[go: up one dir, main page]

CN108258028B - Semiconductor structure and method of forming the same - Google Patents

Semiconductor structure and method of forming the same Download PDF

Info

Publication number
CN108258028B
CN108258028B CN201611239033.7A CN201611239033A CN108258028B CN 108258028 B CN108258028 B CN 108258028B CN 201611239033 A CN201611239033 A CN 201611239033A CN 108258028 B CN108258028 B CN 108258028B
Authority
CN
China
Prior art keywords
region
work function
layer
function layer
gate dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611239033.7A
Other languages
Chinese (zh)
Other versions
CN108258028A (en
Inventor
贺鑫
林曦
杨晓蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201611239033.7A priority Critical patent/CN108258028B/en
Publication of CN108258028A publication Critical patent/CN108258028A/en
Application granted granted Critical
Publication of CN108258028B publication Critical patent/CN108258028B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • H10D62/125Shapes of junctions between the regions

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor structure and a forming method thereof are provided, wherein the forming method comprises the following steps: etching the first work function layer, and reserving the first work function layer positioned in the second P area, the first N area and the second N area; after the first work function layer is etched, forming a second work function layer on the first N area, the second N area, the first P area and the second P area; etching and removing the second work function layer of the second N region until the gate dielectric layer of the second N region is exposed; performing oxygen vacancy passivation treatment on the gate dielectric layer of the second N region to reduce the oxygen vacancy content in the gate dielectric layer of the second N region; etching and removing the second work function layer of the first N region until the gate dielectric layer of the first N region is exposed; and forming third work function layers on the gate dielectric layers of the first N region and the second N region and on the second work function layers of the first P region and the second P region. The invention reduces the complexity of the semiconductor structure forming process and saves the process steps.

Description

半导体结构及其形成方法Semiconductor structure and method of forming the same

技术领域technical field

本发明涉及半导体制造技术领域,特别涉及一种半导体结构及其形成方法。The present invention relates to the technical field of semiconductor manufacturing, in particular to a semiconductor structure and a method for forming the same.

背景技术Background technique

集成电路尤其超大规模集成电路的主要半导体器件是金属-氧化物-半导体场效应管(MOS晶体管)。随着集成电路制作技术的不断发展,半导体器件技术节点不断减小,半导体结构的几何尺寸遵循摩尔定律不断缩小。当半导体结构尺寸减小到一定程度时,各种因为半导体结构的物理极限所带来的二级效应相继出现,半导体结构的特征尺寸按比例缩小变得越来越困难。其中,在半导体制作领域,最具挑战性的是如何解决半导体结构漏电流大的问题。半导体结构的漏电流大,主要是由传统栅介质层厚度不断减小所引起的。The main semiconductor devices of integrated circuits, especially very large scale integrated circuits, are metal-oxide-semiconductor field effect transistors (MOS transistors). With the continuous development of integrated circuit manufacturing technology, the technology nodes of semiconductor devices are continuously reduced, and the geometric dimensions of semiconductor structures are continuously reduced following Moore's Law. When the size of the semiconductor structure is reduced to a certain extent, various secondary effects caused by the physical limit of the semiconductor structure appear one after another, and it becomes more and more difficult to scale the feature size of the semiconductor structure. Among them, in the field of semiconductor fabrication, the most challenging thing is how to solve the problem of large leakage current of the semiconductor structure. The large leakage current of the semiconductor structure is mainly caused by the continuous reduction of the thickness of the traditional gate dielectric layer.

当前提出的解决方法是,采用高k栅介质材料代替传统的二氧化硅栅介质材料,并使用金属作为栅电极,以避免高k材料与传统栅电极材料发生费米能级钉扎效应以及硼渗透效应。高k金属栅的引入,减小了半导体结构的漏电流。The currently proposed solution is to use high-k gate dielectric material instead of traditional silicon dioxide gate dielectric material, and use metal as gate electrode to avoid Fermi level pinning effect and boron Penetration effect. The introduction of the high-k metal gate reduces the leakage current of the semiconductor structure.

尽管高k金属栅极的引入能够在一定程度上改善半导体结构的电学性能,但是现有技术形成的半导体结构工艺复杂。Although the introduction of the high-k metal gate can improve the electrical performance of the semiconductor structure to a certain extent, the semiconductor structure formed in the prior art has a complicated process.

发明内容SUMMARY OF THE INVENTION

本发明解决的问题是提供一种半导体结构及其形成方法,在满足半导体结构对阈值电压不同需求的同时,简化工艺步骤。The problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, which simplifies the process steps while meeting the different requirements for the threshold voltage of the semiconductor structure.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括用于形成第一N型器件的第一N区、用于形成第二N型器件的第二N区、用于形成第一P型器件的第一P区以及用于形成第二P型器件的第二P区,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压;在所述第一N区、第二N区、第一P区以及第二P区的基底上形成栅介质层以及位于所述栅介质层上的第一功函数层;刻蚀所述第一功函数层,保留位于所述第二P区、第一N区以及第二N区的第一功函数层;在刻蚀所述第一功函数层之后,在所述第一N区、第二N区、第一P区以及第二P区上形成第二功函数层;刻蚀去除所述第二N区的第二功函数层以及第一功函数层,直至暴露出所述第二N区的栅介质层,直至暴露出所述第二N区的栅介质层;对所述第二N区的栅介质层进行氧空位钝化处理,降低所述第二N区的栅介质层内的氧空位含量;刻蚀去除所述第一N区的第二功函数层以及第一功函数层,直至暴露出所述第一N区的栅介质层;在所述第一N区和第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上形成第三功函数层。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising: providing a substrate, the substrate comprising a first N region for forming a first N-type device, a second N-region for forming a second N-type device An N region, a first P region for forming a first P-type device, and a second P region for forming a second P-type device, and the threshold voltage of the first N-type device is lower than the threshold voltage of the second N-type device voltage, the threshold voltage of the first P-type device is greater than the threshold voltage of the second P-type device; a gate dielectric is formed on the substrates of the first N region, the second N region, the first P region and the second P region layer and the first work function layer located on the gate dielectric layer; etching the first work function layer, leaving the first work function layer located in the second P region, the first N region and the second N region ; After etching the first work function layer, a second work function layer is formed on the first N region, the second N region, the first P region and the second P region; etching to remove the second The second work function layer of the N region and the first work function layer, until the gate dielectric layer of the second N region is exposed, until the gate dielectric layer of the second N region is exposed; for the second N region The gate dielectric layer of the second N region is subjected to oxygen vacancy passivation treatment to reduce the oxygen vacancy content in the gate dielectric layer of the second N region; the second work function layer and the first work function layer of the first N region are removed by etching, until the gate dielectric layer of the first N region is exposed; on the gate dielectric layers of the first N region and the second N region, and the second work function layer of the first P region and the second P region A third work function layer is formed thereon.

可选的,采用湿法刻蚀工艺,刻蚀去除所述第二N区的第二功函数层,直至暴露出所述第二N区的栅介质层,且所述湿法刻蚀工艺的刻蚀液体具有氧化性。Optionally, a wet etching process is used to etch and remove the second work function layer of the second N region until the gate dielectric layer of the second N region is exposed, and the wet etching process The etching liquid is oxidizing.

可选的,所述湿法刻蚀工艺包括主刻蚀工艺以及过刻蚀工艺,其中,利用所述过刻蚀工艺进行所述氧空位钝化处理。Optionally, the wet etching process includes a main etching process and an over-etching process, wherein the oxygen vacancy passivation treatment is performed by using the over-etching process.

可选的,所述湿法刻蚀工艺采用的刻蚀液体为SC1溶液、SC2溶液或者SPM溶液。Optionally, the etching liquid used in the wet etching process is SC1 solution, SC2 solution or SPM solution.

可选的,所述过刻蚀工艺的刻蚀时长为10s~2min。Optionally, the etching duration of the over-etching process is 10s˜2min.

可选的,采用含有过氧化氢的处理溶液,进行所述氧空位钝化处理。Optionally, the oxygen vacancy passivation treatment is performed using a treatment solution containing hydrogen peroxide.

可选的,所述处理溶液中,过氧化氢质量浓度为5%~20%,处理溶液温度为20℃~50℃。Optionally, in the treatment solution, the mass concentration of hydrogen peroxide is 5% to 20%, and the temperature of the treatment solution is 20°C to 50°C.

可选的,所述处理溶液为SC1溶液、SC2溶液或者SPM溶液。Optionally, the treatment solution is SC1 solution, SC2 solution or SPM solution.

可选的,先进行所述氧空位钝化处理,后刻蚀去除所述第一N区的第二功函数层以及第一功函数层。Optionally, the oxygen vacancy passivation treatment is performed first, and then the second work function layer and the first work function layer of the first N region are removed by etching.

可选的,所述栅介质层的材料为高k栅介质材料。Optionally, the material of the gate dielectric layer is a high-k gate dielectric material.

可选的,在形成所述栅介质层之前,还在所述第一N区、第二N区、第一P区以及第二P区的基底上形成界面层。Optionally, before forming the gate dielectric layer, an interface layer is also formed on the substrate of the first N region, the second N region, the first P region and the second P region.

可选的,所述第一功函数层的材料、第二功函数层以及第三功函数层的材料均为P型功函数材料。Optionally, the material of the first work function layer, the material of the second work function layer and the material of the third work function layer are all P-type work function materials.

可选的,所述P型功函数材料包括Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种。Optionally, the P-type work function material includes one or more of Ta, TiN, TaN, TaSiN or TiSiN.

可选的,还包括步骤:在所述第一N区、第二N区、第一P区和第二P区的第三功函数层上形成N型功函数层,且所述N型功函数层的材料功函数类型与所述第三功函数层的材料功函数类型不同;在所述N型功函数层上形成栅电极层。Optionally, it also includes the step of: forming an N-type work function layer on the third work function layer of the first N region, the second N region, the first P region and the second P region, and the N-type work function layer is The material work function type of the functional layer is different from that of the third work function layer; a gate electrode layer is formed on the N-type work function layer.

可选的,所述N型功函数层的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或几种。Optionally, the material of the N-type work function layer is one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN and AlN.

可选的,刻蚀所述第一功函数层的工艺步骤包括:在所述第一N区、第二N区和第二P区的第一功函数层上形成第一图形层;以所述第一图形层为掩膜,刻蚀去除位于所述第一P区的第一功函数层;去除所述第一图形层。Optionally, the process step of etching the first work function layer includes: forming a first pattern layer on the first work function layer of the first N region, the second N region and the second P region; The first pattern layer is a mask, and the first work function layer located in the first P region is removed by etching; the first pattern layer is removed.

可选的,刻蚀去除所述第一N区的第二功函数层以及第一功函数层的工艺步骤包括:在所述第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上形成第二图形层;以所述第二图形层为掩膜,刻蚀去除所述第一N区的第二功函数层以及第一功函数层;去除所述第二图形层。本发明还提供一种半导体结构,包括:基底,所述基底包括具有第一N型器件的第一N区、具有第二N型器件的第二N区、具有第一P型器件的第一P区以及具有第二P型器件的第二P区,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压;位于所述第一N区、第二N区、第一P区以及第二P区的基底上的栅介质层,其中,所述第一N区的栅介质层内氧空位含量大于所述第二N区的栅介质层内氧空位含量;位于所述第二P区的栅介质层上的第一功函数层;位于所述第一P区的栅介质层上以及第二P区的第一功函数层上的第二功函数层;位于所述第一N区和第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上的第三功函数层。Optionally, the process step of removing the second work function layer and the first work function layer of the first N region by etching includes: on the gate dielectric layer of the second N region and the first P region and forming a second pattern layer on the second work function layer of the second P region; using the second pattern layer as a mask, etching and removing the second work function layer and the first work function layer of the first N region ; remove the second graphics layer. The present invention also provides a semiconductor structure, comprising: a substrate including a first N region with a first N-type device, a second N region with a second N-type device, and a first N region with a first P-type device A P region and a second P region having a second P-type device, and the threshold voltage of the first N-type device is smaller than the threshold voltage of the second N-type device, and the threshold voltage of the first P-type device is larger than the second P-type device The threshold voltage of the type device; the gate dielectric layer located on the substrate of the first N region, the second N region, the first P region and the second P region, wherein the oxygen in the gate dielectric layer of the first N region The vacancy content is greater than the oxygen vacancy content in the gate dielectric layer of the second N region; a first work function layer located on the gate dielectric layer of the second P region; located on the gate dielectric layer of the first P region; A second work function layer on the first work function layer of the second P region; on the gate dielectric layer of the first N region and the second N region, and the first P region and the second P region The third work function layer on the second work function layer.

可选的,所述第一功函数层的材料、第二功函数层的材料以及第三功函数层的材料均为P型功函数材料。Optionally, the material of the first work function layer, the material of the second work function layer, and the material of the third work function layer are all P-type work function materials.

可选的,所述半导体结构还包括:位于所述第三功函数层上的N型功函数层;位于所述N型功函数层上的栅电极层。Optionally, the semiconductor structure further includes: an N-type work function layer on the third work function layer; and a gate electrode layer on the N-type work function layer.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明实施例提供的半导体结构的形成方法的技术方案中,在形成具有不同阈值电压的第一N型器件以及第二N型器件,具有不同阈值电压的第一P型器件以及第二P型器件的工艺过程中,对第二N区的栅介质层进行氧空位钝化处理,使得第一N区的栅介质层内氧空位含量大于第二N区的栅介质层内氧空位含量,通过氧空位含量的不同使得第一N型器件和第二N型器件的阈值电压具有差异性;因此,形成的第三功函数层既位于第一N区还位于第二N区,避免了刻蚀去除第一N区的第三功函数层的工艺步骤,且无需形成第四功函数层,从而简化了工艺步骤,且满足第一N型器件阈值电压小于第二N型器件阈值电压的需求。并且,本发明减少了形成的功函数层膜层的数量,使得形成的半导体结构更加简单,且使得后续形成栅电极层的工艺窗口增加。In the technical solution of the method for forming a semiconductor structure provided by the embodiment of the present invention, in forming a first N-type device and a second N-type device with different threshold voltages, and a first P-type device and a second P-type device with different threshold voltages During the process of the device, the gate dielectric layer of the second N region is subjected to oxygen vacancy passivation treatment, so that the content of oxygen vacancies in the gate dielectric layer of the first N region is greater than the content of oxygen vacancies in the gate dielectric layer of the second N region. The difference in oxygen vacancy content makes the threshold voltages of the first N-type device and the second N-type device different; therefore, the third work function layer formed is located in both the first N region and the second N region, avoiding etching The process step of removing the third work function layer of the first N region does not need to form the fourth work function layer, thereby simplifying the process steps and meeting the requirement that the threshold voltage of the first N-type device is lower than the threshold voltage of the second N-type device. Moreover, the present invention reduces the number of the formed work function layers, makes the formed semiconductor structure simpler, and increases the process window for the subsequent formation of the gate electrode layer.

可选方案中,采用湿法刻蚀工艺刻蚀去除位于所述第二N区的第二功函数层,且所述湿法刻蚀工艺包括主刻蚀工艺以及过刻蚀工艺,利用所述过刻蚀工艺进行所述氧空位钝化处理,因此无需额外的工艺步骤进行所述氧空位钝化处理。In an optional solution, a wet etching process is used to etch and remove the second work function layer located in the second N region, and the wet etching process includes a main etching process and an over-etching process. The oxygen vacancy passivation treatment is performed through an over-etching process, so no additional process steps are required to perform the oxygen vacancy passivation treatment.

附图说明Description of drawings

图1至图3为一种半导体结构形成方法各步骤对应的剖面结构示意图;1 to 3 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure;

图4至图11为本发明实施例提供的半导体结构形成方法各步骤对应的剖面结构示意图。4 to 11 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure according to an embodiment of the present invention.

具体实施方式Detailed ways

由背景技术可知,现有技术形成的半导体结构的电学性能有待提高。尤其是当半导体结构中包括具有不同阈值电压(Threshold Voltage)的P型器件以及具有不同阈值电压的N型器件时,所述半导体结构形成工艺复杂的问题尤为显著。It can be known from the background art that the electrical properties of the semiconductor structures formed in the prior art need to be improved. Especially when the semiconductor structure includes P-type devices with different threshold voltages (Threshold Voltage) and N-type devices with different threshold voltages, the problem of the complex formation process of the semiconductor structure is particularly significant.

为了同时满足NMOS管和PMOS管改善阈值电压的要求,通常采用不同的金属材料作为NMOS管和PMOS管的栅极结构中的功函数(WF,Work Function)层材料,NMOS管中的功函数层材料可称为N型功函数材料,PMOS管中的功函数层材料可称为P型功函数材料。通常采用调整栅介质层与N型功函数层之间的P型功函数层的厚度的方式,实现满足器件不同阈值电压的需求。In order to meet the requirements of improving the threshold voltage of NMOS transistors and PMOS transistors at the same time, different metal materials are usually used as the work function (WF, Work Function) layer material in the gate structure of the NMOS transistor and the PMOS transistor, and the work function layer in the NMOS transistor. The material may be referred to as an N-type work function material, and the material of the work function layer in the PMOS tube may be referred to as a P-type work function material. Usually, the thickness of the P-type work function layer between the gate dielectric layer and the N-type work function layer is adjusted to meet the requirements of different threshold voltages of the device.

图1至图3为一种半导体结构形成方法各步骤对应的剖面结构示意图。1 to 3 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure.

参考图1,提供基底11,所述基底11包括第一N区101以及第二N区102,第一N区101用于形成第一N型器件,第二N区102用于形成第二N型器件,且第一N型器件的阈值电压小于第二N型器件的阈值电压;在所述基底11上形成界面层12;在所述界面层12上形成栅介质层13;在所述第一N区101栅介质层13上形成第一功函数层14以及位于第一功函数层14上的第二功函数层15;在所述第一N区101的第二功函数层15上以及第二N区102的栅介质层13上形成第三功函数层16。Referring to FIG. 1, a substrate 11 is provided, the substrate 11 includes a first N region 101 and a second N region 102, the first N region 101 is used for forming a first N-type device, and the second N region 102 is used for forming a second N region type device, and the threshold voltage of the first N-type device is lower than that of the second N-type device; an interface layer 12 is formed on the substrate 11 ; a gate dielectric layer 13 is formed on the interface layer 12 ; A first work function layer 14 and a second work function layer 15 on the first work function layer 14 are formed on the gate dielectric layer 13 of an N region 101 ; on the second work function layer 15 of the first N region 101 and A third work function layer 16 is formed on the gate dielectric layer 13 of the second N region 102 .

所述基底还包括第一P区和第二P区,且第一P区形成的P型器件阈值电压与第二P区形成的P型器件阈值电压不同。The substrate further includes a first P region and a second P region, and the threshold voltage of the P-type device formed by the first P region is different from the threshold voltage of the P-type device formed by the second P region.

参考图2,刻蚀去除位于所述第一N区101上的第三功函数层16、第二功函数层15(参考图1)以及第一功函数层14,暴露出所述第一N区101的栅介质层13表面。Referring to FIG. 2 , the third work function layer 16 , the second work function layer 15 (refer to FIG. 1 ) and the first work function layer 14 located on the first N region 101 are removed by etching, exposing the first N the surface of the gate dielectric layer 13 in the region 101 .

参考图3,在所述第一N区101的栅介质层13上以及第二N区102的第三功函数层16上形成第四功函数层17。Referring to FIG. 3 , a fourth work function layer 17 is formed on the gate dielectric layer 13 of the first N region 101 and on the third work function layer 16 of the second N region 102 .

上述形成方法复杂,且为了满足第一N型器件、第二N型器件、第一P型器件以及第二P型器件对阈值电压的不同需求,需要形成至少四层功函数层。The above-mentioned formation method is complicated, and in order to meet different threshold voltage requirements of the first N-type device, the second N-type device, the first P-type device and the second P-type device, at least four work function layers need to be formed.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括用于形成第一N型器件的第一N区、用于形成第二N型器件的第二N区、用于形成第一P型器件的第一P区以及用于形成第二P型器件的第二P区,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压;在所述第一N区、第二N区、第一P区以及第二P区的基底上形成栅介质层以及位于所述栅介质层上的第一功函数层;刻蚀所述第一功函数层,保留位于所述第二P区的第一功函数层;在刻蚀所述第一功函数层之后,在所述第一N区、第二N区、第一P区以及第二P区上形成第二功函数层;刻蚀去除所述第二N区的第二功函数层,直至暴露出所述第二N区的栅介质层;对所述第二N区的栅介质层进行氧空位钝化处理,降低所述第二N区的栅介质层内的氧空位含量;刻蚀去除所述第一N区的第二功函数层,直至暴露出所述第一N区的栅介质层;在所述第一N区和第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上形成第三功函数层。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising: providing a substrate, the substrate comprising a first N region for forming a first N-type device, a second N-region for forming a second N-type device An N region, a first P region for forming a first P-type device, and a second P region for forming a second P-type device, and the threshold voltage of the first N-type device is lower than the threshold voltage of the second N-type device voltage, the threshold voltage of the first P-type device is greater than the threshold voltage of the second P-type device; a gate dielectric is formed on the substrates of the first N region, the second N region, the first P region and the second P region layer and the first work function layer located on the gate dielectric layer; etching the first work function layer, leaving the first work function layer located in the second P region; etching the first work function layer After layering, a second work function layer is formed on the first N region, the second N region, the first P region and the second P region; the second work function layer of the second N region is removed by etching until exposing the gate dielectric layer of the second N region; performing oxygen vacancy passivation treatment on the gate dielectric layer of the second N region to reduce the content of oxygen vacancies in the gate dielectric layer of the second N region; etching removing the second work function layer of the first N region until the gate dielectric layer of the first N region is exposed; on the gate dielectric layers of the first N region and the second N region, and the first N region A third work function layer is formed on the second work function layer of the first P region and the second P region.

本发明在形成具有不同阈值电压的第一N型器件、第二N型器件、第一P型器件以及第二P型器件的同时,节约了工艺步骤,简化了工艺复杂性,且使得形成的功函数层膜层数量少。The present invention saves the process steps, simplifies the process complexity while forming the first N-type device, the second N-type device, the first P-type device, and the second P-type device with different threshold voltages. The number of work function layers is small.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

图4至图11为本发明实施例提供的半导体结构形成方法各步骤对应的剖面结构示意图。4 to 11 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure according to an embodiment of the present invention.

参考图4,提供基底201。Referring to Figure 4, a substrate 201 is provided.

所述基底201包括用于形成第一N型器件的第一N区I1、用于形成第二N型器件的第二N区I2、用于形成第一P型器件的第一P区II1以及用于形成第二P型器件的第二P区II2,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压。The substrate 201 includes a first N region I1 for forming a first N-type device, a second N region I2 for forming a second N-type device, a first P region II1 for forming a first P-type device, and A second P region II2 for forming a second P-type device, and the threshold voltage of the first N-type device is smaller than the threshold voltage of the second N-type device, and the threshold voltage of the first P-type device is greater than the second P-type device threshold voltage of the device.

以所述第一N区I1与第二N区I2相邻接,所述第二N区I2与第一P区II1相邻接,所述第一P区II1与第二P区II2相邻接作为示例。The first N region I1 is adjacent to the second N region I2, the second N region I2 is adjacent to the first P region II1, and the first P region II1 is adjacent to the second P region II2 Take as an example.

本实施例中,以形成的半导体结构为平面器件为例,所述基底201为平面衬底;所述基底201的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述基底201还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, taking the semiconductor structure formed as a planar device as an example, the base 201 is a planar substrate; the material of the base 201 is silicon, germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium , the substrate 201 can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate.

在其他实施例中,形成的半导体结构为鳍式场效应管时,所述基底包括衬底以及位于所述衬底上的鳍部,所述基底还包括,位于所述鳍部露出的衬底上的隔离结构,所述隔离结构覆盖鳍部的部分侧壁,且所述隔离结构顶部低于所述鳍部顶部。In other embodiments, when the formed semiconductor structure is a fin field effect transistor, the base includes a substrate and a fin on the substrate, and the base further includes a substrate exposed on the fin The isolation structure on the top of the isolation structure covers part of the sidewall of the fin, and the top of the isolation structure is lower than the top of the fin.

本实施例中,所述第一N区I1包括N型超低阈值电压(ULVT,Ultra-low VT)区以及N型低阈值电压(low VT)区;所述第二N区I2为N型标准阈值电压区(Standard VT)。在其他实施例中,所述第一N区还可以仅包括N型低阈值电压区或者N型超低阈值电压区中的一种。In this embodiment, the first N region I1 includes an N-type ultra-low threshold voltage (ULVT, Ultra-low VT) region and an N-type low threshold voltage (low VT) region; the second N region I2 is an N-type region Standard threshold voltage region (Standard VT). In other embodiments, the first N region may also include only one of an N-type low threshold voltage region or an N-type ultra-low threshold voltage region.

本实施例中,所述第一P区II1为P型标准阈值电压区,所述第二P区II2包括P型超低阈值电压区以及P型低阈值电压区。在其他实施例中,所述第二P区还可以仅包括P型超低阈值电压区或者P型低阈值电压区中的一种。In this embodiment, the first P region II1 is a P-type standard threshold voltage region, and the second P region II2 includes a P-type ultra-low threshold voltage region and a P-type low threshold voltage region. In other embodiments, the second P region may also include only one of a P-type ultra-low threshold voltage region or a P-type low threshold voltage region.

需要说明的是,本实施例中,在后续形成栅介质层203之前,还包括:对所述N型超低阈值电压区对应的基底201进行第一N型阈值调节掺杂处理,对所述N型低阈值电压区对应的基底201进行第二N型阈值调节掺杂处理;对所述P型超低阈值电压区对应的基底201进行第一P型阈值调节掺杂处理,对所述P型低阈值电压区对应的基底201进行第二P型阈值调节掺杂处理。It should be noted that, in this embodiment, before the subsequent formation of the gate dielectric layer 203, the method further includes: performing a first N-type threshold adjustment doping treatment on the substrate 201 corresponding to the N-type ultra-low threshold voltage region, The substrate 201 corresponding to the N-type low threshold voltage region is subjected to the second N-type threshold adjustment doping treatment; the substrate 201 corresponding to the P-type ultra-low threshold voltage region is subjected to the first P-type threshold adjustment doping treatment, and the P The substrate 201 corresponding to the P-type low threshold voltage region is subjected to the second P-type threshold adjustment doping treatment.

具体地,所述第一N型阈值调节掺杂处理和第二N型阈值调节掺杂处理的掺杂离子为N型离子,N型离子包括P、As或Sb,所述第一N型阈值调节掺杂处理的掺杂浓度小于所述第二N型阈值调节掺杂处理的掺杂浓度。所述第一P型阈值调节掺杂处理和第二P型阈值调节掺杂处理的掺杂离子为P型离子,P型离子包括B、Ga或In,所述第一P型阈值调节掺杂处理的掺杂浓度小于所述第二P型阈值调节掺杂处理的掺杂浓度。Specifically, the doping ions of the first N-type threshold adjustment doping treatment and the second N-type threshold adjustment doping treatment are N-type ions, and the N-type ions include P, As or Sb, and the first N-type threshold value The doping concentration of the adjustment doping treatment is smaller than the doping concentration of the second N-type threshold adjustment doping treatment. The doping ions of the first P-type threshold adjustment doping treatment and the second P-type threshold adjustment doping treatment are P-type ions, the P-type ions include B, Ga or In, and the first P-type threshold adjustment doping The doping concentration of the treatment is less than the doping concentration of the second P-type threshold adjustment doping treatment.

本实施例中,以采用后形成高k栅介质层后形成栅电极层(high k last metalgate last)的工艺,形成半导体结构的栅极结构为例。在形成栅介质层203之前,还包括:In this embodiment, the gate structure of the semiconductor structure is formed by using a process of forming a high-k gate dielectric layer and then forming a gate electrode layer (high k last metal gate last) as an example. Before forming the gate dielectric layer 203, the method further includes:

在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的基底201上形成伪栅结构,其中,由于所述第一N区I1与第一P区II1相邻接,因此所述伪栅结构横跨所述第一N区I1以及第一P区II1,相应的,后续形成的栅电极层横跨所述第一N区I1以及第一P区II1。A dummy gate structure is formed on the substrate 201 of the first N region I1, the second N region I2, the first P region II1 and the second P region II2, wherein the first N region I1 and the first P region are II1 is adjacent, so the dummy gate structure spans the first N region I1 and the first P region II1, and correspondingly, the gate electrode layer formed subsequently spans the first N region I1 and the first P region II1.

在形成所述伪栅结构之后,在各区域伪栅结构两侧的基底201内形成各器件的源漏掺杂区;在形成所述源漏掺杂区之后,在所述伪栅结构暴露出的基底201上形成层间介质层,所述层间介质层露出所述伪栅结构的顶部;在形成所述层间介质层之后,去除所述伪栅结构。After the dummy gate structure is formed, source and drain doped regions of each device are formed in the substrate 201 on both sides of the dummy gate structure in each region; after the source and drain doped regions are formed, the dummy gate structure is exposed An interlayer dielectric layer is formed on the substrate 201, and the interlayer dielectric layer exposes the top of the dummy gate structure; after the interlayer dielectric layer is formed, the dummy gate structure is removed.

后续在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的部分基底201上形成所述栅介质层203。需要说明的是,在其他实施例中,还可以采用先形成高k栅介质层后形成栅电极层(high k first metal gate last)的工艺,形成所述半导体结构。Subsequently, the gate dielectric layer 203 is formed on a portion of the substrate 201 of the first N region I1, the second N region I2, the first P region II1 and the second P region II2. It should be noted that, in other embodiments, the semiconductor structure may also be formed by a process of first forming a high-k gate dielectric layer and then forming a gate electrode layer (high k first metal gate last).

继续参考图4,在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的基底201上形成栅介质层203以及位于所述栅介质层203上的第一功函数层204。Continuing to refer to FIG. 4 , a gate dielectric layer 203 and a gate dielectric layer 203 are formed on the substrate 201 of the first N region I1 , the second N region I2 , the first P region II1 and the second P region II2 . The first work function layer 204 .

所述栅介质层203的材料为高k栅介质材料,其中,高k栅介质材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。The material of the gate dielectric layer 203 is a high-k gate dielectric material, wherein the high-k gate dielectric material is a gate dielectric material with a relative permittivity greater than that of silicon oxide.

本实施例中,所述栅介质层203的材料为HfO2。在其他实施例中,所述栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3In this embodiment, the material of the gate dielectric layer 203 is HfO 2 . In other embodiments, the material of the gate dielectric layer may also be HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 .

为了提高所述基底201与所述栅介质层203之间的界面性能,在形成所述栅介质层203之前,还在所述基底201上形成界面层202,相应的,所述栅介质层203位于所述界面层202表面。In order to improve the interface performance between the substrate 201 and the gate dielectric layer 203, before forming the gate dielectric layer 203, an interface layer 202 is also formed on the substrate 201, correspondingly, the gate dielectric layer 203 on the surface of the interface layer 202 .

所述界面层202为形成所述栅介质层203提供良好的界面基础,从而提高形成的栅介质层203的质量,减小所述栅介质层203与所述基底201之间的界面态密度,且避免所述栅介质层203与所述基底201直接接触造成的不良影响。The interface layer 202 provides a good interface foundation for forming the gate dielectric layer 203, thereby improving the quality of the gate dielectric layer 203 formed and reducing the interface state density between the gate dielectric layer 203 and the substrate 201, In addition, adverse effects caused by the direct contact between the gate dielectric layer 203 and the substrate 201 are avoided.

本实施例中,所述界面层202的材料为氧化硅。在其他实施例中,所述界面层的材料还可以为氮化硅或者氮氧化硅。In this embodiment, the material of the interface layer 202 is silicon oxide. In other embodiments, the material of the interface layer may also be silicon nitride or silicon oxynitride.

所述第一功函数层204的材料为P型功函数材料。具体地,位于所述第二P区II2上的第一功函数层204作为第二P型器件对应的功函数层的一部分,用于调节所述第二P型器件的阈值电压。The material of the first work function layer 204 is a P-type work function material. Specifically, the first work function layer 204 located on the second P region II2 is used as a part of the work function layer corresponding to the second P type device to adjust the threshold voltage of the second P type device.

所述P型功函数材料功函数范围为5.1eV至5.5eV,例如,5.2eV、5.3eV或5.4eV。所述第一功函数层204的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第一功函数层204。The P-type work function material has a work function ranging from 5.1 eV to 5.5 eV, eg, 5.2 eV, 5.3 eV or 5.4 eV. The material of the first work function layer 204 is one or more of Ta, TiN, TaN, TaSiN or TiSiN, and the first work function can be formed by a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. Function layer 204 .

本实施例中,所述第一功函数层204的材料为TiN,所述第一功函数层204的厚度为10埃~30埃。In this embodiment, the material of the first work function layer 204 is TiN, and the thickness of the first work function layer 204 is 10 angstroms to 30 angstroms.

参考图5,刻蚀所述第一功函数层204,保留位于所述第二P区II2、第一N区I1以及第二N区I2的第一功函数层204。Referring to FIG. 5 , the first work function layer 204 is etched, and the first work function layer 204 located in the second P region II2 , the first N region I1 and the second N region I2 remains.

本实施例中,刻蚀所述第一功函数层204,保留位于所述第一P区II2的第一功函数层204,包括:刻蚀去除所述第一P区II1的第一功函数层204,保留位于所述第一N区I1、第二N区II2以及第二P区II2的第一功函数层204。In this embodiment, etching the first work function layer 204 and retaining the first work function layer 204 located in the first P region II2 includes: etching and removing the first work function in the first P region II1 The layer 204 retains the first work function layer 204 located in the first N region I1, the second N region II2 and the second P region II2.

具体地,刻蚀所述第一功函数层204的工艺步骤包括:在所述第一N区I1、第二N区I2和第二P区II2的第一功函数层204上形成第一图形层;以所述第一图形层为掩膜,刻蚀去除位于所述第一P区II1的第一功函数层204;去除所述第一图形层。Specifically, the process step of etching the first work function layer 204 includes: forming a first pattern on the first work function layer 204 of the first N region I1, the second N region I2 and the second P region II2 layer; using the first pattern layer as a mask, etching and removing the first work function layer 204 located in the first P region II1; removing the first pattern layer.

本实施例中,在刻蚀所述第一功函数层204的工艺过程中,保留位于所述第一N区I1以及第二N区I2的第一功函数层204,避免对第一N区I1以及第二N区I2的栅介质层203造成刻蚀损伤,减少第一N区I1以及第二N区I2的栅介质层203在工艺过程中受到的损伤。In this embodiment, in the process of etching the first work function layer 204, the first work function layer 204 located in the first N region I1 and the second N region I2 is reserved to avoid the first N region The gate dielectric layer 203 of the I1 and the second N region I2 causes etching damage, which reduces the damage to the gate dielectric layer 203 of the first N region I1 and the second N region I2 during the process.

参考图6,在刻蚀所述第一功函数层204之后,在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2上形成第二功函数层205。Referring to FIG. 6 , after the first work function layer 204 is etched, a second work function layer is formed on the first N region I1 , the second N region I2 , the first P region II1 and the second P region II2 205.

本实施例中,形成所述第二功函数层205,包括:在所述第一N区I1、第二N区I2和第二P区II2的第一功函数层204上、以及第一P区II1的栅介质层203上形成所述第二功函数层205。In this embodiment, forming the second work function layer 205 includes: on the first work function layer 204 of the first N region I1, the second N region I2 and the second P region II2, and a first P The second work function layer 205 is formed on the gate dielectric layer 203 in the region II1.

所述第二功函数层205的材料为P型功函数材料。位于所述第一P区II1上的第二功函数层205为第一P型器件对应的功函数层的一部分,起到调节所述第一P型器件的阈值电压的作用;位于所述第二P区II2上的第二功函数层205为第二P型器件对应的功函数层的一部分,起到调节所述第二P型器件的阈值电压的作用。The material of the second work function layer 205 is a P-type work function material. The second work function layer 205 located on the first P region II1 is a part of the work function layer corresponding to the first P type device, and plays the role of adjusting the threshold voltage of the first P type device; The second work function layer 205 on the two P regions II2 is a part of the work function layer corresponding to the second P-type device, and plays the role of adjusting the threshold voltage of the second P-type device.

所述第二功函数层205的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种。The material of the second work function layer 205 is one or more of Ta, TiN, TaN, TaSiN or TiSiN.

本实施例中,所述第二功函数层205的材料为TiN,所述第二功函数层205的厚度为10埃~30埃。In this embodiment, the material of the second work function layer 205 is TiN, and the thickness of the second work function layer 205 is 10 angstroms to 30 angstroms.

参考图7,刻蚀去除所述第二N区I2的第二功函数层205以及第一功函数层204,暴露出所述第二N区I2的栅介质层203。Referring to FIG. 7 , the second work function layer 205 and the first work function layer 204 of the second N region I2 are removed by etching, and the gate dielectric layer 203 of the second N region I2 is exposed.

本实施例中,由于前述在形成第二功函数层205之前,保留了位于所述第二N区I2的第一功函数层204;因此,刻蚀去除所述第二N区I2的第二功函数层205,包括:刻蚀去除所述第二N区I2的第二功函数层205,且还刻蚀去除所述第二N区I2的第一功函数层204。In this embodiment, before the second work function layer 205 is formed, the first work function layer 204 located in the second N region I2 remains; therefore, the second N region I2 is removed by etching The work function layer 205 includes: etching and removing the second work function layer 205 of the second N region I2, and also etching and removing the first work function layer 204 of the second N region I2.

在刻蚀去除所述第二N区I2的第二功函数层205之前,还包括:在所述第一N区I1、第一P区II1和第二P区II2的第二功函数层205上形成掩膜层200。Before removing the second work function layer 205 of the second N region I2 by etching, the method further includes: the second work function layer 205 of the first N region I1, the first P region II1 and the second P region II2 A mask layer 200 is formed thereon.

本实施例中,所述掩膜层200的材料为氮化硅。在其他实施例中,所述掩膜层的材料还可以为光刻胶材料。In this embodiment, the material of the mask layer 200 is silicon nitride. In other embodiments, the material of the mask layer may also be a photoresist material.

所述掩膜层200起到保护第一N区I1、第一P区II1以及第二P区II2的第二功函数层205不被刻蚀的作用。并且,本实施例中,在后续进行氧空位钝化处理之后,去除所述掩膜层200,所述掩膜层200还在氧空位钝化处理过程中对第一N区I1、第一P区II1以及第二P区II2起到保护作用。The mask layer 200 serves to protect the second work function layer 205 of the first N region I1, the first P region II1 and the second P region II2 from being etched. In addition, in this embodiment, after the subsequent oxygen vacancy passivation treatment, the mask layer 200 is removed. The region II1 and the second P region II2 play a protective role.

采用湿法刻蚀工艺,刻蚀去除所述第二N区I2的第二功函数层205以及第一功函数层204,直至暴露出所述第二N区I2的栅介质层203。Using a wet etching process, the second work function layer 205 and the first work function layer 204 of the second N region I2 are etched and removed until the gate dielectric layer 203 of the second N region I2 is exposed.

本实施例中,所述湿法刻蚀工艺的刻蚀液体具有氧化性。其好处在于:所述湿法刻蚀工艺不仅可以刻蚀去除所述第二N区I2的第二功函数层205以及第一功函数层204,且还可以对第二N区I2暴露出的栅介质层203进行氧空位钝化处理。In this embodiment, the etching liquid of the wet etching process has an oxidizing property. The advantage is that the wet etching process can not only etch and remove the second work function layer 205 and the first work function layer 204 of the second N region I2, but also can etch and remove the exposed part of the second N region I2. The gate dielectric layer 203 is subjected to oxygen vacancy passivation treatment.

具体地,所述湿法刻蚀工艺包括主刻蚀工艺(main etch)以及过刻蚀工艺(overetch),其中,利用所述过刻蚀工艺进行后续的氧空位钝化处理。Specifically, the wet etching process includes a main etching process (main etch) and an overetching process (overetch), wherein the subsequent oxygen vacancy passivation treatment is performed by using the overetching process.

所述湿法刻蚀工艺采用的刻蚀液体为SC1溶液、SC2溶液或者SPM溶液。The etching liquid used in the wet etching process is SC1 solution, SC2 solution or SPM solution.

其中,SC1溶液为氨水和双氧水的水溶液;SC2溶液为盐酸和双氧水的水溶液;SPM溶液为硫酸和双氧水的水溶液。The SC1 solution is an aqueous solution of ammonia and hydrogen peroxide; the SC2 solution is an aqueous solution of hydrochloric acid and hydrogen peroxide; and the SPM solution is an aqueous solution of sulfuric acid and hydrogen peroxide.

参考图8,对所述第二N区I2的栅介质层203进行氧空位钝化处理206,降低所述第二N区I2的栅介质层203内的氧空位含量。Referring to FIG. 8 , oxygen vacancy passivation treatment 206 is performed on the gate dielectric layer 203 of the second N region I2 to reduce the content of oxygen vacancies in the gate dielectric layer 203 of the second N region I2 .

所述栅介质层203内易形成缺陷,所述缺陷包括氧空位、悬挂键或者未成键离子中的一种或多种。本实施例中,所述栅介质层203内含有氧空位缺陷。Defects are easily formed in the gate dielectric layer 203, and the defects include one or more of oxygen vacancies, dangling bonds or unbonded ions. In this embodiment, the gate dielectric layer 203 contains oxygen vacancy defects.

对所述第二N区I2的栅介质层203进行氧空位钝化处理206,有利于降低所述第二N区I2的栅介质层203内的氧空位含量,使得第一N区I1的栅介质层203内的氧空位含量大于第二N区I2的栅介质层203内的氧空位含量。The oxygen vacancy passivation treatment 206 is performed on the gate dielectric layer 203 of the second N region I2, which is beneficial to reduce the content of oxygen vacancies in the gate dielectric layer 203 of the second N region I2, so that the gate of the first N region I1 is The content of oxygen vacancies in the dielectric layer 203 is greater than the content of oxygen vacancies in the gate dielectric layer 203 of the second N region I2.

由于所述第一N区I1的栅介质层203内的氧空位含量大于第二N区I2的栅介质层203内的氧空位含量,使得第一N区I1的栅介质层203内的偶极子数量大于第二N区I2的栅介质层203内偶极子数量;相应的,第一N型器件后续形成的栅极结构与基底201之间的平带电压高于第二N型器件后续形成的栅极结构与基底201之间的平带电压,从而使得形成的第一N型器件阈值电压高于第二N型器件阈值电压。Since the oxygen vacancy content in the gate dielectric layer 203 of the first N region I1 is greater than the oxygen vacancy content in the gate dielectric layer 203 of the second N region I2, the dipole in the gate dielectric layer 203 of the first N region I1 is The number of dipoles is greater than the number of dipoles in the gate dielectric layer 203 of the second N region I2; correspondingly, the flat band voltage between the gate structure and the substrate 201 formed subsequently by the first N-type device is higher than that of the second N-type device. The flat-band voltage between the gate structure and the substrate 201 is formed so that the threshold voltage of the first N-type device formed is higher than the threshold voltage of the second N-type device.

本实施例中,通过延长前述湿法刻蚀工艺中的过刻蚀工艺的刻蚀时长,进行所述氧空位钝化处理206,使得所述氧空位钝化处理206的工艺操作简单,无需额外的工艺步骤。In this embodiment, the oxygen vacancy passivation treatment 206 is performed by extending the etching duration of the over-etching process in the aforementioned wet etching process, so that the process operation of the oxygen vacancy passivation treatment 206 is simple, and no additional operation is required. process steps.

具体地,所述过刻蚀工艺的刻蚀时长不宜过短,也不宜过长。若所述过刻蚀工艺的刻蚀时长过短,则所述第二N区I2的栅介质层203内的氧空位含量减少程度低;若所述过刻蚀工艺的刻蚀时长过长,则所述氧空位钝化处理206会对所述第二N区I2的栅介质层203造成不良影响。Specifically, the etching duration of the over-etching process should not be too short or too long. If the etching time of the over-etching process is too short, the reduction degree of oxygen vacancies in the gate dielectric layer 203 of the second N region I2 is low; if the etching time of the over-etching process is too long, Then, the oxygen vacancy passivation treatment 206 will adversely affect the gate dielectric layer 203 of the second N region I2.

为此,本实施例中,所述过刻蚀工艺的刻蚀时长为10s~2min。Therefore, in this embodiment, the etching duration of the over-etching process is 10s˜2min.

在其他实施例中,还可以在刻蚀去除所述第二N区的第二功函数层和第一功函数层之后,采用含有过氧化氢的处理溶液,进行所述氧空位钝化处理,所述处理溶液可以为SC1溶液、SC2溶液或者SPM溶液。In other embodiments, after the second work function layer and the first work function layer of the second N region are removed by etching, the oxygen vacancy passivation treatment may be performed by using a treatment solution containing hydrogen peroxide, The treatment solution may be an SC1 solution, an SC2 solution or an SPM solution.

需要说明的是,所述处理溶液中,过氧化氢含量不宜过低,也不宜过高。若所述过氧化氢含量过低,则所述氧空位钝化处理的效率低下;若所述过氧化氢含量过高,所述氧空位钝化处理易对第二N区的栅介质层造成不良影响。相应的,所述处理溶液温度也不宜过低且不宜过高。It should be noted that, in the treatment solution, the content of hydrogen peroxide should not be too low or too high. If the hydrogen peroxide content is too low, the efficiency of the oxygen vacancy passivation treatment is low; if the hydrogen peroxide content is too high, the oxygen vacancy passivation treatment is likely to cause damage to the gate dielectric layer of the second N region adverse effects. Correspondingly, the temperature of the treatment solution should not be too low nor too high.

为此,当采用含有过氧化氢的处理溶液进行所述氧空位钝化处理时,所述处理溶液中,过氧化氢质量浓度为5%~20%,处理溶液温度为20℃~50℃。For this reason, when the oxygen vacancy passivation treatment is performed with a treatment solution containing hydrogen peroxide, the mass concentration of hydrogen peroxide in the treatment solution is 5%-20%, and the temperature of the treatment solution is 20-50°C.

在进行所述氧空位钝化处理206之后,去除所述掩膜层200。After the oxygen vacancy passivation treatment 206 is performed, the mask layer 200 is removed.

参考图9,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204,直至暴露出所述第一N区I1的栅介质层203。Referring to FIG. 9 , the second work function layer 205 and the first work function layer 204 of the first N region I1 are removed by etching until the gate dielectric layer 203 of the first N region I1 is exposed.

本实施例中,由于在形成所述第二功函数层205之前,保留了位于所述第一N区I1上的第一功函数层204,为此,刻蚀去除所述第一N区I1的第二功函数层205包括:刻蚀去除所述第一N区I1的第二功函数层205,且还刻蚀去除所述第一N区I1的第一功函数层204。In this embodiment, before the second work function layer 205 is formed, the first work function layer 204 located on the first N region I1 is reserved. Therefore, the first N region I1 is removed by etching. The second work function layer 205 includes: etching and removing the second work function layer 205 of the first N region I1, and also etching and removing the first work function layer 204 of the first N region I1.

采用湿法刻蚀工艺,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204。具体地,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204的工艺步骤包括:在所述第二N区I2的栅介质层203上、以及所述第一P区II1和第二P区II2的第二功函数层205上形成第二图形层;以所述第二图形层为掩膜,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204;去除所述第二图形层。Using a wet etching process, the second work function layer 205 and the first work function layer 204 of the first N region I1 are removed by etching. Specifically, the process steps of etching and removing the second work function layer 205 and the first work function layer 204 of the first N region I1 include: on the gate dielectric layer 203 of the second N region I2, and the A second pattern layer is formed on the second work function layer 205 of the first P region II1 and the second P region II2; using the second pattern layer as a mask, the second work function of the first N region I1 is removed by etching The function layer 205 and the first work function layer 204; the second graphics layer is removed.

本实施例中,先进行所述氧空位钝化处理206(参考图8),后刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204,避免所述氧空位钝化处理对所述第一N区I1的栅介质层203造成影响。In this embodiment, the oxygen vacancy passivation treatment 206 (refer to FIG. 8 ) is performed first, and then the second work function layer 205 and the first work function layer 204 of the first N region I1 are removed by etching to avoid the above The oxygen vacancy passivation treatment affects the gate dielectric layer 203 of the first N region I1.

还需要说明的是,在其他实施例中,还可以在进行所述氧空位钝化处理之前,刻蚀去除所述第一N区的第二功函数层以及第一功函数层;其中,在同一道工艺步骤中,刻蚀去除所述第一N区和第二N区的第二功函数层以及第一功函数层;且在进行所述氧空位钝化处理之前,还包括,在所述第一N区的栅介质层上形成保护层。It should also be noted that, in other embodiments, before performing the oxygen vacancy passivation treatment, the second work function layer and the first work function layer of the first N region may be removed by etching; In the same process step, the second work function layer and the first work function layer of the first N region and the second N region are removed by etching; and before the oxygen vacancy passivation treatment is performed, the method further includes: A protective layer is formed on the gate dielectric layer of the first N region.

参考图10,在所述第一N区I1和第二N区I2的栅介质层203上、以及所述第一P区II1和第二P区II2的第二功函数层205上形成第三功函数层207。Referring to FIG. 10 , a third layer is formed on the gate dielectric layer 203 of the first N region I1 and the second N region I2 and on the second work function layer 205 of the first P region II1 and the second P region II2 Work function layer 207 .

位于所述第一N区I1上的第三功函数层204作为第一N型器件对应的功函数层的一部分,起到调节第一N型器件阈值电压的作用;位于所述第二N区I2上的第三功函数层204作为第二N型器件对应的功函数层的一部分,起到调节第二N型器件阈值电压的作用。The third work function layer 204 located on the first N region I1 serves as a part of the work function layer corresponding to the first N-type device, and plays the role of adjusting the threshold voltage of the first N-type device; it is located in the second N region. As a part of the work function layer corresponding to the second N-type device, the third work function layer 204 on the I2 plays a role of adjusting the threshold voltage of the second N-type device.

位于所述第一P区II1上的第二功函数层205和第三功函数层207作为第一P型器件对应的功函数层,起到调节第一P型器件阈值电压的作用;位于所述第二P区II2上的第一功函数层204、第二功函数层205和第三功函数层207作为第二P型器件对应的功函数层,起到调节第二P型器件阈值电压的作用。The second work function layer 205 and the third work function layer 207 located on the first P region II1 serve as work function layers corresponding to the first P-type device, and play the role of adjusting the threshold voltage of the first P-type device; The first work function layer 204, the second work function layer 205 and the third work function layer 207 on the second P region II2 are used as work function layers corresponding to the second P-type device to adjust the threshold voltage of the second P-type device. effect.

对于P型器件而言,功函数层的厚度越厚,相应形成的P型器件阈值电压越小。由于所述第一P型器件对应的功函数层的厚度较第二P型器件对应的功函数层的厚度更薄,因此后续形成的第一P型器件阈值电压大于第二P型器件阈值电压。For a P-type device, the thicker the work function layer is, the lower the threshold voltage of the correspondingly formed P-type device is. Since the thickness of the work function layer corresponding to the first P-type device is thinner than that of the work function layer corresponding to the second P-type device, the threshold voltage of the subsequently formed first P-type device is greater than the threshold voltage of the second P-type device .

所述第三功函数层207的材料为P型功函数材料;所述第三功函数层207的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种。The material of the third work function layer 207 is a P-type work function material; the material of the third work function layer 207 is one or more of Ta, TiN, TaN, TaSiN or TiSiN.

本实施例中,所述第三功函数层207的材料为TiN,所述第三功函数层207的厚度为10埃~30埃。In this embodiment, the material of the third work function layer 207 is TiN, and the thickness of the third work function layer 207 is 10 angstroms to 30 angstroms.

采用化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺,形成所述第三功函数层207。The third work function layer 207 is formed by a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process.

所述第一N型器件的栅极结构与基底201之间的平带电压Vfb与所述第一N型器件的功函数层的厚度有关,且所述第一N型器件的平带电压还与第一N区I1的栅介质层203内的偶极子(dipole)数量有关;所述第二N型器件的栅极结构与所述基底201之间的平带电压Vfb与所述第二N型器件的功函数层的厚度有关,且所述第二N型器件的平带电压还与第二N区I2的栅介质层203内的偶极子数量有关。The flat-band voltage Vfb between the gate structure of the first N-type device and the substrate 201 is related to the thickness of the work function layer of the first N-type device, and the flat-band voltage of the first N-type device is also It is related to the number of dipoles in the gate dielectric layer 203 of the first N region I1; the flat band voltage Vfb between the gate structure of the second N-type device and the substrate 201 is related to the second The thickness of the work function layer of the N-type device is related to the thickness of the work function layer of the N-type device, and the flat band voltage of the second N-type device is also related to the number of dipoles in the gate dielectric layer 203 of the second N-type region I2.

由于前述对第二N区I2的栅介质层203进行了氧空位钝化处理206,所述第二N区I2的栅介质层203内氧空位含量低于所述第一N区I1的栅介质层203内氧空位含量,使得第二N区I2的栅介质层203内的偶极子较第一N区I1的栅介质层203内的偶极子量少。因此,即使第一N型器件的功函数层厚度与第二N型器件的功函数层厚度相等,所述第一N型器件的平带电压大于第二N型器件的平带电压,从而使得形成的第一N型器件阈值电压高于第二N型器件阈值电压。Since the oxygen vacancy passivation treatment 206 is performed on the gate dielectric layer 203 of the second N region I2, the content of oxygen vacancies in the gate dielectric layer 203 of the second N region I2 is lower than that of the gate dielectric of the first N region I1 The content of oxygen vacancies in the layer 203 makes the amount of dipoles in the gate dielectric layer 203 of the second N region I2 smaller than that in the gate dielectric layer 203 of the first N region I1. Therefore, even if the thickness of the work function layer of the first N-type device is equal to that of the second N-type device, the flat-band voltage of the first N-type device is greater than that of the second N-type device, so that the The threshold voltage of the first N-type device is formed to be higher than the threshold voltage of the second N-type device.

为此,本实施例中,在后续形成N型功函数层之前,位于所述第一N区I1和第二N区I2上的功函数层的厚度相同,无需进行刻蚀去除第一N区的第三功函数层207以及在第一N区和第二N区上形成第四功函数层的工艺步骤,从而简化了半导体结构的形成工艺步骤,使得半导体结构中的功函数膜层数量减少。Therefore, in this embodiment, before the subsequent formation of the N-type work function layer, the thicknesses of the work function layers on the first N region I1 and the second N region I2 are the same, and there is no need to perform etching to remove the first N region The third work function layer 207 and the process steps of forming the fourth work function layer on the first N region and the second N region, thereby simplifying the formation process steps of the semiconductor structure, so that the number of work function film layers in the semiconductor structure is reduced .

参考图11,在所述第一N区I1、第二N区I2、第一P区II1和第二P区II2的第三功函数层207上形成N型功函数层208,且所述N型功函数层208的材料功函数类型与所述第三功函数层207的材料功函数类型不同;在所述N型功函数层208上形成栅电极层(未图示)。Referring to FIG. 11, an N-type work function layer 208 is formed on the third work function layer 207 of the first N region I1, the second N region I2, the first P region II1 and the second P region II2, and the N The material work function type of the type work function layer 208 is different from that of the third work function layer 207 ; a gate electrode layer (not shown) is formed on the N type work function layer 208 .

位于所述第一N区I1上的第三功函数层207和N型功函数层208作为第一N型器件对应的功函数层,起到调节第一N型器件阈值电压的作用;位于所述第二N区I2上的第三功函数层207和N型功函数层208作为第二N型器件对应的功函数层,起到调节第二N型器件阈值电压的作用。The third work function layer 207 and the N-type work function layer 208 located on the first N region I1 serve as work function layers corresponding to the first N-type device, and play the role of adjusting the threshold voltage of the first N-type device; The third work function layer 207 and the N-type work function layer 208 on the second N region I2 are used as work function layers corresponding to the second N-type device, and play a role in adjusting the threshold voltage of the second N-type device.

对于N型器件而言,由于第二N区I2的栅介质层203内氧空位含量少于第一N区I1的栅介质层203内氧空位含量,且所述第一N型器件对应的功函数层的厚度与第二N型器件对应的功函数层的厚度相等,因此后续形成的第二N型器件的阈值电压大于第一N型器件的阈值电压。For an N-type device, since the oxygen vacancy content in the gate dielectric layer 203 of the second N region I2 is less than the oxygen vacancy content in the gate dielectric layer 203 of the first N region I1, and the power corresponding to the first N-type device The thickness of the function layer is equal to the thickness of the work function layer corresponding to the second N-type device, so the threshold voltage of the second N-type device formed subsequently is greater than the threshold voltage of the first N-type device.

需要说明的是,为了减少工艺步骤、节约光罩,本实施例中,在形成所述N型功函数层208之后,保留位于所述第一P区II1以及第二P区II2上的N型功函数层208。It should be noted that, in order to reduce the process steps and save the mask, in this embodiment, after the N-type work function layer 208 is formed, the N-type on the first P region II1 and the second P region II2 are reserved. Work function layer 208 .

所述N型功函数层208的材料为N型功函数材料,N型功函数材料功函数范围为3.9eV至4.5eV,例如为4eV、4.1eV或4.3eV。所述N型功函数层208的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或多种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述N型功函数层208。The material of the N-type work function layer 208 is an N-type work function material, and the work function of the N-type work function material ranges from 3.9 eV to 4.5 eV, for example, 4 eV, 4.1 eV or 4.3 eV. The material of the N-type work function layer 208 is one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN and AlN, and the N-type work function layer 208 can be formed by chemical vapor deposition, physical vapor deposition or atomic layer deposition. Type work function layer 208 .

本实施例中,所述N型功函数层208的材料为TiAl,所述N型功函数层208的厚度为10埃~50埃。In this embodiment, the material of the N-type work function layer 208 is TiAl, and the thickness of the N-type work function layer 208 is 10 angstroms to 50 angstroms.

后续的工艺步骤还包括:在所述N型功函数层208上形成栅电极层。The subsequent process steps further include: forming a gate electrode layer on the N-type work function layer 208 .

本实施例中,所述栅电极层横跨所述第一N区I1、第一P区II1、第二P区II2以及第二N区I2,相应的,所述第一N区I1、第一P区II1、第二P区II2以及第二N区I2共用同一个栅电极层。在其他实施例中,位于所述第一N区、第二N区、第一P区以及第二P区的栅电极层还可以相互独立。In this embodiment, the gate electrode layer spans the first N region I1, the first P region II1, the second P region II2 and the second N region I2. Correspondingly, the first N region I1, the first N region A P region II1, a second P region II2 and a second N region I2 share the same gate electrode layer. In other embodiments, the gate electrode layers located in the first N region, the second N region, the first P region and the second P region may also be independent of each other.

所述栅电极层的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种。The material of the gate electrode layer includes one or more of Al, Cu, Ag, Au, Pt, Ni, Ti or W.

具体地,形成所述栅电极层的工艺步骤包括:在所述N型功函数层208上形成栅电极膜,所述栅电极膜顶部高于所述层间介质层(未图示)顶部;研磨去除高于所述层间介质层顶部的栅电极膜,形成所述栅电极层。Specifically, the process step of forming the gate electrode layer includes: forming a gate electrode film on the N-type work function layer 208, and the top of the gate electrode film is higher than the top of the interlayer dielectric layer (not shown); The gate electrode film above the top of the interlayer dielectric layer is removed by grinding to form the gate electrode layer.

本发明实施例提供的半导体结构的形成方法的技术方案中,在形成具有不同阈值电压的第一N型器件以及第二N型器件,具有不同阈值电压的第一P型器件以及第二P型器件的工艺过程中,对第二N区I2的栅介质层203进行氧空位钝化处理,使得第一N区I1的栅介质层203内氧空位含量大于第二N区I2的栅介质层203内氧空位含量,通过氧空位含量的不同使得第一N型器件和第二N型器件的阈值电压具有差异性;因此,形成的第三功函数层既位于第一N区I1还位于第二N区I2,避免了刻蚀去除第一N区I1的第三功函数层207的工艺步骤,且无需形成第四功函数层,从而简化了工艺步骤,且满足第一N型器件阈值电压小于第二N型器件阈值电压的需求。In the technical solution of the method for forming a semiconductor structure provided by the embodiment of the present invention, in forming a first N-type device and a second N-type device with different threshold voltages, and a first P-type device and a second P-type device with different threshold voltages During the process of the device, the gate dielectric layer 203 of the second N region I2 is subjected to oxygen vacancy passivation treatment, so that the content of oxygen vacancies in the gate dielectric layer 203 of the first N region I1 is greater than that of the gate dielectric layer 203 of the second N region I2 The content of internal oxygen vacancies makes the threshold voltages of the first N-type device and the second N-type device different due to the difference in the content of oxygen vacancies; therefore, the third work function layer formed is located in both the first N region I1 and the second N-type device. The N region I2 avoids the process step of etching and removing the third work function layer 207 of the first N region I1, and does not need to form a fourth work function layer, thereby simplifying the process steps and satisfying the threshold voltage of the first N-type device is less than The second N-type device threshold voltage requirement.

相应的,本发明还提供一种半导体结构,参考图11,所述半导体结构包括:Correspondingly, the present invention also provides a semiconductor structure. Referring to FIG. 11 , the semiconductor structure includes:

基底,所述基底包括具有第一N型器件的第一N区I1、具有第二N型器件的第二N区I2、具有第一P型器件的第一P区II1以及具有第二P型器件的第二P区II2,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于所述第二P型器件的阈值电压;a substrate comprising a first N-region I1 with a first N-type device, a second N-region I2 with a second N-type device, a first P-region II1 with a first P-type device, and a second P-type device The second P-region II2 of the device, and the threshold voltage of the first N-type device is smaller than the threshold voltage of the second N-type device, and the threshold voltage of the first P-type device is greater than the threshold voltage of the second P-type device ;

位于所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的基底上的栅介质层203,其中,所述第一N区I1的栅介质层203内氧空位含量大于所述第二N区I2的栅介质层203内氧空位含量;The gate dielectric layer 203 located on the substrate of the first N region I1, the second N region I2, the first P region II1 and the second P region II2, wherein the gate dielectric layer 203 of the first N region I1 The oxygen vacancy content is greater than the oxygen vacancy content in the gate dielectric layer 203 of the second N region I2;

位于所述第二P区II2的栅介质层203上的第一功函数层204;a first work function layer 204 located on the gate dielectric layer 203 of the second P region II2;

位于所述第一P区II1的栅介质层203上以及第二P区II2的第一功函数层204上的第二功函数层205;a second work function layer 205 located on the gate dielectric layer 203 of the first P region II1 and the first work function layer 204 of the second P region II2;

位于所述第一N区I1和第二N区I2的栅介质层203上、以及第一P区II1和第二P区II2的第二功函数层205上的第三功函数层207。The third work function layer 207 is located on the gate dielectric layer 203 of the first N region I1 and the second N region I2, and on the second work function layer 205 of the first P region II1 and the second P region II2.

以下将结合附图对本发明实施例提供的半导体结构进行详细说明。The semiconductor structure provided by the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

有关所述基底201以及栅介质层203的描述可参考前述实施例的相应说明,在此不再赘述。本实施例中,所述半导体结构还包括:位于所述基底201与所述栅介质层203之间的界面层202。For the description of the substrate 201 and the gate dielectric layer 203 , reference may be made to the corresponding descriptions of the foregoing embodiments, which will not be repeated here. In this embodiment, the semiconductor structure further includes: an interface layer 202 located between the substrate 201 and the gate dielectric layer 203 .

所述半导体结构还包括:位于所述第三功函数层207上的N型功函数层208;位于所述N型功函数层208上的栅电极层。The semiconductor structure further includes: an N-type work function layer 208 located on the third work function layer 207 ; a gate electrode layer located on the N-type work function layer 208 .

所述第一功函数层204的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第二功函数层205的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第三功函数层207的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述N型功函数层208的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或几种。The material of the first work function layer 204 is one or more of Ta, TiN, TaN, TaSiN or TiSiN; the material of the second work function layer 205 is Ta, TiN, TaN, TaSiN or TiSiN. One or more; the material of the third work function layer 207 is one or more of Ta, TiN, TaN, TaSiN or TiSiN; the material of the N-type work function layer 208 is TiAl, TiAlC, TaAlN , one or more of TiAlN, TaCN and AlN.

本实施例中,所述第一功函数层204的材料为TiN,所述第二功函数层205的材料为TiN,所述第三功函数层207的材料为TiN,所述N型功函数层208的材料为TiAl。所述第一功函数层204的厚度为10埃~30埃;所述第二功函数层205的厚度为10埃~30埃;所述第三功函数层207的厚度为10埃~30埃;所述N型功函数层208的厚度为10埃~50埃。In this embodiment, the material of the first work function layer 204 is TiN, the material of the second work function layer 205 is TiN, the material of the third work function layer 207 is TiN, and the N-type work function The material of layer 208 is TiAl. The thickness of the first work function layer 204 is 10 angstroms to 30 angstroms; the thickness of the second work function layer 205 is 10 angstroms to 30 angstroms; the thickness of the third work function layer 207 is 10 angstroms to 30 angstroms. ; The thickness of the N-type work function layer 208 is 10 angstroms to 50 angstroms.

本实施例中,由于所述第一N区I1的栅介质层203内氧空位含量大于第二N区I2的栅介质层203内氧空位含量,且第三功函数层207以及N型功函数层208均位于第一N区I和第二N区I2上,使得第一N区I1和第二N区I2上的功函数层厚度相同,且还满足第一N型器件阈值电压小于第二N型器件阈值电压的需求。In this embodiment, since the content of oxygen vacancies in the gate dielectric layer 203 of the first N region I1 is greater than the content of oxygen vacancies in the gate dielectric layer 203 of the second N region I2, and the third work function layer 207 and the N-type work function The layers 208 are both located on the first N region I and the second N region I2, so that the thicknesses of the work function layers on the first N region I1 and the second N region I2 are the same, and the threshold voltage of the first N-type device is smaller than that of the second N region I2. N-type device threshold voltage requirements.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (20)

1. A method of forming a semiconductor structure, comprising:
providing a substrate, wherein the substrate comprises a first N region for forming a first N type device, a second N region for forming a second N type device, a first P region for forming a first P type device and a second P region for forming a second P type device, and the threshold voltage of the first N type device is less than the threshold voltage of the second N type device, and the threshold voltage of the first P type device is greater than the threshold voltage of the second P type device; forming a gate dielectric layer and a first work function layer on the gate dielectric layer on the substrate of the first N region, the second N region, the first P region and the second P region;
etching the first work function layer, and reserving the first work function layers positioned in the second P area, the first N area and the second N area;
after the first work function layer is etched, forming a second work function layer on the first N area, the second N area, the first P area and the second P area;
etching to remove the second work function layer and the first work function layer of the second N region until the gate dielectric layer of the second N region is exposed;
performing oxygen vacancy passivation treatment on the gate dielectric layer of the second N region to reduce the oxygen vacancy content in the gate dielectric layer of the second N region;
etching to remove the second work function layer and the first work function layer of the first N region until the gate dielectric layer of the first N region is exposed;
and forming third work function layers on the gate dielectric layers of the first N region and the second N region and on the second work function layers of the first P region and the second P region.
2. The method for forming a semiconductor structure according to claim 1, wherein the second work function layer and the first work function layer in the second N region are removed by etching by using a wet etching process until the gate dielectric layer in the second N region is exposed, and an etching liquid in the wet etching process has an oxidizing property.
3. The method of forming a semiconductor structure of claim 2, wherein the wet etching process comprises a main etching process and an over-etching process, wherein the oxygen vacancy passivation process is performed using the over-etching process.
4. The method for forming a semiconductor structure according to claim 3, wherein the etching liquid used in the wet etching process is a SC1 solution, a SC2 solution, or a SPM solution.
5. The method for forming a semiconductor structure according to claim 3, wherein an etching time of the over-etching process is 10s to 2 min.
6. The method of forming a semiconductor structure of claim 1, wherein said oxygen vacancy passivation treatment is performed using a treatment solution containing hydrogen peroxide.
7. The method of claim 6, wherein the treatment solution has a hydrogen peroxide concentration of 5% to 20% by mass and a treatment solution temperature of 20 ℃ to 50 ℃.
8. The method of claim 6, wherein the treatment solution is a SC1 solution, a SC2 solution, or a SPM solution.
9. The method of claim 1, wherein the oxygen vacancy passivation is performed first, and then the second work function layer and the first work function layer of the first N region are removed by etching.
10. The method of claim 1, wherein the gate dielectric layer is formed of a high-k gate dielectric material.
11. The method of claim 10, further comprising forming an interfacial layer over the substrate of the first N region, the second N region, the first P region, and the second P region prior to forming the gate dielectric layer.
12. The method of claim 1, wherein the first work function layer, the second work function layer, and the third work function layer are all P-type work function materials.
13. The method of forming a semiconductor structure of claim 12, wherein the P-type work function material comprises one or more of Ta, TiN, TaN, TaSiN, or TiSiN.
14. The method of forming a semiconductor structure of claim 1, further comprising the steps of: forming an N-type work function layer on a third work function layer of the first N region, the second N region, the first P region and the second P region, wherein the type of a material work function of the N-type work function layer is different from that of the third work function layer; and forming a gate electrode layer on the N-type work function layer.
15. The method for forming a semiconductor structure according to claim 14, wherein a material of the N-type work function layer is one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN, and AlN.
16. The method of forming a semiconductor structure of claim 1, wherein the process step of etching the first work function layer comprises: forming a first graph layer on the first work function layer of the first N area, the second N area and the second P area; etching and removing the first work function layer positioned in the first P area by taking the first graph layer as a mask; and removing the first graphic layer.
17. The method for forming a semiconductor structure according to claim 1, wherein the step of removing the second work function layer and the first work function layer of the first N region by etching comprises: forming a second graph layer on the gate dielectric layer of the second N region and the second work function layers of the first P region and the second P region; etching and removing the second work function layer and the first work function layer in the first N area by taking the second graph layer as a mask; and removing the second graphic layer.
18. A semiconductor structure, comprising:
a substrate comprising a first N region having a first N type device, a second N region having a second N type device, a first P region having a first P type device, and a second P region having a second P type device, and the first N type device having a threshold voltage less than the threshold voltage of the second N type device, the first P type device having a threshold voltage greater than the threshold voltage of the second P type device;
the gate dielectric layer is positioned on the substrate of the first N region, the second N region, the first P region and the second P region, wherein the content of oxygen vacancies in the gate dielectric layer of the first N region is greater than that of oxygen vacancies in the gate dielectric layer of the second N region;
the first work function layer is positioned on the gate dielectric layer of the second P area;
a second work function layer located on the gate dielectric layer of the first P region and on the first work function layer of the second P region;
and the third work function layer is positioned on the gate dielectric layers of the first N region and the second N region and on the second work function layers of the first P region and the second P region.
19. The semiconductor structure of claim 18, wherein the material of the first work function layer, the material of the second work function layer, and the material of the third work function layer are all P-type work function materials.
20. The semiconductor structure of claim 18, wherein the semiconductor structure further comprises: an N-type work function layer on the third work function layer; and the gate electrode layer is positioned on the N-type work function layer.
CN201611239033.7A 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same Active CN108258028B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611239033.7A CN108258028B (en) 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611239033.7A CN108258028B (en) 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same

Publications (2)

Publication Number Publication Date
CN108258028A CN108258028A (en) 2018-07-06
CN108258028B true CN108258028B (en) 2020-06-09

Family

ID=62720392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611239033.7A Active CN108258028B (en) 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same

Country Status (1)

Country Link
CN (1) CN108258028B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242299B (en) * 2019-07-18 2024-10-22 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method for forming the same
CN111554679B (en) * 2020-04-09 2023-03-31 中国科学院微电子研究所 SOI FinFET device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594365A (en) * 2012-08-14 2014-02-19 中芯国际集成电路制造(上海)有限公司 A method for forming a PMOS transistor
CN104425384A (en) * 2013-09-10 2015-03-18 中芯国际集成电路制造(上海)有限公司 Semiconductor device and preparation method thereof
CN104916589A (en) * 2014-03-12 2015-09-16 中芯国际集成电路制造(上海)有限公司 Method for producing semiconductor devices
CN105518848A (en) * 2013-07-18 2016-04-20 格罗方德半导体股份有限公司 Fin field effect transistors having multiple threshold voltages

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235612B1 (en) * 2015-01-29 2021-04-02 삼성전자주식회사 Semiconductor device having work-function metal and method of forming the same
US9553092B2 (en) * 2015-06-12 2017-01-24 Globalfoundries Inc. Alternative threshold voltage scheme via direct metal gate patterning for high performance CMOS FinFETs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594365A (en) * 2012-08-14 2014-02-19 中芯国际集成电路制造(上海)有限公司 A method for forming a PMOS transistor
CN105518848A (en) * 2013-07-18 2016-04-20 格罗方德半导体股份有限公司 Fin field effect transistors having multiple threshold voltages
CN104425384A (en) * 2013-09-10 2015-03-18 中芯国际集成电路制造(上海)有限公司 Semiconductor device and preparation method thereof
CN104916589A (en) * 2014-03-12 2015-09-16 中芯国际集成电路制造(上海)有限公司 Method for producing semiconductor devices

Also Published As

Publication number Publication date
CN108258028A (en) 2018-07-06

Similar Documents

Publication Publication Date Title
CN108122852B (en) Semiconductor structure and forming method thereof
CN108122913B (en) Semiconductor device and method of forming the same
CN108010884B (en) Semiconductor structure and method of forming the same
CN107958872A (en) Semiconductor devices and forming method thereof
CN107591437B (en) Method for forming semiconductor device
CN106653605B (en) Method for forming semiconductor structure
CN107346783B (en) Semiconductor structure and manufacturing method thereof
CN106558584A (en) Semiconductor structure and forming method thereof
CN107437562B (en) Method of forming a semiconductor device
CN106847874A (en) The forming method of the semiconductor devices with different threshold voltages
CN108257918B (en) Semiconductor structure and method of forming the same
CN108258028B (en) Semiconductor structure and method of forming the same
CN108987248B (en) Semiconductor structure and forming method thereof
CN108155235B (en) Semiconductor structure and forming method thereof
CN108122760B (en) Semiconductor structure and forming method thereof
CN106847755B (en) Method for improving SRAM performance
CN106611788B (en) Method of forming a semiconductor structure
CN108573910A (en) Semiconductor structures and methods of forming them
CN109309050B (en) Semiconductor structure and method of forming the same
CN108389835B (en) Semiconductor structure and forming method thereof
CN111211055A (en) Semiconductor structure and method of forming the same
CN106653693A (en) Method for improving performance of core device and input-output device
CN107393868B (en) Method for forming semiconductor structure
CN104465378B (en) The production method of semiconductor devices
CN107492522A (en) The forming method of cmos device, PMOS device and nmos device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant