[go: up one dir, main page]

CN108423148B - Control device and method for pod propulsion ship - Google Patents

Control device and method for pod propulsion ship Download PDF

Info

Publication number
CN108423148B
CN108423148B CN201810287992.9A CN201810287992A CN108423148B CN 108423148 B CN108423148 B CN 108423148B CN 201810287992 A CN201810287992 A CN 201810287992A CN 108423148 B CN108423148 B CN 108423148B
Authority
CN
China
Prior art keywords
pod
propeller
signal
ship
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810287992.9A
Other languages
Chinese (zh)
Other versions
CN108423148A (en
Inventor
苏焱
卫钰汶
裴康维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201810287992.9A priority Critical patent/CN108423148B/en
Publication of CN108423148A publication Critical patent/CN108423148A/en
Application granted granted Critical
Publication of CN108423148B publication Critical patent/CN108423148B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1258Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with electric power transmission to propellers, i.e. with integrated electric propeller motors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

The invention discloses a control device and a method for a pod propulsion ship, comprising a data acquisition module, a signal processing module, a communication module, a system controller and an executing mechanism, wherein the control device comprises the data acquisition module, the signal processing module, the communication module, the system controller and the executing mechanism, wherein a control handle is used for converting a control signal of a driver into an electric signal and transmitting the electric signal to the signal processing module; the signal processing module is connected with the system controller through the communication module, the system controller drives the executing mechanism, and the executing mechanism is composed of a first pod propeller and a second pod propeller. The invention realizes the control of the pod propulsion ship which is difficult to complete by conventional propellers such as translation, oblique movement, in-situ rotation, quick reversing and the like at any navigational speed, and greatly improves the maneuverability and maneuverability of the ship.

Description

一种用于吊舱推进船舶的控制装置与方法A control device and method for pod propelling a ship

技术领域technical field

本发明属于船舶智能控制技术领域,尤其涉及一种用于吊舱推进船舶的控制装置与方法。The invention belongs to the technical field of ship intelligent control, and in particular relates to a control device and method for a pod to propel a ship.

背景技术Background technique

伴随国际贸易的蓬勃发展,世界海运量持续增加,港口运输的作业也日益繁重。因此,港口交通日益繁忙,航行密度越来越大,航道变得较为狭窄,出入港口愈发拥挤,从而使船舶碰撞和搁浅事故时有发生。With the vigorous development of international trade, the world's shipping volume continues to increase, and port transportation operations are becoming increasingly heavy. Therefore, the port traffic is becoming increasingly busy, the navigation density is increasing, the channel becomes narrower, and the entry and exit ports are becoming more and more crowded, so that ship collisions and stranding accidents occur from time to time.

目前,吊舱推进技术在国外经过20余年的发展,已经有了十分完善的推进器设计方案和成熟的推进控制策略。从工程船、破冰船到目前的豪华游轮、化学品船、油船等,吊舱推进器在船舶推进领域的应用范围逐渐扩大。现有技术的吊舱推进器用智能控制系统,不能够很好地满足船舶的复杂高机动性操纵,避免船舶在进出港时发生水上交通事故。At present, after more than 20 years of development abroad, the pod propulsion technology has a very complete propeller design scheme and a mature propulsion control strategy. From engineering ships and icebreakers to the current luxury cruise ships, chemical tankers, oil tankers, etc., the application range of pod propulsion in the field of ship propulsion has gradually expanded. The intelligent control system for the pod propulsion in the prior art cannot satisfy the complex and highly maneuverable maneuvering of the ship, and avoid water traffic accidents when the ship enters and leaves the port.

发明内容Contents of the invention

本发明所要解决的技术问题是,提供一种用于吊舱推进船舶的控制装置与方法,实现吊舱推进船舶在任意航速下完成平移、斜移、原地回转、快速倒车等常规推进器难以完成的操控,极大地提高了船舶的操纵性和机动性。The technical problem to be solved by the present invention is to provide a control device and method for a pod-propelled ship, so that the pod-propelled ship can complete translation, oblique shift, in-situ rotation, fast reversing and other manipulations that are difficult for conventional propellers at any speed, and greatly improve the maneuverability and maneuverability of the ship.

本发明解决其技术问题所采用的技术方案是:提供一种用于吊舱推进船舶的控制装置,包括数据采集模块、信号处理模块、通信模块、系统控制器和执行机构,其中,数据采集模块包括操纵手柄、第一螺旋桨转速传感器、第二螺旋桨转速传感器、第一角度传感器和第二角度传感器,其中操纵手柄用来将驾驶员的操纵信号转换为电信号传送到信号处理模块;信号处理模块通过通信模块与系统控制器连接,系统控制器对执行机构进行驱动,执行机构由第一吊舱推进器和第二吊舱推进器组成,第一吊舱推进器包括第一螺旋桨电机、第一回转控制电机,第二吊舱推进器包括第二螺旋桨电机、第二回转控制电机;第一角度传感器实时监测第一吊舱推进器的回转角度,第二角度传感器实时监测第二吊舱推进器的回转角度,并将回转角度信号传至信号处理模块;第一螺旋桨转速传感器实时监测第一螺旋桨电机转速,第二螺旋桨转速传感器实时监测第二螺旋桨电机转速,并将转速信号传至信号处理模块;信号处理模块将操纵手柄与各传感器采集的电信号转换为系统控制器可以识别的数值信号,并将数值信号输送到系统控制器,系统控制器对数值信号进行比对并输出动作信号给执行机构。The technical solution adopted by the present invention to solve the technical problem is to provide a control device for pod propulsion ships, including a data acquisition module, a signal processing module, a communication module, a system controller and an actuator, wherein the data acquisition module includes a joystick, a first propeller speed sensor, a second propeller speed sensor, a first angle sensor, and a second angle sensor, wherein the joystick is used to convert the driver's manipulation signal into an electrical signal and transmit it to the signal processing module; the signal processing module is connected to the system controller through the communication module, and the system controller drives the actuator. The first pod propeller includes a first propeller motor and a first rotation control motor, and the second pod propeller includes a second propeller motor and a second rotation control motor; the first angle sensor monitors the rotation angle of the first pod propeller in real time, and the second angle sensor monitors the rotation angle of the second pod propeller in real time, and transmits the rotation angle signal to the signal processing module; The electrical signal is converted into a numerical signal that the system controller can recognize, and the numerical signal is sent to the system controller. The system controller compares the numerical signal and outputs an action signal to the actuator.

按上述技术方案,第一螺旋桨电机和第一回转控制电机安装于第一吊舱推进器内,第一吊舱推进器安装于吊舱推进船舶尾部左侧;第二螺旋桨电机和第二回转控制电机安装于第二吊舱推进器,第二吊舱推进器安装于吊舱推进船舶尾部右侧。According to the above technical solution, the first propeller motor and the first rotary control motor are installed in the first pod propeller, and the first pod propeller is installed on the left side of the tail of the pod propelled ship; the second propeller motor and the second rotary control motor are installed on the second pod propeller, and the second pod propeller is installed on the right side of the pod propulsion ship tail.

按上述技术方案,包括以下步骤,步骤一,按照推力作用点与重心连线将船舶所在水平面划分为I、II、III、IV四个区域,I区域范围为(φ,180°-φ],III区域范围为(180°+φ,360°-φ],II区域范围为(-φ,φ],IV区域范围为(180°-φ,180°+φ],φ为Ⅱ、Ⅳ区域边界线夹角的一半;吊舱推进船舶在Ⅰ、Ⅲ区域斜移时,驾驶员通过控制操纵手柄输出手柄幅度角信号γj和手柄方位角信号λj,经由系统控制器对第一螺旋桨电机、第二螺旋桨电机的转速,第一回转控制电机、第二回转控制电机的回转角度进行调整;步骤二,将水平面区域Ⅱ、Ⅳ区域划分为直行区、左过渡区和右过渡区,Ⅱ区域直行区的范围为为(-φ/2,φ/2],左过渡区的范围为为(-φ,-φ/2],右过渡区的范围为为(φ/2,φ];Ⅳ区域直行区的范围为为(180°-φ/2,180°+φ/2],左过渡区的范围为为(180°+φ/2,180°+φ],右过渡区的范围为为(180°-φ,180°-φ/2]。为解决吊舱推进船舶行驶状态由直行变换到大幅度斜移时吊舱推进器的旋转角短时间发生大幅度偏转的问题。吊舱推进船舶在直行区移动时,第一吊舱推进器和第二吊舱推进器均正车或倒车,驾驶员通过控制操纵手柄的手柄幅度角信号γj控制吊舱推进船舶移动速度,通过控制操纵手柄的手柄方位角信号λj控制吊舱推进器小幅度偏转;步骤三,吊舱推进船舶在左过渡区和右过渡区移动时,通过使第一吊舱推进器、第二吊舱推进器中的一个回转90°,另一吊舱推进器保持原位置不变,通过改变回转90°的吊舱推进器的转速,实现不同的斜移角度和斜移速度。According to the above technical scheme, the following steps are included. Step 1 divides the horizontal plane of the ship into four regions I, II, III and IV according to the line connecting the thrust point and the center of gravity. The range of the I region is (φ, 180°-φ], the range of the III region is (180°+φ, 360°-φ], the range of the II region is (-φ, φ], the range of the IV region is (180°-φ, 180°+φ], and φ is half of the angle between the boundaries of the II and IV regions; When obliquely shifting in areas Ⅰ and Ⅲ, the driver outputs the handle amplitude angle signal γ by controlling the joystickjand handle azimuth signal λj, through the system controller, the speed of the first propeller motor and the second propeller motor, the rotation angles of the first rotation control motor and the second rotation control motor are adjusted; Step 2, the horizontal plane area II and IV are divided into straight travel area, left transition area and right transition area. (180°-φ/2, 180°+φ/2], the scope of the left transition zone is (180°+φ/2, 180°+φ], and the scope of the right transition zone is (180°-φ, 180°-φ/2]. In order to solve the problem that the rotation angle of the pod propeller is greatly deflected in a short time when the pod propelled the ship’s driving state from straight travel to large-scale tilt. The pod propellers are all forward or reverse, and the driver controls the handle amplitude angle signal of the joystickγjControl the pod to propel the moving speed of the ship, and control the handle azimuth signal λ of the joystickjControl the small deflection of the pod propeller; step 3, when the pod propelled the ship to move in the left transition area and the right transition area, by making one of the first pod propeller and the second pod propeller rotate 90°, the other pod propeller kept its original position, and by changing the rotating speed of the pod propeller rotating 90°, different oblique angles and oblique speeds were realized.

操纵手柄输出三个控制量:手柄幅度角信号γj,控制吊舱推进船舶的移动速度;手柄方位角信号λj,控制吊舱推进船舶的移动方向;旋钮旋转角信号τj,修正吊舱推进船舶的航向。操纵手柄在y轴方向绕基座摆动,输出手柄幅度角信号γj;同时操纵手柄可以绕其轴线旋转,输出手柄方位角信号λj,操纵手柄头部设置可以绕轴旋转的旋钮(规定向左旋为负,向右旋为正),输出旋钮旋转角信号τjThe joystick outputs three control quantities: the handle amplitude angle signal γ j controls the moving speed of the pod-propelled ship; the handle azimuth signal λ j controls the moving direction of the pod-propelled ship; the knob rotation angle signal τ j corrects the pod-propelled ship's course. The joystick swings around the base in the y-axis direction, and outputs the handle amplitude angle signal γ j ; at the same time, the joystick can rotate around its axis, and outputs the handle azimuth angle signal λ j , and the joystick head is provided with a knob that can rotate around the axis (it is stipulated that turning to the left is negative, and turning to the right is positive), and the output knob rotation angle signal τ j .

按上述技术方案,所述步骤一中,吊舱推进船舶在Ⅰ、Ⅲ区域斜移时,驾驶员通过控制操纵手柄输出手柄幅度角信号γj和手柄方位角信号λj,具体为,当船舶在Ⅰ区域上半区域(φ<λj<90°)内斜移时,第一吊舱推进器转速:其中,γjmax为手柄最大幅度角,nmax为螺旋桨最大转速,第一吊舱推进器回转角:α1=λj;第二吊舱推进器转速:第二吊舱推进器回转角:α2=180°-λj;当在Ⅰ区域下半区域(90°<λj<180°-φ)内斜移时,第一吊舱推进器转速:/>第一吊舱推进器回转角:α1=λj;第二吊舱推进器转速:/>第二吊舱推进器回转角:α2=180°-λjAccording to the above technical solution, in the first step, when the pod propelled the ship to move obliquely in the I and III areas, the driver outputs the handle amplitude angle signal γ j and the handle azimuth angle signal λ j through the control handle, specifically, when the ship moves obliquely in the upper half of the I area (φ<λ j <90°), the speed of the first pod propeller: Among them, γ jmax is the maximum amplitude angle of the handle, n max is the maximum rotational speed of the propeller, the rotation angle of the propeller of the first pod: α 1j ; the rotational speed of the propeller of the second pod: Rotation angle of the propeller of the second pod: α 2 =180°-λ j ; when moving obliquely in the lower half of area I (90°<λ j <180°-φ), the speed of the propeller of the first pod: /> Rotation angle of the propeller of the first pod: α 1j ; speed of the propeller of the second pod: /> Rotation angle of the propeller of the second pod: α 2 =180°-λ j .

按上述技术方案,当外界因素(风浪流等)影响船头偏转时,驾驶员通过控制操纵手柄头部旋钮输出旋钮旋转角信号τj,经由系统控制器作用对第一吊舱推进器和第二吊舱推进器的回转角进行调整,具体为:当船头右偏时,第一吊舱推进器回转角:其中,τjmax为旋钮最大旋转角,第二吊舱推进器回转角:当船头左偏时,第一吊舱推进器回转角:第二吊舱推进器回转角:/> According to the above technical scheme, when external factors (wind, wave, current, etc.) affect the deflection of the bow, the driver outputs the knob rotation angle signal τ j through the control handle head knob, and adjusts the rotation angles of the first pod propeller and the second pod propeller through the action of the system controller. Among them, τ jmax is the maximum rotation angle of the knob, and the rotation angle of the propeller of the second pod: When the bow deviates to the left, the rotation angle of the thrusters of the first pod: Second pod thruster rotation angle: />

本发明产生的有益效果是:1.开发出一整套吊舱推进船舶的智能操控系统,可实现吊舱推进船舶在不同运行工况下正常工作,降低了操作难度。The beneficial effects produced by the present invention are as follows: 1. A whole set of intelligent control system for the pod-propelled ship is developed, which can realize the normal operation of the pod-propelled ship under different operating conditions and reduce the difficulty of operation.

2.本发明通过伪逆算法对推进器进行推力优化分配,充分发挥了吊舱推进器的360°全回转特性,使双吊舱配合产生任意方向的矢量力,令船舶在任意航速下能够完成平移、斜移、原地回转、快速倒车等常规推进器难以完成的操控,极大地提高了船舶的操纵性和机动性。2. The present invention optimizes the distribution of thrust to the propeller through the pseudo-inverse algorithm, and fully utilizes the 360° full-rotation characteristics of the pod propulsion, so that the double pods can cooperate to generate vector force in any direction, so that the ship can complete the manipulation that is difficult for conventional propellers such as translation, oblique movement, in-situ rotation, and fast reversing at any speed, and greatly improves the maneuverability and maneuverability of the ship.

附图说明Description of drawings

下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with accompanying drawing and embodiment, in the accompanying drawing:

图1为本发明实施例的整体组成示意图。FIG. 1 is a schematic diagram of the overall composition of an embodiment of the present invention.

图2为本发明的操纵手柄结构组成示意图。Fig. 2 is a schematic diagram of the structural composition of the joystick of the present invention.

图3为本发明的操纵手柄幅度角信号示意图。Fig. 3 is a schematic diagram of the joystick amplitude angle signal of the present invention.

图4为本发明的控制策略区域划分示意图。Fig. 4 is a schematic diagram of the area division of the control strategy in the present invention.

图5为本发明的Ⅰ区域斜移吊舱推进器状态及受力状况示意图。Fig. 5 is a schematic diagram of the status and stress of the thruster of the oblique pod in zone I of the present invention.

图6为本发明的控制策略Ⅳ区域划分及正车示意图。Fig. 6 is a schematic diagram of the control strategy IV area division and the front vehicle of the present invention.

图7为本发明的Ⅱ区域右过渡区斜移吊舱推进器状态及受力状况示意图。Fig. 7 is a schematic diagram of the propeller status and stress of the oblique pod in the right transition zone of the II zone according to the present invention.

图8为本发明的Ⅱ区域左过渡区斜移吊舱推进器状态及受力状况示意图。Fig. 8 is a schematic diagram of the status and stress of the thruster of the oblique pod in the left transition zone of zone II of the present invention.

图9为本发明的吊舱推进船舶偏航小范围调整时吊舱推进器状态及受力状况示意图。Fig. 9 is a schematic diagram of the pod propulsion state and the stress situation when the yaw of the pod-propelled ship is adjusted in a small range according to the present invention.

图中:001.操纵手柄;002.数据采集模块;003.信号处理模块;004.系统控制器;005.执行机构;006.第一吊舱推进器;007.第二吊舱推进器;008.第一转速传感器;009.第一螺旋桨电机;010.第一角度传感器;011.第一回转控制电机;012.第二转速传感器;013.第二螺旋桨电机;014.第二角度传感器;015.第二回转控制电机;016.直行区;017.左过渡区;018.右过渡区;019.基座;020.旋钮。In the figure: 001. joystick; 002. data acquisition module; 003. signal processing module; 004. system controller; 005. actuator; 006. first pod propeller; 007. second pod propeller; 5. The second rotary control motor; 016. Straight running area; 017. Left transition area; 018. Right transition area; 019. Base; 020. Knob.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

本发明实施例中,如图1所示,提供一种用于吊舱推进船舶的控制系统,包括数据采集模块002、信号处理模块003、通信模块、系统控制器004和执行机构005。数据采集模块002由操纵手柄001、螺旋桨转速传感器008、012和角度传感器010、014组成。操纵手柄001可以在y轴方向绕基座摆动,输出手柄幅度角信号γj;同时操纵手柄001可以绕其轴线旋转,输出手柄方位角信号λj。操纵手柄001头部设置可以绕轴旋转的旋钮018(规定向左旋为负,向右旋为正),输出旋钮018旋转角信号τj。所述螺旋桨转速传感器008、012安装于吊舱推进器内部,实时监测螺旋桨转轴转速,并将转速信号传至信号处理模块003。所述角度传感器010、014实时监测吊舱推进器的回转角度,并将回转角度信号传至信号处理模块003。所述信号处理模块003实现数据采集模块002各传感器采集的电信号转换为系统控制器004可以识别的数值信号,然后将数值信号通过通信模块传给系统控制器004。所述系统控制器004由单片机构成,通过对信号处理模块003传来的数据进行实时的分析,按照控制策略输出动作信号给执行机构005,构成一个闭环负反馈系统。所述通信模块用于实现数据采集模块002、信号处理模块003与系统控制器004之间的通信,使得系统控制器004对整个控制系统进行实时的检测与控制。所述执行机构005由安装于两套吊舱推进器中的推进电机及带动两套吊舱推进器回转的回转电机构成。In the embodiment of the present invention, as shown in FIG. 1 , a control system for a pod propelled ship is provided, including a data acquisition module 002 , a signal processing module 003 , a communication module, a system controller 004 and an actuator 005 . The data acquisition module 002 is composed of a joystick 001, propeller speed sensors 008, 012 and angle sensors 010, 014. The joystick 001 can swing around the base in the y-axis direction, and output the handle amplitude angle signal γ j ; at the same time, the joystick 001 can rotate around its axis, and output the handle azimuth angle signal λ j . The head of the joystick 001 is provided with a knob 018 that can rotate around the axis (it is stipulated that turning to the left is negative, and turning to the right is positive), and the rotation angle signal τ j of the knob 018 is output. The propeller rotation speed sensors 008 and 012 are installed inside the pod propeller to monitor the rotation speed of the propeller shaft in real time and transmit the rotation speed signal to the signal processing module 003 . The angle sensors 010 and 014 monitor the rotation angle of the pod propeller in real time, and transmit the rotation angle signal to the signal processing module 003 . The signal processing module 003 converts the electrical signals collected by the sensors of the data collection module 002 into numerical signals recognizable by the system controller 004, and then transmits the numerical signals to the system controller 004 through the communication module. The system controller 004 is composed of a single-chip microcomputer. By analyzing the data transmitted from the signal processing module 003 in real time, it outputs action signals to the actuator 005 according to the control strategy, forming a closed-loop negative feedback system. The communication module is used to realize the communication between the data acquisition module 002, the signal processing module 003 and the system controller 004, so that the system controller 004 can detect and control the whole control system in real time. The actuator 005 is composed of a propulsion motor installed in two sets of pod propellers and a rotary motor that drives the two sets of pod propellers to rotate.

进一步地,驾驶员通过控制操纵手柄001摆动幅度输出手柄幅度角信号γj,控制吊舱推进船舶移动速度;控制操纵手柄001旋转角度输出手柄方位角信号λj,控制吊舱推进船舶移动方向;控制操纵手柄001头部旋钮020旋转角度输出旋转角信号τj,修正吊舱推进船舶航向。Further, the driver controls the swing amplitude of the joystick 001 to output the handle amplitude angle signal γ j to control the moving speed of the pod to propel the ship; controls the rotation angle of the joystick 001 to output the azimuth signal λ j of the handle to control the moving direction of the pod; controls the rotation angle of the head knob 020 of the joystick 001 to output a rotation angle signal τ j to correct the course of the pod to propel the ship.

如图2所示,控制系统中涉及的控制策略按照推力作用点与重心连线,将水平面划分为I、II、III、IV四个区域,I区域范围为(φ,180°-φ],II区域范围为(-φ,φ],III区域范围为(180°+φ,360°-φ],IV区域范围为(180°-φ,180°+φ](φ为Ⅱ、Ⅳ区域边界线夹角的一半)。吊舱推进船舶在Ⅰ、Ⅲ区域移动时主要考虑横移,在Ⅱ、Ⅳ区域移动时主要考虑直行。As shown in Fig. 2, the control strategy involved in the control system divides the horizontal plane into four areas: I, II, III, and IV according to the line connecting the thrust point and the center of gravity. The range of the I area is (φ, 180°-φ], the range of the II area is (-φ, φ], the range of the III area is (180°+φ, 360°-φ], and the range of the IV area is (180°-φ, 180°+φ] (φ is half of the angle between the boundaries of the II and IV areas). When moving in areas Ⅰ and Ⅲ, lateral movement is mainly considered, and when moving in areas Ⅱ and Ⅳ, straight travel is mainly considered.

如图3所示,吊舱推进船舶在Ⅰ、Ⅲ区域斜移时,驾驶员通过控制操纵手柄001输出幅度角信号γj和手柄方位角信号λj,通信模块将信号传给系统控制器004,系统控制器004对吊舱推进器转速和回转角进行调整。具体为:当在Ⅰ区域上半区域(φ<λj<90°)内斜移时,第一吊舱推进器006转速:(其中,γjmax为手柄最大幅度角,nmax为螺旋桨最大转速),第一吊舱推进器006回转角:α1=λj;第二吊舱推进器007转速:第二吊舱推进器007回转角:α2=180°-λj。当在Ⅰ区域下半区域(90°<λj<180°-φ)内斜移时,第一吊舱推进器006转速:/>第一吊舱推进器006回转角:α1=λj;第二吊舱推进器007转速:/>第二吊舱推进器007回转角:α2=180°-λjAs shown in Figure 3, when the pod propelled the ship to move obliquely in the I and III areas, the driver outputs the amplitude angle signal γj and the handle azimuth angle signal λj by controlling the joystick 001, and the communication module sends the signal to the system controller 004, and the system controller 004 adjusts the speed and rotation angle of the pod propeller. Specifically: when moving obliquely in the upper half of area I (φ<λ j <90°), the speed of propeller 006 of the first pod is: (wherein, γ jmax is the maximum amplitude angle of the handle, and n max is the maximum rotation speed of the propeller), the rotation angle of the first pod propeller 006: α 1j ; the rotation speed of the second pod propeller 007: Rotation angle of the second pod propeller 007: α 2 =180°-λ j . When moving obliquely in the lower half of area I (90°<λ j <180°-φ), the first pod propeller 006 speed: /> Rotation angle of the first pod propeller 006: α 1j ; speed of the second pod propeller 007: /> Rotation angle of the second pod propeller 007: α 2 =180°-λ j .

如图4、图5所示,将水平面区域Ⅱ、Ⅳ区域划分为直行区016和左过渡区017和右过渡区018,解决吊舱推进船舶行驶状态由直行变换到大幅度斜移时吊舱推进器的旋转角短时间发生大幅度偏转的问题。吊舱推进船舶在直行区016移动时时第一吊舱推进器006和第二吊舱推进器007均正车或倒车,驾驶员通过控制操纵手柄001摆动幅度控制吊舱推进船舶移动速度,通过控制操纵手柄001头部旋钮018控制吊舱推进器小幅度偏转。第一吊舱推进器006与第二吊舱推进器007的转速:偏转角变化量:Δα1=Δα2=τxη。As shown in Fig. 4 and Fig. 5, the horizontal area II and IV are divided into the straight travel area 016, the left transition area 017 and the right transition area 018 to solve the problem that the rotation angle of the pod propeller is greatly deflected in a short time when the driving state of the pod-propelled ship changes from straight travel to large-scale tilting. When the pod-propelled ship is moving in the straight-ahead zone 016, the first pod propeller 006 and the second pod propeller 007 are both forward or reverse, the driver controls the movement speed of the pod propulsion ship by controlling the swing range of the joystick 001, and controls the small deflection of the pod propeller by controlling the knob 018 on the head of the joystick 001. The speed of the first pod propeller 006 and the second pod propeller 007: Variation of deflection angle: Δα 1 =Δα 2x η.

如图6所示,吊舱推进船舶在过渡区017、018移动时,通过使其中一个吊舱推进器回转90°,另一吊舱推进器保持原位置不变,改变吊舱推进器转速实现不同的斜移角度和斜移速度。具体为:在Ⅱ区左过渡区017斜移时,第一吊舱推进器006回转角为0°,第二吊舱推进器007回转角度为270°(顺时针旋转90°),第一吊舱推进器006转速:第二吊舱推进器007转速:/>在Ⅱ区右过渡区018斜移时,第一吊舱推进器006回转角为90°(逆时针旋转90°),第二吊舱推进器007回转角度为0°,第一吊舱推进器006转速:/>第二吊舱推进器007转速:/> As shown in Figure 6, when the pod-propelled ship moves in the transition zones 017 and 018, one of the pod propellers is rotated by 90° while the other pod propeller remains in its original position, and the speed of the pod propeller is changed to achieve different tilting angles and speeds. Specifically: when the left transition zone 017 in Zone II is obliquely shifted, the first pod propeller 006 has a rotation angle of 0°, the second pod propeller 007 has a rotation angle of 270° (90° clockwise), and the rotation speed of the first pod propeller 006 is: Second pod thruster 007 RPM: /> When the right transition zone 018 in zone II is obliquely shifted, the first pod propeller 006 has a rotation angle of 90° (counterclockwise 90°), the second pod propeller 007 has a rotation angle of 0°, and the first pod propeller 006 rotates: /> Second pod thruster 007 RPM: />

如图7-9所示,当外界风浪流等因素影响船头偏转时,驾驶员通过控制操纵手柄001头部旋钮018输出旋转角信号τj,通信模块将信号传给系统控制器004,系统控制器004对吊舱推进器回转角进行调整。具体为:当船头右偏时,第一吊舱推进器006回转角:(其中,τjmax为旋钮最大旋转角),第二吊舱推进器007回转角:/>当船头左偏时,第一吊舱推进器006回转角:/>第二吊舱推进器007回转角:/> As shown in Figure 7-9, when factors such as external wind, waves and currents affect the bow deflection, the driver outputs the rotation angle signal τ j through the control handle 001 head knob 018, and the communication module sends the signal to the system controller 004, and the system controller 004 adjusts the rotation angle of the pod propeller. Specifically: when the bow of the ship deviates to the right, the rotation angle of the propeller 006 of the first pod: (wherein, τ jmax is the maximum rotation angle of the knob), the second pod propeller 007 rotation angle: /> When the bow is deflected to the left, the turning angle of the first pod thruster 006: /> Second pod thruster 007 rotation angle: />

应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that those skilled in the art can make improvements or changes based on the above description, and all these improvements and changes should belong to the protection scope of the appended claims of the present invention.

Claims (4)

1.一种用于吊舱推进船舶的控制方法,其特征在于,包括以下步骤,步骤一,按照推力作用点与重心连线将船舶所在水平面划分为I、II、III、IV四个区域,I区域范围为(φ,180°-φ],III区域范围为(180°+φ,360°-φ],II区域范围为(-φ,φ],IV区域范围为(180°-φ,180°+φ],φ为Ⅱ、Ⅳ区域边界线夹角的一半;吊舱推进船舶在Ⅰ、Ⅲ区域斜移时,驾驶员通过控制操纵手柄输出手柄幅度角信号γj和手柄方位角信号λj,经由系统控制器对第一螺旋桨电机、第二螺旋桨电机的转速,第一回转控制电机、第二回转控制电机的回转角度进行调整;步骤二,将水平面区域Ⅱ、Ⅳ区域划分为直行区、左过渡区和右过渡区,Ⅱ区域直行区的范围为为(-φ/2,φ/2],左过渡区的范围为为(-φ,-φ/2],右过渡区的范围为为(φ/2,φ];Ⅳ区域直行区的范围为为(180°-φ/2,180°+φ/2],左过渡区的范围为为(180°+φ/2,180°+φ],右过渡区的范围为为(180°-φ,180°-φ/2];吊舱推进船舶在直行区移动时,第一吊舱推进器和第二吊舱推进器均正车或倒车,驾驶员通过控制操纵手柄的手柄幅度角信号γj控制吊舱推进船舶移动速度,通过控制操纵手柄的手柄方位角信号λj控制吊舱推进器小幅度偏转;步骤三,吊舱推进船舶在左过渡区和右过渡区移动时,通过使第一吊舱推进器、第二吊舱推进器中的一个回转90°,另一吊舱推进器保持原位置不变,通过改变回转90°的吊舱推进器的转速,实现不同的斜移角度和斜移速度;基于该方法的控制装置,包括数据采集模块、信号处理模块、通信模块、系统控制器和执行机构,其中,数据采集模块包括操纵手柄、第一螺旋桨转速传感器、第二螺旋桨转速传感器、第一角度传感器和第二角度传感器,其中操纵手柄用来将驾驶员的操纵信号转换为电信号传送到信号处理模块;信号处理模块通过通信模块与系统控制器连接,系统控制器对执行机构进行驱动,执行机构由第一吊舱推进器和第二吊舱推进器组成,第一吊舱推进器包括第一螺旋桨电机、第一回转控制电机,第二吊舱推进器包括第二螺旋桨电机、第二回转控制电机;第一角度传感器实时监测第一吊舱推进器的回转角度,第二角度传感器实时监测第二吊舱推进器的回转角度,并将回转角度信号传至信号处理模块;第一螺旋桨转速传感器实时监测第一螺旋桨电机转速,第二螺旋桨转速传感器实时监测第二螺旋桨电机转速,并将转速信号传至信号处理模块;信号处理模块将操纵手柄与各传感器采集的电信号转换为系统控制器可以识别的数值信号,并将数值信号输送到系统控制器,系统控制器对数值信号进行比对并输出动作信号给执行机构。1. A control method for pod propulsion ships, characterized in that, comprises the following steps, step 1, the horizontal plane of the ship is divided into I, II, III, IV four areas according to the point of thrust action and the line connecting the center of gravity, the I area range is (φ, 180 °-φ], the III area range is (180 °+φ, 360 °-φ], the II area range is (-φ, φ], the IV area range is (180 °-φ, 180 °+φ], and φ is II, IV Half of the angle between the boundary lines of the area; when the pod propels the ship to move obliquely in areas I and III, the driver outputs the amplitude angle signal of the handle through the control handle γjand handle azimuth signal λj, through the system controller, the speed of the first propeller motor and the second propeller motor, the rotation angles of the first rotation control motor and the second rotation control motor are adjusted; step 2, the horizontal plane area II and IV are divided into straight travel area, left transition area and right transition area. (180°-φ/2, 180°+φ/2], the range of the left transition zone is (180°+φ/2, 180°+φ], and the range of the right transition zone is (180°-φ, 180°-φ/2]; when the pod propelled the ship to move in the straight-ahead zone, both the first pod propeller and the second pod propeller are driving or reversing, and the driver controls the handle amplitude angle signal γ of the joystickjControl the pod to propel the moving speed of the ship, and control the handle azimuth signal λ of the joystickjControl the small deflection of the pod propeller; step 3, when the pod propels the ship to move in the left transition area and the right transition area, by making one of the first pod propeller and the second pod propeller rotate 90°, the other pod propeller keeps the original position, and by changing the rotating speed of the pod propeller rotating 90°, different tilting angles and tilting speeds are realized; the control device based on this method includes a data acquisition module, a signal processing module, a communication module, a system controller and an actuator, wherein the data acquisition module includes a joystick, a first The propeller speed sensor, the second propeller speed sensor, the first angle sensor and the second angle sensor, wherein the joystick is used to convert the driver's manipulation signal into an electrical signal and transmit it to the signal processing module; the signal processing module is connected with the system controller through the communication module, and the system controller drives the actuator. The actuator is composed of the first pod propeller and the second pod propeller. The angle sensor monitors the rotation angle of the second pod propeller in real time, and transmits the rotation angle signal to the signal processing module; the first propeller speed sensor monitors the first propeller motor speed in real time, and the second propeller speed sensor monitors the second propeller motor speed in real time, and transmits the speed signal to the signal processing module; the signal processing module converts the electrical signals collected by the joystick and each sensor into a numerical signal that can be recognized by the system controller, and sends the numerical signal to the system controller. The system controller compares the numerical signal and outputs an action signal to the actuator. 2.根据权利要求1所述的用于吊舱推进船舶的控制方法,其特征在于,所述步骤一中,吊舱推进船舶在Ⅰ、Ⅲ区域斜移时,驾驶员通过控制操纵手柄输出手柄幅度角信号γj和手柄方位角信号λj,具体为,当船舶在Ⅰ区域上半区域内斜移时,第一吊舱推进器转速:其中,γjmax为手柄最大幅度角,nmax为螺旋桨最大转速,第一吊舱推进器回转角:α1=λj;第二吊舱推进器转速:/>第二吊舱推进器回转角:α2=180°-λj;当在Ⅰ区域下半区域内斜移时,第一吊舱推进器转速:第一吊舱推进器回转角:α1=λj;第二吊舱推进器转速:第二吊舱推进器回转角:α2=180°-λj2. The control method for a pod-propelled ship according to claim 1, wherein in said step 1, when the pod-propelled ship moves obliquely in the I and III areas, the driver outputs the handle amplitude angle signal γ j and the handle azimuth angle signal λ j through the control handle, specifically, when the ship obliquely moves in the upper half of the I area, the speed of the first pod propeller: Among them, γ jmax is the maximum amplitude angle of the handle, n max is the maximum rotational speed of the propeller, the rotation angle of the propeller of the first pod: α 1j ; the rotational speed of the propeller of the second pod: /> Rotation angle of the propeller of the second pod: α 2 =180°-λ j ; when moving obliquely in the lower half of area I, the speed of the propeller of the first pod: Rotation angle of the propeller of the first pod: α 1j ; speed of the propeller of the second pod: Rotation angle of the propeller of the second pod: α 2 =180°-λ j . 3.根据权利要求1或2所述的用于吊舱推进船舶的控制方法,其特征在于,当外界因素影响船头偏转时,驾驶员通过控制操纵手柄头部旋钮输出旋钮旋转角信号τj,经由系统控制器作用对第一吊舱推进器和第二吊舱推进器的回转角进行调整,具体为:当船头右偏时,第一吊舱推进器回转角:其中,τjmax为旋钮最大旋转角,第二吊舱推进器回转角:/>当船头左偏时,第一吊舱推进器回转角:/>第二吊舱推进器回转角:/> 3. The control method for the pod propelled ship according to claim 1 or 2, characterized in that, when external factors affect the bow deflection, the driver outputs the knob rotation angle signal τ j through the control handle head knob, and adjusts the rotation angles of the first pod propeller and the second pod propeller through the action of the system controller, specifically: when the bow deviates to the right, the first pod propeller rotation angle: Among them, τ jmax is the maximum rotation angle of the knob, and the rotation angle of the propeller of the second pod: /> Rotation angle of first pod propeller when the bow is turned left: /> Second pod thruster rotation angle: /> 4.根据权利要求1所述的用于吊舱推进船舶的控制方法,其特征在于,第一螺旋桨电机和第一回转控制电机安装于第一吊舱推进器内,第一吊舱推进器安装于吊舱推进船舶尾部左侧;第二螺旋桨电机和第二回转控制电机安装于第二吊舱推进器,第二吊舱推进器安装于吊舱推进船舶尾部右侧。4. The control method for a pod-propelled ship according to claim 1, wherein the first propeller motor and the first rotary control motor are installed in the first pod propeller, and the first pod propeller is installed on the left side of the tail of the pod-propelled ship; the second propeller motor and the second rotary control motor are installed on the second pod propeller, and the second pod propeller is installed on the right side of the tail of the pod-propelled ship.
CN201810287992.9A 2018-04-03 2018-04-03 Control device and method for pod propulsion ship Expired - Fee Related CN108423148B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810287992.9A CN108423148B (en) 2018-04-03 2018-04-03 Control device and method for pod propulsion ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810287992.9A CN108423148B (en) 2018-04-03 2018-04-03 Control device and method for pod propulsion ship

Publications (2)

Publication Number Publication Date
CN108423148A CN108423148A (en) 2018-08-21
CN108423148B true CN108423148B (en) 2023-07-25

Family

ID=63160210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810287992.9A Expired - Fee Related CN108423148B (en) 2018-04-03 2018-04-03 Control device and method for pod propulsion ship

Country Status (1)

Country Link
CN (1) CN108423148B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060265B2 (en) * 2007-01-16 2011-11-15 Ab Volvo Penta Method of steering aquatic vessels
CN101342937B (en) * 2008-03-14 2011-04-20 上海海事大学 Navigation control method for ship propulsion system
CN102390514B (en) * 2011-09-21 2013-10-23 武汉海王机电工程技术公司 Marine full revolving control handle
CN102991662B (en) * 2012-12-24 2015-04-15 上海海事大学 Steerage compensation device and method of electric propulsion ship with twin screws at propeller shaft
CN105676756B (en) * 2015-08-19 2018-02-23 张桂臣 Full circle swinging machine oar rudder monitoring combination system and monitoring method
CN204883290U (en) * 2015-08-19 2015-12-16 张桂臣 Compound monitored control system of quick -witted oar rudder turns around entirely
CN106240779A (en) * 2016-01-27 2016-12-21 北车船舶与海洋工程发展有限公司 Pull-type full circle swinging electric power gondola propulsion system peculiar to vessel
CN207029511U (en) * 2017-05-05 2018-02-23 苏州苏净船用机械有限公司 A kind of full-rotating rudder screw for avoiding liquidating
CN208007259U (en) * 2018-04-03 2018-10-26 武汉理工大学 A kind of control device for gondola propelling ship

Also Published As

Publication number Publication date
CN108423148A (en) 2018-08-21

Similar Documents

Publication Publication Date Title
US9132903B1 (en) Systems and methods for laterally maneuvering marine vessels
US9079651B2 (en) Marine vessel propulsion system and marine vessel including the same
US9434460B1 (en) Marine vessels and systems for laterally maneuvering marine vessels
CN102887217B (en) Autonomous underwater vehicle (AUV) vector thrust device
JP2017052297A (en) Ship control device
JP2021187374A (en) Control method for vessel
CN101596931A (en) A three-propeller active vector propulsion method
CN104648645A (en) Jet-propelled boat capable of realizing boat motion vector control
CN105752308B (en) A kind of gondola propelling ship manoeuvre vector control apparatus
JP4789953B2 (en) Ship propulsion system
CN107985536B (en) A submersible equipped with a space parallel mechanism vector thruster
JPH0911984A (en) Propeller propulsion equipment for ships
KR20050115229A (en) Steering and propulsion arrangement for ship
CN108423148B (en) Control device and method for pod propulsion ship
JP2015033967A (en) Ship steering method, ship, and ship steering system
CN103552650A (en) Dual-body water surface carrier and automatic control system
CN109334940B (en) Steering control method and system for straight wing rudder
CN208007259U (en) A kind of control device for gondola propelling ship
CN113734392A (en) Rudder control device and method
WO2000069720A1 (en) A method of propelling ship by controlled vector direction of propulsion
KR102042947B1 (en) Vessel keys, steering methods and vessels
CN209433202U (en) Unmanned ship rotation speed differential stabilization system
CN209327875U (en) Unmanned ship rolling-course coordination stability augmentation control system
US20130072076A1 (en) Method for maneuvering a yacht
CN113636057B (en) Separating rudder capable of realizing forward and reverse rudder conversion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230725

CF01 Termination of patent right due to non-payment of annual fee