CN108344528B - A method and device for measuring heat exchange in a multi-connected air-conditioning system - Google Patents
A method and device for measuring heat exchange in a multi-connected air-conditioning system Download PDFInfo
- Publication number
- CN108344528B CN108344528B CN201810077165.7A CN201810077165A CN108344528B CN 108344528 B CN108344528 B CN 108344528B CN 201810077165 A CN201810077165 A CN 201810077165A CN 108344528 B CN108344528 B CN 108344528B
- Authority
- CN
- China
- Prior art keywords
- mixture
- outlet
- enthalpy
- mass flow
- enthalpy value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/06—Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明提供了一种多联式空调系统换热量测量方法及装置,该方法包括:根据进出多联式空调系统中各组件的能量守恒的原理,得到四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,获取混合物在再冷器的主回路出口的第十一焓值,获取混合物在四通阀的第二出口的第五焓值,根据第五质量流量、第五焓值、第十一焓值,得到多联式空调系统的制冷量;和/或,获取混合物在油分离器的第二出口的第八油分离器焓值,根据第五质量流量、第八油分离器焓值、第十一焓值,得到多联式空调系统的制热量。通过本发明,解决了现有技术中对多联式空调系统的换热量测量结果不准确的问题。
The invention provides a method and device for measuring heat exchange of a multi-connected air conditioning system. The method includes: according to the principle of energy conservation of each component in and out of the multi-connected air conditioning system, obtaining the refrigeration temperature at the second outlet of the four-way valve. Obtain the fifth mass flow rate of the mixture composed of coolant and lubricating oil, obtain the eleventh enthalpy value of the mixture at the outlet of the main circuit of the subcooler, obtain the fifth enthalpy value of the mixture at the second outlet of the four-way valve, according to the fifth mass flow rate, fifth enthalpy value, and eleventh enthalpy value, obtain the cooling capacity of the multi-stage air conditioning system; and/or obtain the eighth oil separator enthalpy value of the mixture at the second outlet of the oil separator, according to the fifth mass The flow rate, the enthalpy value of the eighth oil separator, and the enthalpy value of the eleventh oil separator are used to obtain the heating capacity of the multi-connected air-conditioning system. The invention solves the problem of inaccurate measurement results of the heat exchange of the multi-connected air conditioning system in the prior art.
Description
技术领域technical field
本发明涉及制冷与空调设备技术领域,具体涉及一种多联式空调系统换热量测量方法及装置。The invention relates to the technical field of refrigeration and air-conditioning equipment, in particular to a method and device for measuring heat exchange of a multi-connected air-conditioning system.
背景技术Background technique
多联式空调系统在实际使用过程中,由于气候条件、安装位置、使用情况和负荷条件等因素的影响,其现场运行性能与在实验室内的测试性能差距较大,因此,实测多联式空调系统在使用过程中的实际性能一直是行业内亟待解决的问题。目前,耗电量的现场测量技术比较成熟,但是制冷(热)量则无法准确测量,故难以分析多联式空调系统的实际性能,不利于多联式空调系统的优化运行与管理。During the actual use of the multi-connected air-conditioning system, due to the influence of factors such as climatic conditions, installation location, usage and load conditions, there is a large gap between its field operation performance and the test performance in the laboratory. The actual performance of the air-conditioning system during use has always been an urgent problem to be solved in the industry. At present, the on-site measurement technology of power consumption is relatively mature, but the cooling (heat) amount cannot be accurately measured, so it is difficult to analyze the actual performance of the multi-connected air-conditioning system, which is not conducive to the optimal operation and management of the multi-connected air-conditioning system.
现有技术中,针对多联式空调系统现场性能测量,主要是从制冷循环的外部入手,即采用室内空气焓差法和室外空气焓差法进行测量,即通过测量被测换热器的进风量(或排风量)、进风(或排风)的温湿度,计算出空气与制冷剂的换热量;同时测量制冷热泵系统的压缩机耗电量,进而计算出制冷热泵系统的制冷(热)量以及制冷(热)能效比。采用上述两种方法时,由于在现场条件下因空气流场分布不均匀,故其风量无法准确测量;如果采用外接风道方式进行测量,又将影响制冷热泵系统的运行状态,导致测试结果不能反映实际情况的问题。当采用室外空气焓差法时,特别是在有外风扰动时,制冷热泵系统的制冷(热)量的测量误差很大;当采用室内空气焓差法时,不仅风量无法准确测量,而且影响室内人员的工作,尤其是在多个室内机末端的条件下,这些问题均使得现有技术难以满足工程测试要求。In the prior art, for the on-site performance measurement of the multi-connected air-conditioning system, it mainly starts from the outside of the refrigeration cycle, that is, the indoor air enthalpy difference method and the outdoor air enthalpy difference method are used for measurement, that is, by measuring the input of the heat exchanger under test. The air volume (or exhaust air volume) and the temperature and humidity of the inlet air (or exhaust air) are used to calculate the heat exchange between the air and the refrigerant; at the same time, the power consumption of the compressor of the cooling heat pump system is measured to calculate the cooling capacity of the cooling heat pump system. (heat) capacity and cooling (heat) energy efficiency ratio. When the above two methods are used, the air volume cannot be accurately measured due to the uneven distribution of the air flow field under field conditions; if an external air duct is used for measurement, the operation state of the cooling heat pump system will be affected, resulting in inaccurate test results. reflect the actual situation. When the outdoor air enthalpy difference method is used, especially when there is external wind disturbance, the measurement error of the cooling (heat) capacity of the cooling heat pump system is very large; when the indoor air enthalpy difference method is used, not only the air volume cannot be accurately measured, but also affects In the work of indoor personnel, especially under the condition of multiple indoor unit terminals, these problems make it difficult for the existing technology to meet the engineering test requirements.
因而,从多联式空调系统机组制冷剂侧入手,测量制冷剂的流量及状态参数,计算出多联式空调系统的制冷(热)量成为一种较好的技术解决方案。但在工程的现场条件下,采用插入式流量计,即在制冷剂管道上接入流量计以测量制冷剂的流量,则必须破坏制冷剂管道,影响多联式空调系统的可靠性甚至损毁多联式空调系统,因而该方法不具备可实施性。Therefore, starting from the refrigerant side of the multi-connected air-conditioning system, measuring the flow and state parameters of the refrigerant, and calculating the cooling (heat) capacity of the multi-connected air-conditioning system has become a better technical solution. However, under the on-site conditions of the project, if the plug-in flowmeter is used, that is, the flowmeter is connected to the refrigerant pipeline to measure the flow of the refrigerant, the refrigerant pipeline must be destroyed, which will affect the reliability of the multi-connected air conditioning system and even damage a lot. connected air-conditioning system, so this method is not feasible.
为了解决上述技术问题,中国专利文献CN202442818U公开了一种在建设工程现场对多联机式空调(热泵)机组室内机的制冷能力精确测量的高精度多联式空调(热泵)机组室内机制冷量现场测试仪,通过调节升降装置,将检测仪与被测室内机对接,要确保无漏风,导流板将室内机出风经均流网格后直接导回回风口,加热加湿组件对出风进行加热加湿,使回风口处的空气状态达到要求的状态,然后通过测量用于平衡制冷量和除湿量所输入的热量和水量来确定多联式空调(热泵)机组室内机的制冷量,由于现场空气流场分布不均匀,该方法并不能真实反映实际情况,因此导致多联式空调系统的制冷量确定结果不准确。In order to solve the above technical problems, Chinese patent document CN202442818U discloses a high-precision multi-connected air-conditioning (heat pump) unit indoor unit refrigerating capacity site for accurately measuring the cooling capacity of the indoor unit of a multi-connected air conditioner (heat pump) unit at the construction site The tester, by adjusting the lifting device, connects the detector with the indoor unit under test, to ensure that there is no air leakage, the deflector guides the air out of the indoor unit through the equalizing grid and directly back to the return air outlet, and the heating and humidifying component heats the air out. Humidify, make the air state at the return air outlet reach the required state, and then determine the cooling capacity of the indoor unit of the multi-connected air conditioner (heat pump) unit by measuring the input heat and water for balancing the cooling capacity and dehumidification capacity. The distribution of the flow field is not uniform, and this method cannot truly reflect the actual situation, which leads to inaccurate determination of the cooling capacity of the multi-connected air-conditioning system.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种多联式空调系统换热量测量方法及装置,以解决现有技术中对多联式空调系统的换热量测量结果不准确的问题。In view of this, the present invention provides a method and device for measuring heat exchange of a multi-connected air-conditioning system, so as to solve the problem of inaccurate measurement results of heat exchange of a multi-connected air-conditioning system in the prior art.
根据第一方面,本发明实施例提供了一种多联式空调系统换热量测量方法,所述多联式空调系统的压缩机的排气口连接油分离器的入口,所述油分离器的第一出口连接所述压缩机的吸气口,所述油分离器的第二出口通过连接四通阀的入口,所述四通阀的第一出口连接室外换热器的入口,室外换热器的出口连接再冷器的入口,气液分离器的第一入口连接所述再冷器的旁通回路出口,第二入口连接所述四通阀的第二出口,所述气液分离器的出口连接所述压缩机的入口,所述再冷器的主回路出口连接室内换热器,所述多联式空调系统换热量测量方法包括:根据进出所述多联式空调系统中各组件的能量守恒的原理,得到所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量;获取所述混合物在再冷器的主回路出口的第十一焓值;获取所述混合物在四通阀的第二出口的第五焓值,根据所述第五质量流量、所述第五焓值、所述第十一焓值,得到所述多联式空调系统的制冷量;和/或,获取所述混合物在油分离器的第二出口的第八油分离器焓值,根据所述第五质量流量、所述第八油分离器焓值、所述第十一焓值,得到所述多联式空调系统的制热量。According to a first aspect, an embodiment of the present invention provides a method for measuring heat exchange of a multi-stage air conditioning system, wherein the discharge port of the compressor of the multi-stage air conditioning system is connected to the inlet of an oil separator, and the oil separator The first outlet of the oil separator is connected to the suction port of the compressor, the second outlet of the oil separator is connected to the inlet of the four-way valve, and the first outlet of the four-way valve is connected to the inlet of the outdoor heat exchanger, and the outdoor heat exchanger The outlet of the heater is connected to the inlet of the subcooler, the first inlet of the gas-liquid separator is connected to the outlet of the bypass circuit of the subcooler, the second inlet is connected to the second outlet of the four-way valve, the gas-liquid separation The outlet of the recooler is connected to the inlet of the compressor, and the outlet of the main circuit of the recooler is connected to the indoor heat exchanger. According to the principle of energy conservation of each component, the fifth mass flow rate of the mixture of refrigerant and lubricating oil at the second outlet of the four-way valve is obtained; the eleventh mass flow rate of the mixture at the main circuit outlet of the subcooler is obtained. Enthalpy value; obtain the fifth enthalpy value of the mixture at the second outlet of the four-way valve, and obtain the multi-connected formula according to the fifth mass flow rate, the fifth enthalpy value, and the eleventh enthalpy value the cooling capacity of the air-conditioning system; and/or, obtaining the enthalpy value of the eighth oil separator of the mixture at the second outlet of the oil separator, according to the fifth mass flow rate, the enthalpy value of the eighth oil separator, the The eleventh enthalpy value is obtained to obtain the heating capacity of the multi-connected air-conditioning system.
通过上述步骤,根据进出多联式空调系统中各组件的能量守恒的原理,首先得到四通阀与气液分离器连接的出口的混合物的质量流量,然后获取混合物在再冷器的主回路出口的焓值和混合物在四通阀与气液分离器连接的出口的焓值,根据上述参数得到多联式空调系统的制冷量,和/或,获取混合物在油分离器与四通阀连接的入口的焓值,根据以上参数得到多联式空调系统的制热量,通过该过程得到多联式空调系统的制冷量和/或制热量,由于直接获取各组件出口或入口处的焓值和混合物的质量流量,使其计算结果更能准确反映系统的换热量,解决了现有技术中采用测量风量来计算制热量或制冷量,由于在现场条件下因空气流场分布不均匀,故其风量无法准确测量;如果采用外接风道方式进行测量,又将影响制冷热泵系统的运行状态,导致测试结果不能反映实际情况的问题。Through the above steps, according to the principle of energy conservation of each component in and out of the multi-connected air conditioning system, first obtain the mass flow of the mixture at the outlet where the four-way valve is connected to the gas-liquid separator, and then obtain the mixture at the main circuit outlet of the subcooler The enthalpy value of the mixture and the enthalpy value of the mixture at the outlet where the four-way valve is connected to the gas-liquid separator, obtain the cooling capacity of the multi-connected air-conditioning system according to the above parameters, and/or, obtain the mixture at the oil separator and the four-way valve. The enthalpy value of the inlet, the heating capacity of the multi-connected air-conditioning system is obtained according to the above parameters, and the cooling capacity and/or heating capacity of the multi-connected air-conditioning system is obtained through this process. Since the enthalpy value and mixture at the outlet or inlet of each component are directly obtained The mass flow rate of the system can make the calculation result more accurately reflect the heat exchange of the system, which solves the problem of calculating the heating or cooling capacity by measuring the air volume in the prior art. The air volume cannot be measured accurately; if an external air duct is used for measurement, it will affect the operation state of the cooling and heat pump system, resulting in the problem that the test results cannot reflect the actual situation.
结合第一方面,在本发明实施例第一方面第一实施方式中,通过以下公式计算所述多联式空调系统的制冷量:Qe=G5(h5-h11),其中,Qe表示所述多联式空调系统的制冷量,单位为kW,G5表示所述四通阀的第二出口处的所述混合物的第五质量流量,单位为kg/s,h5表示所述混合物在四通阀的第二出口的第五焓值、h11表示所述混合物在再冷器的主回路出口的第十一焓值,单位为kJ/kg。With reference to the first aspect, in the first embodiment of the first aspect of the embodiments of the present invention, the cooling capacity of the multi-connected air-conditioning system is calculated by the following formula: Q e =G 5 (h 5 -h 11 ), wherein Q e represents the refrigerating capacity of the multiple air-conditioning system, in kW, G5 represents the fifth mass flow rate of the mixture at the second outlet of the four-way valve, in kg/s, and h5 represents the The fifth enthalpy value of the mixture at the second outlet of the four-way valve, h 11 represents the eleventh enthalpy value of the mixture at the outlet of the main circuit of the subcooler, and the unit is kJ/kg.
结合第一方面第一实施方式,在本发明实施例第一方面第二实施方式中,所述多联式空调系统还包括:压缩机回油毛细管,所述压缩机回油毛细管的入口与油分离器的第一出口连接,所述压缩机回油毛细管的出口与所述压缩机的进气口连接;电磁阀出口回油毛细管,所述电磁阀出口回油毛细管的入口与所述四通阀的入口连接,所述电磁阀出口回油毛细管的出口与所述四通阀的第二出口连接,所述根据进出所述多联式空调系统中各组件的能量守恒的原理,得到所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,包括:获取所述压缩机的功率、漏热量、所述混合物在压缩机的吸气口的第一焓值、所述混合物在压缩机回油毛细管的出口的第二焓值、所述混合物在气液分离器的出口的第三焓值、所述混合物在电磁阀出口回油毛细管的出口的第四焓值、所述混合物在气液分离器的第二入口的第六焓值、所述混合物在再冷器的旁通回路出口的第七焓值、所述混合物在压缩机排气口的第八压缩机排气口焓值;所述混合物在室外换热器进口的第九焓值、所述混合物在再冷器进口的第十焓值、所述混合物在再冷器的主回路出口的第十一焓值;根据所述压缩机的功率、漏热量、所述第一焓值及所述第八压缩机排气口焓值,得到所述压缩机吸气口的所述混合物第一质量流量;根据所述混合物的第一质量流量、所述第一焓值、所述第二焓值、所述第三焓值、所述第四焓值、所述第五焓值、所述第六焓值、所述第七焓值、所述第八压缩机排气口焓值,得到所述四通阀的第二出口处的所述混合物的第五质量流量。通过上述步骤,获得制冷剂和润滑油组成的混合物在多联式空调系统中各组件的进口或出口处的各焓值,然后根据能量守恒原理,得到四通阀的第二出口处的混合物的质量流量,由于该过程综合考虑了混合物在多联式空调系统的各个组件的能量变化,因此使得测量结果更加准确。In combination with the first embodiment of the first aspect, in the second embodiment of the first aspect of the present invention, the multi-connected air conditioning system further includes: a compressor oil return capillary, the inlet of the compressor oil return capillary is connected to the oil The first outlet of the separator is connected, and the outlet of the compressor oil return capillary is connected to the air inlet of the compressor; the solenoid valve outlet returns to the oil capillary, and the inlet of the solenoid valve outlet oil return capillary is connected to the four-way The inlet of the valve is connected, and the outlet of the oil return capillary at the outlet of the solenoid valve is connected with the second outlet of the four-way valve. The fifth mass flow rate of the mixture composed of refrigerant and lubricating oil at the second outlet of the four-way valve includes: obtaining the power of the compressor, the heat leakage, and the first enthalpy of the mixture at the suction port of the compressor value, the second enthalpy value of the mixture at the outlet of the compressor oil return capillary, the third enthalpy value of the mixture at the outlet of the gas-liquid separator, the fourth enthalpy value of the mixture at the outlet of the solenoid valve outlet oil return capillary The enthalpy value, the sixth enthalpy value of the mixture at the second inlet of the gas-liquid separator, the seventh enthalpy value of the mixture at the bypass loop outlet of the subcooler, the sixth enthalpy value of the mixture at the compressor discharge port. Eight compressor discharge enthalpy values; the ninth enthalpy value of the mixture at the inlet of the outdoor heat exchanger, the tenth enthalpy value of the mixture at the inlet of the subcooler, the enthalpy value of the mixture at the outlet of the main circuit of the subcooler The eleventh enthalpy value; the first enthalpy value of the mixture at the suction port of the compressor is obtained according to the power of the compressor, the heat leakage, the first enthalpy value and the enthalpy value of the exhaust port of the eighth compressor. mass flow; according to the first mass flow of the mixture, the first enthalpy value, the second enthalpy value, the third enthalpy value, the fourth enthalpy value, the fifth enthalpy value, the The sixth enthalpy value, the seventh enthalpy value, and the eighth compressor discharge port enthalpy value are used to obtain the fifth mass flow rate of the mixture at the second outlet of the four-way valve. Through the above steps, the enthalpy values of the mixture composed of refrigerant and lubricating oil at the inlet or outlet of each component in the multi-stage air-conditioning system are obtained, and then according to the principle of energy conservation, the enthalpy of the mixture at the second outlet of the four-way valve is obtained. Mass flow, because the process takes into account the energy changes of the mixture in the various components of the multi-stage air conditioning system, so the measurement results are more accurate.
结合第一方面第二实施方式,在本发明实施例第一方面第三实施方式中,通过以下公式计算所述压缩机吸气口的所述混合物第一质量流量:Pe+G1h1=Qloss+G1h′8,其中,Pe表示所述压缩机的功率,单位为kW,G1表示所述压缩机吸气口的所述混合物第一质量流量,单位为kg/s,h1表示所述混合物在压缩机的吸气口的第一焓值,单位为kJ/kg,Qloss表示所述压缩机的漏热量,单位为kW,h′8表示所述混合物在压缩机排气口的第八压缩机排气口焓值,单位为kJ/kg;通过以下公式计算所述四通阀的第二出口处的所述混合物的第五质量流量:In combination with the second embodiment of the first aspect, in the third embodiment of the first aspect of the present invention, the first mass flow rate of the mixture at the suction port of the compressor is calculated by the following formula: P e +G 1 h 1 =Q loss +G 1 h′ 8 , where P e represents the power of the compressor, in kW, and G 1 represents the first mass flow of the mixture at the suction port of the compressor, in kg/s , h 1 represents the first enthalpy value of the mixture at the suction port of the compressor, in kJ/kg, Q loss represents the heat leakage of the compressor, in kW, and h′ 8 represents the mixture in the compression The enthalpy value of the eighth compressor exhaust port of the engine exhaust port, the unit is kJ/kg; the fifth mass flow rate of the mixture at the second outlet of the four-way valve is calculated by the following formula:
其中,h2表示所述混合物在压缩机回油毛细管的出口的第二焓值,h3表示所述混合物在气液分离器的出口的第三焓值,h4表示所述混合物在电磁阀出口回油毛细管的出口的第四焓值,h5表示所述混合物在四通阀的第二出口的第五焓值,h6表示所述混合物在气液分离器的第二入口的第六焓值,h7表示所述混合物在再冷器的旁通回路出口的第七焓值,上述焓值的单位均为kJ/kg,G2表示所述压缩机回油毛细管的出口处所述混合物的第二质量流量,G3表示所述气液分离器出口所述混合物的第三质量流量,G4表示所述电磁阀出口回油毛细管的出口处所述混合物的第四质量流量,G5表示所述四通阀的第二出口处所述混合物的第五质量流量,G6表示所述气液分离器的第二入口处所述混合物的第六质量流量,G7表示所述再冷器的旁通回路出口处所述混合物的第七质量流量,上述质量流量的单位均为kg/s。Wherein, h 2 represents the second enthalpy value of the mixture at the outlet of the compressor oil return capillary, h 3 represents the third enthalpy value of the mixture at the outlet of the gas-liquid separator, h 4 represents the mixture at the solenoid valve outlet The fourth enthalpy value of the outlet of the outlet return oil capillary, h 5 represents the fifth enthalpy value of the mixture at the second outlet of the four-way valve, h 6 represents the sixth enthalpy value of the mixture at the second inlet of the gas-liquid separator Enthalpy value, h 7 represents the seventh enthalpy value of the mixture at the outlet of the bypass loop of the subcooler, the unit of the above enthalpy value is kJ/kg, G 2 represents the compressor oil return capillary outlet of the The second mass flow rate of the mixture, G 3 represents the third mass flow rate of the mixture at the outlet of the gas-liquid separator, G 4 represents the fourth mass flow rate of the mixture at the outlet of the oil return capillary at the outlet of the solenoid valve, G 5 represents the fifth mass flow rate of the mixture at the second outlet of the four-way valve, G6 represents the sixth mass flow rate of the mixture at the second inlet of the gas-liquid separator, and G7 represents the recirculation The seventh mass flow rate of the mixture at the outlet of the bypass loop of the cooler, and the unit of the above mass flow rate is kg/s.
结合第一方面第一实施方式,在本发明实施例第一方面第四实施方式中,所述多联式空调系统还包括:电磁阀出口回油毛细管,所述电磁阀出口回油毛细管的入口与所述四通阀的入口连接,所述电磁阀出口回油毛细管的出口与所述四通阀的第二出口连接,所述根据进出所述多联式空调系统中各组件的能量守恒的原理,得到所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,包括:获取所述压缩机的功率、漏热量、所述混合物在气液分离器出口的第三焓值、所述混合物在电磁阀出口回油毛细管的出口的第四焓值、所述混合物在气液分离器的第二入口的第六焓值、所述混合物在再冷器的旁通回路出口的第七焓值、所述混合物在压缩机的排气口的第八压缩机排气口焓值;所述混合物在室外换热器的进口的第九焓值、所述混合物在再冷器的进口的第十焓值、所述混合物在再冷器的主回路出口的第十一焓值;根据所述压缩机的功率、漏热量、所述第三焓值及所述第八压缩机排气口焓值,得到所述气液分离器的出口处的所述混合物的第三质量流量;根据所述第三质量流量、所述第三焓值、所述第四焓值、所述第五焓值、所述第六焓值、所述第七焓值,得到所述四通阀的第二出口处的所述混合物的第五质量流量。通过上述过程,通过获取多联式空调系统中不同组件的进口或出口处的混合物的焓值,然后通过进出各组件的能量守恒的原理,能够更加准确得到混合物在四通阀与气液分离器连接的出口的质量流量。In combination with the first embodiment of the first aspect, in the fourth embodiment of the first aspect of the present invention, the multi-connected air conditioning system further includes: a solenoid valve outlet oil return capillary, and an inlet of the solenoid valve outlet oil return capillary It is connected with the inlet of the four-way valve, and the outlet of the oil return capillary at the outlet of the solenoid valve is connected with the second outlet of the four-way valve. According to the principle, obtaining the fifth mass flow rate of the mixture composed of refrigerant and lubricating oil at the second outlet of the four-way valve includes: obtaining the power and leakage heat of the compressor, and obtaining the mixture at the outlet of the gas-liquid separator. The third enthalpy value of the mixture, the fourth enthalpy value of the mixture at the outlet of the solenoid valve outlet oil return capillary, the sixth enthalpy value of the mixture at the second inlet of the gas-liquid separator, the The seventh enthalpy value at the outlet of the bypass loop, the eighth compressor discharge enthalpy value of the mixture at the compressor discharge port; the ninth enthalpy value of the mixture at the inlet of the outdoor heat exchanger, the mixture The tenth enthalpy value at the inlet of the subcooler, the eleventh enthalpy value of the mixture at the outlet of the main circuit of the subcooler; according to the power of the compressor, the leakage heat, the third enthalpy value and the The enthalpy value of the exhaust port of the eighth compressor, the third mass flow rate of the mixture at the outlet of the gas-liquid separator is obtained; according to the third mass flow rate, the third enthalpy value, and the fourth enthalpy value, the fifth enthalpy value, the sixth enthalpy value, and the seventh enthalpy value to obtain the fifth mass flow rate of the mixture at the second outlet of the four-way valve. Through the above process, by obtaining the enthalpy value of the mixture at the inlet or outlet of different components in the multi-connected air conditioning system, and then by the principle of energy conservation in and out of each component, the mixture between the four-way valve and the gas-liquid separator can be more accurately obtained. The mass flow of the connected outlet.
结合第一方面第四实施方式,在本发明第一方面第五实施方式中,通过以下公式计算所述气液分离器的出口处的所述混合物的第三质量流量:Pe+G3h3=Qloss+G3h8,其中,Pe表示所述压缩机的功率,单位为kW,G3表示所述气液分离器的出口处的所述混合物的第三质量流量,单位为kg/s,h3表示所述混合物在气液分离器的出口的第三焓值,单位为kJ/kg,Qloss表示所述压缩机的漏热量,单位为kW,h8表示混合物在油分离器的第二出口的第八油分离器焓值,单位为kJ/kg;通过以下公式计算所述四通阀的第二出口处的所述混合物的第五质量流量:In combination with the fourth embodiment of the first aspect, in the fifth embodiment of the first aspect of the present invention, the third mass flow rate of the mixture at the outlet of the gas-liquid separator is calculated by the following formula: P e +G 3 h 3 =Q loss +G 3 h 8 , wherein Pe represents the power of the compressor, in kW, and G 3 represents the third mass flow of the mixture at the outlet of the gas-liquid separator, in kg/s, h3 represents the third enthalpy value of the mixture at the outlet of the gas-liquid separator, in kJ/kg, Q loss represents the heat leakage of the compressor, in kW, h8 represents the mixture in oil The enthalpy of the eighth oil separator at the second outlet of the separator, in kJ/kg; the fifth mass flow rate of the mixture at the second outlet of the four-way valve is calculated by the following formula:
其中,h3表示所述混合物在气液分离器的出口的第三焓值,h4表示所述混合物在电磁阀出口回油毛细管的出口的第四焓值,h5表示所述混合物在四通阀的第二出口的第五焓值,h6表示所述混合物在气液分离器的第二入口的第六焓值,h7表示所述混合物在再冷器的旁通回路出口的第七焓值,上述焓值的单位均为kJ/kg,G3表示所述气液分离器的出口处所述混合物的第三质量流量,G4表示所述电磁阀出口回油毛细管的出口处所述混合物的第四质量流量,G5表示所述四通阀的第二出口处所述混合物的第五质量流量,G6表示所述气液分离器的第二入口处所述混合物的第六质量流量,G7表示所述再冷器的旁通回路出口处所述混合物的第七质量流量,上述质量流量的单位均为kg/s。Wherein, h 3 represents the third enthalpy value of the mixture at the outlet of the gas-liquid separator, h 4 represents the fourth enthalpy value of the mixture at the outlet of the oil return capillary at the outlet of the solenoid valve, h 5 represents the mixture at the fourth enthalpy value The fifth enthalpy value of the second outlet of the through valve, h6 represents the sixth enthalpy value of the mixture at the second inlet of the gas-liquid separator, h7 represents the sixth enthalpy value of the mixture at the bypass loop outlet of the subcooler Seven enthalpy values, the units of the above enthalpy values are all kJ/kg, G 3 represents the third mass flow rate of the mixture at the outlet of the gas-liquid separator, G 4 represents the outlet of the solenoid valve outlet oil return capillary The fourth mass flow rate of the mixture, G5 represents the fifth mass flow rate of the mixture at the second outlet of the four-way valve, and G6 represents the first mass flow rate of the mixture at the second inlet of the gas-liquid separator. Six mass flow rates, G 7 represents the seventh mass flow rate of the mixture at the outlet of the bypass loop of the subcooler, and the units of the above mass flow rates are all kg/s.
结合第一方面第一实施方式,在本发明实施例第一方面第六实施方式中,所述根据进出所述多联式空调系统中各组件的能量守恒的原理,得到所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,包括:获取所述压缩机的功率、漏热量、所述混合物在再冷器的旁通回路出口的第七焓值、所述混合物在再冷器进口的第十焓值、所述混合物在再冷器的主回路出口的第十一焓值;根据所述压缩机的功率、漏热量、所述第五焓值、所述第七焓值、所述第十焓值、所述第十一焓值,得到所述四通阀的第二出口处的所述混合物的第五质量流量。In combination with the first embodiment of the first aspect, in the sixth embodiment of the first aspect of the embodiments of the present invention, according to the principle of energy conservation of the components in and out of the multi-connected air conditioning system, the four-way valve is obtained. The fifth mass flow rate of the mixture composed of refrigerant and lubricating oil at the second outlet includes: obtaining the power of the compressor, the heat leakage, the seventh enthalpy value of the mixture at the outlet of the bypass loop of the subcooler, The tenth enthalpy value of the mixture at the inlet of the subcooler, the eleventh enthalpy value of the mixture at the outlet of the main circuit of the subcooler; according to the power of the compressor, the leakage heat, the fifth enthalpy value, The seventh enthalpy value, the tenth enthalpy value, and the eleventh enthalpy value obtain the fifth mass flow rate of the mixture at the second outlet of the four-way valve.
结合第一方面第六实施方式,在本发明实施例第一方面第七实施方式中,通过以下公式计算所述四通阀的第二出口处的所述混合物的第五质量流量:With reference to the sixth embodiment of the first aspect, in the seventh embodiment of the first aspect of the present invention, the fifth mass flow rate of the mixture at the second outlet of the four-way valve is calculated by the following formula:
其中,Pe表示所述压缩机的功率,单位为kW,G5表示所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,单位为kg/s,h5表示所述混合物在四通阀的第二出口的第五焓值,单位为kJ/kg,G7表示所述再冷器的旁通回路出口处所述混合物的第七质量流量,单位为kg/s,h7表示所述混合物在再冷器的旁通回路出口的第七焓值,单位为kJ/kg,Qloss表示所述压缩机的漏热量,单位为kW,h8表示所述混合物在油分离器的第二出口的第八油分离器焓值,单位为kJ/kg,h10表示所述混合物在再冷器进口的第十焓值,单位为kJ/kg、h11表示所述混合物在再冷器的主回路出口的第十一焓值,单位为kJ/kg。Wherein, P e represents the power of the compressor, in kW, G 5 represents the fifth mass flow rate of the mixture of refrigerant and lubricating oil at the second outlet of the four-way valve, in kg/s, h 5 represents the fifth enthalpy value of the mixture at the second outlet of the four-way valve, in kJ/kg, G 7 represents the seventh mass flow of the mixture at the outlet of the bypass loop of the subcooler, in units is kg/s, h 7 represents the seventh enthalpy value of the mixture at the outlet of the bypass loop of the subcooler, the unit is kJ/kg, Q loss represents the leakage heat of the compressor, the unit is kW, h 8 represents The eighth oil separator enthalpy value of the mixture at the second outlet of the oil separator, in kJ/kg, h 10 represents the tenth enthalpy value of the mixture at the subcooler inlet, in kJ/kg, h 11 denotes the eleventh enthalpy value of the mixture at the outlet of the main loop of the subcooler, in kJ/kg.
结合第一方面,本发明实施例第一方面第八实施方式中,通过以下公式计算所述多联式空调系统的制热量:Qc=G5(h8-h11),其中,Qc表示所述多联式空调系统的制热量,单位为kW,G5表示所述四通阀的第二出口处的所述混合物的第五质量流量,单位为kg/s,h8表示所述混合物在油分离器的第二出口的第八油分离器焓值,单位为kJ/kg,h11表示所述混合物在再冷器的主回路出口的第十一焓值,单位为kJ/kg。With reference to the first aspect, in the eighth embodiment of the first aspect of the embodiments of the present invention, the heating capacity of the multi-connected air-conditioning system is calculated by the following formula: Q c =G 5 (h 8 -h 11 ), where Q c Represents the heating capacity of the multi-connected air conditioning system, in kW, G 5 represents the fifth mass flow rate of the mixture at the second outlet of the four-way valve, in kg/s, and h 8 represents the The eighth oil separator enthalpy value of the mixture at the second outlet of the oil separator, in kJ/kg, h 11 represents the eleventh enthalpy value of the mixture at the main circuit outlet of the subcooler, in kJ/kg .
结合第一方面第八实施方式,在本发明实施例第一方面第九实施方式中,当所述再冷器关闭时,所述混合物的第五质量流量通过以下步骤得到:获取所述压缩机的功率、漏热量、所述混合物在四通阀的第二出口的第五焓值;根据所述压缩机的功率、漏热量、所述第五焓值、所述第八油分离器焓值,得到所述四通阀的第二出口处的所述混合物的第五质量流量。In combination with the eighth embodiment of the first aspect, in the ninth embodiment of the first aspect of the present invention, when the subcooler is turned off, the fifth mass flow rate of the mixture is obtained by the following steps: obtaining the compressor power, leakage heat, and fifth enthalpy value of the mixture at the second outlet of the four-way valve; according to the compressor power, leakage heat, the fifth enthalpy value, and the eighth oil separator enthalpy value , the fifth mass flow rate of the mixture at the second outlet of the four-way valve is obtained.
结合第一方面第九实施方式,在本发明实施例第一方面第十实施方式中,通过以下公式计算所述四通阀出口处的所述混合物的第五质量流量:Pe+G5h5=Qloss+G5h8,其中,Pe表示所述压缩机的功率,单位为kW,G5表示所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,单位为kg/s,h5表示所述混合物在四通阀的第二出口的第五焓值,单位为kJ/kg,Qloss表示所述压缩机的漏热量,单位为kW,h8表示所述混合物在油分离器的第二出口的第八油分离器焓值,单位为kJ/kg。With reference to the ninth embodiment of the first aspect, in the tenth embodiment of the first aspect of the present invention, the fifth mass flow rate of the mixture at the outlet of the four-way valve is calculated by the following formula: P e +G 5 h 5 =Q loss +G 5 h 8 , wherein, Pe represents the power of the compressor, in kW, and G 5 represents the first output of the mixture of refrigerant and lubricating oil at the second outlet of the four-way valve. Five mass flow, in kg/s, h5 represents the fifth enthalpy value of the mixture at the second outlet of the four-way valve, in kJ/kg, Q loss represents the heat leakage of the compressor, in kW , h 8 represents the eighth oil separator enthalpy value of the mixture at the second outlet of the oil separator, in kJ/kg.
结合第一方面第八实施方式,本发明实施例的第一方面第十一实施方式中,当所述再冷器开启时,所述混合物的第五质量流量通过如下步骤得到:获取所述压缩机的功率、漏热量、所述混合物在气液分离器出口的第三焓值;根据所述压缩机的功率、漏热量、所述第三焓值、所述第八油分离器焓值,得到所述气液分离器的出口处的所述混合物的第三质量流量;获取所述混合物在再冷器的旁通回路出口的第七焓值;根据所述第三质量流量、所述第三焓值、所述第五焓值、所述第七焓值,得到所述四通阀的第二出口处的所述混合物的第五质量流量。In combination with the eighth embodiment of the first aspect and the eleventh embodiment of the first aspect of the present invention, when the subcooler is turned on, the fifth mass flow rate of the mixture is obtained by the following steps: obtaining the compression The power of the compressor, the heat leakage, and the third enthalpy of the mixture at the outlet of the gas-liquid separator; according to the power of the compressor, the leakage heat, the third enthalpy, and the enthalpy of the eighth oil separator, Obtain the third mass flow of the mixture at the outlet of the gas-liquid separator; obtain the seventh enthalpy of the mixture at the outlet of the bypass loop of the subcooler; according to the third mass flow, the third The third enthalpy value, the fifth enthalpy value, and the seventh enthalpy value obtain the fifth mass flow rate of the mixture at the second outlet of the four-way valve.
结合第一方面第十一实施方式,在本发明实施例的第一方面第十二实施方式中,通过以下公式计算所述混合物的第三质量流量:Pe+G3h3=Qloss+G3h8,其中,Pe表示所述压缩机的功率,单位为kW,G3表示所述气液分离器出口所述混合物的第三质量流量,单位为kg/s,h3表示所述混合物在气液分离器出口的第三焓值,单位为kJ/kg,Qloss表示所述压缩机的漏热量,单位为kW,h8表示所述混合物在油分离器的第二出口的第八油分离器焓值,单位为kJ/kg;通过以下公式计算所述四通阀的第二出口处的所述混合物的第五质量流量:In conjunction with the eleventh embodiment of the first aspect, in the twelfth embodiment of the first aspect of the present invention, the third mass flow rate of the mixture is calculated by the following formula: P e +G 3 h 3 =Q loss + G 3 h 8 , wherein, Pe represents the power of the compressor, in kW, G 3 represents the third mass flow of the mixture at the outlet of the gas-liquid separator, in kg/s, and h 3 represents the The third enthalpy value of the mixture at the outlet of the gas-liquid separator, in kJ/kg, Q loss represents the heat leakage of the compressor, in kW, h 8 represents the amount of the mixture at the second outlet of the oil separator The enthalpy value of the eighth oil separator, in kJ/kg; the fifth mass flow rate of the mixture at the second outlet of the four-way valve is calculated by the following formula:
其中,G3表示所述气液分离器出口所述混合物的第三质量流量,单位为kg/s,h3表示所述混合物在气液分离器出口的第三焓值,单位为kJ/kg,G5表示所述四通阀的第二出口处所述混合物的第五质量流量,单位为kg/s,h5表示所述混合物在四通阀的第二出口的第五焓值,单位为kJ/kg,G7表示所述再冷器的旁通回路出口处所述混合物的第七质量流量,单位为kg/s,h7表示所述混合物在再冷器的旁通回路出口的第七焓值,单位为kJ/kg。Wherein, G 3 represents the third mass flow rate of the mixture at the outlet of the gas-liquid separator, in kg/s, and h 3 represents the third enthalpy of the mixture at the outlet of the gas-liquid separator, in kJ/kg , G 5 represents the fifth mass flow rate of the mixture at the second outlet of the four-way valve, in kg/s, h 5 represents the fifth enthalpy of the mixture at the second outlet of the four-way valve, in units is kJ/kg, G 7 represents the seventh mass flow rate of the mixture at the outlet of the bypass loop of the recooler, in kg/s, h 7 represents the flow rate of the mixture at the outlet of the bypass loop of the recooler The seventh enthalpy, in kJ/kg.
根据第二方面,本发明实施例提供了一种多联式空调系统换热量测量装置,所述多联式空调系统的压缩机的排气口连接油分离器的入口,所述油分离器的第一出口连接所述压缩机的吸气口,所述油分离器的第二出口通过连接四通阀的入口,所述四通阀的第一出口连接室外换热器的入口,室外换热器的出口连接再冷器的入口,气液分离器的第一入口连接所述再冷器的旁通回路出口,第二入口连接所述四通阀的第二出口,所述气液分离器的出口连接所述压缩机的入口,所述再冷器的主回路出口连接室内换热器,其特征在于,所述多联式空调系统换热量测量装置包括:第一处理模块,用于根据进出所述多联式空调系统中各组件的能量守恒的原理,得到所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量;第一获取模块,用于获取所述混合物在再冷器的主回路出口的第十一焓值;第二处理模块,用于获取所述混合物在四通阀的第二出口的第五焓值,根据所述第五质量流量、所述第五焓值、所述第十一焓值,得到所述多联式空调系统的制冷量;和/或,第三处理模块,用于获取所述混合物在油分离器的第二出口的第八油分离器焓值,根据所述第五质量流量、所述第八油分离器焓值、所述第十一焓值,得到所述多联式空调系统的制热量。通过上述装置,利用进出多联式空调系统中各组件的能量守恒的原理,能够更加准确地得到多联式空调系统的制冷量和/或制热量。According to a second aspect, an embodiment of the present invention provides a device for measuring heat exchange of a multi-stage air conditioning system, wherein the exhaust port of the compressor of the multi-stage air conditioning system is connected to the inlet of an oil separator, and the oil separator The first outlet of the oil separator is connected to the suction port of the compressor, the second outlet of the oil separator is connected to the inlet of the four-way valve, and the first outlet of the four-way valve is connected to the inlet of the outdoor heat exchanger, and the outdoor heat exchanger The outlet of the heater is connected to the inlet of the subcooler, the first inlet of the gas-liquid separator is connected to the outlet of the bypass circuit of the subcooler, the second inlet is connected to the second outlet of the four-way valve, the gas-liquid separation The outlet of the recooler is connected to the inlet of the compressor, and the outlet of the main circuit of the recooler is connected to the indoor heat exchanger. to obtain the fifth mass flow rate of the mixture composed of refrigerant and lubricating oil at the second outlet of the four-way valve according to the principle of energy conservation in and out of each component in the multi-connected air-conditioning system; the first obtaining module, is used to obtain the eleventh enthalpy value of the mixture at the outlet of the main circuit of the subcooler; the second processing module is used to obtain the fifth enthalpy value of the mixture at the second outlet of the four-way valve, according to the first The fifth mass flow rate, the fifth enthalpy value, and the eleventh enthalpy value are used to obtain the cooling capacity of the multi-connected air-conditioning system; and/or, a third processing module, used to obtain the mixture in the oil separator The enthalpy value of the eighth oil separator at the second outlet of the . Through the above device, the cooling capacity and/or the heating capacity of the multi-connected air-conditioning system can be obtained more accurately by utilizing the principle of energy conservation of each component in and out of the multi-connected air-conditioning system.
根据第三方面,本发明实施例提供了一种计算机设备,至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器执行第一方面或者第一方面的任意一种实施方式中所述的多联式空调系统的换热量测量方法。According to a third aspect, an embodiment of the present invention provides a computer device, at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores data executable by the at least one processor The computer program, the computer program is executed by the at least one processor, so that the at least one processor executes the replacement of the multi-connected air conditioning system in the first aspect or any one of the embodiments of the first aspect Heat measurement method.
根据第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面或者第一方面的任意一种实施方式中所述的多联式空调系统的换热量测量方法。According to a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the first aspect or the first aspect is implemented The method for measuring the heat exchange of a multi-connected air-conditioning system described in any one of the embodiments.
本发明技术方案,具有如下优点:The technical scheme of the present invention has the following advantages:
本发明提供了一种多联式空调系统换热量测量方法及装置,该多联式空调系统的压缩机的排气口连接油分离器的入口,油分离器的第一出口连接压缩机的吸气口,油分离器的第二出口通过连接四通阀的入口,四通阀的第一出口连接室外换热器的入口,室外换热器的出口连接再冷器的入口,气液分离器的第一入口连接再冷器的旁通回路出口,第二入口连接四通阀的第二出口,气液分离器的出口连接压缩机的入口,再冷器的主回路出口连接室内换热器,该多联式空调系统换热量测量方法包括:根据进出多联式空调系统中各组件的能量守恒的原理,得到四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,获取混合物在再冷器的主回路出口的第十一焓值,获取混合物在四通阀的第二出口的第五焓值,根据第五质量流量、第五焓值、第十一焓值,得到多联式空调系统的制冷量;和/或,获取混合物在油分离器的第二出口的第八油分离器焓值,根据第五质量流量、第八油分离器焓值、第十一焓值,得到多联式空调系统的制热量。通过上述步骤,根据进出多联式空调系统中各组件的能量守恒的原理,首先得到四通阀与气液分离器连接的出口的混合物的质量流量,然后获取混合物在再冷器的主回路出口的焓值和混合物在四通阀与气液分离器连接的出口的焓值,根据上述参数得到多联式空调系统的制冷量,和/或,获取混合物在油分离器与四通阀连接的入口的焓值,根据以上参数得到多联式空调系统的制热量,通过该过程得到多联式空调系统的制冷量和/或制热量,由于直接获取各组件出口或入口处的焓值和混合物的质量流量,使其计算结果更能准确反映系统的换热量,解决了现有技术中采用测量风量来计算制热量或制冷量,由于在现场条件下因空气流场分布不均匀,故其风量无法准确测量;如果采用外接风道方式进行测量,又将影响制冷热泵系统的运行状态,导致测试结果不能反映实际情况的问题。The invention provides a method and a device for measuring heat exchange of a multi-connected air-conditioning system. The exhaust port of the compressor of the multi-connected air-conditioning system is connected to the inlet of an oil separator, and the first outlet of the oil separator is connected to an outlet of the compressor. The suction port, the second outlet of the oil separator is connected to the inlet of the four-way valve, the first outlet of the four-way valve is connected to the inlet of the outdoor heat exchanger, the outlet of the outdoor heat exchanger is connected to the inlet of the recooler, and the gas-liquid separation The first inlet of the cooler is connected to the bypass circuit outlet of the recooler, the second inlet is connected to the second outlet of the four-way valve, the outlet of the gas-liquid separator is connected to the compressor inlet, and the main circuit outlet of the recooler is connected to the indoor heat exchange The method for measuring the heat exchange of the multi-connected air-conditioning system includes: according to the principle of energy conservation of each component in and out of the multi-connected air-conditioning system, obtaining the mixture of refrigerant and lubricating oil at the second outlet of the four-way valve. At the fifth mass flow rate, obtain the eleventh enthalpy value of the mixture at the outlet of the main circuit of the subcooler, and obtain the fifth enthalpy value of the mixture at the second outlet of the four-way valve, according to the fifth mass flow rate, the fifth enthalpy value, the first Eleven enthalpy values, obtain the refrigerating capacity of the multi-stage air conditioning system; and/or, obtain the enthalpy value of the eighth oil separator of the mixture at the second outlet of the oil separator, according to the fifth mass flow rate, the enthalpy of the eighth oil separator value and the eleventh enthalpy value to obtain the heating capacity of the multi-connected air-conditioning system. Through the above steps, according to the principle of energy conservation of each component in and out of the multi-connected air conditioning system, first obtain the mass flow of the mixture at the outlet where the four-way valve is connected to the gas-liquid separator, and then obtain the mixture at the main circuit outlet of the subcooler The enthalpy value of the mixture and the enthalpy value of the mixture at the outlet where the four-way valve is connected to the gas-liquid separator, obtain the cooling capacity of the multi-connected air-conditioning system according to the above parameters, and/or, obtain the mixture at the oil separator and the four-way valve. The enthalpy value of the inlet, the heating capacity of the multi-connected air-conditioning system is obtained according to the above parameters, and the cooling capacity and/or heating capacity of the multi-connected air-conditioning system is obtained through this process. Since the enthalpy value and mixture at the outlet or inlet of each component are directly obtained The mass flow rate of the system can make the calculation result more accurately reflect the heat exchange of the system, which solves the problem of calculating the heating or cooling capacity by measuring the air volume in the prior art. The air volume cannot be measured accurately; if an external air duct is used for measurement, it will affect the operation state of the cooling and heat pump system, resulting in the problem that the test results cannot reflect the actual situation.
附图说明Description of drawings
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:The features and advantages of the present invention will be more clearly understood by reference to the accompanying drawings, which are schematic and should not be construed as limiting the invention in any way, in which:
图1是根据本发明实施例的多联式空调系统换热量测量方法的流程图;1 is a flowchart of a method for measuring heat exchange of a multi-connected air-conditioning system according to an embodiment of the present invention;
图2是根据本发明实施例的多联式空调系统的示意图(一);2 is a schematic diagram (1) of a multi-connected air conditioning system according to an embodiment of the present invention;
图3是根据本发明实施例的多联式空调系统的示意图(二);3 is a schematic diagram (2) of a multi-connected air-conditioning system according to an embodiment of the present invention;
图4是根据本发明实施例的多联式空调系统的示意图(三);4 is a schematic diagram (3) of a multi-connected air conditioning system according to an embodiment of the present invention;
图5是根据本发明实施例的多联式空调系统的示意图(四);5 is a schematic diagram (4) of a multi-connected air-conditioning system according to an embodiment of the present invention;
图6是根据本发明实施例的多联式空调系统的示意图(五);6 is a schematic diagram (5) of a multi-connected air conditioning system according to an embodiment of the present invention;
图7是根据本发明实施例的多联式空调系统换热量测量装置的结构框图;7 is a structural block diagram of a device for measuring heat exchange of a multi-connected air-conditioning system according to an embodiment of the present invention;
图8是本发明实施例提供的多联式空调系统换热量测量方法的计算机设备的硬件结构示意图;8 is a schematic diagram of the hardware structure of a computer device for a method for measuring heat exchange of a multi-connected air-conditioning system provided by an embodiment of the present invention;
附图标记:压缩机-21,油分离器-22,四通阀-23,室外换热器-24,再冷器-25,气液分离器-26,室内换热器-27,压缩机回油毛细管-28,电磁阀出口回油毛细管-29。Reference numerals: compressor-21, oil separator-22, four-way valve-23, outdoor heat exchanger-24, subcooler-25, gas-liquid separator-26, indoor heat exchanger-27, compressor Oil return capillary -28, solenoid valve outlet return oil capillary -29.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
本发明实施例提供一种多联式空调系统换热量测量方法。在一较佳实施例中,该多联式空调系统换热量测量方法可应用于如图2所示的多联式空调系统中,该多联式空调系统的压缩机21的排气口连接油分离器22的入口,油分离器22的第一出口连接压缩机21的吸气口,油分离器22的第二出口连接四通阀23的入口,四通阀23的第一出口连接室外换热器24的入口,室外换热器24的出口连接再冷器25的入口,气液分离器26的第一入口连接再冷器25的旁通回路出口,第二入口连接四通阀23的第二出口,气液分离器26的出口连接压缩机21的入口,再冷器25的主回路出口连接室内换热器27。Embodiments of the present invention provide a method for measuring heat exchange of a multi-connected air conditioning system. In a preferred embodiment, the method for measuring heat exchange of a multi-stage air-conditioning system can be applied to the multi-stage air-conditioning system as shown in FIG. The inlet of the
如图1所示,本发明实施例的多联式空调系统换热量测量方法包括:As shown in FIG. 1 , the method for measuring heat exchange of a multi-connected air conditioning system according to an embodiment of the present invention includes:
步骤S101:根据进出多联式空调系统中各组件的能量守恒的原理,得到四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量;具体地,由于能量在进出多联式空调系统中各组件时,其进入组件的能量和输出该组件的能量守恒,根据该原理,求得四通阀连接气液分离器的出口的制冷剂和润滑油组成的混合物的第五质量流量。Step S101: According to the principle of energy conservation of each component in the multi-connected air conditioning system, obtain the fifth mass flow rate of the mixture of refrigerant and lubricating oil at the second outlet of the four-way valve; When each component in a multi-connected air-conditioning system, the energy entering the component and the energy outputting the component are conserved. According to this principle, the first number of the mixture of refrigerant and lubricating oil connected to the outlet of the gas-liquid separator by the four-way valve is obtained. Five mass flow.
步骤S102:获取上述混合物在再冷器的主回路出口的第十一焓值,由于再冷器连接在室外换热器和室内换热器之间,得到混合物在再冷器的主回路出口的焓值,能够更加准确地测量多联式空调系统的制冷量。Step S102: Obtain the eleventh enthalpy value of the mixture at the outlet of the main circuit of the subcooler. Since the subcooler is connected between the outdoor heat exchanger and the indoor heat exchanger, obtain the enthalpy of the mixture at the outlet of the main circuit of the subcooler. The enthalpy value can more accurately measure the cooling capacity of the multi-connected air conditioning system.
步骤S103:获取上述混合物在四通阀的第二出口的第五焓值,根据第五质量流量、第五焓值、第十一焓值,得到多联式空调系统的制冷量;和/或,Step S103: Obtain the fifth enthalpy value of the mixture at the second outlet of the four-way valve, and obtain the cooling capacity of the multi-connected air-conditioning system according to the fifth mass flow rate, the fifth enthalpy value, and the eleventh enthalpy value; and/or ,
步骤S104:获取上述混合物在油分离器的第二出口的第八油分离器焓值,根据第五质量流量、第八油分离器焓值、第十一焓值,得到多联式空调系统的制热量。Step S104: Obtain the enthalpy value of the eighth oil separator of the mixture at the second outlet of the oil separator, and obtain the heating.
通过上述步骤,根据进出多联式空调系统中各组件的能量守恒的原理,首先得到四通阀与气液分离器连接的出口的混合物的质量流量,然后获取混合物在再冷器的主回路出口的焓值和混合物在四通阀与气液分离器连接的出口的焓值,根据上述参数得到多联式空调系统的制冷量,和/或,获取混合物在油分离器与四通阀连接的入口的焓值,根据以上参数得到多联式空调系统的制热量,通过该过程得到多联式空调系统的制冷量和/或制热量,由于直接获取各组件出口或入口处的焓值和混合物的质量流量,使其计算结果更能准确反映系统的换热量,解决了现有技术中采用测量风量来计算制热量或制冷量,由于在现场条件下因空气流场分布不均匀,故其风量无法准确测量;如果采用外接风道方式进行测量,又将影响制冷热泵系统的运行状态,导致测试结果不能反映实际情况的问题。Through the above steps, according to the principle of energy conservation of each component in and out of the multi-connected air conditioning system, first obtain the mass flow of the mixture at the outlet where the four-way valve is connected to the gas-liquid separator, and then obtain the mixture at the main circuit outlet of the subcooler The enthalpy value of the mixture and the enthalpy value of the mixture at the outlet where the four-way valve is connected to the gas-liquid separator, obtain the cooling capacity of the multi-connected air-conditioning system according to the above parameters, and/or, obtain the mixture at the oil separator and the four-way valve. The enthalpy value of the inlet, the heating capacity of the multi-connected air-conditioning system is obtained according to the above parameters, and the cooling capacity and/or heating capacity of the multi-connected air-conditioning system is obtained through this process. Since the enthalpy value and mixture at the outlet or inlet of each component are directly obtained The mass flow rate of the system can make the calculation result more accurately reflect the heat exchange of the system, which solves the problem of calculating the heating or cooling capacity by measuring the air volume in the prior art. The air volume cannot be measured accurately; if an external air duct is used for measurement, it will affect the operation state of the cooling and heat pump system, resulting in the problem that the test results cannot reflect the actual situation.
具体地,通过以下公式(1)计算多联式空调系统的制冷量:Specifically, the cooling capacity of the multi-connected air-conditioning system is calculated by the following formula (1):
Qe=G5(h5-h11) (1)Q e =G 5 (h 5 -h 11 ) (1)
公式(1)中,Qe表示所述多联式空调系统的制冷量,单位为kW,G5表示所述四通阀23的第二出口处的所述混合物的第五质量流量,单位为kg/s,h5表示所述混合物在四通阀23的第二出口的第五焓值、h11表示所述混合物在再冷器25的主回路出口的第十一焓值,单位为kJ/kg。In formula (1), Q e represents the cooling capacity of the multi-connected air-conditioning system, the unit is kW, and G 5 represents the fifth mass flow rate of the mixture at the second outlet of the four-
在一个具体实施方式中,如图2所示,多联式空调系统还包括压缩机回油毛细管28,该压缩机回油毛细管28的入口与油分离器22的第一出口连接,压缩机回油毛细管28的出口与压缩机21的进气口连接,电磁阀出口回油毛细管29,该电磁阀出口回油毛细管29的入口与四通阀23的入口连接,电磁阀出口回油毛细管29的出口与四通阀23的第二出口连接,上述具体实施方式中的四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,即图2中点5处的混合物的质量流量,可以通过以下步骤得到:In a specific embodiment, as shown in FIG. 2 , the multi-stage air-conditioning system further includes a compressor
获取压缩机21的功率、漏热量、混合物在压缩机21的吸气口的第一焓值、混合物在压缩机回油毛细管28的出口的第二焓值、混合物在气液分离器26的出口的第三焓值、混合物在电磁阀出口回油毛细管29的出口的第四焓值、混合物在气液分离器26的第二入口的第六焓值、混合物在再冷器25的旁通回路出口的第七焓值、混合物在压缩机21的排气口的第八压缩机排气口焓值、混合物在室外换热器24进口的第九焓值、混合物在再冷器25进口的第十焓值、混合物在再冷器25的主回路出口的第十一焓值,其中,各点的焓值对应图2中点1至点11的位置处的混合物的焓值,具体地,点1至点7处制冷剂的焓值由压缩机21的吸气压力和各点处的温度分别计算得到,压缩机21的吸气压力由设置在压缩机21的吸气口的压力传感器获取,各点处的温度由设置在各点位置处的温度传感器获取;点8和点9处制冷剂的焓值由压缩机21的排气压力和各点处的温度分别计算得到,其中压缩机21的排气压力由设置在压缩机21的排气口的压力传感器获取;当再冷器25关闭时,点11处制冷剂的焓值由点11位置处的温度计算饱和液态焓值,当再冷器26开启时,点10处制冷剂的焓值由点10位置处的温度计算饱和液态焓值,点11处制冷剂的焓值由压缩机21的排气压力和点11处的温度计算得到;各点位置处润滑油的焓值由各点位置处的温度确定,以上过程分别得到了点1至点11位置处制冷剂的焓值和润滑油的焓值,而各点位置处的制冷剂和润滑油组成的混合物的焓值由以下公式(2)、(3)计算得到:Obtain the power of the
Gn=Gn,ref+Gn,oil (2)G n =G n,ref +G n,oil (2)
公式(2)中,Gn表示制冷剂和润滑油组成的混合物的第n质量流量,单位为kg/s;Gn,ref表示点n位置处制冷剂的质量流量,单位为kg/s;Gn,oil表示点n位置处润滑油的质量流量,单位为kg/s;其中,n=1,2,……,11。In formula (2), G n represents the nth mass flow rate of the mixture composed of refrigerant and lubricating oil, the unit is kg/s; G n,ref represents the mass flow rate of the refrigerant at the position of point n, the unit is kg/s; G n,oil represents the mass flow rate of lubricating oil at the position of point n, the unit is kg/s; wherein, n=1,2,...,11.
hn=Gn,ref×hn,ref+Gn,oil×hn,oil (3)h n =G n,ref ×h n,ref +G n,oil ×h n,oil (3)
公式(3)中,hn表示制冷剂和润滑油组成的混合物的第n焓值,单位为kJ/kg;Gn,ref表示点n位置处制冷剂的质量流量,单位为Kg/s;Gn,oil表示点n位置处润滑油的质量流量,单位为Kg/s;hn,ref表示点n位置处制冷剂的焓值,单位为kJ/kg;hn,oil表示点n位置处润滑油的焓值,单位为kJ/kg,其中,n=1,2,……,11。In formula (3), h n represents the nth enthalpy value of the mixture composed of refrigerant and lubricating oil, and the unit is kJ/kg; G n,ref represents the mass flow rate of the refrigerant at the position of point n, and the unit is Kg/s; G n,oil represents the mass flow rate of lubricating oil at the position of point n, the unit is Kg/s; h n,ref represents the enthalpy value of the refrigerant at the position of point n, the unit is kJ/kg; h n,oil represents the position of point n The enthalpy value of the lubricating oil, in kJ/kg, where n=1,2,...,11.
根据压缩机的功率、漏热量、第一焓值及第八压缩机排气口焓值,得到压缩机吸气口的混合物第一质量流量,具体地,通过以下公式(4)计算混合物的第一质量流量:According to the power of the compressor, the heat leakage, the first enthalpy value and the enthalpy value of the exhaust port of the eighth compressor, the first mass flow rate of the mixture at the suction port of the compressor is obtained. Specifically, the first mass flow rate of the mixture is calculated by the following formula (4). A mass flow:
Pe+G1h1=Qloss+G1h′8, (4)P e +G 1 h 1 =Q loss +G 1 h′ 8 , (4)
公式(4)中,Pe表示压缩机21的功率,单位为kW,G1表示压缩机21吸气口的混合物第一质量流量,单位为kg/s,h1表示混合物在压缩机21的吸气口的第一焓值,单位为kJ/kg,Qloss表示压缩机21的漏热量,单位为kW,h′8表示混合物在压缩机21排气口的第八压缩机排气口焓值,单位为kJ/kg。In formula (4), P e represents the power of the
根据混合物的第一质量流量、第一焓值、第二焓值、第三焓值、第四焓值、第五焓值、第六焓值、第七焓值、第八压缩机排气口焓值,得到四通阀23的第二出口处的混合物的第五质量流量。具体地,通过以下公式(5)计算四通阀23的第二出口处的混合物的第五质量流量:According to the first mass flow of the mixture, the first enthalpy value, the second enthalpy value, the third enthalpy value, the fourth enthalpy value, the fifth enthalpy value, the sixth enthalpy value, the seventh enthalpy value, the eighth compressor discharge port The enthalpy value, the fifth mass flow rate of the mixture at the second outlet of the four-
公式(5)中,h2表示混合物在压缩机回油毛细管28的出口的第二焓值,h3表示混合物在气液分离器26的出口的第三焓值,h4表示混合物在电磁阀出口回油毛细管29的出口的第四焓值,h5表示混合物在四通阀23的第二出口的第五焓值,h6表示混合物在气液分离器26的第二入口的第六焓值,h7表示混合物在再冷器25的旁通回路出口的第七焓值,上述焓值的单位均为kJ/kg,G2表示压缩机回油毛细管28的出口处混合物的第二质量流量,G3表示气液分离器26出口所述混合物的第三质量流量,G4表示所述电磁阀出口回油毛细管的出口处混合物的第四质量流量,G5表示四通阀23的第二出口处混合物的第五质量流量,G6表示气液分离器26的第二入口处混合物的第六质量流量,G7表示再冷器25的旁通回路出口处混合物的第七质量流量,上述质量流量的单位均为kg/s。In formula (5), h 2 represents the second enthalpy value of the mixture at the outlet of the compressor oil return capillary 28 , h 3 represents the third enthalpy value of the mixture at the outlet of the gas-liquid separator 26 , h 4 represents the mixture at the outlet of the solenoid valve The fourth enthalpy value of the outlet of the outlet oil return capillary 29 , h 5 represents the fifth enthalpy value of the mixture at the second outlet of the four-way valve 23 , h 6 represents the sixth enthalpy of the mixture at the second inlet of the gas-liquid separator 26 value, h 7 represents the seventh enthalpy value of the mixture at the outlet of the bypass loop of the subcooler 25, the units of the above enthalpy values are all kJ/kg, G 2 represents the second mass of the mixture at the outlet of the compressor oil return capillary 28 Flow rate, G3 represents the third mass flow of the mixture at the outlet of the gas-liquid separator 26 , G4 represents the fourth mass flow of the mixture at the outlet of the oil return capillary at the outlet of the solenoid valve, G5 represents the fourth mass flow of the four -way valve 23 The fifth mass flow rate of the mixture at the second outlet, G6 represents the sixth mass flow rate of the mixture at the second inlet of the gas-liquid separator 26, G7 represents the seventh mass flow rate of the mixture at the bypass loop outlet of the subcooler 25, The units of the above mass flow rates are all kg/s.
通过公式(4),该方程为能量守恒方程,可以得到混合物的第一质量流量G1,然后将G1代入公式(5)中,既可以联立得到参数G2至G7,即得到混合物的第五质量流量G5,然后通过公式(1)得到多联式空调系统的制冷量。通过该种计算方法,由于详细地采集各组件进出口处的温度和压力,从而得到混合物在各点位置处对应的质量流量和焓值,然后计算得到制冷量,使制冷量计算结果更加准确。Through formula (4), which is an energy conservation equation, the first mass flow rate G 1 of the mixture can be obtained, and then G 1 is substituted into formula (5), the parameters G 2 to G 7 can be obtained simultaneously, that is, the mixture can be obtained The fifth mass flow G 5 , and then the cooling capacity of the multi-connected air-conditioning system is obtained by formula (1). Through this calculation method, since the temperature and pressure at the inlet and outlet of each component are collected in detail, the corresponding mass flow and enthalpy value of the mixture at each point position can be obtained, and then the cooling capacity can be calculated, making the calculation result of the cooling capacity more accurate.
如图3所示,在一个具体实施方式中,上述混合物的第五质量流量还可以通过以下步骤得到:As shown in Figure 3, in a specific embodiment, the fifth mass flow rate of the above mixture can also be obtained by the following steps:
计算气液分离器26的出口处的混合物的第三质量流量:Calculate the third mass flow of the mixture at the outlet of the gas-liquid separator 26:
Pe+G3h3=Qloss+G3h8 (6)P e +G 3 h 3 =Q loss +G 3 h 8 (6)
公式(6)中,Pe表示压缩机21的功率,单位为kW,G3表示气液分离器26的出口处的混合物的第三质量流量,单位为kg/s,h3表示混合物在气液分离器26的出口的第三焓值,单位为kJ/kg,Qloss表示压缩机21的漏热量,单位为kW,h8表示混合物在油分离器22的第二出口的第八油分离器焓值,单位为kJ/kg,其中各焓值的计算方法在上述具体实施方式中的公式(3)已详细描述,在此不再赘述。得到混合物的第三质量流量后,通过以下公式(7)计算四通阀23的第二出口处的混合物的第五质量流量:In formula (6), P e represents the power of the
公式(7)中,h3表示混合物在气液分离器26的出口的第三焓值,h4表示混合物在电磁阀出口回油毛细管29的出口的第四焓值,h5表示混合物在四通阀23的第二出口的第五焓值,h6表示混合物在气液分离器26的第二入口的第六焓值,h7表示混合物在再冷器25的旁通回路出口的第七焓值,上述焓值的单位均为kJ/kg,G3表示气液分离器26的出口处混合物的第三质量流量,G4表示电磁阀出口回油毛细管29的出口处混合物的第四质量流量,G5表示四通阀23的第二出口处混合物的第五质量流量,G6表示气液分离器26的第二入口处混合物的第六质量流量,G7表示再冷器25的旁通回路出口处混合物的第七质量流量,上述质量流量的单位均为kg/s。其中各焓值的计算方法在上述具体实施方式中的公式(3)已详细描述,在此不再赘述。根据上述公式(7)得到混合物的第五质量流量后,将其代入公式(1)中,得到多联式空调系统的制冷量,该种计算方法,较之图2对应的具体实施方式中制冷量的计算方法,所需要的压力传感器和温度传感器减少,简化计算过程。In formula (7), h 3 represents the third enthalpy value of the mixture at the outlet of the gas-
在图3所示的多联式空调系统中,制冷量还可以通过以下公式(8)计算得到:In the multi-connected air-conditioning system shown in Figure 3, the cooling capacity can also be calculated by the following formula (8):
Qe=G3(h3-h10) (8)Q e =G 3 (h 3 -h 10 ) (8)
公式(8)中,Qe表示多联式空调系统的制冷量,单位为kW,G3表示气液分离器26出口混合物的第三质量流量,单位为kg/s,h3表示混合物在气液分离器26的出口的第三焓值,单位为kJ/kg,h10表示混合物在再冷器25的进口的第十焓值,单位为kJ/kg。In formula (8), Q e represents the cooling capacity of the multi-connected air-conditioning system, in kW, G 3 represents the third mass flow rate of the mixture at the outlet of the gas-
如图4所示,在一个具体实施方式中,通过以下公式(9)计算所述四通阀的第二出口处的所述混合物的第五质量流量:As shown in FIG. 4, in a specific embodiment, the fifth mass flow rate of the mixture at the second outlet of the four-way valve is calculated by the following formula (9):
公式(9)中,Pe表示压缩机21的功率,单位为kW,G5表示四通阀23的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,单位为kg/s,h5表示混合物在四通阀23的第二出口的第五焓值,单位为kJ/kg,G7表示再冷器25的旁通回路出口处混合物的第七质量流量,单位为kg/s,h7表示混合物在再冷器25的旁通回路出口的第七焓值,单位为kJ/kg,Qloss表示压缩机21的漏热量,单位为kW,h8表示混合物在油分离器22的第二出口的第八油分离器焓值,单位为kJ/kg,h10表示混合物在再冷器25进口的第十焓值,单位为kJ/kg、h11表示混合物在再冷器25的主回路出口的第十一焓值,单位为kJ/kg。如图4所示,图4中所需要的压力传感器的数量和温度传感器的数量较之上述图2和图3对应的具体实施方式减少了很多,该种计算方法同样利用能量守恒的原理,先得到混合物的第五质量流量,然后将混合物的第五质量流量代入公式(1)中得到多联式空调系统的制冷量。In formula (9), P e represents the power of the
在另一个具体实施方式中,图2至图4所示的多联式空调系统的示意图对应的制冷量,还可以通过下述公式(10)得到:In another specific embodiment, the cooling capacity corresponding to the schematic diagrams of the multi-connected air-conditioning systems shown in FIG. 2 to FIG. 4 can also be obtained by the following formula (10):
Qe=Qc-Pe+Qloss-Pf (10)Q e =Q c -P e +Q loss -P f (10)
公式(10)中,Qe表示多联式空调系统的制冷量,单位为kW,Qc表示室外换热器24的排热量,单位为kW,Pe表示压缩机21的功率,单位为kW,Qloss表示压缩机21的漏热量,单位为kW,Pf表示室外侧风机的功率,单位为kW,其中,在多联式空调系统安装室外侧风机时,考虑参数Pf,如果在多联式空调系统中没有安装该室外侧风机,则不需要考虑参数Pf;室外侧换热器24的排热量Qc=(G7+G5)(h9-h10),h9表示混合物在室外换热器24进口的第九焓值,单位为kJ/kg,h10表示混合物在再冷器25进口的第十焓值,单位为kJ/kg,G5表示所述四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,单位为kg/s,G7表示所述再冷器的旁通回路出口处所述混合物的第七质量流量,单位为kg/s。In formula (10), Q e represents the cooling capacity of the multi-connected air-conditioning system, in kW, Q c represents the exhaust heat of the
在一个具体实施方式中,通过以下公式(11)计算多联式空调系统的制热量:In a specific embodiment, the heating capacity of the multi-connected air-conditioning system is calculated by the following formula (11):
Qc=G5(h8-h11) (11)Q c =G 5 (h 8 -h 11 ) (11)
公式(11)中,Qc表示多联式空调系统的制热量,单位为kW,G5表示四通阀23的第二出口处的混合物的第五质量流量,单位为kg/s,h8表示混合物在油分离器22的第二出口的第八油分离器焓值,单位为kJ/kg,h11表示混合物在再冷器25的主回路出口的第十一焓值,单位为kJ/kg。该公式对应的多联式空调系统的示意图为图5至图6所示的空调系统结构图。通过该公式,先得到混合物的第五质量流量,然后计算得到多联式空调系统的制热量,计算过程简单,能够简便准确地得到多联式空调系统的制热量。In formula (11), Q c represents the heating capacity of the multi-stage air-conditioning system, in kW, G 5 represents the fifth mass flow rate of the mixture at the second outlet of the four-
在一个具体实施方式中,如图5所示,当再冷器25关闭时,上述混合物的第五质量流量通过以下步骤得到:In a specific embodiment, as shown in FIG. 5 , when the
获取压缩机21的功率、漏热量、混合物在四通阀23的第二出口的第五焓值,根据压缩机21的功率、漏热量、第五焓值、第八油分离器焓值,得到四通阀23的第二出口处的混合物的第五质量流量。具体地,通过以下公式(12)计算四通阀出口处的混合物的第五质量流量:Obtain the power of the
Pe+G5h5=Qloss+G5h8 (12)P e +G 5 h 5 =Q loss +G 5 h 8 (12)
公式(12)中,Pe表示压缩机21的功率,单位为kW,G5表示四通阀的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量,单位为kg/s,h5表示混合物在四通阀的第二出口的第五焓值,单位为kJ/kg,Qloss表示压缩机的漏热量,单位为kW,h8表示混合物在油分离器的第二出口的第八油分离器焓值,单位为kJ/kg。其中,点5位置处制冷剂的焓值由压缩机21的吸气压力和点5位置处的温度计算得到,点8位置处制冷剂的焓值由压缩机21的排气压力和点8位置处的温度计算得到,各点处润滑油的焓值由各点的温度确定,由制冷剂和润滑油组成的混合物的焓值由各点的制冷剂和润滑油的焓值、质量流量分别计算得到,其具体计算过程见公式(3)的详细描述,在此不再赘述。通过该能量守恒方程,可以计算得到混合物的第五质量流量,然后将其代入公式(11)中,可以计算得到多联式空调系统的制热量。In formula (12), P e represents the power of the
在另一个具体实施方式中,如图6所示,当再冷器开启时,混合物的第五质量流量通过以下步骤得到:In another specific embodiment, as shown in FIG. 6 , when the subcooler is turned on, the fifth mass flow rate of the mixture is obtained by the following steps:
计算所述混合物的第三质量流量:Calculate the third mass flow of the mixture:
Pe+G3h3=Qloss+G3h8 (13)P e +G 3 h 3 =Q loss +G 3 h 8 (13)
公式(13)中,Pe所述压缩机21的功率,单位为kW,G3表示气液分离器26出口混合物的第三质量流量,单位为kg/s,h3表示混合物在气液分离器26出口的第三焓值,单位为kJ/kg,Qloss表示压缩机21的漏热量,单位为kW,h8表示混合物在油分离器22的第二出口的第八油分离器焓值,单位为kJ/kg,得到混合物的第三质量流量后,通过以下公式(14)计算四通阀23的第二出口处的混合物的第五质量流量:In formula (13), the power of the
公式(14)中,G3表示气液分离器26出口混合物的第三质量流量,单位为kg/s,h3表示混合物在气液分离器26出口的第三焓值,单位为kJ/kg,G5表示四通阀23的第二出口处混合物的第五质量流量,单位为kg/s,h5表示混合物在四通阀23的第二出口的第五焓值,单位为kJ/kg,G7表示再冷器25的旁通回路出口处混合物的第七质量流量,单位为kg/s,h7表示混合物在再冷器25的旁通回路出口的第七焓值,单位为kJ/kg。其中,点3、点5和点7位置处制冷剂的焓值由多联式空调系统的压缩机22的吸气压力和各点的温度分别计算,点8位置处润滑油的焓值压缩机21排气压力和温度计算,由制冷剂和润滑油可以得到制冷剂和润滑油组成的混合物的的对应的焓值。通过该公式计算出混合物的第五质量流量,然后将其代入公式(11)中,计算得到多联式空调系统的制热量。In formula (14), G 3 represents the third mass flow rate of the mixture at the outlet of the gas-
图5所示的多联式空调系统,其制热量还可以通过以下公式(15)计算得到:For the multi-connected air-conditioning system shown in Figure 5, the heating value can also be calculated by the following formula (15):
Qc=Qe+Pe-Qloss (15)Q c =Q e +P e -Q loss (15)
公式(15)中,Qc表示多联式空调系统的制热量,单位为kW,Qe表示室外换热器24的吸热量,单位为kW,Pe表示压缩机21的功率,单位为kW,Qloss表示所述压缩机的漏热量,单位为kW,其中,Qe=G3(h3-h11),G3表示气液分离器26出口混合物的第三质量流量,h3表示混合物在气液分离器出口的第三焓值,h11表示混合物在再冷器25的主回路出口的第十一焓值。具体地,制冷剂在点3位置处的焓值由压缩机21的吸气压力和该点的温度计算得到,制冷剂在点8位置处的焓值由压缩机21的排气压力和该点的温度计算得到,制冷剂在点11位置处的焓值由温度计算饱和液态焓值得到,润滑油在各点的焓值由各点的温度确定,而制冷剂和润滑油组成的混合物的焓值由各点的制冷剂及润滑油的焓值、质量流量计算得到,其具体计算过程在公式(3)中已详细描述,在此不再赘述。In formula (15), Q c represents the heating capacity of the multi-stage air-conditioning system, in kW, Q e represents the heat absorption of the
在本实施例中还提供了一种多联式空调系统换热量测量装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。This embodiment also provides a device for measuring heat exchange of a multi-connected air-conditioning system, the device is used to implement the above embodiments and preferred implementations, and what has been described will not be repeated. As used below, the term "module" may be a combination of software and/or hardware that implements a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
在一较佳实施例中,本发明实施例的多联式空调系统换热量测量装置可用于测量如图2所示的多联式空调系统的换热量。该多联式空调系统的压缩机21的排气口连接油分离器22的入口,油分离器22的第一出口连接压缩机21的吸气口,油分离器22的第二出口通过连接四通阀23的入口,四通阀23的第一出口连接室外换热器24的入口,室外换热器24的出口连接再冷器25的入口,气液分离器26的第一入口连接再冷器25的旁通回路出口,第二入口连接四通阀23的第二出口,气液分离器26的出口连接压缩机21的入口,再冷器25的主回路出口连接室内换热器27。In a preferred embodiment, the apparatus for measuring the heat exchange of the multi-stage air conditioning system according to the embodiment of the present invention can be used to measure the heat exchange amount of the multi-stage air conditioning system as shown in FIG. 2 . The exhaust port of the
如图7所示,本发明实施例的多联式空调系统换热量测量装置包括:第一处理模块31,用于根据进出多联式空调系统中各组件的能量守恒的原理,得到四通阀23的第二出口处的制冷剂和润滑油组成的混合物的第五质量流量;第一获取模块32,用于获取混合物在再冷器25的主回路出口的第十一焓值;第二处理模块33,用于获取混合物在四通阀23的第二出口的第五焓值,根据第五质量流量、第五焓值、第十一焓值,得到多联式空调系统的制冷量;和/或,第三处理模块34,用于获取混合物在油分离器22的第二出口的第八油分离器焓值,根据第五质量流量、第八油分离器焓值、第十一焓值,得到多联式空调系统的制热量。As shown in FIG. 7 , the apparatus for measuring heat exchange of a multi-connected air-conditioning system according to an embodiment of the present invention includes: a
通过该多联式空调系统换热量测量装置,通过第一处理模块31利用进出各组件的能量守恒的原理,得到混合物在四通阀23的第二出口处的质量流量,然后第二处理模块32通过得到的各点的焓值和第五质量流量,得到多联式空调系统的制热量,和/或,第三处理模块33通过得到的各点的焓值和第五质量流量,得到多联式空调系统的制热量,能够通过焓值和质量流量从而得到换热量,解决了现有技术中通过测量风量来换算得到制冷量或制热量,计算结果不准确的问题。Through the multi-connected air conditioning system heat exchange measurement device, the
上述各个模块的更进一步的功能描述与上述对应实施例相同,在此不再赘述。Further functional descriptions of the above-mentioned modules are the same as those of the above-mentioned corresponding embodiments, and are not repeated here.
本发明实施例还提供了一种计算机设备,图8是本发明实施例提供的多联式空调系统换热量测量方法的计算机设备的硬件结构示意图,如图8所示,该计算机设备包括一个或多个处理器41以及存储器42,图8中以一个处理器41为例。An embodiment of the present invention also provides a computer device. FIG. 8 is a schematic diagram of the hardware structure of a computer device for a method for measuring heat exchange of a multi-connected air conditioning system provided by an embodiment of the present invention. As shown in FIG. 8 , the computer device includes a or
该计算机设备还可以包括:输入装置43及输出装置44。The computer equipment may further include: an
处理器41、存储器42、输入装置43及输出装置44可以通过总线或者其他方式连接,图8中以通过总线连接为例。The
处理器41可以为中央处理器(Central Processing Unit,CPU)。处理器41还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The
存储器42作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的多联式空调系统换热量测量方法对应的程序指令/模块(例如,图7所示的第一处理模块31、第一获取模块32、第二处理模块33、第三处理模块34等)。处理器41通过运行存储在存储器42中的非暂态软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例所述的多联式空调系统换热量测量方法。As a non-transitory computer-readable storage medium, the
存储器42可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据多联式空调系统换热量测量装置的使用所创建的数据等。此外,存储器42可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器42可选包括相对于处理器41远程设置的存储器,这些远程存储器可以通过网络连接至多联式空调系统换热量测量装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
输入装置43可接收用户输入的查询请求(或其他数字或字符信息),以及产生与多联式空调系统换热量测量装置的用户设置以及功能控制有关的键信号输入。输出装置44可包括显示屏等显示设备,用以输出计算结果。The
所述一个或者多个模块存储在所述存储器42中,当被所述一个或者多个处理器41执行时,执行如图1至图6所示的方法。The one or more modules are stored in the
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,具体可参见如图1至图6所示的实施例中的相关描述。The above product can execute the method provided by the embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method. For technical details that are not described in detail in this embodiment, reference may be made to the related descriptions in the embodiments shown in FIG. 1 to FIG. 6 for details.
本发明实施例还提供一种非暂态计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的多联式空调系统换热量测量方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。Embodiments of the present invention further provide a non-transitory computer storage medium, where computer-executable instructions are stored in the computer storage medium, and the computer-executable instructions can execute the heat exchange measurement of a multi-connected air conditioning system in any of the above method embodiments method. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), a hard disk (Hard) Disk Drive, abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the above-mentioned types of memories.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810077165.7A CN108344528B (en) | 2018-01-26 | 2018-01-26 | A method and device for measuring heat exchange in a multi-connected air-conditioning system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810077165.7A CN108344528B (en) | 2018-01-26 | 2018-01-26 | A method and device for measuring heat exchange in a multi-connected air-conditioning system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108344528A CN108344528A (en) | 2018-07-31 |
| CN108344528B true CN108344528B (en) | 2020-07-24 |
Family
ID=62961220
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810077165.7A Active CN108344528B (en) | 2018-01-26 | 2018-01-26 | A method and device for measuring heat exchange in a multi-connected air-conditioning system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108344528B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109489295B (en) * | 2018-11-21 | 2021-03-30 | 青岛海信日立空调系统有限公司 | Multi-connected air conditioning system and control method thereof |
| CN109855245B (en) * | 2019-02-13 | 2021-09-21 | 青岛海尔空调电子有限公司 | Multi-split air conditioning system and heat exchange amount calculation method thereof |
| CN110260452B (en) | 2019-05-24 | 2022-01-04 | 青岛海尔空调电子有限公司 | Multi-split air conditioning system and heat exchange amount calculation method thereof |
| CN112728712B (en) * | 2021-01-21 | 2022-05-06 | 广东美的暖通设备有限公司 | Multi-split air conditioner running capacity detection method, multi-split air conditioner, storage medium and device |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101338951A (en) * | 2008-08-18 | 2009-01-07 | 南京天加空调设备有限公司 | Water cooling heat pump type multiple air-conditioning unit |
| CN202442818U (en) * | 2011-12-28 | 2012-09-19 | 曹阳 | High-precision multi-connection type air-conditioning (heat pump) set indoor unit refrigerating capacity on-site tester |
| CN104633771A (en) * | 2013-11-13 | 2015-05-20 | 珠海格力电器股份有限公司 | Multi-connected air conditioning unit and control method thereof |
| CN105299845A (en) * | 2015-11-20 | 2016-02-03 | 广东美的制冷设备有限公司 | Virtual running parameter detecting method and device of air conditioner system |
| CN107328041A (en) * | 2017-08-31 | 2017-11-07 | 广东美的制冷设备有限公司 | Air conditioner and its efficiency computational methods |
| CN107514759A (en) * | 2017-08-31 | 2017-12-26 | 广东美的制冷设备有限公司 | Air conditioner and its efficiency computational methods |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9958190B2 (en) * | 2013-01-24 | 2018-05-01 | Advantek Consulting Engineering, Inc. | Optimizing energy efficiency ratio feedback control for direct expansion air-conditioners and heat pumps |
-
2018
- 2018-01-26 CN CN201810077165.7A patent/CN108344528B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101338951A (en) * | 2008-08-18 | 2009-01-07 | 南京天加空调设备有限公司 | Water cooling heat pump type multiple air-conditioning unit |
| CN202442818U (en) * | 2011-12-28 | 2012-09-19 | 曹阳 | High-precision multi-connection type air-conditioning (heat pump) set indoor unit refrigerating capacity on-site tester |
| CN104633771A (en) * | 2013-11-13 | 2015-05-20 | 珠海格力电器股份有限公司 | Multi-connected air conditioning unit and control method thereof |
| CN105299845A (en) * | 2015-11-20 | 2016-02-03 | 广东美的制冷设备有限公司 | Virtual running parameter detecting method and device of air conditioner system |
| CN107328041A (en) * | 2017-08-31 | 2017-11-07 | 广东美的制冷设备有限公司 | Air conditioner and its efficiency computational methods |
| CN107514759A (en) * | 2017-08-31 | 2017-12-26 | 广东美的制冷设备有限公司 | Air conditioner and its efficiency computational methods |
Non-Patent Citations (2)
| Title |
|---|
| 基于现场实测的地铁站设备管理用房设备发热量计算方法研究;余珏 等;《建筑科学》;20170831;第33卷(第8期);168-172 * |
| 空气源热泵现场性能测试技术的研究进展;黄文宇 等;《暖通空调HV&HC》;20170731;第47卷(第7期);1-10 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108344528A (en) | 2018-07-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108344528B (en) | A method and device for measuring heat exchange in a multi-connected air-conditioning system | |
| CN109765797A (en) | A kind of air conditioner energy saving analogue system | |
| CN107314498A (en) | The efficiency on-line monitoring method and device of a kind of central air conditioner system | |
| CN204693738U (en) | Air conditioner with separate hot pump actual motion energy efficiency detection system | |
| CN104748327B (en) | A kind of public building air-conditioning efficiency diagnostic system based on power consumption data | |
| CN203758765U (en) | Test apparatus for the performance of a refrigerating and air-conditioning system | |
| CN104075403A (en) | Air-conditioning energy consumption monitoring and diagnosing system and method | |
| CN103759961A (en) | Energy efficiency assessment method of electrical refrigeration water chilling unit central air-conditioning system | |
| CN109754195B (en) | Annual performance detection method of ground source heat pump system | |
| CN110529377A (en) | Compressor reliability test macro | |
| JP2019020070A (en) | Evaluation device and evaluation method for air conditioner | |
| WO2018188520A1 (en) | Online detection method for refrigeration energy efficiency ratio and refrigeration capacity of air conditioner | |
| CN107423477A (en) | air conditioner compressor simulation method and system | |
| CN102353403B (en) | Methods for measuring chilled water flow and cooling medium flow of central air-conditioning host machine | |
| WO2023029653A1 (en) | Defrosting control method for outdoor unit of air conditioner, and air conditioner | |
| CN204757267U (en) | Central air conditioning efficiency monitoring system | |
| CN115789854B (en) | Method and system for measuring and adjusting effective coefficient of air flow organization of air-conditioning room | |
| CN107192084B (en) | Method for detecting heating energy efficiency ratio and heating quantity of air conditioner on line | |
| CN115493248A (en) | An intelligent diagnosis method and system for the whole life cycle of a central air-conditioning system | |
| CN106840733B (en) | Air conditioning unit performance online detection method and detection device thereof | |
| CN204943994U (en) | The kind of refrigeration cycle oil content of refrigeration plant and the measurement mechanism of efficiency | |
| CN219495670U (en) | A portable energy efficiency online detection device | |
| CN111578453A (en) | A cooling water optimization control system and method based on big data analysis | |
| Han et al. | A new method for field test of the heating capacity of air source heat pumps | |
| CN109060340A (en) | A kind of thermal balance room of High Precision Air-conditioning performance test |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |