CN108398245A - A kind of detection method and device of concentrically fanned light source - Google Patents
A kind of detection method and device of concentrically fanned light source Download PDFInfo
- Publication number
- CN108398245A CN108398245A CN201810520850.2A CN201810520850A CN108398245A CN 108398245 A CN108398245 A CN 108398245A CN 201810520850 A CN201810520850 A CN 201810520850A CN 108398245 A CN108398245 A CN 108398245A
- Authority
- CN
- China
- Prior art keywords
- light source
- concentric
- time
- sensitive
- divergent light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000004364 calculation method Methods 0.000 claims abstract description 8
- 238000009792 diffusion process Methods 0.000 claims abstract description 8
- 238000000342 Monte Carlo simulation Methods 0.000 claims abstract description 4
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 abstract description 10
- 241001465754 Metazoa Species 0.000 abstract description 3
- 238000003759 clinical diagnosis Methods 0.000 abstract 1
- 238000001727 in vivo Methods 0.000 abstract 1
- 238000004020 luminiscence type Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 238000005025 nuclear technology Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0207—Details of measuring devices
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种同心发散光源的检测方法,包括如下步骤:将探测器单元朝向同心发散光源可能击中的区域;通过在线或者离线计算,获得每个单元的时变位置敏感似然概率函数;在给定的时间区间内,通过第一性原理计算和蒙特卡洛仿真,建立所有探测器的联合时变位敏似然函数;通过最大化所有探测器的联合时变位敏似然函数估计点状光源的中心位置和扩散幅度,将满足最大化所有探测器联合时变位敏似然函数的点状光源参数作为点状光源属性的估计值。一种同心发散光源的检测装置,包括探测器几何分布模块、光子探测单元模块、探测单元联合概率密度函数设定模块、联合概率密度函数最大化模块。本发明特别适合在体的小动物成像和浅表的临床诊断。
The invention discloses a method for detecting a concentric divergent light source, which comprises the following steps: directing the detector unit towards the area where the concentric divergent light source may hit; obtaining the time-varying position-sensitive likelihood probability function of each unit through online or offline calculation ;In a given time interval, through first-principle calculations and Monte Carlo simulations, the joint time-varying position-sensitive likelihood function of all detectors is established; by maximizing the joint time-varying position-sensitive likelihood function of all detectors The center position and diffusion range of the point light source are estimated, and the parameters of the point light source satisfying the maximization of the joint time-shift-sensitive likelihood function of all detectors are taken as the estimated value of the point light source properties. A detection device for a concentric divergent light source includes a detector geometric distribution module, a photon detection unit module, a detection unit joint probability density function setting module, and a joint probability density function maximization module. The invention is particularly suitable for small animal imaging in vivo and superficial clinical diagnosis.
Description
技术领域technical field
本发明涉及数字信号处理、光电信号处理和核检测技术领域,具体是一种同心发散光源的检测方法与装置。The invention relates to the technical fields of digital signal processing, photoelectric signal processing and nuclear detection, in particular to a detection method and device for a concentric divergent light source.
背景技术Background technique
同心发散光源是指某种中心发散的光源,这种光源的体积小于或者等于5cm或者小于总视场范围面积或者体积的5%。由于同心发散光源广泛出现于光学成像、辐射成像和高能粒子成像当中,所以针对同心发散光源的检测方法,将成为改变相关领域最为基本的技术革新,并彻底改变其系统的架构和数据处理方式。传统的同心发散光源检测采用各种平面相机技术并在此基础上进行相关的三维重建(光学相机);或者量测待成像物体某种分布在多维空间上的投影,例如CT、SPECT、PET等。由于捕获的光子计数远远小于可以捕获的光子总数的上限,传统的光源检测方法在灵敏度和分辨率上都受到了巨大的限制。A concentric divergent light source refers to a central divergent light source whose volume is less than or equal to 5cm or less than 5% of the total field of view area or volume. Since concentric divergent light sources are widely used in optical imaging, radiation imaging, and high-energy particle imaging, the detection method for concentric divergent light sources will become the most basic technological innovation in related fields, and will completely change its system architecture and data processing methods. The traditional concentric divergent light source detection uses various plane camera technologies and performs related 3D reconstruction (optical camera) on this basis; or measures the projection of a certain distribution of the object to be imaged in a multi-dimensional space, such as CT, SPECT, PET, etc. . Since the captured photon count is far less than the upper limit of the total number of photons that can be captured, conventional light source detection methods are severely limited in both sensitivity and resolution.
因此,针对上述技术问题,有必要针对能够获取的单光子时间、能量、位置等多维信息,提供一种新的同心发散光源的检测方法与装置,以克服传统光学探测中所没有检测到的多维信息。定制地捕获单个同心发散光源发光事件的角度(2-D)、时间(1-D)、位置(3-D)、能量(1-D)共7维信息中的全部数据或者部分数据。Therefore, in view of the above-mentioned technical problems, it is necessary to provide a new detection method and device for concentric diverging light sources to overcome the multi-dimensional information that cannot be detected in traditional optical detection. information. Customized capture of all or part of the data in the 7-dimensional information of angle (2-D), time (1-D), position (3-D), and energy (1-D) of a single concentric divergent light source luminescence event.
发明内容Contents of the invention
本发明目的在于克服现有技术的不足,适应现实发展,提供一种同心发散光源的检测方法与装置,该方法与装置能有效地读出一个同心发散光源发光事件的多个光子的电信号样本,通过多光子时间符合,剔除自发光事件,增大重构图像信噪比,避免基线漂移对读出信号的影响。The purpose of the present invention is to overcome the deficiencies of the prior art, adapt to the development of reality, and provide a detection method and device for a concentric divergent light source. The method and device can effectively read the electrical signal samples of multiple photons of a concentric divergent light source lighting event , through multi-photon time coincidence, self-luminescence events are eliminated, the signal-to-noise ratio of the reconstructed image is increased, and the influence of baseline drift on the readout signal is avoided.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种同心发散光源的检测方法,其包括如下步骤:A detection method for a concentric divergent light source, comprising the steps of:
S1:将探测器单元朝向同心发散光源可能击中的区域;S1: Direct the detector unit towards the area where the concentric divergent light source may hit;
S2:通过在线或者离线计算,获得每个单元的时变位置敏感似然概率函数;S2: Obtain the time-varying position-sensitive likelihood probability function of each unit through online or offline calculation;
S3:在给定的时间区间内,通过第一性原理计算和蒙特卡洛仿真,建立所有探测器的联合时变位敏似然函数;S3: In a given time interval, through first-principles calculation and Monte Carlo simulation, establish the joint time-varying displacement-sensitive likelihood function of all detectors;
S4:通过最大化所有探测器的联合时变位敏似然函数估计点状光源的中心位置和扩散幅度,将满足最大化所有探测器联合时变位敏似然函数的点状光源参数作为点状光源属性的估计值。S4: Estimate the central position and diffusion range of the point light source by maximizing the joint time-varying displacement-sensitive likelihood function of all detectors, and take the point light source parameters that satisfy the joint time-varying displacement-sensitive likelihood function of all detectors as the point Estimated values for the shape light properties.
优选地,在上述的同心发散光源的检测方法中,所述同心发散光源发光事件是指在一个同心发散光源内单次发光事件,发光的光子数大于等于3,发光的计数率小于探测器死时间的倒数的十分之一。Preferably, in the above detection method for concentric divergent light sources, the concentric divergent light source luminous event refers to a single luminous event in a concentric divergent light source, the number of photons emitted is greater than or equal to 3, and the count rate of emitted light is less than that of the detector. One-tenth of the reciprocal of time.
优选地,在上述的同心发散光源的检测方法中,所述的光源发光的时间与发光次数的乘积小于0.1。Preferably, in the detection method of the above-mentioned concentric divergent light source, the product of the light-emitting time of the light source and the number of light-emitting times is less than 0.1.
优选地,在上述的同心发散光源的检测方法中,所述时间符合是指多个单光子(不少于10个)事件在很短的时间(例如1ms)内发生,即认为这多个单光子事件属于同一次同心发散光源发光事件。Preferably, in the detection method of the above-mentioned concentric divergent light source, the time coincidence means that multiple single-photon (not less than 10) events occur within a short time (for example, 1 ms), that is, these multiple single-photon events are considered to be The photon event belongs to the same luminescence event of the concentric divergent light source.
优选地,在上述的同心发散光源的检测方法中,所述光子在孔内的相对位置是指光子在探测器模组孔内的相对位置,这个相对位置和射线入射角度有直接的关系。Preferably, in the detection method of the above-mentioned concentric divergent light source, the relative position of the photon in the hole refers to the relative position of the photon in the hole of the detector module, and this relative position is directly related to the incident angle of the ray.
优选地,在上述的同心发散光源的检测方法中,所述探测器的感光孔是指建造在探测器底座上的孔状几何,这些孔用于确定同心发散光源发光事件辐射发生的位置。Preferably, in the detection method of the above-mentioned concentric divergent light source, the photosensitive hole of the detector refers to the hole-like geometry built on the detector base, and these holes are used to determine the position where the radiation of the concentric divergent light source luminescence event occurs.
一种同心发散光源的检测装置,探测器几何分布模块、光子探测单元模块、探测单元联合概率密度函数设定模块、联合概率密度函数最大化模块;A detection device for a concentric diverging light source, a detector geometric distribution module, a photon detection unit module, a detection unit joint probability density function setting module, and a joint probability density function maximization module;
所述探测器几何分布模块,用于将探测器单元朝向同心发散光源可能的区域;The detector geometric distribution module is used to direct the detector unit towards the possible area of the concentric divergent light source;
所述光子探测单元模块,用于计算每个单元的时变位置敏感似然;The photon detection unit module is used to calculate the time-varying position-sensitive likelihood of each unit;
所述探测单元联合概率密度函数设定模块,用于在给定的时间区间内,建立所有探测器的联合时变位敏似然函数;The joint probability density function setting module of the detection unit is used to establish the joint time-variation-sensitive likelihood function of all detectors within a given time interval;
所述联合概率密度函数最大化模块,通过最大化所有探测器的联合时变位敏似然函数估计同心光源的中心位置和扩散幅度。The joint probability density function maximization module estimates the central position and diffusion range of the concentric light source by maximizing the joint time-varying displacement-sensitive likelihood function of all detectors.
从上述技术方案可以看出,通过采用本发明的同心发散光源的检测方法与装置,能有效提高装置的成像信噪比,抵御自发光和背景光影响,在发光效率不高或者发光光子数不多的情况下尤为有效。It can be seen from the above technical solution that by adopting the detection method and device of the concentric divergent light source of the present invention, the imaging signal-to-noise ratio of the device can be effectively improved, and the influence of self-illumination and background light can be resisted. Especially effective in many cases.
本发明的优点和积极效果:Advantage and positive effect of the present invention:
(1)更高的检测效率。本发明理论上在检测效率上等于或者接近全立体角视角,比准直孔和透镜覆盖的立体角多,所以大幅度提升了检测效率;(1) Higher detection efficiency. In theory, the detection efficiency of the present invention is equal to or close to the full solid angle viewing angle, which is more than the solid angle covered by the collimation hole and the lens, so the detection efficiency is greatly improved;
(2)多视角全3D的探测器设计,一次扫描即可同时获取无数视角的同心发散光源发光事件光子信息;(2) Multi-view full 3D detector design, one scan can simultaneously obtain photon information of concentric divergent light source luminescence events from countless viewing angles;
(3)抵御背景光和生物体自发光的时间符合设计,有利于降低成像的背景噪声;(3) The time of resisting background light and biological self-illumination is in line with the design, which is conducive to reducing the background noise of imaging;
(4)全事件读出设计可以全面的读出同心发散光源发光事件丰富的多维信息:角度(2-D)、时间(1-D)、位置(3-D)、能量(1-D)。具体为以事件的形式记录光电器件的电信号。(4) The full-event readout design can comprehensively read out the rich multi-dimensional information of concentric divergent light source luminescence events: angle (2-D), time (1-D), position (3-D), energy (1-D) . Specifically, the electrical signal of the optoelectronic device is recorded in the form of an event.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的有关本发明的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the accompanying drawings that need to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the following descriptions related to the present invention The accompanying drawings are only some embodiments of the present invention, and those skilled in the art can obtain other drawings according to these drawings without any creative effort.
图1为本发明的同心发散光源的检测方法的流程图。Fig. 1 is a flow chart of the detection method of the concentric divergent light source of the present invention.
图2为本发明的同心发散光源的检测装置的装置结构图。Fig. 2 is a device structure diagram of the detection device of the concentric divergent light source of the present invention.
图3为本发明的同心发散光源的检测器输出的多路事例信号。Fig. 3 is a multi-channel event signal output by the detector of the concentric divergent light source of the present invention.
图4为本发明的同心发散光源的检测到的事例按时间分布及其期望函数。Fig. 4 is the time distribution of detected events and its expectation function of the concentric diverging light source of the present invention.
图5为本发明的同心发散光源的检测到的光源的展宽估计的过程。FIG. 5 is a process of broadening estimation of a detected light source for a concentric diverging light source of the present invention.
图6为本发明同心发散光源的测试假体的剖面一的重建结果。Fig. 6 is the reconstruction result of section 1 of the test phantom of the concentric divergent light source of the present invention.
图7为本发明同心发散光源的测试假体的剖面二的重建结果。Fig. 7 is the reconstruction result of the second section of the test phantom of the concentric divergent light source of the present invention.
图8为本发明同心发散光源的测试假体的剖面三的重建结果。Fig. 8 is the reconstruction result of section 3 of the test phantom of the concentric divergent light source of the present invention.
图9为本发明同心发散光源的测试假体的剖面四的重建结果。Fig. 9 is the reconstruction result of section 4 of the test phantom of the concentric divergent light source of the present invention.
图10为本发明同心发散光源的检测装置的输出的高计数率脉冲信号。Fig. 10 is a high count rate pulse signal output by the detection device of the concentric divergent light source of the present invention.
图2中标记含义如下:100-探测器几何分布模块,200-光子探测单元模块,300-探测单元联合概率密度函数设定模块,400-联合概率密度函数最大化模块。The meanings of the marks in Fig. 2 are as follows: 100-detector geometric distribution module, 200-photon detection unit module, 300-detection unit joint probability density function setting module, 400-joint probability density function maximization module.
具体实施方式Detailed ways
本发明公开了一种同心发散光源的检测方法与装置,该方法与装置能有效地实现事件到达时间的标记,提升模块及装置的时间分辨率,并通过时间符合的光子信号样本探测同心发散光源发光事件的多维信息。The invention discloses a method and device for detecting concentric divergent light sources. The method and device can effectively mark the arrival time of events, improve the time resolution of modules and devices, and detect concentric divergent light sources through time-matched photon signal samples. Multidimensional information of luminescent events.
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下,所获得的所有其他实施例,均属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1所示,本发明所述的同心发散光源的检测方法与装置通过以事件列表的数据形式采集单光子信号,再利用时间符合和估计理论甄别出同心发散光源发光事件的位置、展宽等其它参数,具体的方法步骤为:As shown in Figure 1, the detection method and device for concentric divergent light sources of the present invention collect single photon signals in the form of event list data, and then use time coincidence and estimation theory to identify the position, broadening, etc. of concentric divergent light source luminous events Other parameters, the specific method steps are:
S1:将探测器单元朝向同心发散光源可能击中的区域;S1: Direct the detector unit towards the area where the concentric divergent light source may hit;
S2:通过在线或者离线计算,获得每个单元的时变位置敏感似然概率函数;S2: Obtain the time-varying position-sensitive likelihood probability function of each unit through online or offline calculation;
S3:在给定的时间区间内,通过第一性原理计算和蒙特卡洛仿真,建立所有探测器的联合时变位敏似然函数;S3: In a given time interval, through first-principles calculation and Monte Carlo simulation, establish the joint time-varying displacement-sensitive likelihood function of all detectors;
S4:通过最大化所有探测器的联合时变位敏似然函数估计点状光源的中心位置和扩散幅度,将满足最大化所有探测器联合时变位敏似然函数的点状光源参数作为点状光源属性的估计值。S4: Estimate the central position and diffusion range of the point light source by maximizing the joint time-varying displacement-sensitive likelihood function of all detectors, and take the point light source parameters that satisfy the joint time-varying displacement-sensitive likelihood function of all detectors as the point Estimated values for the shape light properties.
以上同心发散光源的检测方法中,所述同心发散光源发光事件是指单个同心发散光源发射光子流的事件。In the detection method of the above concentric divergent light source, the concentric divergent light source light emission event refers to the event that a single concentric divergent light source emits a flow of photons.
以上同心发散光源的检测方法中,所述的单光子事件是指同心发散光源发射光子流的事件、背景光事件或者自发光事件中的一个光子被光子探测器吸收的单个独立事件。In the detection method of the above concentric divergent light source, the single photon event refers to a single independent event in which a concentric divergent light source emits a photon stream, a background light event or a self-illumination event and one photon is absorbed by a photon detector.
以上同心发散光源的检测装置中,所述时间符合是指多个单光子(不少于10个)事件在很短的时间内(例如1ms)发生,即认为这多个单光子事件属于同一次同心发散光源发光事件。In the detection device of the above concentric divergent light source, the time coincidence means that multiple single-photon (not less than 10) events occur within a short period of time (for example, 1ms), that is, these multiple single-photon events belong to the same time Concentric divergent light source glow event.
以上同心发散光源的检测装置中,所述光子在孔内的相对位置是指光子在探测器模组孔内的相对位置,这个相对位置和射线入射角度有直接的关系。In the detection device of the above concentric divergent light source, the relative position of the photons in the hole refers to the relative position of the photon in the hole of the detector module, and this relative position is directly related to the incident angle of the ray.
以上同心发散光源的检测装置中,所述同心发散光源发光事件发生的位置是指发射带电粒子时光源在生物体中的位置,不同位置射入探测器的感光孔的相对位置不同。In the detection device of the above concentric divergent light source, the position where the luminescent event of the concentric divergent light source occurs refers to the position of the light source in the living body when the charged particles are emitted, and the relative positions of the photosensitive holes that enter the detector are different at different positions.
以上同心发散光源的检测装置中,所述探测器的感光孔是指建造在探测器底座上的孔状几何,这些孔用于确定同心发散光源发光事件发生的位置。In the detection device of the above concentric divergent light source, the photosensitive hole of the detector refers to the hole geometry built on the detector base, and these holes are used to determine the position where the concentric divergent light source luminescence event occurs.
如图2所示,本发明公开的单光子时间分辨的同心发散光源的检测装置,其包括探测器几何分布模块100、光子探测单元模块200、探测单元联合概率密度函数设定模块300、联合概率密度函数最大化模块400。As shown in Fig. 2, the detection device of single-photon time-resolved concentric divergent light source disclosed by the present invention includes a detector geometric distribution module 100, a photon detection unit module 200, a detection unit joint probability density function setting module 300, a joint probability Density function maximization module 400 .
探测器几何分布模块100,用于将探测器单元朝向同心发散光源可能的区域。The detector geometric distribution module 100 is used to direct the detector unit towards the possible area of the concentric divergent light source.
光子探测单元模块200,用于计算每个单元的时变位置敏感似然。The photon detection unit module 200 is used to calculate the time-varying position-sensitive likelihood of each unit.
探测单元联合概率密度函数设定模块300,用于在给定的时间区间内,建立所有探测器的联合时变位敏似然函数。The detection unit joint probability density function setting module 300 is used to establish the joint time-varying displacement-sensitive likelihood function of all detectors within a given time interval.
联合概率密度函数最大化模块400,通过最大化所有探测器的联合时变位敏似然函数估计点状光源的中心位置和扩散幅度。The joint probability density function maximization module 400 estimates the center position and diffusion range of the point light source by maximizing the joint time-varying position-sensitive likelihood function of all detectors.
如图3、图4及图10所示,图3为本发明的探测器模组用于计算位置的思路信号,图4为本发明的同心发散光源的检测到的事例按时间分布及其期望函数,图10为本发明同心发散光源的检测装置的输出的高计数率脉冲信号。结合图3、图4及图10,下面通过几个具体的实施例,对本发明的同心发散光源的检测方法与装置做进一步描述。本发明提出的单光子时间分辨的同心发散光源的检测方法与装置,其涉及到的参数、滤波器设计、时间符合处理需要根据与获取数据的特点进行调节以达到良好的同心发散光源发光事件辐射分辨性能和较短的脉冲持续时间。此处列出所涉及的应用实施例处理数据的参数。As shown in Fig. 3, Fig. 4 and Fig. 10, Fig. 3 is the idea signal used by the detector module of the present invention to calculate the position, and Fig. 4 is the time distribution and expectation of the detected cases of the concentric divergent light source of the present invention Function, Fig. 10 is the high count rate pulse signal output by the detection device of the concentric divergent light source of the present invention. With reference to FIG. 3 , FIG. 4 and FIG. 10 , the method and device for detecting concentric divergent light sources of the present invention will be further described below through several specific embodiments. The detection method and device of the single-photon time-resolved concentric divergent light source proposed by the present invention, the parameters involved, the filter design, and the time matching process need to be adjusted according to the characteristics of the acquired data to achieve a good concentric divergent light source luminescence event radiation resolving performance and shorter pulse duration. Parameters for data processing of the application embodiments involved are listed here.
实例1:Example 1:
此处列出本实施例1处理数据的参数:List the parameters of this embodiment 1 processing data here:
步骤(1)所用的实际装置为使用暗箱尺寸为1.0m×1.0m×1.0m。射源为511kev的正电子湮灭伽马光子18F-FDG,注射总活度为1豪居里,实验对象为25cm长的大鼠。采用红光增强的硅光电倍增管,探测器采用环状结构;The actual device used in step (1) is a dark box with a size of 1.0m×1.0m×1.0m. The radiation source is 511keV positron annihilation gamma photon 18F-FDG, the total activity of the injection is 1 hoCurie, and the experimental object is a rat with a length of 25cm. The red light enhanced silicon photomultiplier tube is used, and the detector adopts a ring structure;
步骤(2)符合时间约为2ns,符合判断采用离线式的时间符合处理;The matching time of step (2) is about 2 ns, and the matching judgment adopts offline time matching processing;
步骤(3)采用解析的同心发散光源发光事件重建方法,直接绘出同心发散光源发光事件的时间和位置,光子发射过程中,假定向所有方向发射光子的概率相等,计算似然概率采用第一性原理方法;Step (3) Use the analytical reconstruction method of concentric divergent light source luminescence events to directly draw the time and position of concentric divergent light source luminous events. During the process of photon emission, assuming that the probability of emitting photons in all directions is equal, the likelihood probability is calculated using the first sex principle method;
步骤(4)采用解析的光源分布重建方法,直接绘出同心发散光源发光事件的时间、位置及光源的大小。Step (4) adopts an analytical light source distribution reconstruction method to directly draw the time, position and size of the concentric divergent light source luminescence event.
实例2:Example 2:
此处列出本应用实例2处理数据的参数:The parameters for processing data in this application instance 2 are listed here:
步骤(1)所用的实际装置为使用暗箱尺寸为1.8m×1.8m×1.8m。射源为511kev的124I-NaI。采用红光增强的光电倍增管,探测器采用由平板构成的箱体结构;The actual device used in step (1) is a dark box with a size of 1.8m×1.8m×1.8m. The radiation source is 511kev 124I-NaI. The photomultiplier tube with red light enhancement is adopted, and the detector adopts a box structure composed of flat plates;
步骤(2)符合时间约为10ns,符合判断采用在线式的时间符合处理;The matching time of step (2) is about 10 ns, and the matching judgment adopts online time matching processing;
步骤(3)采用迭代的同心发散光源发光事件重建方法,逼近式绘出同心发散光源发光事件的时间和位置,图5是逼近最优解的过程示意图;Step (3) adopts the iterative reconstruction method of concentric divergent light source luminous events, and draws the time and position of the concentric divergent light source luminous events by approximation, and Fig. 5 is a schematic diagram of the process of approaching the optimal solution;
步骤(4)采用迭代的光源分布重建方法,逼近式绘出同心发散光源发光事件的时间和位置。In step (4), an iterative light source distribution reconstruction method is used to approximately draw the time and position of the concentric divergent light source luminescence event.
本发明的方法和装置除了可以用于生物体(例如人体和小动物)的光学成像,同样可以用于辐射带电微粒的核技术,包括核检测、核分析、核医学仪器。The method and device of the present invention can not only be used for optical imaging of biological bodies (such as human body and small animals), but also can be used for nuclear technology of radiating charged particles, including nuclear detection, nuclear analysis, and nuclear medicine instruments.
本发明提供的同心发散光源的检测方法中。通过时间符合,剔除生物体的自发光和背景光。通过单光子事件在孔内的相对位置判断同心发散光源发光事件的时间和位置,比背景技术中的单视角或者电流电荷读出的同心发散光源发光事件成像方法的成像质量好,捕获的同心发散光源发光事件光子多。In the detection method of the concentric divergent light source provided by the present invention. By time matching, the self-illumination and background light of the organism are eliminated. Judging the time and position of the concentric divergence light source luminescence event by the relative position of the single photon event in the hole, the imaging quality of the concentric divergence light source luminescence event imaging method is better than that of the single-view or current charge readout in the background technology, and the captured concentric divergence The light source emits more photons than the event.
本发明公开的同心发散光源的检测方法中,注入可发射带电粒子的同位素可用于标记生物体中的生化和生理过程;读出带电粒子发出同心发散光源发光事件光子射向探测器模组的光子计数和每个计数的时间;对读到的时间进行时间符合;通过光子在孔内的相对位置来估计同心发散光源发光事件发生的位置;对估计的同心发散光源发光事件的位置和时间进行重建,获得核素的分布。In the detection method of the concentric divergent light source disclosed in the present invention, the injection of isotopes that can emit charged particles can be used to mark the biochemical and physiological processes in organisms; the charged particles emit photons that emit concentric divergent light source light-emitting event photons to the detector module Counts and time of each count; time coincidence of read times; estimation of location of concentric divergent source luminescence events by photon relative position within aperture; reconstruction of estimated position and time of concentric divergent source luminescence events , to obtain the nuclide distribution.
采用本发明的同心发散光源的检测装置,能有效提高装置的成像信噪比,抵御生物组织自发光影响,特别适合于小动物等成像深度要求不高的活体成像。The detection device adopting the concentric diverging light source of the present invention can effectively improve the imaging signal-to-noise ratio of the device, resist the influence of biological tissue self-luminescence, and is especially suitable for living imaging such as small animals that do not require high imaging depth.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此,旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the invention is not limited to the details of the above-described exemplary embodiments, but that the invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the claimed elements are intended to be embraced in the invention. Any reference sign in a claim should not be construed as limiting the claim concerned.
上述实施例仅是本发明的较优实施方式,凡是依据本发明的技术实质对以上实施例所做的任何简单修饰、修改及替代变化,均属于本发明技术方案的范围内。The above-mentioned embodiments are only preferred implementation modes of the present invention, and any simple modifications, modifications and substitutions made to the above-mentioned embodiments according to the technical essence of the present invention fall within the scope of the technical solutions of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810520850.2A CN108398245A (en) | 2018-05-28 | 2018-05-28 | A kind of detection method and device of concentrically fanned light source |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810520850.2A CN108398245A (en) | 2018-05-28 | 2018-05-28 | A kind of detection method and device of concentrically fanned light source |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108398245A true CN108398245A (en) | 2018-08-14 |
Family
ID=63102595
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810520850.2A Pending CN108398245A (en) | 2018-05-28 | 2018-05-28 | A kind of detection method and device of concentrically fanned light source |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108398245A (en) |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101004921A (en) * | 2006-07-19 | 2007-07-25 | 清华大学深圳研究生院 | Optical reading method and system |
| US20090066960A1 (en) * | 2007-09-10 | 2009-03-12 | Biospace Lab | Luminescence Imagining Installation and Method |
| WO2009095679A2 (en) * | 2008-02-01 | 2009-08-06 | Cambridge Consultants Limited | Photometric pevice |
| US20110249866A1 (en) * | 2010-04-09 | 2011-10-13 | The Regents Of The University Of Colorado | Methods and systems for three dimensional optical imaging, sensing, particle localization and manipulation |
| WO2013005635A1 (en) * | 2011-07-07 | 2013-01-10 | 浜松ホトニクス株式会社 | Biometric apparatus and image-generating method |
| US20130092816A1 (en) * | 2011-10-14 | 2013-04-18 | Canon Kabushiki Kaisha | Apparatus and method for estimating wavefront parameters |
| EP2700921A1 (en) * | 2012-08-23 | 2014-02-26 | Otsuka Electronics Co., Ltd. | Light distribution characteristic measurement apparatus and light distribution characteristic measurement method |
| CN104181779A (en) * | 2014-09-05 | 2014-12-03 | 中国科学院光电技术研究所 | Optical system wave aberration detection device |
| EP3062093A1 (en) * | 2013-10-23 | 2016-08-31 | Nanovision Technology (Beijing) Co., Ltd. | Photon count-based radiation imaging system, method, and apparatus |
| CN106405607A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Cherenkov single event detection method and apparatus |
| CN106405611A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Charged particles emitting decay detection method and apparatus |
| CN106405619A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Detector collimation method and device |
| CN106388768A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Cerenkov radiation imaging method and system |
| CN107392977A (en) * | 2017-08-22 | 2017-11-24 | 西北大学 | Single-view Cherenkov lights tomography rebuilding method |
-
2018
- 2018-05-28 CN CN201810520850.2A patent/CN108398245A/en active Pending
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101004921A (en) * | 2006-07-19 | 2007-07-25 | 清华大学深圳研究生院 | Optical reading method and system |
| US20090066960A1 (en) * | 2007-09-10 | 2009-03-12 | Biospace Lab | Luminescence Imagining Installation and Method |
| WO2009095679A2 (en) * | 2008-02-01 | 2009-08-06 | Cambridge Consultants Limited | Photometric pevice |
| US20110249866A1 (en) * | 2010-04-09 | 2011-10-13 | The Regents Of The University Of Colorado | Methods and systems for three dimensional optical imaging, sensing, particle localization and manipulation |
| WO2013005635A1 (en) * | 2011-07-07 | 2013-01-10 | 浜松ホトニクス株式会社 | Biometric apparatus and image-generating method |
| US20130092816A1 (en) * | 2011-10-14 | 2013-04-18 | Canon Kabushiki Kaisha | Apparatus and method for estimating wavefront parameters |
| EP2700921A1 (en) * | 2012-08-23 | 2014-02-26 | Otsuka Electronics Co., Ltd. | Light distribution characteristic measurement apparatus and light distribution characteristic measurement method |
| EP3062093A1 (en) * | 2013-10-23 | 2016-08-31 | Nanovision Technology (Beijing) Co., Ltd. | Photon count-based radiation imaging system, method, and apparatus |
| CN104181779A (en) * | 2014-09-05 | 2014-12-03 | 中国科学院光电技术研究所 | Optical system wave aberration detection device |
| CN106405607A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Cherenkov single event detection method and apparatus |
| CN106405611A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Charged particles emitting decay detection method and apparatus |
| CN106405619A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Detector collimation method and device |
| CN106388768A (en) * | 2015-11-19 | 2017-02-15 | 南京瑞派宁信息科技有限公司 | Cerenkov radiation imaging method and system |
| CN107392977A (en) * | 2017-08-22 | 2017-11-24 | 西北大学 | Single-view Cherenkov lights tomography rebuilding method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9753146B2 (en) | Pixel identification for small pitch scintillation crystal arrays | |
| WO2010048363A2 (en) | Line of response estimation for high-resolution pet detector | |
| JP2002116256A (en) | Nuclear medicine diagnostic equipment | |
| Xu | Study of the silicon photomultipliers and their applications in positron emission tomography | |
| CN109683188A (en) | A kind of Qi Liankefu event and gamma events meet imaging device and method | |
| CN112470039B (en) | Systems and methods for imaging by gamma radiation detection | |
| CN106388768A (en) | Cerenkov radiation imaging method and system | |
| CN113057667B (en) | PET detector signal sampling method, device, electronic device and storage medium | |
| Rozler et al. | Development of a cost-effective modular pixelated NaI (Tl) detector for clinical SPECT applications | |
| Kuhl et al. | Angular irradiation methods for DOI calibration of light-sharing detectors—a perspective for PET in-system calibration | |
| Chinn et al. | A maximum NEC criterion for Compton collimation to accurately identify true coincidences in PET | |
| CN106199673B (en) | Dual-mode positron imaging machine based on event counting | |
| CN115244428A (en) | Computer-implemented method for identifying and locating radiation events and pixelated radiation detector for performing the method | |
| CN106405610A (en) | Cherenkov event induction optoelectronic pulse digitizing method and apparatus | |
| CN108398245A (en) | A kind of detection method and device of concentrically fanned light source | |
| Wu et al. | A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves | |
| CN114599289B (en) | Device for enhancing the determination of the precise position of at least one tracer in a body part of a patient and corresponding method | |
| Morrocchi et al. | Positron Emission Tomography: Alive and kicking after more than 65 years on stage | |
| CN106405618A (en) | Cherenkov radiation detection method and apparatus | |
| US20060131508A1 (en) | Systems and methods for improving position resolution of charge-sharing position sensitive detectors | |
| CN106405611A (en) | Charged particles emitting decay detection method and apparatus | |
| CN106405607A (en) | Cherenkov single event detection method and apparatus | |
| CN210697662U (en) | A Cherenkov Event and Gamma Event Consistent Imaging Device | |
| Parikh | Implementation of crystal mapping and energy calibration procedures for PET block detectors with pixelated scintillators | |
| Alaimo | Machine learning-based event reconstruction in gamma cameras for medical imaging |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| AD01 | Patent right deemed abandoned | ||
| AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20240319 |