CN108258028B - Semiconductor structure and method of forming the same - Google Patents
Semiconductor structure and method of forming the same Download PDFInfo
- Publication number
- CN108258028B CN108258028B CN201611239033.7A CN201611239033A CN108258028B CN 108258028 B CN108258028 B CN 108258028B CN 201611239033 A CN201611239033 A CN 201611239033A CN 108258028 B CN108258028 B CN 108258028B
- Authority
- CN
- China
- Prior art keywords
- region
- work function
- layer
- function layer
- gate dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 110
- 239000004065 semiconductor Substances 0.000 title claims abstract description 60
- 238000005530 etching Methods 0.000 claims abstract description 81
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 63
- 239000001301 oxygen Substances 0.000 claims abstract description 63
- 238000002161 passivation Methods 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims description 62
- 239000000758 substrate Substances 0.000 claims description 49
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 26
- 238000001039 wet etching Methods 0.000 claims description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 14
- 229910052718 tin Inorganic materials 0.000 claims description 14
- 229910004166 TaN Inorganic materials 0.000 claims description 8
- 229910004200 TaSiN Inorganic materials 0.000 claims description 8
- 229910008482 TiSiN Inorganic materials 0.000 claims description 8
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 claims description 8
- 239000003989 dielectric material Substances 0.000 claims description 7
- 229910010038 TiAl Inorganic materials 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 claims description 4
- 229910004491 TaAlN Inorganic materials 0.000 claims description 4
- 229910010041 TiAlC Inorganic materials 0.000 claims description 4
- 229910010037 TiAlN Inorganic materials 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 368
- 239000000243 solution Substances 0.000 description 31
- 150000002500 ions Chemical class 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/125—Shapes of junctions between the regions
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造技术领域,特别涉及一种半导体结构及其形成方法。The present invention relates to the technical field of semiconductor manufacturing, in particular to a semiconductor structure and a method for forming the same.
背景技术Background technique
集成电路尤其超大规模集成电路的主要半导体器件是金属-氧化物-半导体场效应管(MOS晶体管)。随着集成电路制作技术的不断发展,半导体器件技术节点不断减小,半导体结构的几何尺寸遵循摩尔定律不断缩小。当半导体结构尺寸减小到一定程度时,各种因为半导体结构的物理极限所带来的二级效应相继出现,半导体结构的特征尺寸按比例缩小变得越来越困难。其中,在半导体制作领域,最具挑战性的是如何解决半导体结构漏电流大的问题。半导体结构的漏电流大,主要是由传统栅介质层厚度不断减小所引起的。The main semiconductor devices of integrated circuits, especially very large scale integrated circuits, are metal-oxide-semiconductor field effect transistors (MOS transistors). With the continuous development of integrated circuit manufacturing technology, the technology nodes of semiconductor devices are continuously reduced, and the geometric dimensions of semiconductor structures are continuously reduced following Moore's Law. When the size of the semiconductor structure is reduced to a certain extent, various secondary effects caused by the physical limit of the semiconductor structure appear one after another, and it becomes more and more difficult to scale the feature size of the semiconductor structure. Among them, in the field of semiconductor fabrication, the most challenging thing is how to solve the problem of large leakage current of the semiconductor structure. The large leakage current of the semiconductor structure is mainly caused by the continuous reduction of the thickness of the traditional gate dielectric layer.
当前提出的解决方法是,采用高k栅介质材料代替传统的二氧化硅栅介质材料,并使用金属作为栅电极,以避免高k材料与传统栅电极材料发生费米能级钉扎效应以及硼渗透效应。高k金属栅的引入,减小了半导体结构的漏电流。The currently proposed solution is to use high-k gate dielectric material instead of traditional silicon dioxide gate dielectric material, and use metal as gate electrode to avoid Fermi level pinning effect and boron Penetration effect. The introduction of the high-k metal gate reduces the leakage current of the semiconductor structure.
尽管高k金属栅极的引入能够在一定程度上改善半导体结构的电学性能,但是现有技术形成的半导体结构工艺复杂。Although the introduction of the high-k metal gate can improve the electrical performance of the semiconductor structure to a certain extent, the semiconductor structure formed in the prior art has a complicated process.
发明内容SUMMARY OF THE INVENTION
本发明解决的问题是提供一种半导体结构及其形成方法,在满足半导体结构对阈值电压不同需求的同时,简化工艺步骤。The problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, which simplifies the process steps while meeting the different requirements for the threshold voltage of the semiconductor structure.
为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括用于形成第一N型器件的第一N区、用于形成第二N型器件的第二N区、用于形成第一P型器件的第一P区以及用于形成第二P型器件的第二P区,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压;在所述第一N区、第二N区、第一P区以及第二P区的基底上形成栅介质层以及位于所述栅介质层上的第一功函数层;刻蚀所述第一功函数层,保留位于所述第二P区、第一N区以及第二N区的第一功函数层;在刻蚀所述第一功函数层之后,在所述第一N区、第二N区、第一P区以及第二P区上形成第二功函数层;刻蚀去除所述第二N区的第二功函数层以及第一功函数层,直至暴露出所述第二N区的栅介质层,直至暴露出所述第二N区的栅介质层;对所述第二N区的栅介质层进行氧空位钝化处理,降低所述第二N区的栅介质层内的氧空位含量;刻蚀去除所述第一N区的第二功函数层以及第一功函数层,直至暴露出所述第一N区的栅介质层;在所述第一N区和第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上形成第三功函数层。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising: providing a substrate, the substrate comprising a first N region for forming a first N-type device, a second N-region for forming a second N-type device An N region, a first P region for forming a first P-type device, and a second P region for forming a second P-type device, and the threshold voltage of the first N-type device is lower than the threshold voltage of the second N-type device voltage, the threshold voltage of the first P-type device is greater than the threshold voltage of the second P-type device; a gate dielectric is formed on the substrates of the first N region, the second N region, the first P region and the second P region layer and the first work function layer located on the gate dielectric layer; etching the first work function layer, leaving the first work function layer located in the second P region, the first N region and the second N region ; After etching the first work function layer, a second work function layer is formed on the first N region, the second N region, the first P region and the second P region; etching to remove the second The second work function layer of the N region and the first work function layer, until the gate dielectric layer of the second N region is exposed, until the gate dielectric layer of the second N region is exposed; for the second N region The gate dielectric layer of the second N region is subjected to oxygen vacancy passivation treatment to reduce the oxygen vacancy content in the gate dielectric layer of the second N region; the second work function layer and the first work function layer of the first N region are removed by etching, until the gate dielectric layer of the first N region is exposed; on the gate dielectric layers of the first N region and the second N region, and the second work function layer of the first P region and the second P region A third work function layer is formed thereon.
可选的,采用湿法刻蚀工艺,刻蚀去除所述第二N区的第二功函数层,直至暴露出所述第二N区的栅介质层,且所述湿法刻蚀工艺的刻蚀液体具有氧化性。Optionally, a wet etching process is used to etch and remove the second work function layer of the second N region until the gate dielectric layer of the second N region is exposed, and the wet etching process The etching liquid is oxidizing.
可选的,所述湿法刻蚀工艺包括主刻蚀工艺以及过刻蚀工艺,其中,利用所述过刻蚀工艺进行所述氧空位钝化处理。Optionally, the wet etching process includes a main etching process and an over-etching process, wherein the oxygen vacancy passivation treatment is performed by using the over-etching process.
可选的,所述湿法刻蚀工艺采用的刻蚀液体为SC1溶液、SC2溶液或者SPM溶液。Optionally, the etching liquid used in the wet etching process is SC1 solution, SC2 solution or SPM solution.
可选的,所述过刻蚀工艺的刻蚀时长为10s~2min。Optionally, the etching duration of the over-etching process is 10s˜2min.
可选的,采用含有过氧化氢的处理溶液,进行所述氧空位钝化处理。Optionally, the oxygen vacancy passivation treatment is performed using a treatment solution containing hydrogen peroxide.
可选的,所述处理溶液中,过氧化氢质量浓度为5%~20%,处理溶液温度为20℃~50℃。Optionally, in the treatment solution, the mass concentration of hydrogen peroxide is 5% to 20%, and the temperature of the treatment solution is 20°C to 50°C.
可选的,所述处理溶液为SC1溶液、SC2溶液或者SPM溶液。Optionally, the treatment solution is SC1 solution, SC2 solution or SPM solution.
可选的,先进行所述氧空位钝化处理,后刻蚀去除所述第一N区的第二功函数层以及第一功函数层。Optionally, the oxygen vacancy passivation treatment is performed first, and then the second work function layer and the first work function layer of the first N region are removed by etching.
可选的,所述栅介质层的材料为高k栅介质材料。Optionally, the material of the gate dielectric layer is a high-k gate dielectric material.
可选的,在形成所述栅介质层之前,还在所述第一N区、第二N区、第一P区以及第二P区的基底上形成界面层。Optionally, before forming the gate dielectric layer, an interface layer is also formed on the substrate of the first N region, the second N region, the first P region and the second P region.
可选的,所述第一功函数层的材料、第二功函数层以及第三功函数层的材料均为P型功函数材料。Optionally, the material of the first work function layer, the material of the second work function layer and the material of the third work function layer are all P-type work function materials.
可选的,所述P型功函数材料包括Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种。Optionally, the P-type work function material includes one or more of Ta, TiN, TaN, TaSiN or TiSiN.
可选的,还包括步骤:在所述第一N区、第二N区、第一P区和第二P区的第三功函数层上形成N型功函数层,且所述N型功函数层的材料功函数类型与所述第三功函数层的材料功函数类型不同;在所述N型功函数层上形成栅电极层。Optionally, it also includes the step of: forming an N-type work function layer on the third work function layer of the first N region, the second N region, the first P region and the second P region, and the N-type work function layer is The material work function type of the functional layer is different from that of the third work function layer; a gate electrode layer is formed on the N-type work function layer.
可选的,所述N型功函数层的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或几种。Optionally, the material of the N-type work function layer is one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN and AlN.
可选的,刻蚀所述第一功函数层的工艺步骤包括:在所述第一N区、第二N区和第二P区的第一功函数层上形成第一图形层;以所述第一图形层为掩膜,刻蚀去除位于所述第一P区的第一功函数层;去除所述第一图形层。Optionally, the process step of etching the first work function layer includes: forming a first pattern layer on the first work function layer of the first N region, the second N region and the second P region; The first pattern layer is a mask, and the first work function layer located in the first P region is removed by etching; the first pattern layer is removed.
可选的,刻蚀去除所述第一N区的第二功函数层以及第一功函数层的工艺步骤包括:在所述第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上形成第二图形层;以所述第二图形层为掩膜,刻蚀去除所述第一N区的第二功函数层以及第一功函数层;去除所述第二图形层。本发明还提供一种半导体结构,包括:基底,所述基底包括具有第一N型器件的第一N区、具有第二N型器件的第二N区、具有第一P型器件的第一P区以及具有第二P型器件的第二P区,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压;位于所述第一N区、第二N区、第一P区以及第二P区的基底上的栅介质层,其中,所述第一N区的栅介质层内氧空位含量大于所述第二N区的栅介质层内氧空位含量;位于所述第二P区的栅介质层上的第一功函数层;位于所述第一P区的栅介质层上以及第二P区的第一功函数层上的第二功函数层;位于所述第一N区和第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上的第三功函数层。Optionally, the process step of removing the second work function layer and the first work function layer of the first N region by etching includes: on the gate dielectric layer of the second N region and the first P region and forming a second pattern layer on the second work function layer of the second P region; using the second pattern layer as a mask, etching and removing the second work function layer and the first work function layer of the first N region ; remove the second graphics layer. The present invention also provides a semiconductor structure, comprising: a substrate including a first N region with a first N-type device, a second N region with a second N-type device, and a first N region with a first P-type device A P region and a second P region having a second P-type device, and the threshold voltage of the first N-type device is smaller than the threshold voltage of the second N-type device, and the threshold voltage of the first P-type device is larger than the second P-type device The threshold voltage of the type device; the gate dielectric layer located on the substrate of the first N region, the second N region, the first P region and the second P region, wherein the oxygen in the gate dielectric layer of the first N region The vacancy content is greater than the oxygen vacancy content in the gate dielectric layer of the second N region; a first work function layer located on the gate dielectric layer of the second P region; located on the gate dielectric layer of the first P region; A second work function layer on the first work function layer of the second P region; on the gate dielectric layer of the first N region and the second N region, and the first P region and the second P region The third work function layer on the second work function layer.
可选的,所述第一功函数层的材料、第二功函数层的材料以及第三功函数层的材料均为P型功函数材料。Optionally, the material of the first work function layer, the material of the second work function layer, and the material of the third work function layer are all P-type work function materials.
可选的,所述半导体结构还包括:位于所述第三功函数层上的N型功函数层;位于所述N型功函数层上的栅电极层。Optionally, the semiconductor structure further includes: an N-type work function layer on the third work function layer; and a gate electrode layer on the N-type work function layer.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明实施例提供的半导体结构的形成方法的技术方案中,在形成具有不同阈值电压的第一N型器件以及第二N型器件,具有不同阈值电压的第一P型器件以及第二P型器件的工艺过程中,对第二N区的栅介质层进行氧空位钝化处理,使得第一N区的栅介质层内氧空位含量大于第二N区的栅介质层内氧空位含量,通过氧空位含量的不同使得第一N型器件和第二N型器件的阈值电压具有差异性;因此,形成的第三功函数层既位于第一N区还位于第二N区,避免了刻蚀去除第一N区的第三功函数层的工艺步骤,且无需形成第四功函数层,从而简化了工艺步骤,且满足第一N型器件阈值电压小于第二N型器件阈值电压的需求。并且,本发明减少了形成的功函数层膜层的数量,使得形成的半导体结构更加简单,且使得后续形成栅电极层的工艺窗口增加。In the technical solution of the method for forming a semiconductor structure provided by the embodiment of the present invention, in forming a first N-type device and a second N-type device with different threshold voltages, and a first P-type device and a second P-type device with different threshold voltages During the process of the device, the gate dielectric layer of the second N region is subjected to oxygen vacancy passivation treatment, so that the content of oxygen vacancies in the gate dielectric layer of the first N region is greater than the content of oxygen vacancies in the gate dielectric layer of the second N region. The difference in oxygen vacancy content makes the threshold voltages of the first N-type device and the second N-type device different; therefore, the third work function layer formed is located in both the first N region and the second N region, avoiding etching The process step of removing the third work function layer of the first N region does not need to form the fourth work function layer, thereby simplifying the process steps and meeting the requirement that the threshold voltage of the first N-type device is lower than the threshold voltage of the second N-type device. Moreover, the present invention reduces the number of the formed work function layers, makes the formed semiconductor structure simpler, and increases the process window for the subsequent formation of the gate electrode layer.
可选方案中,采用湿法刻蚀工艺刻蚀去除位于所述第二N区的第二功函数层,且所述湿法刻蚀工艺包括主刻蚀工艺以及过刻蚀工艺,利用所述过刻蚀工艺进行所述氧空位钝化处理,因此无需额外的工艺步骤进行所述氧空位钝化处理。In an optional solution, a wet etching process is used to etch and remove the second work function layer located in the second N region, and the wet etching process includes a main etching process and an over-etching process. The oxygen vacancy passivation treatment is performed through an over-etching process, so no additional process steps are required to perform the oxygen vacancy passivation treatment.
附图说明Description of drawings
图1至图3为一种半导体结构形成方法各步骤对应的剖面结构示意图;1 to 3 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure;
图4至图11为本发明实施例提供的半导体结构形成方法各步骤对应的剖面结构示意图。4 to 11 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure according to an embodiment of the present invention.
具体实施方式Detailed ways
由背景技术可知,现有技术形成的半导体结构的电学性能有待提高。尤其是当半导体结构中包括具有不同阈值电压(Threshold Voltage)的P型器件以及具有不同阈值电压的N型器件时,所述半导体结构形成工艺复杂的问题尤为显著。It can be known from the background art that the electrical properties of the semiconductor structures formed in the prior art need to be improved. Especially when the semiconductor structure includes P-type devices with different threshold voltages (Threshold Voltage) and N-type devices with different threshold voltages, the problem of the complex formation process of the semiconductor structure is particularly significant.
为了同时满足NMOS管和PMOS管改善阈值电压的要求,通常采用不同的金属材料作为NMOS管和PMOS管的栅极结构中的功函数(WF,Work Function)层材料,NMOS管中的功函数层材料可称为N型功函数材料,PMOS管中的功函数层材料可称为P型功函数材料。通常采用调整栅介质层与N型功函数层之间的P型功函数层的厚度的方式,实现满足器件不同阈值电压的需求。In order to meet the requirements of improving the threshold voltage of NMOS transistors and PMOS transistors at the same time, different metal materials are usually used as the work function (WF, Work Function) layer material in the gate structure of the NMOS transistor and the PMOS transistor, and the work function layer in the NMOS transistor. The material may be referred to as an N-type work function material, and the material of the work function layer in the PMOS tube may be referred to as a P-type work function material. Usually, the thickness of the P-type work function layer between the gate dielectric layer and the N-type work function layer is adjusted to meet the requirements of different threshold voltages of the device.
图1至图3为一种半导体结构形成方法各步骤对应的剖面结构示意图。1 to 3 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure.
参考图1,提供基底11,所述基底11包括第一N区101以及第二N区102,第一N区101用于形成第一N型器件,第二N区102用于形成第二N型器件,且第一N型器件的阈值电压小于第二N型器件的阈值电压;在所述基底11上形成界面层12;在所述界面层12上形成栅介质层13;在所述第一N区101栅介质层13上形成第一功函数层14以及位于第一功函数层14上的第二功函数层15;在所述第一N区101的第二功函数层15上以及第二N区102的栅介质层13上形成第三功函数层16。Referring to FIG. 1, a
所述基底还包括第一P区和第二P区,且第一P区形成的P型器件阈值电压与第二P区形成的P型器件阈值电压不同。The substrate further includes a first P region and a second P region, and the threshold voltage of the P-type device formed by the first P region is different from the threshold voltage of the P-type device formed by the second P region.
参考图2,刻蚀去除位于所述第一N区101上的第三功函数层16、第二功函数层15(参考图1)以及第一功函数层14,暴露出所述第一N区101的栅介质层13表面。Referring to FIG. 2 , the third
参考图3,在所述第一N区101的栅介质层13上以及第二N区102的第三功函数层16上形成第四功函数层17。Referring to FIG. 3 , a fourth
上述形成方法复杂,且为了满足第一N型器件、第二N型器件、第一P型器件以及第二P型器件对阈值电压的不同需求,需要形成至少四层功函数层。The above-mentioned formation method is complicated, and in order to meet different threshold voltage requirements of the first N-type device, the second N-type device, the first P-type device and the second P-type device, at least four work function layers need to be formed.
为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括用于形成第一N型器件的第一N区、用于形成第二N型器件的第二N区、用于形成第一P型器件的第一P区以及用于形成第二P型器件的第二P区,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压;在所述第一N区、第二N区、第一P区以及第二P区的基底上形成栅介质层以及位于所述栅介质层上的第一功函数层;刻蚀所述第一功函数层,保留位于所述第二P区的第一功函数层;在刻蚀所述第一功函数层之后,在所述第一N区、第二N区、第一P区以及第二P区上形成第二功函数层;刻蚀去除所述第二N区的第二功函数层,直至暴露出所述第二N区的栅介质层;对所述第二N区的栅介质层进行氧空位钝化处理,降低所述第二N区的栅介质层内的氧空位含量;刻蚀去除所述第一N区的第二功函数层,直至暴露出所述第一N区的栅介质层;在所述第一N区和第二N区的栅介质层上、以及所述第一P区和第二P区的第二功函数层上形成第三功函数层。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising: providing a substrate, the substrate comprising a first N region for forming a first N-type device, a second N-region for forming a second N-type device An N region, a first P region for forming a first P-type device, and a second P region for forming a second P-type device, and the threshold voltage of the first N-type device is lower than the threshold voltage of the second N-type device voltage, the threshold voltage of the first P-type device is greater than the threshold voltage of the second P-type device; a gate dielectric is formed on the substrates of the first N region, the second N region, the first P region and the second P region layer and the first work function layer located on the gate dielectric layer; etching the first work function layer, leaving the first work function layer located in the second P region; etching the first work function layer After layering, a second work function layer is formed on the first N region, the second N region, the first P region and the second P region; the second work function layer of the second N region is removed by etching until exposing the gate dielectric layer of the second N region; performing oxygen vacancy passivation treatment on the gate dielectric layer of the second N region to reduce the content of oxygen vacancies in the gate dielectric layer of the second N region; etching removing the second work function layer of the first N region until the gate dielectric layer of the first N region is exposed; on the gate dielectric layers of the first N region and the second N region, and the first N region A third work function layer is formed on the second work function layer of the first P region and the second P region.
本发明在形成具有不同阈值电压的第一N型器件、第二N型器件、第一P型器件以及第二P型器件的同时,节约了工艺步骤,简化了工艺复杂性,且使得形成的功函数层膜层数量少。The present invention saves the process steps, simplifies the process complexity while forming the first N-type device, the second N-type device, the first P-type device, and the second P-type device with different threshold voltages. The number of work function layers is small.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图4至图11为本发明实施例提供的半导体结构形成方法各步骤对应的剖面结构示意图。4 to 11 are schematic cross-sectional structural diagrams corresponding to each step of a method for forming a semiconductor structure according to an embodiment of the present invention.
参考图4,提供基底201。Referring to Figure 4, a
所述基底201包括用于形成第一N型器件的第一N区I1、用于形成第二N型器件的第二N区I2、用于形成第一P型器件的第一P区II1以及用于形成第二P型器件的第二P区II2,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于第二P型器件的阈值电压。The
以所述第一N区I1与第二N区I2相邻接,所述第二N区I2与第一P区II1相邻接,所述第一P区II1与第二P区II2相邻接作为示例。The first N region I1 is adjacent to the second N region I2, the second N region I2 is adjacent to the first P region II1, and the first P region II1 is adjacent to the second P region II2 Take as an example.
本实施例中,以形成的半导体结构为平面器件为例,所述基底201为平面衬底;所述基底201的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述基底201还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, taking the semiconductor structure formed as a planar device as an example, the
在其他实施例中,形成的半导体结构为鳍式场效应管时,所述基底包括衬底以及位于所述衬底上的鳍部,所述基底还包括,位于所述鳍部露出的衬底上的隔离结构,所述隔离结构覆盖鳍部的部分侧壁,且所述隔离结构顶部低于所述鳍部顶部。In other embodiments, when the formed semiconductor structure is a fin field effect transistor, the base includes a substrate and a fin on the substrate, and the base further includes a substrate exposed on the fin The isolation structure on the top of the isolation structure covers part of the sidewall of the fin, and the top of the isolation structure is lower than the top of the fin.
本实施例中,所述第一N区I1包括N型超低阈值电压(ULVT,Ultra-low VT)区以及N型低阈值电压(low VT)区;所述第二N区I2为N型标准阈值电压区(Standard VT)。在其他实施例中,所述第一N区还可以仅包括N型低阈值电压区或者N型超低阈值电压区中的一种。In this embodiment, the first N region I1 includes an N-type ultra-low threshold voltage (ULVT, Ultra-low VT) region and an N-type low threshold voltage (low VT) region; the second N region I2 is an N-type region Standard threshold voltage region (Standard VT). In other embodiments, the first N region may also include only one of an N-type low threshold voltage region or an N-type ultra-low threshold voltage region.
本实施例中,所述第一P区II1为P型标准阈值电压区,所述第二P区II2包括P型超低阈值电压区以及P型低阈值电压区。在其他实施例中,所述第二P区还可以仅包括P型超低阈值电压区或者P型低阈值电压区中的一种。In this embodiment, the first P region II1 is a P-type standard threshold voltage region, and the second P region II2 includes a P-type ultra-low threshold voltage region and a P-type low threshold voltage region. In other embodiments, the second P region may also include only one of a P-type ultra-low threshold voltage region or a P-type low threshold voltage region.
需要说明的是,本实施例中,在后续形成栅介质层203之前,还包括:对所述N型超低阈值电压区对应的基底201进行第一N型阈值调节掺杂处理,对所述N型低阈值电压区对应的基底201进行第二N型阈值调节掺杂处理;对所述P型超低阈值电压区对应的基底201进行第一P型阈值调节掺杂处理,对所述P型低阈值电压区对应的基底201进行第二P型阈值调节掺杂处理。It should be noted that, in this embodiment, before the subsequent formation of the
具体地,所述第一N型阈值调节掺杂处理和第二N型阈值调节掺杂处理的掺杂离子为N型离子,N型离子包括P、As或Sb,所述第一N型阈值调节掺杂处理的掺杂浓度小于所述第二N型阈值调节掺杂处理的掺杂浓度。所述第一P型阈值调节掺杂处理和第二P型阈值调节掺杂处理的掺杂离子为P型离子,P型离子包括B、Ga或In,所述第一P型阈值调节掺杂处理的掺杂浓度小于所述第二P型阈值调节掺杂处理的掺杂浓度。Specifically, the doping ions of the first N-type threshold adjustment doping treatment and the second N-type threshold adjustment doping treatment are N-type ions, and the N-type ions include P, As or Sb, and the first N-type threshold value The doping concentration of the adjustment doping treatment is smaller than the doping concentration of the second N-type threshold adjustment doping treatment. The doping ions of the first P-type threshold adjustment doping treatment and the second P-type threshold adjustment doping treatment are P-type ions, the P-type ions include B, Ga or In, and the first P-type threshold adjustment doping The doping concentration of the treatment is less than the doping concentration of the second P-type threshold adjustment doping treatment.
本实施例中,以采用后形成高k栅介质层后形成栅电极层(high k last metalgate last)的工艺,形成半导体结构的栅极结构为例。在形成栅介质层203之前,还包括:In this embodiment, the gate structure of the semiconductor structure is formed by using a process of forming a high-k gate dielectric layer and then forming a gate electrode layer (high k last metal gate last) as an example. Before forming the
在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的基底201上形成伪栅结构,其中,由于所述第一N区I1与第一P区II1相邻接,因此所述伪栅结构横跨所述第一N区I1以及第一P区II1,相应的,后续形成的栅电极层横跨所述第一N区I1以及第一P区II1。A dummy gate structure is formed on the
在形成所述伪栅结构之后,在各区域伪栅结构两侧的基底201内形成各器件的源漏掺杂区;在形成所述源漏掺杂区之后,在所述伪栅结构暴露出的基底201上形成层间介质层,所述层间介质层露出所述伪栅结构的顶部;在形成所述层间介质层之后,去除所述伪栅结构。After the dummy gate structure is formed, source and drain doped regions of each device are formed in the
后续在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的部分基底201上形成所述栅介质层203。需要说明的是,在其他实施例中,还可以采用先形成高k栅介质层后形成栅电极层(high k first metal gate last)的工艺,形成所述半导体结构。Subsequently, the
继续参考图4,在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的基底201上形成栅介质层203以及位于所述栅介质层203上的第一功函数层204。Continuing to refer to FIG. 4 , a
所述栅介质层203的材料为高k栅介质材料,其中,高k栅介质材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。The material of the
本实施例中,所述栅介质层203的材料为HfO2。在其他实施例中,所述栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3。In this embodiment, the material of the
为了提高所述基底201与所述栅介质层203之间的界面性能,在形成所述栅介质层203之前,还在所述基底201上形成界面层202,相应的,所述栅介质层203位于所述界面层202表面。In order to improve the interface performance between the
所述界面层202为形成所述栅介质层203提供良好的界面基础,从而提高形成的栅介质层203的质量,减小所述栅介质层203与所述基底201之间的界面态密度,且避免所述栅介质层203与所述基底201直接接触造成的不良影响。The
本实施例中,所述界面层202的材料为氧化硅。在其他实施例中,所述界面层的材料还可以为氮化硅或者氮氧化硅。In this embodiment, the material of the
所述第一功函数层204的材料为P型功函数材料。具体地,位于所述第二P区II2上的第一功函数层204作为第二P型器件对应的功函数层的一部分,用于调节所述第二P型器件的阈值电压。The material of the first
所述P型功函数材料功函数范围为5.1eV至5.5eV,例如,5.2eV、5.3eV或5.4eV。所述第一功函数层204的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第一功函数层204。The P-type work function material has a work function ranging from 5.1 eV to 5.5 eV, eg, 5.2 eV, 5.3 eV or 5.4 eV. The material of the first
本实施例中,所述第一功函数层204的材料为TiN,所述第一功函数层204的厚度为10埃~30埃。In this embodiment, the material of the first
参考图5,刻蚀所述第一功函数层204,保留位于所述第二P区II2、第一N区I1以及第二N区I2的第一功函数层204。Referring to FIG. 5 , the first
本实施例中,刻蚀所述第一功函数层204,保留位于所述第一P区II2的第一功函数层204,包括:刻蚀去除所述第一P区II1的第一功函数层204,保留位于所述第一N区I1、第二N区II2以及第二P区II2的第一功函数层204。In this embodiment, etching the first
具体地,刻蚀所述第一功函数层204的工艺步骤包括:在所述第一N区I1、第二N区I2和第二P区II2的第一功函数层204上形成第一图形层;以所述第一图形层为掩膜,刻蚀去除位于所述第一P区II1的第一功函数层204;去除所述第一图形层。Specifically, the process step of etching the first
本实施例中,在刻蚀所述第一功函数层204的工艺过程中,保留位于所述第一N区I1以及第二N区I2的第一功函数层204,避免对第一N区I1以及第二N区I2的栅介质层203造成刻蚀损伤,减少第一N区I1以及第二N区I2的栅介质层203在工艺过程中受到的损伤。In this embodiment, in the process of etching the first
参考图6,在刻蚀所述第一功函数层204之后,在所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2上形成第二功函数层205。Referring to FIG. 6 , after the first
本实施例中,形成所述第二功函数层205,包括:在所述第一N区I1、第二N区I2和第二P区II2的第一功函数层204上、以及第一P区II1的栅介质层203上形成所述第二功函数层205。In this embodiment, forming the second
所述第二功函数层205的材料为P型功函数材料。位于所述第一P区II1上的第二功函数层205为第一P型器件对应的功函数层的一部分,起到调节所述第一P型器件的阈值电压的作用;位于所述第二P区II2上的第二功函数层205为第二P型器件对应的功函数层的一部分,起到调节所述第二P型器件的阈值电压的作用。The material of the second
所述第二功函数层205的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种。The material of the second
本实施例中,所述第二功函数层205的材料为TiN,所述第二功函数层205的厚度为10埃~30埃。In this embodiment, the material of the second
参考图7,刻蚀去除所述第二N区I2的第二功函数层205以及第一功函数层204,暴露出所述第二N区I2的栅介质层203。Referring to FIG. 7 , the second
本实施例中,由于前述在形成第二功函数层205之前,保留了位于所述第二N区I2的第一功函数层204;因此,刻蚀去除所述第二N区I2的第二功函数层205,包括:刻蚀去除所述第二N区I2的第二功函数层205,且还刻蚀去除所述第二N区I2的第一功函数层204。In this embodiment, before the second
在刻蚀去除所述第二N区I2的第二功函数层205之前,还包括:在所述第一N区I1、第一P区II1和第二P区II2的第二功函数层205上形成掩膜层200。Before removing the second
本实施例中,所述掩膜层200的材料为氮化硅。在其他实施例中,所述掩膜层的材料还可以为光刻胶材料。In this embodiment, the material of the
所述掩膜层200起到保护第一N区I1、第一P区II1以及第二P区II2的第二功函数层205不被刻蚀的作用。并且,本实施例中,在后续进行氧空位钝化处理之后,去除所述掩膜层200,所述掩膜层200还在氧空位钝化处理过程中对第一N区I1、第一P区II1以及第二P区II2起到保护作用。The
采用湿法刻蚀工艺,刻蚀去除所述第二N区I2的第二功函数层205以及第一功函数层204,直至暴露出所述第二N区I2的栅介质层203。Using a wet etching process, the second
本实施例中,所述湿法刻蚀工艺的刻蚀液体具有氧化性。其好处在于:所述湿法刻蚀工艺不仅可以刻蚀去除所述第二N区I2的第二功函数层205以及第一功函数层204,且还可以对第二N区I2暴露出的栅介质层203进行氧空位钝化处理。In this embodiment, the etching liquid of the wet etching process has an oxidizing property. The advantage is that the wet etching process can not only etch and remove the second
具体地,所述湿法刻蚀工艺包括主刻蚀工艺(main etch)以及过刻蚀工艺(overetch),其中,利用所述过刻蚀工艺进行后续的氧空位钝化处理。Specifically, the wet etching process includes a main etching process (main etch) and an overetching process (overetch), wherein the subsequent oxygen vacancy passivation treatment is performed by using the overetching process.
所述湿法刻蚀工艺采用的刻蚀液体为SC1溶液、SC2溶液或者SPM溶液。The etching liquid used in the wet etching process is SC1 solution, SC2 solution or SPM solution.
其中,SC1溶液为氨水和双氧水的水溶液;SC2溶液为盐酸和双氧水的水溶液;SPM溶液为硫酸和双氧水的水溶液。The SC1 solution is an aqueous solution of ammonia and hydrogen peroxide; the SC2 solution is an aqueous solution of hydrochloric acid and hydrogen peroxide; and the SPM solution is an aqueous solution of sulfuric acid and hydrogen peroxide.
参考图8,对所述第二N区I2的栅介质层203进行氧空位钝化处理206,降低所述第二N区I2的栅介质层203内的氧空位含量。Referring to FIG. 8 , oxygen
所述栅介质层203内易形成缺陷,所述缺陷包括氧空位、悬挂键或者未成键离子中的一种或多种。本实施例中,所述栅介质层203内含有氧空位缺陷。Defects are easily formed in the
对所述第二N区I2的栅介质层203进行氧空位钝化处理206,有利于降低所述第二N区I2的栅介质层203内的氧空位含量,使得第一N区I1的栅介质层203内的氧空位含量大于第二N区I2的栅介质层203内的氧空位含量。The oxygen
由于所述第一N区I1的栅介质层203内的氧空位含量大于第二N区I2的栅介质层203内的氧空位含量,使得第一N区I1的栅介质层203内的偶极子数量大于第二N区I2的栅介质层203内偶极子数量;相应的,第一N型器件后续形成的栅极结构与基底201之间的平带电压高于第二N型器件后续形成的栅极结构与基底201之间的平带电压,从而使得形成的第一N型器件阈值电压高于第二N型器件阈值电压。Since the oxygen vacancy content in the
本实施例中,通过延长前述湿法刻蚀工艺中的过刻蚀工艺的刻蚀时长,进行所述氧空位钝化处理206,使得所述氧空位钝化处理206的工艺操作简单,无需额外的工艺步骤。In this embodiment, the oxygen
具体地,所述过刻蚀工艺的刻蚀时长不宜过短,也不宜过长。若所述过刻蚀工艺的刻蚀时长过短,则所述第二N区I2的栅介质层203内的氧空位含量减少程度低;若所述过刻蚀工艺的刻蚀时长过长,则所述氧空位钝化处理206会对所述第二N区I2的栅介质层203造成不良影响。Specifically, the etching duration of the over-etching process should not be too short or too long. If the etching time of the over-etching process is too short, the reduction degree of oxygen vacancies in the
为此,本实施例中,所述过刻蚀工艺的刻蚀时长为10s~2min。Therefore, in this embodiment, the etching duration of the over-etching process is 10s˜2min.
在其他实施例中,还可以在刻蚀去除所述第二N区的第二功函数层和第一功函数层之后,采用含有过氧化氢的处理溶液,进行所述氧空位钝化处理,所述处理溶液可以为SC1溶液、SC2溶液或者SPM溶液。In other embodiments, after the second work function layer and the first work function layer of the second N region are removed by etching, the oxygen vacancy passivation treatment may be performed by using a treatment solution containing hydrogen peroxide, The treatment solution may be an SC1 solution, an SC2 solution or an SPM solution.
需要说明的是,所述处理溶液中,过氧化氢含量不宜过低,也不宜过高。若所述过氧化氢含量过低,则所述氧空位钝化处理的效率低下;若所述过氧化氢含量过高,所述氧空位钝化处理易对第二N区的栅介质层造成不良影响。相应的,所述处理溶液温度也不宜过低且不宜过高。It should be noted that, in the treatment solution, the content of hydrogen peroxide should not be too low or too high. If the hydrogen peroxide content is too low, the efficiency of the oxygen vacancy passivation treatment is low; if the hydrogen peroxide content is too high, the oxygen vacancy passivation treatment is likely to cause damage to the gate dielectric layer of the second N region adverse effects. Correspondingly, the temperature of the treatment solution should not be too low nor too high.
为此,当采用含有过氧化氢的处理溶液进行所述氧空位钝化处理时,所述处理溶液中,过氧化氢质量浓度为5%~20%,处理溶液温度为20℃~50℃。For this reason, when the oxygen vacancy passivation treatment is performed with a treatment solution containing hydrogen peroxide, the mass concentration of hydrogen peroxide in the treatment solution is 5%-20%, and the temperature of the treatment solution is 20-50°C.
在进行所述氧空位钝化处理206之后,去除所述掩膜层200。After the oxygen
参考图9,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204,直至暴露出所述第一N区I1的栅介质层203。Referring to FIG. 9 , the second
本实施例中,由于在形成所述第二功函数层205之前,保留了位于所述第一N区I1上的第一功函数层204,为此,刻蚀去除所述第一N区I1的第二功函数层205包括:刻蚀去除所述第一N区I1的第二功函数层205,且还刻蚀去除所述第一N区I1的第一功函数层204。In this embodiment, before the second
采用湿法刻蚀工艺,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204。具体地,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204的工艺步骤包括:在所述第二N区I2的栅介质层203上、以及所述第一P区II1和第二P区II2的第二功函数层205上形成第二图形层;以所述第二图形层为掩膜,刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204;去除所述第二图形层。Using a wet etching process, the second
本实施例中,先进行所述氧空位钝化处理206(参考图8),后刻蚀去除所述第一N区I1的第二功函数层205以及第一功函数层204,避免所述氧空位钝化处理对所述第一N区I1的栅介质层203造成影响。In this embodiment, the oxygen vacancy passivation treatment 206 (refer to FIG. 8 ) is performed first, and then the second
还需要说明的是,在其他实施例中,还可以在进行所述氧空位钝化处理之前,刻蚀去除所述第一N区的第二功函数层以及第一功函数层;其中,在同一道工艺步骤中,刻蚀去除所述第一N区和第二N区的第二功函数层以及第一功函数层;且在进行所述氧空位钝化处理之前,还包括,在所述第一N区的栅介质层上形成保护层。It should also be noted that, in other embodiments, before performing the oxygen vacancy passivation treatment, the second work function layer and the first work function layer of the first N region may be removed by etching; In the same process step, the second work function layer and the first work function layer of the first N region and the second N region are removed by etching; and before the oxygen vacancy passivation treatment is performed, the method further includes: A protective layer is formed on the gate dielectric layer of the first N region.
参考图10,在所述第一N区I1和第二N区I2的栅介质层203上、以及所述第一P区II1和第二P区II2的第二功函数层205上形成第三功函数层207。Referring to FIG. 10 , a third layer is formed on the
位于所述第一N区I1上的第三功函数层204作为第一N型器件对应的功函数层的一部分,起到调节第一N型器件阈值电压的作用;位于所述第二N区I2上的第三功函数层204作为第二N型器件对应的功函数层的一部分,起到调节第二N型器件阈值电压的作用。The third
位于所述第一P区II1上的第二功函数层205和第三功函数层207作为第一P型器件对应的功函数层,起到调节第一P型器件阈值电压的作用;位于所述第二P区II2上的第一功函数层204、第二功函数层205和第三功函数层207作为第二P型器件对应的功函数层,起到调节第二P型器件阈值电压的作用。The second
对于P型器件而言,功函数层的厚度越厚,相应形成的P型器件阈值电压越小。由于所述第一P型器件对应的功函数层的厚度较第二P型器件对应的功函数层的厚度更薄,因此后续形成的第一P型器件阈值电压大于第二P型器件阈值电压。For a P-type device, the thicker the work function layer is, the lower the threshold voltage of the correspondingly formed P-type device is. Since the thickness of the work function layer corresponding to the first P-type device is thinner than that of the work function layer corresponding to the second P-type device, the threshold voltage of the subsequently formed first P-type device is greater than the threshold voltage of the second P-type device .
所述第三功函数层207的材料为P型功函数材料;所述第三功函数层207的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种。The material of the third
本实施例中,所述第三功函数层207的材料为TiN,所述第三功函数层207的厚度为10埃~30埃。In this embodiment, the material of the third
采用化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺,形成所述第三功函数层207。The third
所述第一N型器件的栅极结构与基底201之间的平带电压Vfb与所述第一N型器件的功函数层的厚度有关,且所述第一N型器件的平带电压还与第一N区I1的栅介质层203内的偶极子(dipole)数量有关;所述第二N型器件的栅极结构与所述基底201之间的平带电压Vfb与所述第二N型器件的功函数层的厚度有关,且所述第二N型器件的平带电压还与第二N区I2的栅介质层203内的偶极子数量有关。The flat-band voltage Vfb between the gate structure of the first N-type device and the
由于前述对第二N区I2的栅介质层203进行了氧空位钝化处理206,所述第二N区I2的栅介质层203内氧空位含量低于所述第一N区I1的栅介质层203内氧空位含量,使得第二N区I2的栅介质层203内的偶极子较第一N区I1的栅介质层203内的偶极子量少。因此,即使第一N型器件的功函数层厚度与第二N型器件的功函数层厚度相等,所述第一N型器件的平带电压大于第二N型器件的平带电压,从而使得形成的第一N型器件阈值电压高于第二N型器件阈值电压。Since the oxygen
为此,本实施例中,在后续形成N型功函数层之前,位于所述第一N区I1和第二N区I2上的功函数层的厚度相同,无需进行刻蚀去除第一N区的第三功函数层207以及在第一N区和第二N区上形成第四功函数层的工艺步骤,从而简化了半导体结构的形成工艺步骤,使得半导体结构中的功函数膜层数量减少。Therefore, in this embodiment, before the subsequent formation of the N-type work function layer, the thicknesses of the work function layers on the first N region I1 and the second N region I2 are the same, and there is no need to perform etching to remove the first N region The third
参考图11,在所述第一N区I1、第二N区I2、第一P区II1和第二P区II2的第三功函数层207上形成N型功函数层208,且所述N型功函数层208的材料功函数类型与所述第三功函数层207的材料功函数类型不同;在所述N型功函数层208上形成栅电极层(未图示)。Referring to FIG. 11, an N-type
位于所述第一N区I1上的第三功函数层207和N型功函数层208作为第一N型器件对应的功函数层,起到调节第一N型器件阈值电压的作用;位于所述第二N区I2上的第三功函数层207和N型功函数层208作为第二N型器件对应的功函数层,起到调节第二N型器件阈值电压的作用。The third
对于N型器件而言,由于第二N区I2的栅介质层203内氧空位含量少于第一N区I1的栅介质层203内氧空位含量,且所述第一N型器件对应的功函数层的厚度与第二N型器件对应的功函数层的厚度相等,因此后续形成的第二N型器件的阈值电压大于第一N型器件的阈值电压。For an N-type device, since the oxygen vacancy content in the
需要说明的是,为了减少工艺步骤、节约光罩,本实施例中,在形成所述N型功函数层208之后,保留位于所述第一P区II1以及第二P区II2上的N型功函数层208。It should be noted that, in order to reduce the process steps and save the mask, in this embodiment, after the N-type
所述N型功函数层208的材料为N型功函数材料,N型功函数材料功函数范围为3.9eV至4.5eV,例如为4eV、4.1eV或4.3eV。所述N型功函数层208的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或多种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述N型功函数层208。The material of the N-type
本实施例中,所述N型功函数层208的材料为TiAl,所述N型功函数层208的厚度为10埃~50埃。In this embodiment, the material of the N-type
后续的工艺步骤还包括:在所述N型功函数层208上形成栅电极层。The subsequent process steps further include: forming a gate electrode layer on the N-type
本实施例中,所述栅电极层横跨所述第一N区I1、第一P区II1、第二P区II2以及第二N区I2,相应的,所述第一N区I1、第一P区II1、第二P区II2以及第二N区I2共用同一个栅电极层。在其他实施例中,位于所述第一N区、第二N区、第一P区以及第二P区的栅电极层还可以相互独立。In this embodiment, the gate electrode layer spans the first N region I1, the first P region II1, the second P region II2 and the second N region I2. Correspondingly, the first N region I1, the first N region A P region II1, a second P region II2 and a second N region I2 share the same gate electrode layer. In other embodiments, the gate electrode layers located in the first N region, the second N region, the first P region and the second P region may also be independent of each other.
所述栅电极层的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种。The material of the gate electrode layer includes one or more of Al, Cu, Ag, Au, Pt, Ni, Ti or W.
具体地,形成所述栅电极层的工艺步骤包括:在所述N型功函数层208上形成栅电极膜,所述栅电极膜顶部高于所述层间介质层(未图示)顶部;研磨去除高于所述层间介质层顶部的栅电极膜,形成所述栅电极层。Specifically, the process step of forming the gate electrode layer includes: forming a gate electrode film on the N-type
本发明实施例提供的半导体结构的形成方法的技术方案中,在形成具有不同阈值电压的第一N型器件以及第二N型器件,具有不同阈值电压的第一P型器件以及第二P型器件的工艺过程中,对第二N区I2的栅介质层203进行氧空位钝化处理,使得第一N区I1的栅介质层203内氧空位含量大于第二N区I2的栅介质层203内氧空位含量,通过氧空位含量的不同使得第一N型器件和第二N型器件的阈值电压具有差异性;因此,形成的第三功函数层既位于第一N区I1还位于第二N区I2,避免了刻蚀去除第一N区I1的第三功函数层207的工艺步骤,且无需形成第四功函数层,从而简化了工艺步骤,且满足第一N型器件阈值电压小于第二N型器件阈值电压的需求。In the technical solution of the method for forming a semiconductor structure provided by the embodiment of the present invention, in forming a first N-type device and a second N-type device with different threshold voltages, and a first P-type device and a second P-type device with different threshold voltages During the process of the device, the
相应的,本发明还提供一种半导体结构,参考图11,所述半导体结构包括:Correspondingly, the present invention also provides a semiconductor structure. Referring to FIG. 11 , the semiconductor structure includes:
基底,所述基底包括具有第一N型器件的第一N区I1、具有第二N型器件的第二N区I2、具有第一P型器件的第一P区II1以及具有第二P型器件的第二P区II2,且所述第一N型器件的阈值电压小于第二N型器件的阈值电压,所述第一P型器件的阈值电压大于所述第二P型器件的阈值电压;a substrate comprising a first N-region I1 with a first N-type device, a second N-region I2 with a second N-type device, a first P-region II1 with a first P-type device, and a second P-type device The second P-region II2 of the device, and the threshold voltage of the first N-type device is smaller than the threshold voltage of the second N-type device, and the threshold voltage of the first P-type device is greater than the threshold voltage of the second P-type device ;
位于所述第一N区I1、第二N区I2、第一P区II1以及第二P区II2的基底上的栅介质层203,其中,所述第一N区I1的栅介质层203内氧空位含量大于所述第二N区I2的栅介质层203内氧空位含量;The
位于所述第二P区II2的栅介质层203上的第一功函数层204;a first
位于所述第一P区II1的栅介质层203上以及第二P区II2的第一功函数层204上的第二功函数层205;a second
位于所述第一N区I1和第二N区I2的栅介质层203上、以及第一P区II1和第二P区II2的第二功函数层205上的第三功函数层207。The third
以下将结合附图对本发明实施例提供的半导体结构进行详细说明。The semiconductor structure provided by the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
有关所述基底201以及栅介质层203的描述可参考前述实施例的相应说明,在此不再赘述。本实施例中,所述半导体结构还包括:位于所述基底201与所述栅介质层203之间的界面层202。For the description of the
所述半导体结构还包括:位于所述第三功函数层207上的N型功函数层208;位于所述N型功函数层208上的栅电极层。The semiconductor structure further includes: an N-type
所述第一功函数层204的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第二功函数层205的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第三功函数层207的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述N型功函数层208的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或几种。The material of the first
本实施例中,所述第一功函数层204的材料为TiN,所述第二功函数层205的材料为TiN,所述第三功函数层207的材料为TiN,所述N型功函数层208的材料为TiAl。所述第一功函数层204的厚度为10埃~30埃;所述第二功函数层205的厚度为10埃~30埃;所述第三功函数层207的厚度为10埃~30埃;所述N型功函数层208的厚度为10埃~50埃。In this embodiment, the material of the first
本实施例中,由于所述第一N区I1的栅介质层203内氧空位含量大于第二N区I2的栅介质层203内氧空位含量,且第三功函数层207以及N型功函数层208均位于第一N区I和第二N区I2上,使得第一N区I1和第二N区I2上的功函数层厚度相同,且还满足第一N型器件阈值电压小于第二N型器件阈值电压的需求。In this embodiment, since the content of oxygen vacancies in the
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611239033.7A CN108258028B (en) | 2016-12-28 | 2016-12-28 | Semiconductor structure and method of forming the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611239033.7A CN108258028B (en) | 2016-12-28 | 2016-12-28 | Semiconductor structure and method of forming the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108258028A CN108258028A (en) | 2018-07-06 |
| CN108258028B true CN108258028B (en) | 2020-06-09 |
Family
ID=62720392
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611239033.7A Active CN108258028B (en) | 2016-12-28 | 2016-12-28 | Semiconductor structure and method of forming the same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108258028B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112242299B (en) * | 2019-07-18 | 2024-10-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method for forming the same |
| CN111554679B (en) * | 2020-04-09 | 2023-03-31 | 中国科学院微电子研究所 | SOI FinFET device and manufacturing method thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103594365A (en) * | 2012-08-14 | 2014-02-19 | 中芯国际集成电路制造(上海)有限公司 | A method for forming a PMOS transistor |
| CN104425384A (en) * | 2013-09-10 | 2015-03-18 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and preparation method thereof |
| CN104916589A (en) * | 2014-03-12 | 2015-09-16 | 中芯国际集成电路制造(上海)有限公司 | Method for producing semiconductor devices |
| CN105518848A (en) * | 2013-07-18 | 2016-04-20 | 格罗方德半导体股份有限公司 | Fin field effect transistors having multiple threshold voltages |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102235612B1 (en) * | 2015-01-29 | 2021-04-02 | 삼성전자주식회사 | Semiconductor device having work-function metal and method of forming the same |
| US9553092B2 (en) * | 2015-06-12 | 2017-01-24 | Globalfoundries Inc. | Alternative threshold voltage scheme via direct metal gate patterning for high performance CMOS FinFETs |
-
2016
- 2016-12-28 CN CN201611239033.7A patent/CN108258028B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103594365A (en) * | 2012-08-14 | 2014-02-19 | 中芯国际集成电路制造(上海)有限公司 | A method for forming a PMOS transistor |
| CN105518848A (en) * | 2013-07-18 | 2016-04-20 | 格罗方德半导体股份有限公司 | Fin field effect transistors having multiple threshold voltages |
| CN104425384A (en) * | 2013-09-10 | 2015-03-18 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and preparation method thereof |
| CN104916589A (en) * | 2014-03-12 | 2015-09-16 | 中芯国际集成电路制造(上海)有限公司 | Method for producing semiconductor devices |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108258028A (en) | 2018-07-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108122852B (en) | Semiconductor structure and forming method thereof | |
| CN108122913B (en) | Semiconductor device and method of forming the same | |
| CN108010884B (en) | Semiconductor structure and method of forming the same | |
| CN107958872A (en) | Semiconductor devices and forming method thereof | |
| CN107591437B (en) | Method for forming semiconductor device | |
| CN106653605B (en) | Method for forming semiconductor structure | |
| CN107346783B (en) | Semiconductor structure and manufacturing method thereof | |
| CN106558584A (en) | Semiconductor structure and forming method thereof | |
| CN107437562B (en) | Method of forming a semiconductor device | |
| CN106847874A (en) | The forming method of the semiconductor devices with different threshold voltages | |
| CN108257918B (en) | Semiconductor structure and method of forming the same | |
| CN108258028B (en) | Semiconductor structure and method of forming the same | |
| CN108987248B (en) | Semiconductor structure and forming method thereof | |
| CN108155235B (en) | Semiconductor structure and forming method thereof | |
| CN108122760B (en) | Semiconductor structure and forming method thereof | |
| CN106847755B (en) | Method for improving SRAM performance | |
| CN106611788B (en) | Method of forming a semiconductor structure | |
| CN108573910A (en) | Semiconductor structures and methods of forming them | |
| CN109309050B (en) | Semiconductor structure and method of forming the same | |
| CN108389835B (en) | Semiconductor structure and forming method thereof | |
| CN111211055A (en) | Semiconductor structure and method of forming the same | |
| CN106653693A (en) | Method for improving performance of core device and input-output device | |
| CN107393868B (en) | Method for forming semiconductor structure | |
| CN104465378B (en) | The production method of semiconductor devices | |
| CN107492522A (en) | The forming method of cmos device, PMOS device and nmos device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |