CN108265073B - Recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide and porcine epidemic diarrhea virus S protein - Google Patents
Recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide and porcine epidemic diarrhea virus S protein Download PDFInfo
- Publication number
- CN108265073B CN108265073B CN201710012140.4A CN201710012140A CN108265073B CN 108265073 B CN108265073 B CN 108265073B CN 201710012140 A CN201710012140 A CN 201710012140A CN 108265073 B CN108265073 B CN 108265073B
- Authority
- CN
- China
- Prior art keywords
- bacillus subtilis
- sequence
- lectin
- pedv
- recombinant bacillus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000063299 Bacillus subtilis Species 0.000 title claims abstract description 89
- 235000014469 Bacillus subtilis Nutrition 0.000 title claims abstract description 88
- 241001135549 Porcine epidemic diarrhea virus Species 0.000 title claims abstract description 75
- 230000000968 intestinal effect Effects 0.000 title claims abstract description 54
- 101710139375 Corneodesmosin Proteins 0.000 title claims abstract description 51
- 230000008685 targeting Effects 0.000 title claims abstract description 32
- 102100031673 Corneodesmosin Human genes 0.000 title claims abstract description 31
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 31
- 239000013598 vector Substances 0.000 claims abstract description 28
- 230000003053 immunization Effects 0.000 claims abstract description 17
- 238000002649 immunization Methods 0.000 claims abstract description 17
- 230000028993 immune response Effects 0.000 claims abstract description 15
- 239000013613 expression plasmid Substances 0.000 claims abstract description 11
- 108090000623 proteins and genes Proteins 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 238000010367 cloning Methods 0.000 claims description 22
- 239000000427 antigen Substances 0.000 claims description 17
- 108091007433 antigens Proteins 0.000 claims description 17
- 102000036639 antigens Human genes 0.000 claims description 17
- 108010054624 red fluorescent protein Proteins 0.000 claims description 16
- 241000699670 Mus sp. Species 0.000 claims description 13
- 239000013612 plasmid Substances 0.000 claims description 13
- 102000004169 proteins and genes Human genes 0.000 claims description 12
- 239000013604 expression vector Substances 0.000 claims description 10
- 238000012257 pre-denaturation Methods 0.000 claims description 10
- 238000012408 PCR amplification Methods 0.000 claims description 9
- 230000001580 bacterial effect Effects 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000003259 recombinant expression Methods 0.000 claims description 8
- 241000699666 Mus <mouse, genus> Species 0.000 claims description 7
- 238000011161 development Methods 0.000 claims description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 6
- 108010001336 Horseradish Peroxidase Proteins 0.000 claims description 6
- 102000003960 Ligases Human genes 0.000 claims description 6
- 108090000364 Ligases Proteins 0.000 claims description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 6
- 229940098773 bovine serum albumin Drugs 0.000 claims description 6
- 239000002299 complementary DNA Substances 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 6
- 238000012163 sequencing technique Methods 0.000 claims description 6
- 210000002966 serum Anatomy 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 5
- 241001591005 Siga Species 0.000 claims description 4
- 241000191967 Staphylococcus aureus Species 0.000 claims description 4
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 claims description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 claims description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 claims description 3
- 238000002965 ELISA Methods 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 108091026890 Coding region Proteins 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000002372 labelling Methods 0.000 claims 1
- 230000004936 stimulating effect Effects 0.000 claims 1
- 206010012735 Diarrhoea Diseases 0.000 abstract description 8
- 229940126578 oral vaccine Drugs 0.000 abstract description 8
- 238000001262 western blot Methods 0.000 abstract description 6
- 238000010353 genetic engineering Methods 0.000 abstract description 3
- 238000012546 transfer Methods 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 abstract description 2
- 238000001727 in vivo Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 44
- 108020004414 DNA Proteins 0.000 description 14
- 230000036039 immunity Effects 0.000 description 10
- 229960005486 vaccine Drugs 0.000 description 9
- 230000002238 attenuated effect Effects 0.000 description 8
- 210000001035 gastrointestinal tract Anatomy 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 5
- 241000607142 Salmonella Species 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 210000001986 peyer's patch Anatomy 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 241000186781 Listeria Species 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 241000282887 Suidae Species 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 3
- 229960002327 chloral hydrate Drugs 0.000 description 3
- 229960005091 chloramphenicol Drugs 0.000 description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001976 enzyme digestion Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000006041 probiotic Substances 0.000 description 3
- 235000018291 probiotics Nutrition 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 235000020183 skimmed milk Nutrition 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 208000000474 Poliomyelitis Diseases 0.000 description 2
- 101710172711 Structural protein Proteins 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000007640 basal medium Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000003125 immunofluorescent labeling Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 229960000274 lysozyme Drugs 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 239000004325 lysozyme Substances 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 230000000529 probiotic effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 229940126580 vector vaccine Drugs 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 101710114810 Glycoprotein Proteins 0.000 description 1
- 238000003794 Gram staining Methods 0.000 description 1
- 108010006464 Hemolysin Proteins Proteins 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 101710167605 Spike glycoprotein Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- -1 Trizol Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 108010021843 fluorescent protein 583 Proteins 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008088 immune pathway Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 229940023832 live vector-vaccine Drugs 0.000 description 1
- 230000007108 local immune response Effects 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000005004 lymphoid follicle Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 230000016379 mucosal immune response Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 229940127241 oral polio vaccine Drugs 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
- A61K49/0008—Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/305—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
- C07K14/31—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/20011—Coronaviridae
- C12N2770/20022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Diabetes (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Endocrinology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
一、技术领域1. Technical field
本发明涉及表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌,属于生物技术基因工程领域。具体包括:肠道M样细胞靶向肽L-lectin-β-GF和PEDVS蛋白的表达性质粒pHT43-RCL的构建,L-lectin-β-GF和PEDV S蛋白的表达与鉴定,重组枯草芽孢杆菌能够有效的与肠道M样细胞结合以及重组枯草芽孢杆菌可以促进小鼠机体黏膜免疫以及PEDV特异性免疫应答水平的检测。The invention relates to recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide L-lectin-β-GF and PEDV S protein, and belongs to the field of biotechnology genetic engineering. Specifically: Construction of expression plasmid pHT43-RCL for intestinal M-like cell targeting peptide L-lectin-β-GF and PEDVS protein, expression and identification of L-lectin-β-GF and PEDV S protein, recombinant Bacillus subtilis Bacillus can effectively bind to intestinal M-like cells and recombinant Bacillus subtilis can promote the mucosal immunity of mice and the detection of PEDV-specific immune response levels.
二、背景技术2. Background technology
1口服黏膜免疫研究进展1 Research progress of oral mucosal immunity
口服黏膜免疫方法简便、安全,不仅在黏膜局部和其他黏膜组织产生免疫应答,还可引起全身性体液免疫应答,多年来受到国内外免疫学家的密切关注。目前儿童广泛口服的脊髓灰质炎糖丸就是一个消化道黏膜免疫成功的例子。脊髓灰质炎口服疫苗的应用,使全球小儿麻痹发病得到有效控制,为口服疫苗的研制与应用起到了指导作用。但是在实践中,口服疫苗经过消化道时常受到消化液的降解,疫苗很容易被破坏,影响免疫力的效果,使消化道黏膜免疫方法的应用和推广受到限制。近年来疫苗递送系统成为研究传染病防御领域新技术的热点之一。尤其是细菌活载体疫苗因具有培养方便,外源基因容量大,刺激细胞免疫力强等优点具有巨大的应用潜力。细菌载体疫苗是新兴现代疫苗的重要发展方向,所谓细菌载体疫苗是将所需的编码病原菌特异性抗原的DNA片段插入减毒的病原菌或者共生菌中,让其表达所编码的抗原,以期达到预防一种或多种疾病的目的。通过活菌载体递送疫苗抗原不仅可刺激肠道局部免疫应答,又可针对特异性抗原产生特异性免疫应答,使机体可以获得全面的保护力。Oral mucosal immunization is simple and safe. It not only produces immune responses in local mucosa and other mucosal tissues, but also induces systemic humoral immune responses. It has received close attention from immunologists at home and abroad for many years. The polio sugar pills that are widely taken orally in children at present is an example of successful mucosal immunization of the digestive tract. The application of oral polio vaccine has effectively controlled the incidence of poliomyelitis worldwide and played a guiding role in the development and application of oral vaccine. However, in practice, oral vaccines are often degraded by digestive juices when they pass through the digestive tract, and the vaccines are easily destroyed, which affects the effect of immunity and limits the application and promotion of mucosal immunity in the digestive tract. In recent years, vaccine delivery systems have become one of the hot spots in the research of new technologies in the field of infectious disease defense. In particular, bacterial live vector vaccines have great application potential due to the advantages of convenient culture, large capacity of foreign genes, and strong stimulation of cellular immunity. Bacterial vector vaccine is an important development direction of emerging modern vaccines. The so-called bacterial vector vaccine is to insert the required DNA fragments encoding pathogen-specific antigens into attenuated pathogens or commensal bacteria, so that the encoded antigens can be expressed in order to achieve prevention. the purpose of one or more diseases. The delivery of vaccine antigens through live bacteria carriers can not only stimulate local immune responses in the intestinal tract, but also generate specific immune responses against specific antigens, so that the body can obtain comprehensive protection.
以前的研究表明一些减毒细菌可作为疫苗抗原的载体,如沙门氏菌、弱毒李斯特菌等。国外学者以减毒沙门氏菌为载体在真核细胞中成功表达了lacZ基因、绿色荧光蛋白(GFP)基因、HIV-gp140基因、李斯特菌溶血素基因等。沙门氏菌为载体传递DNA疫苗还能存在潜在危险性。首先,减毒细菌可能存在毒力返强的危险;其次,质粒DNA可能会整合到宿主细胞基因组,从而引起调控细胞生长的基因紊乱、原癌基因和抑癌基因的表达失控、体细胞癌变、细胞转型等一系列问题。此外,减毒细菌对一些老弱病残个体可能有潜在致病性。因此,选择理想的疫苗抗原载体是建立生物学新技术的关键。理想的输送抗原的载体应该是本身对机体既安全又能产生持续免疫力的微生物。Previous studies have shown that some attenuated bacteria can be used as carriers of vaccine antigens, such as Salmonella, Listeria attenuated and so on. Foreign scholars have successfully expressed the lacZ gene, green fluorescent protein (GFP) gene, HIV-gp140 gene, and Listeria hemolysin gene in eukaryotic cells using attenuated Salmonella as a vector. Salmonella as a vector to deliver DNA vaccines can also be potentially dangerous. First, attenuated bacteria may be in danger of returning to strong virulence; second, plasmid DNA may be integrated into the host cell genome, causing disorder of genes regulating cell growth, uncontrolled expression of proto-oncogenes and tumor suppressor genes, somatic carcinogenesis, A series of problems such as cell transformation. In addition, attenuated bacteria may be potentially pathogenic to some elderly, sick, and disabled individuals. Therefore, choosing an ideal vaccine antigen carrier is the key to establishing new biological techniques. The ideal carrier for delivering antigens should be microorganisms that are both safe to the body and can generate sustained immunity.
2枯草芽孢杆菌对黏膜免疫的影响2 The effect of Bacillus subtilis on mucosal immunity
目前对黏膜抗原的细菌递送载体已有广泛研究。活细菌载体的种类很多,应用比较广泛的包括两类:一类为弱毒病原体能够诱导强而持久的免疫应答,如沙门氏菌和李斯特菌,但这些减毒细菌作为载体传递疫苗存在潜在的危险性,甚至是致病性。另一类是目前较为关注的安全无致病性的共生物种,如乳杆菌和枯草芽孢杆菌等益生菌。枯草芽孢杆菌作为一种安全的无致病性活细菌载体,是广泛存在于土壤和植物中的优势生物种群,隶属于芽孢杆菌科、芽孢杆菌属,其细胞呈直杆状,大小(0.8~1.2)μm×(1.5~4.0)μm,单个,革兰氏染色阳性,着色均匀,无荚膜,能运动。枯草杆菌作为抗原的载体具有很多优点:①是人类和动物安全纪录的益生菌和食品添加剂,②成本低廉、耐热、抗干燥、便于运输和使用,③其遗传性状和细菌学水平都很容易操纵。因此,枯草芽孢杆菌非常适宜作为安全的口服疫苗和其他病原体的抗原递送载体。Bacterial delivery vehicles for mucosal antigens have been extensively studied. There are many types of live bacterial carriers, and the most widely used include two categories: one is attenuated pathogens that can induce strong and durable immune responses, such as Salmonella and Listeria, but these attenuated bacteria are potentially dangerous as carriers to deliver vaccines , even pathogenic. The other is the safe and non-pathogenic symbiotic species that are currently more concerned, such as probiotics such as Lactobacillus and Bacillus subtilis. As a safe non-pathogenic live bacterial carrier, Bacillus subtilis is a dominant biological population that widely exists in soil and plants. It belongs to the Bacillus family and Bacillus genus. 1.2)μm×(1.5~4.0)μm, single, Gram staining positive, uniform coloring, no capsule, able to move. Bacillus subtilis as an antigen carrier has many advantages: ① It is a probiotic and food additive with human and animal safety records; ② It is low-cost, heat-resistant, anti-drying, easy to transport and use; ③ Its genetic traits and bacteriological levels are easy manipulate. Therefore, Bacillus subtilis is very suitable as a safe oral vaccine and antigen delivery vehicle for other pathogens.
研究发现,枯草芽孢杆菌可以作为良好的黏膜免疫佐剂配合禽流感灭活病毒口服免疫雏鸡,增强肠道的非特异性以及特异性免疫水平。仔猪肠道中的树突状细胞能够摄取枯草芽孢杆菌,并迁移至附近的肠系膜淋巴结激活T、B淋巴细胞,引发免疫反应。枯草芽孢杆菌作为抗原递送载体可以诱导黏膜免疫应答和全身免疫应答,这引起了研究者们极大的兴趣。这对于开发新型口服疫苗,提供了广阔的空间。但是如何能够进一步增强枯草芽孢杆菌良好的黏膜免疫载体作用?很多人的目标定位在黏膜表面的另一种重要的免疫细胞——M样细胞。研究发现枯草芽孢杆菌能够促进肠道中M样细胞数量增加。肠道M样细胞位于肠道派尔氏斑的淋巴滤泡(FAE)表面,呈口袋状,下方包裹着大量的淋巴细胞,例如:树突状细胞、T淋巴细胞和B淋巴细胞。通过M细胞可以使抗原更便捷的与抗原递呈细胞或者淋巴细胞接触,能够更好的诱导黏膜免疫反应。The study found that Bacillus subtilis can be used as a good mucosal immune adjuvant to immunize chicks orally with inactivated avian influenza virus to enhance the non-specific and specific immunity levels of the intestine. Dendritic cells in the piglet gut can take up Bacillus subtilis and migrate to nearby mesenteric lymph nodes to activate T and B lymphocytes and trigger an immune response. Bacillus subtilis as an antigen delivery vehicle can induce mucosal and systemic immune responses, which has attracted great interest from researchers. This provides a broad space for the development of new oral vaccines. But how to further enhance the good mucosal immune carrier of Bacillus subtilis? Many people target another important immune cell on the mucosal surface, M-like cells. Studies have found that Bacillus subtilis can promote an increase in the number of M-like cells in the gut. Intestinal M-like cells are located on the surface of the lymphoid follicles (FAE) of intestinal Peyer's patches, which are pockets and are surrounded by a large number of lymphocytes, such as dendritic cells, T lymphocytes and B lymphocytes. Through M cells, antigens can be more conveniently contacted with antigen-presenting cells or lymphocytes, which can better induce mucosal immune responses.
3猪流行性腹泻病毒(PEDV)主要结构蛋白——S蛋白3 The main structural protein of porcine epidemic diarrhea virus (PEDV) - S protein
猪流行性腹泻是猪的急性、接触性、高度传染性的肠道病毒病,主要特征为引起感染猪只的呕吐、水样腹湾、脱水。对幼年猪感染率高达100%,7日龄以下仔猪感染后死亡率高达80%-100%。病毒基因组为单股正链,具有7个开放阅读框,编码四个结构蛋白基因,纤突糖蛋白(S)、膜糖蛋白(M)、核衣壳蛋白(N)、小膜蛋白(E)。其中S蛋白是PEDV的表面抗原,在调节宿主细胞受体蛋白与病毒的相互作用中起着重要的作用,并能接到病毒进入宿主细胞,最为重要的是S蛋白可以刺激宿主产生中和抗体。Porcine epidemic diarrhea is an acute, contact, and highly contagious enterovirus disease of pigs, characterized by vomiting, watery abdomen, and dehydration in infected pigs. The infection rate of young pigs is as high as 100%, and the mortality rate of infected piglets under 7 days old is as high as 80%-100%. The viral genome is a single positive strand with 7 open reading frames, encoding four structural protein genes, spike glycoprotein (S), membrane glycoprotein (M), nucleocapsid protein (N), small membrane protein (E) ). Among them, the S protein is the surface antigen of PEDV, which plays an important role in regulating the interaction between the host cell receptor protein and the virus, and can receive the virus into the host cell. The most important thing is that the S protein can stimulate the host to produce neutralizing antibodies .
本发明试图在益生菌枯草芽孢杆菌中表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白进行M细胞靶向效果以及活菌的口服免疫。对增强枯草芽孢杆菌作为黏膜免疫载体的效果以及为预防猪流行性腹泻开辟一条全新的黏膜免疫途径具有重要的意义。The present invention attempts to express the intestinal M-like cell targeting peptide L-lectin-β-GF and PEDV S protein in the probiotic Bacillus subtilis for M cell targeting effect and oral immunization of live bacteria. It is of great significance to enhance the effect of Bacillus subtilis as a mucosal immune carrier and to open up a new mucosal immune pathway for the prevention of porcine epidemic diarrhea.
三、发明内容3. Content of the Invention
技术问题technical problem
本发明成功构建了肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的枯草芽孢杆菌表达质粒pHT43-RCL,并转化进入枯草芽孢杆菌WB800N菌株。L-lectin-β-GF和PEDV S蛋白在重组枯草芽孢杆菌WB800N内可以被成功表达。重组枯草芽孢杆菌能够有效的与肠道M样细胞结合,可以促进小鼠机体黏膜免疫以及PEDV特异性免疫应答水平。重组枯草芽孢杆菌WB800N菌株(B.S.-RCL)有望成为增强型黏膜免疫递送载体并且开发成预防猪流行性腹泻的基因工程口服疫苗。The invention successfully constructs the Bacillus subtilis expression plasmid pHT43-RCL of the intestinal M-like cell targeting peptide L-lectin-β-GF and PEDV S protein, and transforms it into the Bacillus subtilis WB800N strain. L-lectin-β-GF and PEDV S proteins were successfully expressed in recombinant Bacillus subtilis WB800N. The recombinant Bacillus subtilis can effectively bind to intestinal M-like cells, which can promote the mucosal immunity and PEDV-specific immune response level of mice. Recombinant Bacillus subtilis strain WB800N (B.S.-RCL) is expected to be an enhanced mucosal immune delivery vehicle and developed as a genetically engineered oral vaccine for the prevention of porcine epidemic diarrhea.
技术方案Technical solutions
本发明涉及表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白重组枯草芽孢杆菌(B.S.-RCL),该重组枯草芽孢杆菌WB800N菌株,属于枯草芽孢杆菌(Bacillussubtilis)。重组枯草芽孢杆菌能够有效的与肠道M样细胞结合,促进小鼠机体黏膜免疫以及PEDV特异性免疫应答水平。The invention relates to recombinant Bacillus subtilis (B.S.-RCL) expressing intestinal M-like cell targeting peptide L-lectin-β-GF and PEDV S protein. The recombinant Bacillus subtilis WB800N strain belongs to Bacillus subtilis. Recombinant Bacillus subtilis can effectively bind to intestinal M-like cells to promote mucosal immunity and PEDV-specific immune response in mice.
1表达载体的构建方法:1 Construction method of expression vector:
1.1红色荧光蛋白基因的克隆1.1 Cloning of the red fluorescent protein gene
参照已发表的红色荧光蛋白基因序列(GenBank登陆号:AB166761.1)设计一对扩增红色荧光蛋白基因RFP的引物,在上游引物5’端引入与pHT43载体多克隆位点3’末端11bp的同源臂序列,两序列之间引入BamHI酶切位点(下划线为酶切位点);在下游引物5’端引入与猪流行性腹泻病毒(PEDV)S蛋白基因5’末端12bp的同源臂序列,两序列之间引入BamHI酶切位点(下划线为酶切位点),引物序列如下:Referring to the published red fluorescent protein gene sequence (GenBank accession number: AB166761.1), a pair of primers for amplifying the red fluorescent protein gene RFP was designed, and the 5' end of the upstream primer was introduced with the pHT43 vector multi-cloning site 3' end 11bp Homology arm sequence, BamHI restriction site is introduced between the two sequences (underlined is restriction site); 12bp homology with the 5' end of porcine epidemic diarrhea virus (PEDV) S protein gene is introduced at the 5' end of the downstream primer Arm sequence, BamHI restriction site is introduced between the two sequences (underline is restriction site), and the primer sequence is as follows:
P1:CATCARCCGTAGGATCC AGTAAAGGAGAAGAA(SEQ ID NO.4);P1: CATCARCCGTA GGATCC AGTAAAGGAGAAGAA (SEQ ID NO. 4);
P2:AACAAAAGAAATGGATCC TTTGTATAGTTCATCCAT(SEQ ID NO.5);P2: AACAAAAGAAAT GGATCC TTTGTATAGTTCATCCAT (SEQ ID NO. 5);
以pDsRed-monomer-N1质粒为模板进行PCR扩增;PCR反应体系为50μL,PCR反应条件:95℃预变性5min,95℃30sec,72℃30sec,72℃1min,30cycles,72℃10min,4℃10min;将PCR产物连接到pMD19-T载体上,构建的载体命名为T-R,测序后获得具有完整编码区的红色荧光蛋白基因序列SEQ ID NO.1;PCR amplification was carried out with pDsRed-monomer-N1 plasmid as template; PCR reaction system was 50 μL, PCR reaction conditions: pre-denaturation at 95 °C for 5 min, 95 °C for 30 sec, 72 °C for 30 sec, 72 °C for 1 min, 30 cycles, 72 °C for 10 min, 4 °C 10min; the PCR product was connected to the pMD19-T vector, the constructed vector was named T-R, and the red fluorescent protein gene sequence SEQ ID NO.1 with the complete coding region was obtained after sequencing;
1.2猪流行性腹泻病毒(PEDV)S蛋白基因的克隆1.2 Cloning of porcine epidemic diarrhea virus (PEDV) S protein gene
参照已发表的猪流行性腹泻病毒S蛋白基因序列(GenBank登陆号:JX560761.1)设计一对扩增S蛋白基因cDNA的引物,在上游引物5’端引入与红色荧光蛋白基因3’末端12bp的同源臂序列,两序列之间引入BamHI酶切位点(下划线为酶切位点);在下游引物5’端引入与肠道M细胞靶向肽L-lectin-β-GF基因5’末端20bp的同源臂序列,引物序列如下:Referring to the published porcine epidemic diarrhea virus S protein gene sequence (GenBank accession number: JX560761.1), a pair of primers were designed to amplify the S protein gene cDNA, and the 5' end of the upstream primer was introduced with the 3' end of the red fluorescent protein gene 12bp The homology arm sequence of the two sequences, the BamHI restriction site is introduced between the two sequences (the underline is the restriction site); the 5' end of the downstream primer is introduced with the intestinal M cell targeting peptide L-lectin-β-GF gene 5' The homology arm sequence of the terminal 20bp, the primer sequence is as follows:
P3:GAACTATACAAAGGATCCATTTCTTTTGTT(SEQ ID NO.6);P3: GAACTATACAAA GGATCC ATTTCTTTTGTT (SEQ ID NO. 6);
P4:GTCGTCRCTRCTGACRCAAATTTATCATCATCATCTTTAT(SEQ ID NO.7);P4: GTCGTCRCTRCTGACRCAAATTTATCATCATCATCTTTAT (SEQ ID NO. 7);
以猪流行性腹泻病毒SD-M毒株提取的总RNA为模板,经MLV-反转录酶合成cDNA第一链后进行PCR扩增;PCR反应体系为50μL,PCR反应条件:95℃预变性5min,95℃30sec,67℃30sec,72℃1min,30cycles,72℃10min,4℃10min;将PCR产物连接到pMD19-T载体上,构建的载体命名为T-COE,测序后获得具有完整编码区的猪流行性腹泻病毒S蛋白基因序列SEQID NO.2;The total RNA extracted from the SD-M strain of porcine epidemic diarrhea virus was used as a template, and the first strand of cDNA was synthesized by MLV-reverse transcriptase and then amplified by PCR; the PCR reaction system was 50 μL, and the PCR reaction conditions: pre-denaturation at 95°C 5min, 95℃ for 30sec, 67℃ for 30sec, 72℃ for 1min, 30cycles, 72℃ for 10min, 4℃ for 10min; the PCR product was ligated to the pMD19-T vector, and the constructed vector was named T-COE. The porcine epidemic diarrhea virus S protein gene sequence SEQID NO.2 of the region;
1.3肠道M样细胞靶向肽L-lectin-β-GF基因的克隆1.3 Cloning of intestinal M-like cell targeting peptide L-lectin-β-GF gene
参照已发表的L-lectin-β-GF基因序列(GenBank登陆号:BA000018.3),设计一对扩增L-lectin-β-GF基因的引物,在上游引物5’端引入与猪流行性腹泻病毒S蛋白基因3’末端20bp的同源臂序列;下游引物5’端引入与pHT43多克隆位点5’末端15bp的同源臂序列,两序列之间引入XmaI酶切位点(下划线为酶切位点),引物序列如下:Referring to the published L-lectin-β-GF gene sequence (GenBank accession number: BA000018.3), a pair of primers for amplifying the L-lectin-β-GF gene were designed, and the 5' end of the upstream primer was introduced with porcine epidemic The 20 bp homology arm sequence at the 3' end of the diarrhea virus S protein gene; the 5' end of the downstream primer introduces a 15 bp homology arm sequence with the 5' end of the pHT43 multi-cloning site, and an XmaI restriction site is introduced between the two sequences (underlined as enzyme cleavage site), the primer sequences are as follows:
P5:ATAAAGATGATGATGATAAATTTRCGTCARCARCGACGAC(SEQ ID NO.8);P6:CATTAGRCGGRCTRCCCCGGGAGTAAAATAATATGT(SEQ ID NO.9);P5: ATAAAGATGATGATGATAAATTTRCGTCARCARCGACGAC (SEQ ID NO. 8); P6: CATTAGRCGGRCTRC CCCGGG AGTAAAATAATATGT (SEQ ID NO. 9);
以金黄色葡萄球菌菌株提取的基因组为模板,进行PCR扩增;PCR反应体系均为50μL,PCR反应条件:95℃预变性5min,95℃30sec,69℃30sec,72℃2min,30cycles,72℃10min,4℃10min;将PCR产物用T4连接酶连接到pMD19-T载体上,构建的载体分别命名为T-L;测序后获得具有L-lectin-β-GF基因序列SEQ ID NO.3;The genome extracted from Staphylococcus aureus strains was used as a template for PCR amplification; the PCR reaction system was 50 μL, and the PCR reaction conditions were: 95℃ for 5min, 95℃ for 30sec, 69℃ for 30sec, 72℃ for 2min, 30cycles, 72℃ 10min at 4°C for 10min; the PCR product was ligated to the pMD19-T vector with T4 ligase, and the constructed vectors were named T-L; after sequencing, the L-lectin-β-GF gene sequence SEQ ID NO.3 was obtained;
1.4重组表达载体pHT43-RCL的构建1.4 Construction of recombinant expression vector pHT43-RCL
以SEQ ID NO.1序列、SEQ ID NO.2序列和SEQ ID NO.3序列为模板,用引物P1、P4进行重叠PCR扩增,PCR反应体系为50μL,PCR反应条件:95℃预变性5min,95℃30sec,72℃30sec,72℃4min,30cycles,72℃10min,4℃10min;将PCR产物回收,并使用One StepCloning Kit定点克隆试剂盒克隆至pHT43载体上,测序后获得表达载体pHT43-RCL。Take SEQ ID NO.1 sequence, SEQ ID NO.2 sequence and SEQ ID NO.3 sequence as templates, use primers P1, P4 to carry out overlapping PCR amplification, the PCR reaction system is 50 μL, PCR reaction conditions: 95 ℃ pre-denaturation 5min , 95℃ for 30sec, 72℃ for 30sec, 72℃ for 4min, 30cycles, 72℃ for 10min, 4℃ for 10min; the PCR product was recovered and cloned into the pHT43 vector using the One Step Cloning Kit site-directed cloning kit. After sequencing, the expression vector pHT43- RCL.
2重组质粒的转化方法:2 Transformation methods of recombinant plasmids:
取60μL枯草芽孢杆菌WB800N电转化感受态细胞与1μL(50ng/μL)重组表达载体pHT43-RCL质粒混合加入电击杯中,冰浴5min后进行电击,电击条件:22KV/cm,25μF,200Ω,电击一次。加入1mL电击恢复液,37℃100rpm孵育3h,涂布于氯霉素抗性固体基础培养基LB平板,14-18h可见阳性菌落。Take 60 μL of Bacillus subtilis WB800N electrotransformed competent cells and 1 μL (50 ng/μL) recombinant expression vector pHT43-RCL plasmid mixed into the electric shock cup, and electric shock was performed after ice bath for 5 minutes. Electric shock conditions: 22KV/cm, 25 μF, 200Ω, electric shock once. Add 1 mL of electroshock recovery solution, incubate at 37°C at 100 rpm for 3 h, spread on LB plate of chloramphenicol-resistant solid basal medium, and see positive colonies within 14-18 h.
3蛋白表达的验证方法:3. Validation method of protein expression:
正常枯草芽孢杆菌WB800N菌株(遗传物质中未含有外源基因)(B.S.)和表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌WB800N菌株(B.S.-RCL)进行溶菌酶处理,对表达产物进行Western-blot分析。SDS电泳后进行蛋白转印;转印好的PVDF膜5%脱脂牛奶进行封闭之后用鼠抗RFP抗体孵育过夜;洗涤后加适当稀释后的辣根过氧化物酶标兔抗鼠IgG,25℃作用2h,ECL化学发光液进行曝光并拍照。Normal Bacillus subtilis WB800N strain (without foreign genes in genetic material) (B.S.) and recombinant Bacillus subtilis WB800N strain expressing intestinal M-like cell targeting peptide L-lectin-β-GF and PEDV S protein (B.S.- RCL) was treated with lysozyme, and the expression products were subjected to Western-blot analysis. After SDS electrophoresis, protein transfer was performed; the transferred PVDF membrane was blocked with 5% skim milk, and then incubated with mouse anti-RFP antibody overnight; after washing, appropriately diluted horseradish peroxidase-labeled rabbit anti-mouse IgG was added at 25°C After 2 hours of action, ECL chemiluminescent solution was exposed and photographed.
4重组枯草芽孢杆菌靶向肠道M样细胞检测方法:4 Recombinant Bacillus subtilis targeting intestinal M-like cells detection method:
正常枯草芽孢杆菌WB800N菌株(遗传物质中未含有外源基因)(B.S.)、对照重组枯草芽孢杆菌WB800N菌株(表达PEDV S蛋白,但是不表达肠道M样细胞靶向肽L-lectin-β-GF)(B.S.-RC)和表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌WB800N菌株(B.S.-RCL)分别用红色荧光染料标记并进行肠道原位灌注试验,免疫荧光染色观察重组枯草芽孢杆菌与肠道M样细胞的结合情况。具体方法为:4周龄的小鼠用水合氯醛麻醉后,打开腹腔,对含有派尔氏斑的肠道进行多段结扎,每段注入B.S、B.S.-RC或B.S.-RCL;15min和1h后,分离肠段放入4%多聚甲醛中固定并用OTC包埋。对包埋好的肠道组织进行冰冻切片并用UEA-1标记M细胞,随后进行共聚焦显微镜观察。Normal Bacillus subtilis WB800N strain (without foreign genes in genetic material) (B.S.), control recombinant Bacillus subtilis WB800N strain (expressing PEDV S protein, but not expressing intestinal M-like cell targeting peptide L-lectin-β- GF) (B.S.-RC) and recombinant Bacillus subtilis WB800N strain (B.S.-RCL) expressing intestinal M-like cell targeting peptides L-lectin-β-GF and PEDV S protein, respectively, were labeled with red fluorescent dye and intestinal In situ perfusion test and immunofluorescence staining were used to observe the binding of recombinant Bacillus subtilis to intestinal M-like cells. The specific method is as follows: after 4-week-old mice were anesthetized with chloral hydrate, the abdominal cavity was opened, and the intestinal tract containing Peyer's patches was ligated in multiple segments, and B.S, B.S.-RC or B.S.-RCL was injected into each segment; 15min and 1h later , the isolated intestinal segments were fixed in 4% paraformaldehyde and embedded with OTC. The embedded intestinal tissue was frozen sectioned and M cells were labeled with UEA-1, followed by confocal microscopy.
5检测口服免疫该重组枯草芽孢杆菌小鼠机体产生的PEDV特异性免疫应答水平:5. Detect the level of PEDV-specific immune response produced by oral immunization of the recombinant Bacillus subtilis mice:
正常枯草芽孢杆菌WB800N菌株(遗传物质中未含有外源基因)(B.S.)、对照重组枯草芽孢杆菌WB800N菌株(B.S.-RC)和表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌WB800N菌株(B.S.-RCL)口服免疫6周龄小鼠,口服剂量为1010cfu/kg,首免7天和14天后按相同剂量进行二免和三免,每周进行血清和肠道涮洗液的采集,饲养周期为35天。采用间接ELISA的方法进行PEDV特异性IgG和特异性SIgA水平变化检测,检测方法为:PEDV抗原包被过夜,1%BSA(牛血清白蛋白)37℃封闭2h,洗涤后加待检样品37℃作用1h,洗涤加适当稀释后的辣根过氧化物酶标兔抗鼠IgG或IgA抗体,37℃1h,含四甲基联苯胺和H2O2的TMB显色液显色后酶标仪检测OD450。结果发现表达肠道M细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌(B.S.-RCL)相比于对照重组枯草芽孢杆菌WB800N菌株(B.S.-RC)可以更显著的刺激小鼠机体产生有效的PEDV特异性免疫应答水平。Normal Bacillus subtilis WB800N strain (without foreign genes in the genetic material) (BS), control recombinant Bacillus subtilis WB800N strain (BS-RC) and expression of intestinal M-like cell targeting peptide L-lectin-β-GF and The recombinant Bacillus subtilis WB800N strain of PEDV S protein (BS-RCL) was orally immunized to 6-week-old mice at an oral dose of 10 10 cfu/kg. The second and third immunizations were performed at the same dose after the first immunization for 7 days and 14 days. Serum and intestinal rinses were collected every week, and the feeding cycle was 35 days. The level of PEDV-specific IgG and specific SIgA was detected by indirect ELISA. The detection method was as follows: PEDV antigen was coated overnight, blocked with 1% BSA (bovine serum albumin) at 37°C for 2h, and then added to the sample to be tested at 37°C after washing. Act for 1h, wash and add appropriately diluted horseradish peroxidase-labeled rabbit anti-mouse IgG or IgA antibody, 37℃ for 1h, TMB chromogenic solution containing tetramethylbenzidine and H 2 O 2 after color development Detection of OD450 . The results showed that the recombinant Bacillus subtilis (BS-RCL) expressing the intestinal M cell targeting peptide L-lectin-β-GF and PEDV S protein can be more significantly than the control recombinant Bacillus subtilis WB800N strain (BS-RC). Stimulate the mouse body to produce an effective level of PEDV-specific immune response.
有益效果beneficial effect
1本试验构建的表达质粒pHT43-RCL是目前国内外第一个表达肠道M样细胞靶向肽L-lectin-β-GF和猪流行性腹泻病毒S蛋白重组枯草芽孢杆菌表达质粒。1 The expression plasmid pHT43-RCL constructed in this experiment is the first recombinant Bacillus subtilis expression plasmid expressing intestinal M-like cell targeting peptide L-lectin-β-GF and porcine epidemic diarrhea virus S protein at home and abroad.
2本发明成功构建了肠道M样细胞靶向肽L-lectin-β-GF和猪流行性腹泻病毒S蛋白重组型枯草芽孢杆菌表达质粒pHT43-RCL,并转化进入枯草芽孢杆菌WB800N。经Western-blot验证L-lectin-β-GF和PEDV S蛋白成功在重组枯草芽孢杆菌WB800N内表达。该重组枯草芽孢杆菌能够有效的与肠道M样细胞结合,还可以促进小鼠机体产生PEDV特异性免疫应答水平。重组枯草芽孢杆菌WB800N菌株(B.S.-RCL)有望成为增强型黏膜免疫递送载体并且开发成预防猪流行性腹泻的基因工程口服疫苗。2. The present invention successfully constructed the intestinal M-like cell targeting peptide L-lectin-β-GF and porcine epidemic diarrhea virus S protein recombinant Bacillus subtilis expression plasmid pHT43-RCL, and transformed into Bacillus subtilis WB800N. It was verified by Western-blot that L-lectin-β-GF and PEDV S proteins were successfully expressed in recombinant Bacillus subtilis WB800N. The recombinant Bacillus subtilis can effectively bind to intestinal M-like cells, and can also promote the production of PEDV-specific immune response levels in mice. Recombinant Bacillus subtilis strain WB800N (B.S.-RCL) is expected to be an enhanced mucosal immune delivery vehicle and developed as a genetically engineered oral vaccine for the prevention of porcine epidemic diarrhea.
3本发明构建了枯草芽孢杆菌递送表达系统,可插入各种抗原、活性肽和药物等,有利于开发各种重组枯草芽孢杆菌疫苗,为枯草芽孢杆菌在动物黏膜免疫以及口服基因工程活疫苗等方面的研究奠定基础。下面结合附图及具体实施技术对本发明做进一步说明。3. The present invention constructs a Bacillus subtilis delivery and expression system, which can insert various antigens, active peptides and drugs, etc., which is beneficial to the development of various recombinant Bacillus subtilis vaccines, and is used for Bacillus subtilis in animal mucosal immunity and oral genetic engineering live vaccines, etc. groundwork for research. The present invention will be further described below with reference to the accompanying drawings and specific implementation techniques.
附图说明Description of drawings
图1:构建的表达载体质粒pHT43-RCL示意图Figure 1: Schematic diagram of the constructed expression vector plasmid pHT43-RCL
图2:重组枯草芽孢杆菌WB800N表达产物Western-blot图Figure 2: Western-blot image of recombinant Bacillus subtilis WB800N expression product
图3:重组枯草芽孢杆菌WB800N与肠道M样细胞结合图Figure 3: Recombinant Bacillus subtilis WB800N binding to intestinal M-like cells
图4:重组枯草芽孢杆菌WB800N(B.S.-RCL)对小鼠血清中PEDV特异性IgG水平变化的影响图Figure 4: Effect of recombinant Bacillus subtilis WB800N (B.S.-RCL) on changes in PEDV-specific IgG levels in mouse serum
图5:重组枯草芽孢杆菌WB800N(B.S.-RCL)对小鼠肠道涮洗液中PEDV特异性SIgA水平变化的影响图Figure 5: Effect of recombinant Bacillus subtilis WB800N (B.S.-RCL) on changes in PEDV-specific SIgA levels in mouse intestinal washes
具体实施方式Detailed ways
1表达质粒pHT43-RCL的构建1 Construction of expression plasmid pHT43-RCL
下述实施例中所用方法如无特别说明,均为常规方法。具体涉及的材料和试剂如下:枯草芽孢杆菌WB800N菌株和金黄色葡萄球菌菌株由南京农业大学植物保护学院高学文惠赠;猪流行性腹泻病毒SD-M毒株由江苏省农科院兽医所何孔旺研究员惠赠;E.coliJM109菌株和质粒pMD19-T购自Takara公司;质粒pHT43购自Life Technologies公司;质粒pDsRed-monomer-N1购自Clontech公司;试剂:Q5高保真酶购自NEB公司;琼脂糖凝胶回收试剂盒、T4连接酶、Trizol、RNA反转录试剂盒和One Step Cloning Kit定点克隆试剂盒等均购自Takara公司;氯霉素、氨苄青霉素、细菌质粒提取试剂盒和细菌基因组提取试剂盒均购自OMEGA公司;鼠抗RFP抗体、辣根过氧化物酶标兔抗小鼠IgG和IgA抗体购自BETHYL公司;TMB显色液购自TIANGEN公司;PVDF膜、脱脂牛奶和ECL化学发光液均购自默克密理博公司。红色荧光染料、BSA、水合氯醛和UEA-1均购自Sigma公司;OTC购自赛默公司。The methods used in the following examples are conventional methods unless otherwise specified. The specific materials and reagents involved are as follows: Bacillus subtilis WB800N strain and Staphylococcus aureus strain were donated by Gao Xuewen, School of Plant Protection, Nanjing Agricultural University; Porcine Epidemic Diarrhea Virus SD-M strain was donated by He Kongwang, a researcher at the Veterinary Institute of Jiangsu Academy of Agricultural Sciences. E.coliJM109 strain and plasmid pMD19-T were purchased from Takara company; plasmid pHT43 was purchased from Life Technologies company; plasmid pDsRed-monomer-N1 was purchased from Clontech company; reagent: Q5 high fidelity enzyme was purchased from NEB company; agarose gel recovery Kits, T4 ligase, Trizol, RNA reverse transcription kits and One Step Cloning Kit site-directed cloning kits were purchased from Takara; chloramphenicol, ampicillin, bacterial plasmid extraction kits and bacterial genome extraction kits were all purchased from Takara. Purchased from OMEGA company; mouse anti-RFP antibody, horseradish peroxidase-labeled rabbit anti-mouse IgG and IgA antibody were purchased from BETHYL company; TMB chromogenic solution was purchased from TIANGEN company; PVDF membrane, skim milk and ECL chemiluminescent solution were Purchased from Merck Millipore Corporation. Red fluorescent dye, BSA, chloral hydrate and UEA-1 were purchased from Sigma Company; OTC was purchased from Thermo Company.
1.1红色荧光蛋白基因的克隆1.1 Cloning of the red fluorescent protein gene
参照已发表的红色荧光蛋白基因序列(GenBank登陆号:AB166761.1)设计一对扩增红色荧光蛋白基因RFP的引物,在上游引物5端引入与pHT43载体多克隆位点3’末端11bp的同源臂序列,两序列之间引入BamHI酶切位点(下划线为酶切位点);在下游引物5端引入与猪流行性腹泻病毒(PEDV)S蛋白基因5’末端12bp的同源臂序列,两序列之间引入BamHI酶切位点(下划线为酶切位点),引物序列如下:Referring to the published red fluorescent protein gene sequence (GenBank accession number: AB166761.1), a pair of primers for amplifying the red fluorescent protein gene RFP was designed, and at the 5 end of the upstream primer, the 11bp identical to the 3' end of the pHT43 vector multi-cloning site was introduced. Source arm sequence, BamHI restriction site is introduced between the two sequences (underlined is restriction site); at the 5 end of the downstream primer, a homology arm sequence with 12 bp at the 5' end of porcine epidemic diarrhea virus (PEDV) S protein gene is introduced , BamHI restriction site (underlined is restriction site) is introduced between the two sequences, and the primer sequence is as follows:
P1:CATCARCCGTAGGATCC AGTAAAGGAGAAGAAP1: CATCARCCGTA GGATCC AGTAAAGGAGAAGAA
P2:AACAAAAGAAATGGATCC TTTGTATAGTTCATCCATP2: AACAAAAGAAAT GGATCC TTTGTATAGTTCATCCAT
以上引物均由上海英潍捷基贸易有限公司合成;The above primers were synthesized by Shanghai Yingweijieji Trading Co., Ltd.;
以pDsRed-monomer-N1质粒为模板进行PCR扩增;PCR反应体系为50μL,PCR反应条件:95℃预变性5min,95℃30sec,72℃30sec,72℃1min,30cycles,72℃10min,4℃10min;切取目的条带,经DNA纯化试剂盒回收后,用T4连接酶连接到pMD19-T载体上,构建的载体分别命名为T-R,经菌落PCR及酶切验证后测序。所获得的序列经BLAST及DNAstar与GenBank上已发表的序列比对。所克隆的红色荧光蛋白基因序列SEQ ID NO.1与已经在GenBank上发表的序列的同源性为100%。PCR amplification was carried out with pDsRed-monomer-N1 plasmid as template; PCR reaction system was 50 μL, PCR reaction conditions: pre-denaturation at 95 °C for 5 min, 95 °C for 30 sec, 72 °C for 30 sec, 72 °C for 1 min, 30 cycles, 72 °C for 10 min, 4 °C 10min; excised the target band, recovered by DNA purification kit, ligated to pMD19-T vector with T4 ligase, the constructed vector was named T-R, and sequenced after colony PCR and enzyme digestion verification. The obtained sequences were aligned with those published in GenBank by BLAST and DNAstar. The cloned red fluorescent protein gene sequence SEQ ID NO. 1 has 100% homology with the sequence published in GenBank.
1.2猪流行性腹泻病毒(PEDV)S蛋白基因的克隆1.2 Cloning of porcine epidemic diarrhea virus (PEDV) S protein gene
参照已发表的猪流行性腹泻病毒S蛋白基因序列(GenBank登陆号:JX560761.1)设计一对扩增S蛋白基因cDNA的引物,在上游引物5端引入与红色荧光蛋白基因3’末端12bp的同源臂序列,两序列之间引入BamHI酶切位点(下划线为酶切位点);在下游引物5端引入与肠道M细胞靶向肽L-lectin-β-GF基因5’末端20bp的同源臂序列,引物序列如下:Referring to the published porcine epidemic diarrhea virus S protein gene sequence (GenBank accession number: JX560761.1), a pair of primers for amplifying the S protein gene cDNA was designed, and the 5 end of the upstream primer was introduced into the 12bp of the 3' end of the red fluorescent protein gene Homologous arm sequence, BamHI restriction site is introduced between the two sequences (underlined is restriction site); 20bp at the 5' end of the intestinal M cell targeting peptide L-lectin-β-GF gene is introduced at the 5 end of the downstream primer The homology arm sequence of , the primer sequence is as follows:
P3:GAACTATACAAAGGATCCATTTCTTTTGTTP3: GAACTATACAAA GGATCC ATTTCTTTTGTT
P4:GTCGTCRCTRCTGACRCAAATTTATCATCATCATCTTTATP4: GTCGTCRCTRCTGACRCAAATTTATCATCATCATCTTTAT
以上引物均由上海英潍捷基贸易有限公司合成;The above primers were synthesized by Shanghai Yingweijieji Trading Co., Ltd.;
以猪流行性腹泻病毒SD-M毒株提取的总RNA为模板,经MLV-反转录酶合成cDNA第一链后进行PCR扩增;PCR反应体系为50μL,PCR反应条件:95℃预变性5min,95℃30sec,67℃30sec,72℃1min,30cycles,72℃10min,4℃10min;切取目的条带,经DNA纯化试剂盒回收后,用T4连接酶连接到pMD19-T载体上,构建的载体分别命名为T-COE,经菌落PCR及酶切验证后测序。所获得的序列经BLAST及DNAstar与GenBank上已发表的序列比对。所克隆的猪流行性腹泻病毒S蛋白基因序列SEQ ID NO.2与已经在GenBank上发表的序列的同源性为100%。The total RNA extracted from the SD-M strain of porcine epidemic diarrhea virus was used as a template, and the first strand of cDNA was synthesized by MLV-reverse transcriptase and then amplified by PCR; the PCR reaction system was 50 μL, and the PCR reaction conditions: pre-denaturation at 95°C 5min, 95°C for 30sec, 67°C for 30sec, 72°C for 1min, 30cycles, 72°C for 10min, 4°C for 10min; excised the target band, recovered by DNA purification kit, and ligated to pMD19-T vector with T4 ligase to construct The vectors were named T-COE respectively, and were sequenced after colony PCR and enzyme digestion verification. The obtained sequences were aligned with those published in GenBank by BLAST and DNAstar. The cloned porcine epidemic diarrhea virus S protein gene sequence SEQ ID NO. 2 has 100% homology with the sequence published in GenBank.
1.3肠道M样细胞靶向肽L-lectin-β-GF基因的克隆1.3 Cloning of intestinal M-like cell targeting peptide L-lectin-β-GF gene
参照已发表的L-lectin-β-GF基因序列(GenBank登陆号:BA000018.3),设计一对扩增L-lectin-β-GF基因的引物,在上游引物5端引入与猪流行性腹泻病毒S蛋白基因3’末端20bp的同源臂序列;下游引物5端引入与pHT43多克隆位点5’末端15bp的同源臂序列,两序列之间引入XmaI酶切位点(下划线为酶切位点),引物序列如下:Referring to the published L-lectin-β-GF gene sequence (GenBank accession number: BA000018.3), a pair of primers for amplifying the L-lectin-β-GF gene was designed, and the 5 end of the upstream primer was introduced with porcine epidemic diarrhea The 20bp homology arm sequence at the 3' end of the viral S protein gene; the 5 end of the downstream primer introduces a 15bp homology arm sequence with the 5' end of the pHT43 multi-cloning site, and an XmaI restriction site is introduced between the two sequences (underlined is restriction enzyme cut) site), the primer sequences are as follows:
P5:ATAAAGATGATGATGATAAATTTRCGTCARCARCGACGACP5: ATAAAGATGATGATGATAAATTTRCGTCARCARCGACGAC
P6:CATTAGRCGGRCTRCCCCGGGAGTAAAATAATATGTP6: CATTAGRCGGRCTRC CCCGGG AGTAAAATAATATGT
以上引物均由上海英潍捷基贸易有限公司合成;The above primers were synthesized by Shanghai Yingweijieji Trading Co., Ltd.;
以金黄色葡萄球菌菌株提取的基因组为模板,进行PCR扩增;PCR反应体系均为50μL,PCR反应条件:95℃预变性5min,95℃30sec,69℃30sec,72℃2min,30cycles,72℃10min,4℃10min;切取目的条带,经DNA纯化试剂盒回收后,用T4连接酶连接到pMD19-T载体上,构建的载体分别命名为T-L,经菌落PCR及酶切验证后测序。所获得的序列经BLAST及DNAstar与GenBank上已发表的序列比对。所克隆的肠道M样细胞靶向肽L-lectin-β-GF基因序列SEQID NO.3与已经在GenBank上发表的序列的同源性为100%。The genome extracted from Staphylococcus aureus strains was used as a template for PCR amplification; the PCR reaction system was 50 μL, and the PCR reaction conditions were: 95℃ for 5min, 95℃ for 30sec, 69℃ for 30sec, 72℃ for 2min, 30cycles, 72℃ 10min at 4°C for 10min; excised the target band, recovered by DNA purification kit, ligated to the pMD19-T vector with T4 ligase, the constructed vector was named T-L, and sequenced after colony PCR and enzyme digestion verification. The obtained sequences were aligned with those published in GenBank by BLAST and DNAstar. The cloned intestinal M-like cell targeting peptide L-lectin-β-GF gene sequence SEQ ID NO.3 has 100% homology with the sequence published in GenBank.
1.4重组表达载体pHT43-RCL的构建1.4 Construction of recombinant expression vector pHT43-RCL
以SEQ ID NO.1序列、SEQ ID NO.2序列和SEQ ID NO.3序列为模板,用引物P1、P4进行重叠PCR扩增,PCR反应体系为50μL,PCR反应条件:95℃预变性5min,95℃30sec,72℃30sec,72℃4min,30cycles,72℃10min,4℃10min;如图1所示,将PCR产物回收,并使用OneStep Cloning Kit定点克隆试剂盒克隆至pHT43载体上,获得表达载体pHT43-RCL。Take SEQ ID NO.1 sequence, SEQ ID NO.2 sequence and SEQ ID NO.3 sequence as templates, use primers P1, P4 to carry out overlapping PCR amplification, the PCR reaction system is 50 μL, PCR reaction conditions: 95 ℃ pre-denaturation 5min , 95°C for 30sec, 72°C for 30sec, 72°C for 4min, 30cycles, 72°C for 10min, 4°C for 10min; as shown in Figure 1, the PCR product was recovered and cloned into pHT43 vector using the OneStep Cloning Kit site-directed cloning kit to obtain Expression vector pHT43-RCL.
2重组质粒的转化方法:2 Transformation methods of recombinant plasmids:
取60μL枯草芽孢杆菌WB800N电转化感受态细胞与1μL(50ng/μL)重组表达载体pHT43-RCL质粒混合加入电击杯中,冰浴5min后进行电击,电击条件:22KV/cm,25μF,200Ω,电击一次。加入1mL电击恢复液,37℃100rpm孵育3h,涂布于氯霉素抗性固体基础培养基LB平板,14-18h可见阳性菌落。Take 60 μL of Bacillus subtilis WB800N electrotransformed competent cells and 1 μL (50 ng/μL) recombinant expression vector pHT43-RCL plasmid mixed into the electric shock cup, and electric shock was performed after ice bath for 5 minutes. Electric shock conditions: 22KV/cm, 25 μF, 200Ω, electric shock once. Add 1 mL of electroshock recovery solution, incubate at 37°C at 100 rpm for 3 h, spread on LB plate of chloramphenicol-resistant solid basal medium, and see positive colonies within 14-18 h.
3蛋白表达的验证方法:3. Validation method of protein expression:
对枯草芽孢杆菌WB800N进行溶菌酶处理,对表达产物进行Western-blot分析。SDS电泳后进行蛋白转印;转印好的PVDF膜5%脱脂牛奶进行封闭之后用鼠抗GFP抗体孵育过夜;洗涤后加适当稀释后的辣根过氧化物酶标兔抗鼠IgG,25℃作用2h,ECL化学发光液进行曝光并拍照。结果与RFP抗体呈现阳性反应,如图2可知:4、5、6为表达L-lectin-β-GF和PEDVS蛋白的重组枯草芽孢杆菌WB800N与1、2、3为正常枯草芽孢杆菌WB800N(遗传物质中未含有外源基因)相比,在95kD处有一条明显的蛋白印迹带,且无非特异性条带出现,证明L-lectin-β-GF和PEDV S蛋白在重组枯草芽孢杆菌WB800N内可以被成功表达。Bacillus subtilis WB800N was treated with lysozyme, and the expression product was analyzed by Western-blot. After SDS electrophoresis, protein transfer was performed; the transferred PVDF membrane was blocked with 5% skim milk, and then incubated with mouse anti-GFP antibody overnight; after washing, appropriate diluted horseradish peroxidase-labeled rabbit anti-mouse IgG was added at 25°C After 2 hours of action, ECL chemiluminescent solution was exposed and photographed. The results showed a positive reaction with the RFP antibody, as shown in Figure 2: 4, 5, and 6 were recombinant Bacillus subtilis WB800N expressing L-lectin-β-GF and PEDVS proteins, and 1, 2, and 3 were normal Bacillus subtilis WB800N (genetic There is an obvious western blot band at 95kD, and no non-specific band appears, which proves that L-lectin-β-GF and PEDV S protein can be in the recombinant Bacillus subtilis WB800N been successfully expressed.
4重组枯草芽孢杆菌靶向肠道M样细胞检测方法:4 Recombinant Bacillus subtilis targeting intestinal M-like cells detection method:
正常枯草芽孢杆菌WB800N菌株(遗传物质中未含有外源基因)(B.S.)、对照重组枯草芽孢杆菌WB800N菌株(表达PEDV S蛋白,但是不表达肠道M样细胞靶向肽L-lectin-β-GF)(B.S.-RC)和表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌WB800N菌株(B.S.-RCL)分别用红色荧光染料标记并进行肠道原位灌注试验,免疫荧光染色观察重组枯草芽孢杆菌与肠道M样细胞的结合情况。具体方法为:4周龄的小鼠用水合氯醛麻醉后,打开腹腔,对含有派尔氏斑的肠道进行多段结扎,每段注入B.S、B.S.-RC或B.S.-RCL;15min和1h后,分离肠段放入4%多聚甲醛中固定并用OTC包埋。对包埋好的肠道组织进行冰冻切片并用UEA-1标记M细胞,随后进行共聚焦显微镜观察。如图3可知:通过染色观察肠结扎15min后,B.S.-RCL与M细胞出现明显的共定位现象;1h后灌注B.S.-RCL的肠段派尔氏斑中重组枯草芽孢杆菌的量明显增多。Normal Bacillus subtilis WB800N strain (without foreign genes in genetic material) (B.S.), control recombinant Bacillus subtilis WB800N strain (expressing PEDV S protein, but not expressing intestinal M-like cell targeting peptide L-lectin-β- GF) (B.S.-RC) and recombinant Bacillus subtilis WB800N strain (B.S.-RCL) expressing intestinal M-like cell targeting peptides L-lectin-β-GF and PEDV S protein, respectively, were labeled with red fluorescent dye and intestinal In situ perfusion test and immunofluorescence staining were used to observe the binding of recombinant Bacillus subtilis to intestinal M-like cells. The specific method is as follows: after 4-week-old mice were anesthetized with chloral hydrate, the abdominal cavity was opened, and the intestinal tract containing Peyer's patches was ligated in multiple segments, and B.S, B.S.-RC or B.S.-RCL was injected into each segment; 15min and 1h later , the isolated intestinal segments were fixed in 4% paraformaldehyde and embedded with OTC. The embedded intestinal tissue was frozen sectioned and M cells were labeled with UEA-1, followed by confocal microscopy. As shown in Figure 3: 15min after intestinal ligation, B.S.-RCL and M cells showed obvious co-localization phenomenon; 1h later, the amount of recombinant Bacillus subtilis in Peyer's patches of intestinal segment perfused with B.S.-RCL was significantly increased.
5检测口服免疫该重组枯草芽孢杆菌小鼠机体产生的PEDV特异性免疫应答水平:5. Detect the level of PEDV-specific immune response produced by oral immunization of the recombinant Bacillus subtilis mice:
正常枯草芽孢杆菌WB800N菌株(遗传物质中未含有外源基因)(B.S.)、对照重组枯草芽孢杆菌WB800N菌株(B.S.-RC)和表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌WB800N菌株(B.S.-RCL)口服免疫6周龄小鼠,口服剂量为1010cfu/kg,首免7天和14天后按相同剂量进行二免和三免,每周进行血清和肠道涮洗液的采集,饲养周期为35天。采用间接ELISA的方法进行PEDV特异性IgG和特异性SIgA水平变化检测,检测方法为:PEDV抗原包被过夜,1%BSA(牛血清白蛋白)37℃封闭2h,洗涤后加待检样品37℃作用1h,洗涤加适当稀释后的辣根过氧化物酶标兔抗鼠IgG或IgA抗体,37℃1h,含四甲基联苯胺和H2O2的TMB显色液显色后酶标仪检测OD450。最终数据用S/N法进行计算后统计。如图4可知:口服免疫重组枯草芽孢杆菌WB800N(B.S.-RC和B.S.-RCL),首免14天后,血清中PEDV特异性抗体显著高于PBS组和B.S.组(P<0.01或P<0.05),此后时间内抗体水平维持稳定直至第28天,随后出现下降;B.S.-RCL组与B.S.-RC组相比虽然没有显著差异,但是有明显的上升趋势。图5可知:口服免疫重组枯草芽孢杆菌WB800N(B.S.-RC和B.S.-RCL),首免14天后,血清中PEDV特异性抗体显著高于PBS组和B.S.组(P<0.01或P<0.05),此后时间内抗体水平维持稳定直至第21天,随后出现下降;B.S.-RCL组与B.S.-RC组相比虽然没有显著差异,但是有明显的上升趋势。Normal Bacillus subtilis WB800N strain (without foreign genes in the genetic material) (BS), control recombinant Bacillus subtilis WB800N strain (BS-RC) and expression of intestinal M-like cell targeting peptide L-lectin-β-GF and The recombinant Bacillus subtilis WB800N strain of PEDV S protein (BS-RCL) was orally immunized to 6-week-old mice at an oral dose of 10 10 cfu/kg. The second and third immunizations were performed at the same dose after the first immunization for 7 days and 14 days. Serum and intestinal rinses were collected every week, and the feeding cycle was 35 days. The level of PEDV-specific IgG and specific SIgA was detected by indirect ELISA. The detection method was as follows: PEDV antigen was coated overnight, blocked with 1% BSA (bovine serum albumin) at 37°C for 2h, and then added to the sample to be tested at 37°C after washing. Act for 1h, wash and add appropriately diluted horseradish peroxidase-labeled rabbit anti-mouse IgG or IgA antibody, 37℃ for 1h, TMB chromogenic solution containing tetramethylbenzidine and H 2 O 2 after color development Detection of OD450 . The final data were calculated by the S/N method. As shown in Figure 4: Oral immunization with recombinant Bacillus subtilis WB800N (BS-RC and BS-RCL), 14 days after the first immunization, the PEDV-specific antibody in serum was significantly higher than that of PBS group and BS group (P<0.01 or P<0.05) , the antibody level remained stable until the 28th day, and then decreased; although there was no significant difference between the BS-RCL group and the BS-RC group, there was an obvious upward trend. Figure 5 shows that: after oral immunization of recombinant Bacillus subtilis WB800N (BS-RC and BS-RCL), 14 days after the first immunization, the serum PEDV-specific antibody was significantly higher than that of the PBS group and the BS group (P<0.01 or P<0.05). After that, the antibody level remained stable until the 21st day, and then decreased; although there was no significant difference between the BS-RCL group and the BS-RC group, there was an obvious upward trend.
6数据分析6 Data Analysis
采用SPSS 17.0软件的单因素ANOVA方差试验结果,并对试验数据进行统计分析,统计结果以平均数±标准误(Mean±SE)表示误差。差异显著性判断标准为:P<0.05,差异显著(*);P<0.01,差异极显著(**)。One-way ANOVA variance test results of SPSS 17.0 software were used, and statistical analysis was performed on the test data. The statistical results were expressed as mean ± standard error (Mean ± SE). The criterion for the significance of difference is: P<0.05, significant difference (*); P<0.01, extremely significant difference (**).
应用application
本发明涉及表达肠道M样细胞靶向肽L-lectin-β-GF和PEDV S蛋白的重组枯草芽孢杆菌WB800N菌株(B.S.-RCL),有望成为增强型黏膜免疫递送载体并且开发成预防猪流行性腹泻的基因工程口服疫苗;同时为开展枯草芽孢杆菌黏膜免疫递送活载体的研究提供了技术方案。The present invention relates to a recombinant Bacillus subtilis WB800N strain (B.S.-RCL) expressing intestinal M-like cell targeting peptide L-lectin-β-GF and PEDV S protein, which is expected to be an enhanced mucosal immune delivery carrier and developed to prevent swine epidemics A genetically engineered oral vaccine for diarrhoea; at the same time, it provides a technical solution for the study of Bacillus subtilis mucosal immune delivery live vector.
序列表sequence listing
<110> 南京农业大学<110> Nanjing Agricultural University
<120> 表达肠道M样细胞靶向肽和猪流行性腹泻病毒S蛋白的重组枯草芽孢杆菌<120> Recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide and porcine epidemic diarrhea virus S protein
<140> 2017100121404<140> 2017100121404
<141> 2017-01-03<141> 2017-01-03
<160> 9<160> 9
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 714<211> 714
<212> DNA<212> DNA
<213> 红色荧光蛋白基因序列(Artificial Sequence)<213> DsRed gene sequence (Artificial Sequence)
<400> 1<400> 1
atgagtaaag gagaagaact tttcactgga gttgtcccaa ttcttgttga attagatggt 60atgagtaaag gagaagaact tttcactgga gttgtcccaa ttcttgttga attagatggt 60
gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg aaggtgatgc aacatacgga 120gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg aaggtgatgc aacatacgga 120
aaacttaccc ttaaatttat ttgcactact ggaaaactac ctgttccatg gccaacactt 180aaacttaccc ttaaatttat ttgcactact ggaaaactac ctgttccatg gccaacactt 180
gtcactactt tcggttatgg tgttcaatgc tttgcgagat acccagatca tatgaaacag 240gtcactactt tcggttatgg tgttcaatgc tttgcgagat acccagatca tatgaaacag 240
catgactttt tcaagagtgc catgcccgaa ggttatgtac aggaaagaac tatatttttc 300catgactttt tcaagagtgc catgcccgaa ggttatgtac aggaaagaac tatatttttc 300
aaagatgacg ggaactacaa gacacgtgct gaagtcaagt ttgaaggtga tacccttgtt 360aaagatgacg ggaactacaa gacacgtgct gaagtcaagt ttgaaggtga tacccttgtt 360
aatagaatcg agttaaaagg tattgatttt aaagaagatg gaaacattct tggacacaaa 420aatagaatcg agttaaaagg tattgatttt aaagaagatg gaaacattct tggacacaaa 420
ttggaataca actataactc acacaatgta tacatcatgg cagacaaaca aaagaatgga 480ttggaataca actataactc acacaatgta tacatcatgg cagacaaaca aaagaatgga 480
atcaaagtta acttcaaaat tagacacaac attgaagatg gaagcgttca actagcagac 540atcaaagtta acttcaaaat tagacacaac attgaagatg gaagcgttca actagcagac 540
cattatcaac aaaatactcc aattggcgat ggccctgtcc ttttaccaga caaccattac 600cattatcaac aaaatactcc aattggcgat ggccctgtcc ttttaccaga caaccattac 600
ctgtccacac aatctgccct ttcgaaagat cccaacgaaa agagagacca catggtcctt 660ctgtccacac aatctgccct ttcgaaagat cccaacgaaa agagagacca catggtcctt 660
cttgagtttg taacagctgc tgggattaca catggcatgg atgaactata caaa 714cttgagtttg taacagctgc tgggattaca catggcatgg atgaactata caaa 714
<210> 2<210> 2
<211> 876<211> 876
<212> DNA<212> DNA
<213> 猪流行性腹泻病毒S蛋白基因序列(Artificial Sequence)<213> Porcine epidemic diarrhea virus S protein gene sequence (Artificial Sequence)
<400> 2<400> 2
atgatttctt ttgttactcc gccatcattt aatgaccatt cttttgttaa cattactgtc 60atgatttctt ttgttactcc gccatcattt aatgaccatt cttttgttaa cattactgtc 60
tctgcttcct ttggtggtca tagtggtgcc aaccttattg catctgacac tactatcaat 120tctgcttcct ttggtggtca tagtggtgcc aaccttattg catctgacac tactatcaat 120
gggtttagtt ctttctgtgt tgacactaga caatttacca tttcactgtt ttacaacgtt 180gggtttagtt ctttctgtgt tgacactaga caatttacca tttcactgtt ttacaacgtt 180
acaaacagtt atggttatgt gtctaaatca caggacagta attgcccttt caccttgcaa 240acaaacagtt atggttatgt gtctaaatca caggacagta attgcccttt caccttgcaa 240
tctgttaatg attacctgtc ttttagcaaa ttttgtgttt ccaccagcct tttggctagt 300tctgttaatg attacctgtc ttttagcaaa ttttgtgttt ccaccagcct tttggctagt 300
gcctgtacca tagatctttt tggttaccct gagtttggta gtggtgttaa gtttacgtcc 360gcctgtacca tagatctttt tggttaccct gagtttggta gtggtgttaa gtttacgtcc 360
ctttactttc aattcacaaa gggtgagttg attactggca cgcctaaacc acttgaaggt 420ctttactttc aattcacaaa gggtgagttg attactggca cgcctaaacc acttgaaggt 420
gtcacggacg tttcttttat gactctggat gtgtgtacca agtatactat ctatggcttt 480gtcacggacg tttcttttat gactctggat gtgtgtacca agtatactat ctatggcttt 480
aaaggtgagg gtatcattac ccttacaaat tctagctttt tggcaggtgt ttattacaca 540aaaggtgagg gtatcattac ccttacaaat tctagctttt tggcaggtgt ttattacaca 540
tctgattctg gacagttgtt agcctttaag aatgtcacta gtggtgctgt ttattctgtt 600tctgattctg gacagttgtt agcctttaag aatgtcacta gtggtgctgt ttattctgtt 600
acgccatgtt ctttttcaga gcaggctgca tatgttgatg atgatatagt gggtgttatt 660acgccatgtt ctttttcaga gcaggctgca tatgttgatg atgatatagt gggtgttatt 660
tctagtttgt ctagctccac ttttaacagt actagggagt tgcctggttt cttctaccat 720tctagtttgt ctagctccac ttttaacagt actagggagt tgcctggttt cttctaccat 720
tctaatgatg gctctaattg tacagagcct gtgttggtgt atagtaacat aggtgtttgt 780tctaatgatg gctctaattg tacagagcct gtgttggtgt atagtaacat aggtgtttgt 780
aaatctggca gtattggcta cgtcccatcc cagtctggcc aagtcaagac tgcacccacg 840aaatctggca gtattggcta cgtcccatcc cagtctggcc aagtcaagac tgcacccacg 840
gttactggga atattagtat tcccaccaac tttagt 876gttactggga atattagtat tcccaccaac tttagt 876
<210> 3<210> 3
<211> 987<211> 987
<212> DNA<212> DNA
<213> L-lectin-β-GF基因序列(Artificial Sequence)<213> L-lectin-β-GF gene sequence (Artificial Sequence)
<400> 3<400> 3
atgtttgcgt cagcagcgac gacaaccgca gtaactgcta atacaattac agttaataaa 60atgtttgcgt cagcagcgac gacaaccgca gtaactgcta atacaattac agttaataaa 60
gataacttaa aacaatatat gacaacgtca ggtaatgcta cctatgatca aagtaccggt 120gataacttaa aacaatatat gacaacgtca ggtaatgcta cctatgatca aagtaccggt 120
attgtgacgt taacacagga tgcatacagc caaaaaggtg ctattacatt aggaacacgt 180attgtgacgt taacacagga tgcatacagc caaaaaggtg ctattacatt aggaacacgt 180
attgactcta ataagagttt tcatttttct ggaaaagtaa atttaggtaa caaatatgaa 240attgactcta ataagagttt tcatttttct ggaaaagtaa atttaggtaa caaatatgaa 240
gggcatggaa atggtggaga tggtatcggt tttgcctttt caccaggtgt attaggtgaa 300gggcatggaa atggtggaga tggtatcggt tttgcctttt caccaggtgt attaggtgaa 300
acagggttaa acggtgccgc agtaggtatt ggtggcttaa gtaacgcatt tggcttcaaa 360acagggttaa acggtgccgc agtaggtatt ggtggcttaa gtaacgcatt tggcttcaaa 360
ttggatacgt atcacaatac atctaaacca aattcagctg caaaggcgaa tgctgaccca 420ttggatacgt atcacaatac atctaaacca aattcagctg caaaggcgaa tgctgaccca 420
tctaatgtag ctggtggagg tgcgtttggt gcatttgtaa caacagatag ttatggtgtt 480tctaatgtag ctggtggagg tgcgtttggt gcatttgtaa caacagatag ttatggtgtt 480
gcgacaacgt atacatcaag ttcaacagct gataatgctg cgaagttaaa tgttcaacct 540gcgacaacgt atacatcaag ttcaacagct gataatgctg cgaagttaaa tgttcaacct 540
acaaataaca cgttccaaga ttttgatatt aactataatg gtgatacaaa ggttatgact 600acaaataaca cgttccaaga ttttgatatt aactataatg gtgatacaaa ggttatgact 600
gtcaaatatg caggtcaaac atggacacgt aatatttcag attggattgc gaaaagtggt 660gtcaaatatg caggtcaaac atggacacgt aatatttcag attggattgc gaaaagtggt 660
acgaccaact tttcattatc aatgacagcc tcaacaggtg gcgcgacaaa tttacaacaa 720acgaccaact tttcattatc aatgacagcc tcaacaggtg gcgcgacaaa tttacaacaa 720
gtacaatttg gaacattcga atatacagag tctgctgtta cacaagtgag atacgttgat 780gtacaatttg gaacattcga atatacagag tctgctgtta cacaagtgag atacgttgat 780
gtaacaacag gtaaagatat tattccacca aaaacatatt caggaaatgt tgatcaagtc 840gtaacaacag gtaaagatat tattccacca aaaacatatt caggaaatgt tgatcaagtc 840
gtgacaatcg ataatcagca atctgcattg actgctaaag gatataacta cacgtccgtc 900gtgacaatcg ataatcagca atctgcattg actgctaaag gatataacta cacgtccgtc 900
gatagttcat atgcgtcaac ttataatgat acaaataaaa ctgtaaaaat gacgaatgct 960gatagttcat atgcgtcaac ttataatgat acaaataaaa ctgtaaaaat gacgaatgct 960
ggacaatcag tgacatatta ttttact 987ggacaatcag tgacatatta ttttact 987
<210> 4<210> 4
<211> 32<211> 32
<212> DNA<212> DNA
<213> P1引物(Artificial Sequence)<213> P1 primer (Artificial Sequence)
<400> 4<400> 4
catcarccgt aggatccagt aaaggagaag aa 32catcarccgt aggatccagt aaaggagaag aa 32
<210> 5<210> 5
<211> 36<211> 36
<212> DNA<212> DNA
<213> P2引物(Artificial Sequence)<213> P2 primer (Artificial Sequence)
<400> 5<400> 5
aacaaaagaa atggatcctt tgtatagttc atccat 36aacaaaagaa atggatcctt tgtatagttc atccat 36
<210> 6<210> 6
<211> 30<211> 30
<212> DNA<212> DNA
<213> P3引物(Artificial Sequence)<213> P3 primer (Artificial Sequence)
<400> 6<400> 6
gaactataca aaggatccat ttcttttgtt 30gaactataca aaggatccat ttcttttgtt 30
<210> 7<210> 7
<211> 40<211> 40
<212> DNA<212> DNA
<213> P4引物(Artificial Sequence)<213> P4 primer (Artificial Sequence)
<400> 7<400> 7
gtcgtcrctr ctgacrcaaa tttatcatca tcatctttat 40gtcgtcrctr ctgacrcaaa tttatcatca tcatctttat 40
<210> 8<210> 8
<211> 40<211> 40
<212> DNA<212> DNA
<213> P5引物(Artificial Sequence)<213> P5 primer (Artificial Sequence)
<400> 8<400> 8
ataaagatga tgatgataaa tttrcgtcar carcgacgac 40ataaagatga tgatgataaa tttrcgtcar carcgacgac 40
<210> 9<210> 9
<211> 36<211> 36
<212> DNA<212> DNA
<213> P6引物(Artificial Sequence)<213> P6 primer (Artificial Sequence)
<400> 9<400> 9
cattagrcgg rctrccccgg gagtaaaata atatgt 36cattagrcgg rctrccccgg gagtaaaata atatgt 36
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710012140.4A CN108265073B (en) | 2017-01-03 | 2017-01-03 | Recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide and porcine epidemic diarrhea virus S protein |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710012140.4A CN108265073B (en) | 2017-01-03 | 2017-01-03 | Recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide and porcine epidemic diarrhea virus S protein |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108265073A CN108265073A (en) | 2018-07-10 |
| CN108265073B true CN108265073B (en) | 2022-06-21 |
Family
ID=62770784
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710012140.4A Active CN108265073B (en) | 2017-01-03 | 2017-01-03 | Recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide and porcine epidemic diarrhea virus S protein |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108265073B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110144310B (en) * | 2019-05-20 | 2022-10-04 | 天津科技大学 | A Bacillus subtilis with the effect of relieving enteritis and promoting intestinal development and its application |
| CN112680388B (en) * | 2021-03-15 | 2021-06-29 | 南京农业大学 | A strain of Bacillus subtilis colonized in pig nasal cavity and its application of antiviral activity |
| CN116555141B (en) * | 2023-03-28 | 2023-11-03 | 青岛海华众康科技有限公司 | Bacillus subtilis for expressing porcine sai virus recombinant protein and application thereof |
| CN118496373A (en) * | 2024-04-02 | 2024-08-16 | 四川农业大学 | Preparation method and application of PEDV COE subunit vaccine targeting M cells |
| CN118879739A (en) * | 2024-05-29 | 2024-11-01 | 福建省农业科学院畜牧兽医研究所 | PEDV FJ-FQ2014 strain-specific primers with M cell targeting function and their application in yeast expression |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105886523A (en) * | 2014-12-25 | 2016-08-24 | 南京农业大学 | Recombinant bacillus subtilis for expressing S protein of transmissible gastroenteritis of swine virus |
-
2017
- 2017-01-03 CN CN201710012140.4A patent/CN108265073B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105886523A (en) * | 2014-12-25 | 2016-08-24 | 南京农业大学 | Recombinant bacillus subtilis for expressing S protein of transmissible gastroenteritis of swine virus |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108265073A (en) | 2018-07-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108265073B (en) | Recombinant Bacillus subtilis expressing intestinal M-like cell targeting peptide and porcine epidemic diarrhea virus S protein | |
| Hou et al. | Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria | |
| Li-Li et al. | Expression of infectious pancreatic necrosis virus (IPNV) VP2–VP3 fusion protein in Lactobacillus casei and immunogenicity in rainbow trouts | |
| JP2577280B2 (en) | Recombinant poxvirus and streptococcal M protein vaccine | |
| JP2001500487A (en) | Polypeptide fused to plant virus coat protein | |
| JPH07504815A (en) | Expression of heterologous genes in lactic acid bacteria and their expression products | |
| CN107858317A (en) | A kind of attenuated live vaccine of prevention and control aquiculture animal Aeromonas hemorrhage | |
| Yigang et al. | Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization | |
| CN106434728B (en) | Recombinant Bacillus subtilis expressing highly pathogenic avian influenza H5N1 hemagglutinin HA protein | |
| TWI221847B (en) | Clostridium perfringens vaccine | |
| CN104894045B (en) | A kind of recombinant Lactobacillus and its preparation method and application of coexpression VP 1 Gene of Foot-and-Mouth Disease virus and immunologic adjuvant ox IL-6 genes | |
| CN104988107B (en) | A kind of recombinant Lactobacillus of high efficient expression foot-and-mouth disease virus antigen gene and its preparation method and application | |
| KR101151004B1 (en) | Vaccine composition for protection and treatment against pathogenic Escherichia coli and Salmonella in cattle by administration of attenuated Salmonella expressing adhesin gene of pathogenic Escherichia coli and vaccination method thereof | |
| KR102212503B1 (en) | Scuticocillatosis vaccine of Olive flounder using CRISPR/Cas9 based Bacillus subtilis genome editing mechanism | |
| Su et al. | Intranasally inoculated bacterium-like particles displaying porcine epidemic diarrhea virus S1 protein induced intestinal mucosal immune response in mice | |
| CN116024244B (en) | Fusion protein gene and application thereof | |
| CN105886523A (en) | Recombinant bacillus subtilis for expressing S protein of transmissible gastroenteritis of swine virus | |
| CN107446872A (en) | A kind of recombinant lactic acid bacteria vaccine strain of constitutive expression rabbit hemorrhagic disease virus VP60 albumen and its production and use | |
| Wells et al. | Progress in the development of mucosal vaccines based on Lactococcus lactis | |
| CN115044524B (en) | Genetically engineered recombinant lactobacillus and application thereof in resisting vibrio mimicus infection | |
| CN116693693A (en) | A kind of recombinant lactic acid bacteria expressing GCRV VP6 and LTB and its preparation method and application | |
| CN105602981B (en) | Preparation method and application of porcine epidemic diarrhea virus genetic engineering subunit oral combined vaccine | |
| CN116514993A (en) | A kind of liver fluke oral spore vaccine and its preparation method | |
| CN1952156A (en) | Recombination and expression for non-antibiotic expression vector of rotavirus Vp6 gene and lactic acid bacteria | |
| CN107158371A (en) | A kind of gene engineered subunit bigeminy oral vaccine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| DD01 | Delivery of document by public notice | ||
| DD01 | Delivery of document by public notice |
Addressee: Che Chaoping Document name: Notification of Passing Examination on Formalities |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20250317 Address after: Room 101, Building 2, No. 85 Keyun Road, High tech Zone, Qingdao City, Shandong Province, China 266100 Patentee after: QINGDAO ANIMAL PROTECTION NATIONAL ENGINEERING TECHNOLOGY RESEARCH CENTER CO.,LTD. Country or region after: China Address before: 210095 School of Animal Medicine, Nanjing Agricultural University, No. 1 Weigang, Xuanwu District, Nanjing, Jiangsu Province Patentee before: NANJING AGRICULTURAL University Country or region before: China |