CN108418086B - An all-fiber high-order mode Brillouin fiber laser - Google Patents
An all-fiber high-order mode Brillouin fiber laser Download PDFInfo
- Publication number
- CN108418086B CN108418086B CN201810348684.2A CN201810348684A CN108418086B CN 108418086 B CN108418086 B CN 108418086B CN 201810348684 A CN201810348684 A CN 201810348684A CN 108418086 B CN108418086 B CN 108418086B
- Authority
- CN
- China
- Prior art keywords
- mode
- fiber
- optical fiber
- port
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 136
- 239000013307 optical fiber Substances 0.000 claims abstract description 82
- 230000003287 optical effect Effects 0.000 claims abstract description 25
- 230000010287 polarization Effects 0.000 claims abstract description 18
- 230000008878 coupling Effects 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 7
- 230000004927 fusion Effects 0.000 claims description 2
- 230000003321 amplification Effects 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06791—Fibre ring lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06712—Polarising fibre; Polariser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06716—Fibre compositions or doping with active elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094042—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/30—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
- H01S3/302—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及光纤激光器、光通信领域,特别涉及一种全光纤高阶模布里渊光纤激光器。The invention relates to the fields of fiber lasers and optical communications, in particular to an all-fiber high-order mode Brillouin fiber laser.
背景技术Background technique
高阶模激光由于其独特的空间强度、相位和偏振分布,具有广泛的应用前景,并引起了人们越来越多的兴趣。例如,在光通信领域,信息在几种不同的高阶模上调制,也就是模式分复用技术,可以显著提高光通信中的传输容量。在光纤传感领域,高阶模可以达到更高的温度和应变分辨精度。此外,由高阶模变化而来的涡旋激光,在量子和纳米光学、光学操纵、超分辨率成像和激光材料处理等方面都有很大的潜力。Due to their unique spatial intensity, phase, and polarization distributions, higher-order mode lasing has promising applications and attracted increasing interest. For example, in the field of optical communication, information is modulated on several different high-order modes, that is, mode division multiplexing technology, which can significantly improve the transmission capacity in optical communication. In the field of optical fiber sensing, higher order modes can achieve higher temperature and strain resolution accuracy. In addition, vortex lasers derived from higher-order modes have great potential in quantum and nano-optics, optical manipulation, super-resolution imaging, and laser material processing.
在这些应用的推动下,研究者们提出了许多方法以产生高阶模激光。目前,产生高阶模激光的激光器大致可以分为两类:体元件固体激光器和全光纤激光器。与前者相比,全光纤激光器具有成本低、灵活性好、稳定性好、体积小、效率高等优点。实现全光纤激光器的关键部件是高效率的全光纤模式转换或选择器件,包括错位耦合技术、少模光纤布拉格光栅、长周期光纤光栅和模式选择耦合器。这些模式转换或选择器件在全光纤激光器中的布局可分为两类。第一类,该器件被放置在谐振腔的外部,并级联在基横模(LP01)激光的输出光路径中。第二类,该器件被放置在包含单模增益介质的激光谐振腔内。但严格来说,这两类激光器仍然是基横模谐振放大,而不是希望的高阶模谐振放大。此外,因为器件的不完善,这两种布局也会导致光束功率和质量退化,输出高阶模模式纯度低。因此,实现一种高效率、全光纤和低成本的方法以获得高纯度、高稳定性和结构紧凑的高阶模激光器具有重要的意义。Motivated by these applications, researchers have proposed many methods to generate high-order mode lasing. At present, lasers that generate high-order mode lasing can be roughly divided into two categories: bulk element solid-state lasers and all-fiber lasers. Compared with the former, all-fiber lasers have the advantages of low cost, good flexibility, good stability, small size, and high efficiency. The key components to realize all-fiber lasers are high-efficiency all-fiber mode conversion or selection devices, including dislocation coupling technology, few-mode fiber Bragg gratings, long-period fiber Bragg gratings, and mode-selective couplers. The layout of these mode-conversion or selection devices in all-fiber lasers can be divided into two categories. In the first category, the device is placed outside the resonator and cascaded in the output optical path of the fundamental transverse mode (LP01) laser. In the second category, the device is placed inside a laser cavity containing a single-mode gain medium. But strictly speaking, these two types of lasers are still fundamental transverse mode resonance amplification, rather than the desired high-order mode resonance amplification. In addition, due to the imperfection of the device, these two layouts will also lead to degradation of beam power and quality, and the output high-order modes have low purity. Therefore, it is of great significance to realize a high-efficiency, all-fiber, and low-cost method to obtain high-purity, high-stability, and compact high-order mode lasers.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点与不足,提供一种全光纤高阶模布里渊光纤激光器,基于布里渊非线性效应,以无源少模光纤为增益介质,实现了腔内高阶模谐振放大,直接在激光器输出端获得高模式纯度的高阶模激光。另外,该激光器还具有结构紧凑、调节简便、造价低廉、稳定性高等方面的优点。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide an all-fiber high-order mode Brillouin fiber laser, based on the Brillouin nonlinear effect, using passive few-mode fiber as the gain medium, and realizing intracavity high-order mode resonance Amplified, high-order mode lasing with high mode purity is obtained directly at the output of the laser. In addition, the laser has the advantages of compact structure, easy adjustment, low cost and high stability.
本发明的目的通过以下的技术方案实现:一种全光纤高阶模布里渊光纤激光器,包括:窄线宽泵浦激光器、光放大器、第一偏振控制器、光纤环形器、第一光纤模式选择耦合器、第二偏振控制器、单模光纤、少模光纤和第二光纤模式选择耦合器;The purpose of the present invention is achieved through the following technical solutions: an all-fiber high-order mode Brillouin fiber laser, comprising: a narrow linewidth pump laser, an optical amplifier, a first polarization controller, an optical fiber circulator, and a first optical fiber mode selective coupling device, a second polarization controller, a single-mode fiber, a few-mode fiber, and a second fiber mode selective coupler;
其中,所述光纤环形器为设有第一端口、第二端口和第三端口的三端口光纤环形器,所述的窄线宽泵浦激光器通过单模光纤连接至光放大器,所述光放大器通过单模光纤连接至光纤环形器的第一端口,所述光纤环形器的第二端口通过单模光纤连接第一光纤模式选择耦合器的第一端口,所述光纤环形器的第三端口通过单模光纤连接第二光纤模式选择耦合器的第一端口,所述第一光纤模式选择耦合器的第二端口通过少模光纤连接至第二光纤模式选择耦合器的第二端口,构成环形腔结构;所述第一偏振控制器加在光放大器连接光纤环形器的第一端口的单模光纤上,所述第二偏振控制器加在第一光纤模式选择耦合器的第二端口连接第二光纤模式选择耦合器的第二端口的少模光纤上;所述第一光纤模式选择耦合器的第三端口输出激光。Wherein, the optical fiber circulator is a three-port optical fiber circulator provided with a first port, a second port and a third port, and the narrow linewidth pump laser is connected to an optical amplifier through a single-mode optical fiber, and the optical amplifier Connect to the first port of the optical fiber circulator through a single-mode optical fiber, the second port of the optical fiber circulator is connected to the first port of the first optical fiber mode selection coupler through a single-mode optical fiber, and the third port of the optical fiber circulator passes through The single-mode optical fiber is connected to the first port of the second optical fiber mode selective coupler, and the second port of the first optical fiber mode selective coupler is connected to the second port of the second optical fiber mode selective coupler through a few-mode optical fiber to form a ring cavity Structure; the first polarization controller is added to the single-mode optical fiber connected to the first port of the optical fiber circulator, and the second polarization controller is added to the second port of the first fiber mode selective coupler to connect the second The second port of the fiber mode selective coupler is on the few-mode fiber; the third port of the first fiber mode selective coupler outputs laser light.
优选的,所述的窄线宽泵浦激光器,可以选用C波段功率可调谐的窄线宽半导体激光器或窄线宽光纤激光器,线宽低于1MHz。Preferably, the narrow-linewidth pump laser can be a C-band power-tunable narrow-linewidth semiconductor laser or a narrow-linewidth fiber laser, and the linewidth is lower than 1 MHz.
优选的,所述的光放大器,可以选用高增益掺铒光纤放大器或1550nm波段半导体光放大器。Preferably, the optical amplifier may be a high-gain erbium-doped fiber amplifier or a 1550nm band semiconductor optical amplifier.
优选的,所述的光纤环形器,三个端口的尾纤为普通通信单模光纤,各端口单模光纤长度范围为0.1m至1m。Preferably, in the optical fiber circulator, the pigtail fibers of the three ports are ordinary communication single-mode optical fibers, and the length of the single-mode optical fibers at each port ranges from 0.1 m to 1 m.
优选的,所述的少模光纤为1550nm波段少模光纤,支持的模式数大于2个模式,长度大于20m。Preferably, the few-mode fiber is a 1550nm band few-mode fiber, supports more than 2 modes, and has a length greater than 20m.
优选的,所述的第一光纤模式选择耦合器和第二光纤模式选择耦合器,均为单模光纤与少模光纤熔融拉锥制得的2×2的耦合器,可以实现单模光纤中的基横模和少模光纤中特定高阶模式间的定向选择耦合,第一和第四端口为单模光纤,第二和第三端口为少模光纤。Preferably, the first optical fiber mode selective coupler and the second optical fiber mode selective coupler are both 2×2 couplers made by fused tapered single-mode optical fiber and few-mode optical fiber, which can realize single-mode optical fiber Directional selective coupling between the fundamental transverse mode and a specific high-order mode in a few-mode fiber, the first and fourth ports are single-mode fibers, and the second and third ports are few-mode fibers.
本发明的光纤激光器为环形腔结构,环形腔内包括一个光纤环形器和两个光纤模式选择耦合器以及连接用的单模光纤和少模光纤,其中连接两个光纤模式选择耦合器的少模光纤占整个环形腔长99%以上。第一光纤模式选择耦合器和第二光纤模式选择耦合器为腔内模式转换器件,可以实现单模光纤中基横模和少模光纤中特定高阶模的定向选择耦合,基于环形腔内少模光纤的受激布里渊非线性增益,实现高阶模式在腔内的谐振放大,在室温下产生稳定高纯度的高阶模布里渊激光。The fiber laser of the present invention is a ring cavity structure, and the ring cavity includes a fiber circulator, two fiber mode selective couplers and single-mode fiber and few-mode fiber for connection, wherein the few-mode fiber connecting the two fiber mode selection couplers The optical fiber accounts for more than 99% of the length of the entire ring cavity. The first fiber mode selective coupler and the second fiber mode selective coupler are intracavity mode conversion devices, which can realize the directional selective coupling of the fundamental transverse mode in the single-mode fiber and the specific high-order mode in the few-mode fiber, based on the few-mode fiber in the ring cavity The stimulated Brillouin nonlinear gain realizes the resonant amplification of high-order modes in the cavity, and generates stable and high-purity high-order mode Brillouin laser at room temperature.
本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、本发明利用光纤模式选择耦合器作为激光器谐振腔内模式转换器件,损耗小,效率高。1. The present invention uses a fiber mode selective coupler as a mode conversion device in a laser resonator cavity, which has low loss and high efficiency.
2、本发明基于布里渊非线性增益,实现高阶模式腔内谐振放大,获得的高阶模激光模式纯度高。2. Based on the Brillouin nonlinear gain, the present invention realizes high-order mode intracavity resonance amplification, and the obtained high-order mode laser mode has high purity.
3、本发明利用普通商用的无源少模光纤作为增益介质,获取方便,易于推广使用。3. The present invention uses a common commercial passive few-mode fiber as the gain medium, which is easy to obtain and popularize.
4、本发明采用全光纤结构,结构简单紧凑,成本低,调节简便,易于光纤系统集成,输出激光稳定性好,线宽窄,提高了高阶模激光器的实用性和可靠性。4. The present invention adopts an all-fiber structure, which is simple and compact in structure, low in cost, easy to adjust, easy to integrate with optical fiber systems, has good output laser stability, and narrow line width, which improves the practicability and reliability of high-order mode lasers.
附图说明Description of drawings
图1为实施例全光纤高阶模布里渊光纤激光器的示意图。Fig. 1 is a schematic diagram of an all-fiber high-mode Brillouin fiber laser of an embodiment.
图2为激光器功率曲线图。Figure 2 is a laser power curve diagram.
图3为泵浦激光和输出布里渊斯托克斯激光光谱图。Fig. 3 is the spectrum diagram of the pump laser and the output Brillouin Stokes laser.
图4为输出激光远场光强度分布图。FIG. 4 is a diagram of the far-field light intensity distribution of the output laser.
图1中:1-窄线宽泵浦激光器;2-光放大器;3-第一偏振控制器;4-光纤环形器;5-第一光纤模式选择耦合器;6-第二偏振控制器;7-少模光纤;8-第二光纤模式选择耦合器。In Fig. 1: 1-narrow linewidth pump laser; 2-optical amplifier; 3-first polarization controller; 4-fiber circulator; 5-first fiber mode selective coupler; 6-second polarization controller; 7-few mode fiber; 8-second fiber mode selective coupler.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
如图1所示,本实例的一种全光纤高阶模布里渊光纤激光器,包括:窄线宽泵浦激光器1、光放大器2、第一偏振控制器3、光纤环形器4、第一光纤模式选择耦合器5、第二偏振控制器6、少模光纤7和第二光纤模式选择耦合器8。As shown in Figure 1, a kind of all-fiber high-order mode Brillouin fiber laser of this example includes: a narrow linewidth pump laser 1, an optical amplifier 2, a first polarization controller 3, a fiber circulator 4, a first fiber mode Selective coupler 5 , second polarization controller 6 , few-mode optical fiber 7 and second optical fiber mode selective coupler 8 .
窄线宽泵浦激光器1输出的激光由放大器2进行功率放大,放大后的高功率泵浦光注入光纤环形器4的第一端口401,再自光纤环形器4的第二端口402注入第一光纤模式选择耦合器5的第一端口501,经第一光纤模式选择耦合器5后,泵浦光由第一端口501中单模光纤的基横模转变为第一光纤模式选择耦合器5的第二端口502中少模光纤的特定高阶模,产生的高阶模泵浦光经第一光纤模式选择耦合器5的第二端口502注入少模光纤7中。当光放大器2放大后的泵浦光功率超过少模光纤7的布里渊阈值时,其发生受激布里渊散射效应,产生反向运行的布里渊斯托克斯光。少模光纤7中产生的布里渊斯托克斯光依次经第一光纤模式选择耦合器5的第一端口501、光纤环形器4的第二端口402、光纤环形器4的第三端口403、第二光纤模式选择耦合器8的第一端口801和第二光纤模式选择耦合器8的第二端口802再次进入少模光纤7中,在谐振腔内形成振荡,即产生一个比泵浦光频率下移一阶布里渊斯托克斯光,此阶布里渊斯托克斯光经第一光纤模式选择耦合器5的第三端口503输出。The laser light output by the narrow-linewidth pump laser 1 is amplified by the amplifier 2, and the amplified high-power pump light is injected into the first port 401 of the optical fiber circulator 4, and then injected into the first port 402 of the optical fiber circulator 4. The first port 501 of the optical fiber mode selective coupler 5, after passing through the first optical fiber mode selective coupler 5, the pump light is converted from the fundamental transverse mode of the single-mode fiber in the first port 501 to the first optical fiber mode selective coupler 5 The specific high-order mode of the few-mode fiber in the second port 502 , the high-order-mode pump light generated is injected into the few-mode fiber 7 through the second port 502 of the first fiber mode selective coupler 5 . When the pump light power amplified by the optical amplifier 2 exceeds the Brillouin threshold of the few-mode fiber 7 , a stimulated Brillouin scattering effect occurs to generate Brillouin Stokes light running in reverse. The Brillouin Stokes light generated in the few-mode fiber 7 sequentially passes through the first port 501 of the first fiber mode selective coupler 5, the second port 402 of the fiber circulator 4, and the third port 403 of the fiber circulator 4 , the first port 801 of the second fiber mode selective coupler 8 and the second port 802 of the second fiber mode selective coupler 8 enter the few-mode fiber 7 again to form oscillations in the resonant cavity, that is, to generate a ratio of pump light The frequency of the first-order Brillouin-Stokes light is shifted down, and the Brillouin-Stokes light of this order is output through the third port 503 of the first fiber mode selective coupler 5 .
光放大器2和光纤环形器4的第一端口401间的第一偏振控制器3以及第一光纤模式选择耦合器5的第二端口502和第二光纤模式选择耦合器8的第二端口802间的第二偏振控制器6共同控制泵浦光和布里渊泵浦光的偏振态,以获得最大的布里渊非线性增益。Between the first polarization controller 3 between the optical amplifier 2 and the first port 401 of the optical fiber circulator 4, and between the second port 502 of the first fiber mode selective coupler 5 and the second port 802 of the second fiber mode selective coupler 8 The second polarization controller 6 jointly controls the polarization state of the pump light and the Brillouin pump light to obtain the maximum Brillouin nonlinear gain.
窄线宽泵浦激光器1、光放大器2、光纤环形器4、第一光纤模式选择耦合器5的第一端口501和第四端口504、第二光纤模式选择耦合器8的第一端口801和第四端口804的尾纤(连接光纤)均为普通通信单模光纤。由于在光纤环路中的第一光纤模式选择耦合器5和第二光纤模式选择耦合器8,可以实现单模光纤中基横模和少模光纤7中特定高阶模的定向选择耦合,因此少模光纤7中特定的高阶模式就会谐振放大,从而在第一光纤模式选择耦合器5的第三输出端503获得高模式纯度的高阶模激光。Narrow linewidth pump laser 1, optical amplifier 2, fiber circulator 4, first port 501 and fourth port 504 of the first fiber mode selective coupler 5, first port 801 and the fourth port 504 of the second fiber mode selective coupler 8 The pigtails (connecting optical fibers) of the fourth port 804 are common communication single-mode optical fibers. Due to the first fiber mode selective coupler 5 and the second fiber mode selective coupler 8 in the fiber loop, the directional selective coupling of the fundamental transverse mode in the single-mode fiber and the specific high-order mode in the few-mode fiber 7 can be realized, so the few-mode The specific high-order mode in the optical fiber 7 will be resonantly amplified, so that the high-order mode laser with high mode purity can be obtained at the third output end 503 of the first optical fiber mode selective coupler 5 .
窄线宽泵浦激光器,可以选用C波段功率可调谐的窄线宽半导体激光器或窄线宽光纤激光器,线宽低于1MHz。Narrow-linewidth pump lasers can be C-band power-tunable narrow-linewidth semiconductor lasers or narrow-linewidth fiber lasers, and the linewidth is lower than 1MHz.
光放大器,可以选用高增益掺铒光纤放大器或1550nm波段半导体光放大器。The optical amplifier can be a high-gain erbium-doped fiber amplifier or a 1550nm band semiconductor optical amplifier.
光纤环形器,三个端口的尾纤为普通通信单模光纤,各端口单模光纤长度范围为0.1m至1m。Fiber optic circulator, the tail fibers of the three ports are ordinary communication single-mode fibers, and the length of the single-mode fibers at each port ranges from 0.1m to 1m.
少模光纤为1550nm波段少模光纤,支持的模式数大于2个模式,长度大于20m。The few-mode fiber is a few-mode fiber in the 1550nm band, supports more than 2 modes, and has a length greater than 20m.
实施例2Example 2
一种全光纤高阶模布里渊光纤激光器,结构示意图如图1所示。窄线宽泵浦激光器1采用1550nm波段窄线宽单频光纤激光器,其线宽为10kHz,激光功率30mW。光放大器2采用商用1550nm波段半导体光放大器,放大功率可达5W。光纤环形器4采用商用三端口单模光纤环形器。第一光纤模式选择耦合器5和第二光纤模式选择耦合器8均由普通通信单模光纤SMF-28e和商用两模阶跃光纤熔融拉锥制得的2×2的耦合器,单模光纤中的LP01模到两模阶跃光纤中LP11模式的转换效率为90%。光路中的单模光纤均为SMF-28e光纤。环形腔内两模阶跃光纤的长度为50m,单模光纤长度为0.4m,因此两模阶跃光纤长度占比为99.2%。第一光纤模式选择耦合器5的第一端口501和第三端口503的分光比为80∶20。An all-fiber high-order mode Brillouin fiber laser, the schematic diagram of which is shown in Figure 1. Narrow-linewidth pump laser 1 adopts a narrow-linewidth single-frequency fiber laser in the 1550nm band, with a linewidth of 10kHz and a laser power of 30mW. The optical amplifier 2 adopts a commercial 1550nm band semiconductor optical amplifier, and the amplification power can reach 5W. The optical fiber circulator 4 adopts a commercial three-port single-mode optical fiber circulator. The first optical fiber mode selective coupler 5 and the second optical fiber mode selective coupler 8 are 2×2 couplers made of ordinary communication single-mode optical fiber SMF-28e and commercial two-mode step optical fiber fusion tapered, single-mode optical fiber The conversion efficiency of the LP01 mode to the LP11 mode in the two-mode step fiber is 90%. The single-mode optical fibers in the optical path are all SMF-28e optical fibers. The length of the two-mode step fiber in the ring cavity is 50m, and the length of the single-mode fiber is 0.4m, so the length of the two-mode step fiber accounts for 99.2%. The light splitting ratio of the first port 501 and the third port 503 of the first fiber mode selective coupler 5 is 80:20.
当放大后的泵浦激光功率逐渐增大至780mW时,光纤环形腔中的布里渊斯托克斯光产生谐振。泵浦功率继续增大,在第一光纤模式选择耦合器的第三端口获得稳定的激光输出。图2为激光器功率曲线图,斜率效率为15.6%,当泵浦功率3W时,激光输出功率达到350mW。图3为泵浦激光和输出布里渊斯托克斯激光光谱图,输出的布里渊激光相对于泵浦光发生了10.9GHz的频移。图4为在第一模式选择耦合器5的第三端口503输出的LP11模式激光远场光强度分布图。When the amplified pump laser power gradually increases to 780mW, the Brillouin Stokes light in the fiber ring cavity resonates. The pump power continued to increase, and a stable laser output was obtained at the third port of the first fiber mode selective coupler. Figure 2 is the laser power curve, the slope efficiency is 15.6%, when the pump power is 3W, the laser output power reaches 350mW. Figure 3 is the spectrum diagram of the pump laser and the output Brillouin Stokes laser. The output Brillouin laser has a frequency shift of 10.9 GHz relative to the pump light. FIG. 4 is a far-field light intensity distribution diagram of the LP11 mode laser output from the third port 503 of the first mode selective coupler 5 .
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810348684.2A CN108418086B (en) | 2018-04-18 | 2018-04-18 | An all-fiber high-order mode Brillouin fiber laser |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810348684.2A CN108418086B (en) | 2018-04-18 | 2018-04-18 | An all-fiber high-order mode Brillouin fiber laser |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108418086A CN108418086A (en) | 2018-08-17 |
| CN108418086B true CN108418086B (en) | 2023-08-22 |
Family
ID=63136045
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810348684.2A Active CN108418086B (en) | 2018-04-18 | 2018-04-18 | An all-fiber high-order mode Brillouin fiber laser |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108418086B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109066279B (en) * | 2018-09-07 | 2024-03-26 | 华南理工大学 | All-fiber vortex optical laser based on orbital angular momentum mode resonance |
| CN112134131A (en) * | 2019-06-25 | 2020-12-25 | 安徽天琢激光科技有限公司 | Double-arm structure annular light spot output continuous optical fiber laser |
| CN112117629A (en) * | 2020-09-23 | 2020-12-22 | 上海大学 | All-fiber high-order mode Brillouin erbium-doped laser based on acousto-optic device |
| CN114069377B (en) * | 2021-11-17 | 2023-12-26 | 上海大学 | Mode control system based on acousto-optic device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN206313278U (en) * | 2016-11-15 | 2017-07-07 | 宜春学院 | A kind of microwave signal generator |
| CN208723306U (en) * | 2018-04-18 | 2019-04-09 | 华南理工大学 | An all-fiber high-order mode Brillouin fiber laser |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7903696B2 (en) * | 2008-12-31 | 2011-03-08 | Ipg Photonics Corporation | High-power narrowed-linewidth fiber laser system |
| US20110134940A1 (en) * | 2009-12-08 | 2011-06-09 | Schlumberger Technology Corporation | Narrow linewidth brillouin laser |
| US8493555B2 (en) * | 2011-04-29 | 2013-07-23 | Corning Incorporated | Distributed Brillouin sensing systems and methods using few-mode sensing optical fiber |
-
2018
- 2018-04-18 CN CN201810348684.2A patent/CN108418086B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN206313278U (en) * | 2016-11-15 | 2017-07-07 | 宜春学院 | A kind of microwave signal generator |
| CN208723306U (en) * | 2018-04-18 | 2019-04-09 | 华南理工大学 | An all-fiber high-order mode Brillouin fiber laser |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108418086A (en) | 2018-08-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109066279B (en) | All-fiber vortex optical laser based on orbital angular momentum mode resonance | |
| US8428409B2 (en) | Filter fiber for use in Raman lasing applications and techniques for manufacturing same | |
| CN103630964B (en) | Multimode optical fiber | |
| CN108418086B (en) | An all-fiber high-order mode Brillouin fiber laser | |
| CN108551075B (en) | All-fiber transverse mode switchable high-order mode Brillouin laser | |
| CN110265858A (en) | High-power Raman fiber laser system for selectively exciting high-order mode | |
| CN114447745B (en) | A high-order Raman suppression method based on multi-wavelength laser pumping | |
| CN113675720A (en) | High-efficiency single-frequency thulium-doped fiber laser based on in-band pumping | |
| CN103682965B (en) | All optical fibre structure 980nm wave band Compound Cavity single mode fiber laser | |
| CN103490272A (en) | 2um single frequency pulse fiber laser adjustable in amplitude modulation frequency | |
| CN108390243B (en) | High-order mode Brillouin fiber laser based on few-mode fiber | |
| CN102299475B (en) | Narrow-linewidth single-transverse mode hundred watt level 2 micron thulium doped fiber laser with all-fiber structure | |
| CN110544869A (en) | A Single Longitudinal Mode Brillouin Fiber Laser with Direct Resonance of Orbital Angular Momentum Mode | |
| CN110556691B (en) | A Short-Line Cavity Orbital Angular Momentum Mode Single-Frequency Fiber Laser | |
| CN102227043A (en) | Linearly polarized light fiber laser based on polarization maintaining fiber annular lens | |
| CN114512884A (en) | Method for outputting high-order mode in graded index optical fiber | |
| CN110021871A (en) | A method of realizing Gao Zhongying Wavelength tunable all -fiber ultrafast pulsed laser device and system | |
| CN212230771U (en) | High-power optical fiber laser | |
| CN202423818U (en) | Coherent beam combination high power fiber laser based on composite annular cavity | |
| CN110474226B (en) | Vortex optical single-frequency fiber laser | |
| CN110535022A (en) | A kind of vortex light mode locked fiber laser based on four-wave mixing effect | |
| CN208723306U (en) | An all-fiber high-order mode Brillouin fiber laser | |
| CN206742651U (en) | A kind of multi-wavelength random fiber laser of partly beginning to speak based on overlapping fiber grating | |
| CN209709374U (en) | High-power Raman fiber laser system for selectively exciting high-order mode | |
| CN114825008A (en) | All-fiber tunable time-space mode-locked laser and system based on multimode fiber |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |