,燃烧反应生成固体二氧化锆、氯化氢,反应后得到第一混合物。The burner is connected to the evaporator, and the burner is used to ignite gaseous zirconium tetrachloride and hydrogen, oxygen or air in the burner, and the combustion reaction generates solid zirconium dioxide and hydrogen chloride, and the first mixture is obtained after the reaction.
优选的是,所述的二氧化锆的制备装置还包括:Preferably, the device for preparing zirconium dioxide also includes:
混合器,设置于蒸发器与燃烧器之间,且分别与蒸发器、燃烧器连接,混合器用于将气态四氯化锆与通入其内的氢气混合。The mixer is arranged between the evaporator and the burner, and is connected with the evaporator and the burner respectively, and the mixer is used for mixing the gaseous zirconium tetrachloride and the hydrogen gas passed into it.
优选的是,燃烧器内设置有用于向燃烧器内通入物料的气体分布器,气体分布器包括:位于中心位置的内环通道、包覆于内环通道外呈环形的中环通道、包覆于中环通道外呈环形的外环通道,内环通道用于通入气态四氯化锆和氢气的混合气,中环通道用于通入氧气或空气,外环通道用于通入气态四氯化锆和氢气的混合气。Preferably, the burner is provided with a gas distributor for feeding materials into the burner, and the gas distributor includes: an inner ring channel at the center position, a ring-shaped middle ring channel covered on the outside of the inner ring channel, a coating The outer ring channel is annular outside the middle ring channel, the inner ring channel is used for the gaseous mixture of zirconium tetrachloride and hydrogen, the middle ring channel is used for oxygen or air, and the outer ring channel is used for the gaseous tetrachloride A mixture of zirconium and hydrogen.
优选的是,所述的二氧化锆的制备装置还包括:Preferably, the device for preparing zirconium dioxide also includes:
第一除尘器,与燃烧器连接,第一除尘器用于对通入其内的第一混合物进行除尘,第一混合物中的固体二氧化锆被分离下来,并得到分离开的第一除尘尾气。The first dust collector is connected to the burner, and the first dust collector is used for dust removal of the first mixture passed into it, the solid zirconium dioxide in the first mixture is separated, and the separated first dust removal exhaust gas is obtained.
优选的是,所述的二氧化锆的制备装置还包括:Preferably, the device for preparing zirconium dioxide also includes:
冷却器,与第一除尘器连接,冷却器用于对第一除尘尾气进行冷却,将气态四氯化锆冷却为固体四氯化锆,得到冷却混合物;a cooler, connected with the first dust collector, the cooler is used for cooling the first dust removal tail gas, and cooling the gaseous zirconium tetrachloride into solid zirconium tetrachloride to obtain a cooling mixture;
第二除尘器,与冷却器连接,第二除尘器用于将冷却混合物进行除尘,冷却混合物中的固体四氯化锆被分离下来,并得到分离开的第二除尘尾气;The second dust collector is connected with the cooler, and the second dust collector is used for dedusting the cooling mixture, the solid zirconium tetrachloride in the cooling mixture is separated, and the separated second dust removal tail gas is obtained;
除氧器,与第二除尘器连接,除氧器用于将第二除尘尾气进行除氧,得到除氧器尾气,除氧器尾气包括氯化氢和氢气。The deaerator is connected to the second dust collector, and the deaerator is used to deoxygenate the second dust removal tail gas to obtain the deaerator tail gas, and the deaerator tail gas includes hydrogen chloride and hydrogen.
优选的是,所述的二氧化锆的制备装置还包括:Preferably, the device for preparing zirconium dioxide also includes:
吸收塔,与第一除尘器连接,吸收塔用于对第一除尘尾气吸附氯化氢,在吸收塔的塔釜得到吸收塔的塔釜液,在吸收塔的塔顶得到吸收塔尾气,将吸收塔尾气进行放空;The absorption tower is connected with the first dust collector. The absorption tower is used to adsorb hydrogen chloride on the first dust removal tail gas. The tower kettle liquid of the absorption tower is obtained from the tower kettle of the absorption tower, and the tail gas of the absorption tower is obtained at the top of the absorption tower. The exhaust gas is vented;
解析塔,与吸收塔连接,解析塔用于对吸收塔的塔釜液解析氯化氢,在解析塔的塔顶得到解析塔尾气,解析塔尾气包括氯化氢。The analysis tower is connected with the absorption tower, and the analysis tower is used to analyze the hydrogen chloride in the tower bottom liquid of the absorption tower, and the tail gas of the analysis tower is obtained at the top of the analysis tower, and the tail gas of the analysis tower includes hydrogen chloride.
优选的是,解析塔的塔釜与吸收塔的塔顶连接,解析塔的塔釜液通入到吸收塔的塔顶,作为吸收塔的淋洗液;和/或,Preferably, the tower still of the analysis tower is connected with the tower top of the absorption tower, and the tower still liquid of the analysis tower is passed into the tower top of the absorption tower as the eluent of the absorption tower; and/or,
吸收塔的塔釜与吸收塔的塔顶连接,吸收塔的塔釜液通入到吸收塔的塔顶,作为吸收塔的淋洗液。The tower kettle of the absorption tower is connected with the tower top of the absorption tower, and the tower kettle liquid of the absorption tower is passed into the tower top of the absorption tower as the eluent of the absorption tower.
本发明中的二氧化锆的制备方法,通过点火燃烧反应制备固体二氧化锆,实现了燃烧器内热量的自给,从而节约了能量,降低了生产成本。The preparation method of zirconium dioxide in the present invention prepares solid zirconium dioxide through ignition and combustion reaction, and realizes self-sufficiency of heat in the burner, thereby saving energy and reducing production cost.
附图说明Description of drawings
图1是本发明实施例2中的二氧化锆的制备装置的结构示意图;Fig. 1 is the structural representation of the preparation device of zirconium dioxide in
图2是本发明实施例5中的二氧化锆的制备装置的结构示意图;Fig. 2 is the structural representation of the preparation device of zirconium dioxide in
图3是本发明实施例2、5中的气体分布器的主视图;3 is a front view of the gas distributor in
图4是本发明实施例2、5中的气体分布器的俯视图。FIG. 4 is a plan view of the gas distributor in
图中:1-蒸发器;2-混合器;3-燃烧器;4-气体分布器;5-内环通道;6-中环通道;7-外环通道;8-第一除尘器;9-冷却器;10-第二除尘器;11-除氧器;12-吸收塔;13-塔底酸液循环泵;14-塔顶回流液喷淋器;15-解析塔;16-加热器。In the figure: 1-evaporator; 2-mixer; 3-burner; 4-gas distributor; 5-inner ring channel; 6-middle ring channel; 7-outer ring channel; 8-first dust collector; 9- Cooler; 10-Second dust collector; 11-Deaerator; 12-Absorption tower; 13-Tower bottom acid liquid circulation pump; 14-Tower top reflux liquid sprayer; 15-Analysis tower; 16-Heater.
具体实施方式Detailed ways
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。In order to make those skilled in the art better understand the technical solutions of the present invention, the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
本实施例提供一种二氧化锆的制备方法,包括以下步骤:The present embodiment provides a preparation method of zirconium dioxide, comprising the following steps:
1)将固体四氯化锆在蒸发器内加热升华为气态四氯化锆;1) heating and subliming solid zirconium tetrachloride into gaseous zirconium tetrachloride in an evaporator;
2)将气态四氯化锆与氢气、氧气或空气在燃烧器内进行点火,燃烧反应生成固体二氧化锆、氯化氢,反应后得到第一混合物。2) Ignite gaseous zirconium tetrachloride and hydrogen, oxygen or air in the burner, and generate solid zirconium dioxide and hydrogen chloride through combustion reaction, and obtain the first mixture after the reaction.
本实施例还提供一种二氧化锆的制备装置,包括:The present embodiment also provides a device for preparing zirconium dioxide, comprising:
蒸发器,用于将固体四氯化锆加热升华为气态四氯化锆;Evaporator for heating and subliming solid zirconium tetrachloride into gaseous zirconium tetrachloride;
燃烧器,与蒸发器连接,燃烧器用于气态四氯化锆与氢气、氧气或空气在燃烧器内进行点火,燃烧反应生成固体二氧化锆、氯化氢,反应后得到第一混合物。The burner is connected to the evaporator, and the burner is used to ignite gaseous zirconium tetrachloride and hydrogen, oxygen or air in the burner, and the combustion reaction generates solid zirconium dioxide and hydrogen chloride, and the first mixture is obtained after the reaction.
本实施例中的二氧化锆的制备方法,通过点火燃烧反应制备固体二氧化锆,实现了燃烧器内热量的自给,从而节约了能量,降低了生产成本。In the preparation method of zirconium dioxide in this embodiment, solid zirconium dioxide is prepared through ignition and combustion reaction, which realizes self-sufficiency of heat in the burner, thereby saving energy and reducing production cost.
实施例2Example 2
如图1所示,本实施例还提供一种二氧化锆的制备装置,包括:As shown in FIG. 1, this embodiment also provides a preparation device for zirconium dioxide, including:
蒸发器1,用于将固体四氯化锆加热升华为气态四氯化锆;具体的,本实施例中的蒸发器1的主体材质为碳钢、不锈钢,蒸发器1内部设置有氮化硅、氧化锆、氧化铝或其混合物形成的耐磨耐高温陶瓷内衬,蒸发器1外侧设置有加热机构,加热方式采用电阻加热、辐射加热、感应加热中的一种。蒸发器1至燃烧器3进口之间的管线内部设置有氮化硅、氧化锆、氧化铝或其混合物形成的耐磨耐高温陶瓷内衬,同时设有电伴热和保温。The
混合器2,与蒸发器1连接,且分别与蒸发器1、燃烧器3连接,混合器2用于将气态四氯化锆与通入其内的氢气混合;The
燃烧器3,与混合器2器连接,燃烧器3用于对通入其内的混合的气态四氯化锆与氢气与通入其内的氧气进行点火,燃烧反应生成固体二氧化锆、氯化氢,反应后得到第一混合物;燃烧器3内设置有用于向燃烧器3内通入物料的气体分布器4,如图3、4所示,气体分布器4包括:位于中心位置的内环通道5、包覆于内环通道5外呈环形的中环通道6、包覆于中环通道6外呈环形的外环通道7,内环通道5用于通入气态四氯化锆和氢气的混合气,中环通道6用于通入氧气,外环通道7用于通入气态四氯化锆和氢气的混合气。燃烧器3的主体材质为800H钢的耐高温材料,内部设置有氮化硅、氧化锆、氧化铝或其复合材料形成的耐磨耐高温陶瓷内衬,燃烧反应器底部安装有气体分布器4,形成可燃性气体氢气包裹氧化剂氧气的反应条件,确保反应过程中氧化剂反应完全。The
第一除尘器8,与燃烧器3连接,第一除尘器8用于对通入其内的第一混合物进行除尘,第一混合物中的固体二氧化锆被分离下来,并得到分离开的第一除尘尾气;优选的是,第一除尘器8为袋式除尘器,其滤芯采用金属烧结滤芯或布袋式滤芯。The
冷却器9,与第一除尘器8连接,冷却器9用于对第一除尘尾气进行冷却,将气态四氯化锆冷却为固体四氯化锆,得到冷却混合物;优选的是,冷却器9采用列管式换热器,采用的冷媒为循环水或蒸汽冷凝液。The cooler 9 is connected to the
第二除尘器10,与冷却器9连接,第二除尘器10用于将冷却混合物进行除尘,冷却混合物中的固体四氯化锆被分离下来,并得到分离开的第二除尘尾气;The
除氧器11,与第二除尘器10连接,除氧器11用于将第二除尘尾气进行除氧,得到除氧器尾气,除氧器尾气包括氯化氢和氢气。除氧器11以硅胶和/或分子筛为吸附剂,通过变温吸附或变压吸附的方式实现第二除尘尾气中的氧气的去除。The
本实施例提供一种使用上述装置制备二氧化锆的方法,包括以下步骤:The present embodiment provides a method for preparing zirconium dioxide using the above device, comprising the following steps:
1)以精制固体四氯化锆为原料,将固体四氯化锆在蒸发器1内加热升华为气态四氯化锆,蒸发器1内的加热温度为480℃。1) Using the purified solid zirconium tetrachloride as the raw material, the solid zirconium tetrachloride is heated and sublimated into gaseous zirconium tetrachloride in the
2)将气态四氯化锆与过量的氢气在混合器2内混合后,经过气体分布器4进入燃烧反应器内,在气体分布器4的出口处与氧气混合均匀,氢气的摩尔数:氧气的摩尔数:四氯化锆的摩尔数=2.5:1:1.15,点火,反应生成二氧化锆粉体、氯化氢气体,反应后得到第一混合物,点火反应后,反应放热使得燃烧器3内的温度保持在500~1000℃。通过调节燃烧反应器内的氧气的进气量来控制燃烧器3内的温度为500~1000℃。反应过程中四氯化锆稍过量,氢气过量,氧气反应完全。第一混合物包括:二氧化锆含量15-20mol%(固体)、氯化氢含量65-75mol%、四氯化锆含量1-5mol%、氢气含量5-10mol%、氧气含量小于0.1mol%、水蒸汽含量小于0.1mol%。2) after mixing gaseous zirconium tetrachloride and excess hydrogen in
3)将第一混合物中的二氧化锆粉体在气流的作用下通入到第一除尘器8中进行除尘,四氯化锆的沸点<第一除尘器8内的温度<二氧化锆的沸点,第一混合物中的固体二氧化锆被分离下来,并得到分离开的第一除尘尾气。具体的,本实施例中的第一除尘器8内的温度为400~1000℃。固体二氧化锆通过第一除尘器8底部连接的排渣管线排出。第一除尘尾气包括:二氧化锆含量小于0.1mol%、氯化氢含量75-90mol%、四氯化锆含量2-5mol%、氢气含量10-15mol%、氧气含量小于0.1mol%、水蒸汽含量小于0.1mol%。3) The zirconium dioxide powder in the first mixture is passed into the
4)将第一除尘尾气通入到冷却器9中进行冷却,冷却器9进行冷却的温度为180~220℃。将第一除尘尾气中的未反应的四氯化锆蒸汽被冷却为固体四氯化锆,得到冷却混合物。冷却过程不发生物质的量的变化,冷却混合物包括:二氧化锆含量小于0.1mol%、氯化氢含量75-90mol%、四氯化锆含量2-5mol%、氢气含量10-15mol%、氧气含量小于0.1mol%、水蒸汽含量小于0.1mol%。4) Passing the first dust removal exhaust gas into the cooler 9 for cooling, and the cooling temperature of the cooler 9 is 180-220°C. The unreacted zirconium tetrachloride vapor in the first dedusting tail gas is cooled to solid zirconium tetrachloride to obtain a cooled mixture. There is no change in the amount of substances during the cooling process, and the cooling mixture includes: the content of zirconium dioxide is less than 0.1mol%, the content of hydrogen chloride is 75-90mol%, the content of zirconium tetrachloride is 2-5mol%, the content of hydrogen is 10-15mol%, and the content of oxygen is less than 0.1mol%, the water vapor content is less than 0.1mol%.
5)将冷却混合物通入第二除尘器10进行除尘,冷却混合物中的固体四氯化锆被分离下来,并得到分离开的第二除尘尾气;固体四氯化锆通过第二除尘器10底部连接的排渣管线排出。第二除尘尾气包括:氯化氢含量85-90mol%、氢气含量10-15mol%、氧气含量小于0.1mol%。5) The cooling mixture is passed into the
6)将第二除尘尾气通入除氧器11进行除氧,得到除氧器尾气,除氧器尾气包括氯化氢和氢气。除氧器尾气包括纯度较高的氯化氢与氢气的混合气体,可以作为三氯氢硅生产过程中的氯化剂。本实施例中,反应过程中氯元素充分回收利用,解决了环境污染问题,同时提高了经济效益。除氧器尾气包括:氯化氢含量85-90mol%、氢气含量10-15mol%。6) Passing the second dust removal tail gas into the
本实施例中的二氧化锆的制备方法,通过点火燃烧反应制备固体二氧化锆,实现了燃烧器3内热量的自给,从而节约了能量,降低了生产成本。点火燃烧反应中产生的氯化氢充分回收,解决了环境污染问题,提高了经济效益。In the preparation method of zirconium dioxide in this embodiment, solid zirconium dioxide is prepared by ignition combustion reaction, which realizes self-sufficiency of heat in the
实施例3Example 3
本实施例提供一种二氧化锆的制备方法,使用实施例2中的二氧化锆的制备装置,本实施例中的方法与实施例2中的方法的区别为:This embodiment provides a preparation method of zirconium dioxide, using the preparation device of zirconium dioxide in
步骤1)中,蒸发器1内的加热温度为420℃;In step 1), the heating temperature in the
步骤2)中,氢气的摩尔数:氧气的摩尔数:四氯化锆的摩尔数=2.3:1:1.1。In step 2), the number of moles of hydrogen: the number of moles of oxygen: the number of moles of zirconium tetrachloride=2.3:1:1.1.
实施例4Example 4
本实施例提供一种二氧化锆的制备方法,使用实施例2中的二氧化锆的制备装置,本实施例中的方法与实施例2中的方法的区别为:This embodiment provides a preparation method of zirconium dioxide, using the preparation device of zirconium dioxide in
步骤1)中,蒸发器1内的加热温度为530℃;In step 1), the heating temperature in the
步骤2)中,氢气的摩尔数:氧气的摩尔数:四氯化锆的摩尔数=2.2:1:1.2。In step 2), the number of moles of hydrogen: the number of moles of oxygen: the number of moles of zirconium tetrachloride=2.2:1:1.2.
实施例5Example 5
如图2所示,本实施例还提供一种二氧化锆的制备装置,包括:As shown in Figure 2, the present embodiment also provides a preparation device for zirconium dioxide, comprising:
蒸发器1,用于将固体四氯化锆加热升华为气态四氯化锆;
混合器2,与蒸发器1连接,且分别与蒸发器1、燃烧器3连接,混合器2用于将气态四氯化锆与通入其内的氢气混合;The
燃烧器3,与混合器2器连接,燃烧器3用于对通入其内的混合的气态四氯化锆与氢气与通入其内的空气进行点火,燃烧反应生成固体二氧化锆、氯化氢,反应后得到第一混合物;燃烧器3内设置有用于向燃烧器3内通入物料的气体分布器4,如图3、4所示,气体分布器4包括:位于中心位置的内环通道5、包覆于内环通道5外呈环形的中环通道6、包覆于中环通道6外呈环形的外环通道7,内环通道5用于通入气态四氯化锆和氢气的混合气,中环通道6用于通入氧气或空气,外环通道7用于通入气态四氯化锆和氢气的混合气。The
第一除尘器8,与燃烧器3连接,第一除尘器8用于对通入其内的第一混合物进行除尘,第一混合物中的固体二氧化锆被分离下来,并得到分离开的第一除尘尾气;The
吸收塔12,与第一除尘器8连接,吸收塔12用于对第一除尘尾气吸附氯化氢,在吸收塔12的塔釜得到吸收塔12的塔釜液,在吸收塔12的塔顶得到吸收塔尾气,将吸收塔尾气进行放空;吸收塔12包括:塔底酸液循环泵13、塔顶回流液喷淋器14,塔底酸液循环泵13用于将吸收塔12的塔釜液泵入到解析塔15内进行解析,塔顶回流液喷淋器14用于将吸收塔12顶部的液体进行喷淋。The
解析塔15,与吸收塔12连接,解析塔15用于对吸收塔12的塔釜液解析氯化氢,在解析塔15的塔顶得到解析塔尾气,解析塔尾气包括氯化氢,解析塔15的塔釜与吸收塔12的塔顶连接,解析塔15的塔釜液通入到吸收塔12的塔顶,作为吸收塔12的淋洗液;吸收塔12的塔釜与吸收塔12的塔顶连接,塔底酸液循环泵13还用于将吸收塔12的塔釜液泵入到吸收塔12的塔顶,作为吸收塔12的淋洗液。解析塔15底部设置有加热器16用于加热。The
本实施例提供一种使用上述装置制备二氧化锆的方法,包括以下步骤:The present embodiment provides a method for preparing zirconium dioxide using the above device, comprising the following steps:
1)以精制固体四氯化锆为原料,将固体四氯化锆在蒸发器1内加热升华为气态四氯化锆,蒸发器1内的加热温度为400℃。1) Using the purified solid zirconium tetrachloride as the raw material, the solid zirconium tetrachloride is heated and sublimated into gaseous zirconium tetrachloride in the
2)将气态四氯化锆与过量的氢气在混合器2内混合后,经过气体分布器4进入燃烧反应器内,在气体分布器4的出口处与氧气混合均匀,氢气的摩尔数:空气中氧气的摩尔数:四氯化锆的摩尔数=2.1:1.3:1,点火,反应生成固体二氧化锆、氯化氢,反应后得到第一混合物,点火反应后,反应放热使得燃烧器3内的温度保持在500~1000℃。反应过程中,氢气、空气过量,四氯化锆反应完全。第一混合物包括:氯化氢含量35-45mol%、氮气含量45-55mol%、二氧化锆含量5-15mol%(固体)、氧气含量0-5mol%、水蒸汽含量0-1mol%、氢气含量小于0.1mol%。2) after mixing gaseous zirconium tetrachloride and excess hydrogen in
3)将第一混合物通入到第一除尘器8中进行除尘,第一混合物中的固体二氧化锆被分离下来,并得到分离开的第一除尘尾气。第一除尘尾气包括:氯化氢含量40-45mol%、氮气含量50-55mol%、氧气含量1-5mol%、水蒸气含量0-1mol%、氢气含量小于0.1mol%。3) Passing the first mixture into the
4)将第一除尘尾气通入到吸收塔12吸附氯化氢,在吸收塔12的塔釜得到吸收塔12的塔釜液,在吸收塔12的塔顶得到吸收塔尾气,将吸收塔尾气进行放空。吸收塔12以稀盐酸为吸收剂,第一除尘尾气从吸收塔12的底部进入到吸收塔12,在吸收塔12内向上移动过程中与吸收塔12的塔顶喷淋而下的酸液进行气液接触,第一除尘尾气中的氯化氢被吸收,吸收塔12的塔顶得到的吸收塔尾气包括氮气、氧气,可以直接放空,吸收塔12的塔釜液为高浓度盐酸。吸收塔尾气包括:氮气含量90-98mol%、氧气含量2-5mol%、水分含量0-1mol%、氢气含量小于0.1mol%。4) the first dedusting tail gas is passed into the
5)将吸收塔12的塔釜液通入解析塔15解析氯化氢,在解析塔15的塔顶得到解析塔尾气,解析塔尾气包括氯化氢。解析塔15底部设置有加热器16,加热器16加热使得解析塔15底部的温度为70~85℃,解析塔15中的酸液中的氯化氢气体由液相转移到气相中,解析出来的氯化氢气体由解析塔15的塔顶排出,解析塔尾气由解析塔15的塔顶排出,可以用作三氯氢硅合成工序的氯化剂。本实施例中,反应过程中氯元素充分回收利用,解决了环境污染问题,同时提高了经济效益。解析塔尾气包括:99vol%氯化氢,1vol%水。5) Pass the tower still liquid of the
6)将解析塔15的塔釜液和/或吸收塔12的塔釜液通入到吸收塔12的塔顶,作为吸收塔12的淋洗液。通过解析塔15解析后得到的低浓度的解析塔15的塔釜液通入到吸收塔12的塔顶。6) Passing the tower bottom liquid of the
本实施例中的二氧化锆的制备方法,通过点火燃烧反应制备固体二氧化锆,实现了燃烧器3内热量的自给,从而节约了能量,降低了生产成本。点火燃烧反应中产生的氯化氢充分回收,解决了环境污染问题,提高了经济效益。In the preparation method of zirconium dioxide in this embodiment, solid zirconium dioxide is prepared by ignition combustion reaction, which realizes self-sufficiency of heat in the
实施例6Example 6
本实施例提供一种二氧化锆的制备方法,使用实施例5中的二氧化锆的制备装置,本实施例中的方法与实施例5中的方法的区别为:This embodiment provides a preparation method of zirconium dioxide, using the preparation device of zirconium dioxide in
步骤1)中,蒸发器1内的加热温度为500℃;In step 1), the heating temperature in the
步骤2)中,氢气的摩尔数:氧气的摩尔数:四氯化锆的摩尔数=2.15:1.1:1。In step 2), the number of moles of hydrogen: the number of moles of oxygen: the number of moles of zirconium tetrachloride=2.15:1.1:1.
实施例7Example 7
本实施例提供一种二氧化锆的制备方法,使用实施例5中的二氧化锆的制备装置,本实施例中的方法与实施例5中的方法的区别为:This embodiment provides a preparation method of zirconium dioxide, using the preparation device of zirconium dioxide in
步骤1)中,蒸发器1内的加热温度为550℃;In step 1), the heating temperature in the
步骤2)中,氢气的摩尔数:氧气的摩尔数:四氯化锆的摩尔数=2.2:1.5:1。In step 2), the number of moles of hydrogen: the number of moles of oxygen: the number of moles of zirconium tetrachloride=2.2:1.5:1.
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。It can be understood that the above embodiments are only exemplary embodiments adopted to illustrate the principle of the present invention, but the present invention is not limited thereto. For those skilled in the art, without departing from the spirit and essence of the present invention, various modifications and improvements can be made, and these modifications and improvements are also regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810116917.6A CN108190950B (en) | 2018-02-06 | 2018-02-06 | Preparation method of zirconium dioxide |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810116917.6A CN108190950B (en) | 2018-02-06 | 2018-02-06 | Preparation method of zirconium dioxide |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108190950A CN108190950A (en) | 2018-06-22 |
| CN108190950B true CN108190950B (en) | 2020-10-27 |
Family
ID=62592540
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810116917.6A Active CN108190950B (en) | 2018-02-06 | 2018-02-06 | Preparation method of zirconium dioxide |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108190950B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108975395B (en) * | 2018-08-23 | 2019-08-16 | 新特能源股份有限公司 | The preparation method and zirconium chloride of zirconium chloride |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1111139C (en) * | 1999-01-04 | 2003-06-11 | 北京大学 | Prepn. method of surface doped and weakly agglomerated nanometer zirconium oxide powder |
| KR100467366B1 (en) * | 2000-06-30 | 2005-01-24 | 주식회사 하이닉스반도체 | A method for forming zirconium oxide film using atomic layer deposition |
| CN1323938C (en) * | 2002-01-25 | 2007-07-04 | 齐化集团有限公司 | Process for purifying hydrogen chloride |
| CN101372317B (en) * | 2008-09-28 | 2011-04-13 | 昆明理工大学 | Method for producing high quality nanometer oxide by gas phase method |
| CN101734668A (en) * | 2009-12-28 | 2010-06-16 | 周庆华 | Method for preparing white carbon black by gas phase method and used equipment thereof |
| CN101941707B (en) * | 2010-03-11 | 2012-12-05 | 赤峰盛森硅业科技发展有限公司 | Preparation method and device of fumed silica by combustion of small molecular alkane |
| CN103739014A (en) * | 2013-12-04 | 2014-04-23 | 首都师范大学 | Vapor phase method for controllable synthesis of biocompatible zirconium dioxide nano powder |
-
2018
- 2018-02-06 CN CN201810116917.6A patent/CN108190950B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN108190950A (en) | 2018-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6347903B2 (en) | Manufacturing system and manufacturing method of divanadium pentoxide powder | |
| JP6371015B2 (en) | Purification system and method for divanadium pentoxide | |
| CN101279735A (en) | Production method and apparatus for trichlorosilane | |
| JP6347001B2 (en) | Manufacturing system and manufacturing method of divanadium tetroxide powder | |
| TW201033297A (en) | Energy-efficient plant for production of carbon black, preferably as an energetic integrated system with plants for production of silicon dioxide and/or silicon | |
| JP6404498B2 (en) | Manufacturing system and manufacturing method of divanadium pentoxide powder | |
| CN205659976U (en) | Fusion method industry sodium chloride abraum salt treatment facility | |
| CN105316014A (en) | Method and system for pyrolyzing biomass | |
| CN105018121B (en) | Gas, tar and activated carton co-production system | |
| CN110079342A (en) | A kind of method and apparatus of biomass pyrogenation gasification hydrogen manufacturing co-production coke | |
| SG171868A1 (en) | System for producing silicon with improved resource utilization | |
| CN104891441A (en) | Combined hydrogen bromide generating device and technology | |
| CN108190950B (en) | Preparation method of zirconium dioxide | |
| CN207811301U (en) | A kind of high-salt wastewater burning desalting system | |
| CN106745066B (en) | Produce, purify the safe technology and system of hydrogen cyanide | |
| CN205867993U (en) | Iron chloride solid particle's preparation facilities for denitration | |
| CN204897829U (en) | Cogeneration system of coal gas, tar and active carbon | |
| JPS6221706A (en) | Cyclic production method of silicon or silicon compounds via trichlorosilane | |
| CN117466336A (en) | Vanadium tetrachloride, preparation process and preparation system thereof | |
| WO2020119522A1 (en) | Combination preparation process and combination preparation system for zirconia and methylchlorosilane and/or polysilicon | |
| CN104894398B (en) | A kind of apparatus and method for for producing powdery vanadic anhydride | |
| RU2307070C2 (en) | Method of production from the rice husk of the amorphous silicon dioxide | |
| CN102161474B (en) | Method for refining hydrogen chloride gas | |
| CN105692615B (en) | The system and method that a kind of gas black prepares activated carbon | |
| CN116026979B (en) | Fixed bed reaction evaluation device and method for catalytic reduction of carbon dioxide by coke and/or petroleum coke |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| OL01 | Intention to license declared | ||
| OL01 | Intention to license declared |