CN108511537B - Solar cell - Google Patents
Solar cell Download PDFInfo
- Publication number
- CN108511537B CN108511537B CN201810673308.0A CN201810673308A CN108511537B CN 108511537 B CN108511537 B CN 108511537B CN 201810673308 A CN201810673308 A CN 201810673308A CN 108511537 B CN108511537 B CN 108511537B
- Authority
- CN
- China
- Prior art keywords
- layer
- back electrode
- electrode layer
- solar cell
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010410 layer Substances 0.000 claims abstract description 186
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000002344 surface layer Substances 0.000 claims abstract description 21
- 230000008021 deposition Effects 0.000 claims description 24
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 21
- 239000010409 thin film Substances 0.000 claims description 11
- 239000011787 zinc oxide Substances 0.000 claims description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000031700 light absorption Effects 0.000 claims description 7
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 26
- 238000004544 sputter deposition Methods 0.000 description 18
- 238000000151 deposition Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 10
- 230000003746 surface roughness Effects 0.000 description 9
- 238000007747 plating Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 238000010549 co-Evaporation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种太阳能电池,包括:基底;背电极层,其设置于所述基底上方,所述背电极层包括第一层和第二层,所述第一层紧邻基底一侧,所述第二层体积密度小于所述第一层体积密度;光吸收层,其设置在所述第二层上方;以及前电极层,其设置在所述第二层上方;以及其中,所述第一层与所述第二层间无明显分界。相比于现有技术中含有光滑背电极表面的太阳能电池,此种具有适度体积密度的粗糙表面层的背电极的太阳能电池有利于自发形成限光效应,降低太阳能电池的光反射率,提高光吸收率。
The present invention relates to a solar cell, comprising: a substrate; a back electrode layer disposed above the substrate, the back electrode layer comprising a first layer and a second layer, the first layer is adjacent to one side of the substrate, the The second layer has a volume density less than that of the first layer; a light absorbing layer disposed over the second layer; and a front electrode layer disposed over the second layer; and wherein the first There is no sharp demarcation between the layer and the second layer. Compared with solar cells with a smooth back electrode surface in the prior art, this kind of solar cell with a rough surface layer with a moderate volume density is conducive to spontaneously forming a light-limiting effect, reducing the light reflectance of the solar cell, and improving the light efficiency. Absorption rate.
Description
技术领域technical field
本发明涉及太阳能光伏领域,特别地涉及一种太阳能电池。The invention relates to the field of solar photovoltaics, in particular to a solar cell.
背景技术Background technique
经济的快速发展带来全球能源危机和环境污染等问题,开发可再生能源和清洁能源迫在眉睫。近年来,太阳能作为新能源以其廉价、含量丰富、易获得和无污染等优势已逐渐取代化石能源。太阳能作为能源的利用主要体现在利用其进行发电。Rapid economic development has brought about problems such as global energy crisis and environmental pollution, and the development of renewable and clean energy is imminent. In recent years, as a new energy source, solar energy has gradually replaced fossil energy due to its advantages of cheapness, abundant content, easy availability and no pollution. The use of solar energy as energy is mainly reflected in the use of it for power generation.
薄膜太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用光能转换成电能的装置。薄膜太阳能电池主要是由铜铟镓硒(简称为:CIGS)材料和其他材料在基底上形成P-N节的薄膜来发电,其具有光吸收能力强、转化效率高、制造成本低、可柔性化、发电稳定以及环境友好等优点。薄膜太阳能电池的转化效率是指转化成的有效电能所占入射的太阳光能量的百分比,目前实验室最高太阳能电池转化效率已经超过22%,但是实际工业生产中还很难达到如此高的转化效率。提高太阳能电池的光能转化效率可以有效节约生产成本,进一步解决能源危机问题。Thin film solar cell, also known as "solar chip" or "photovoltaic cell", is a device that converts light energy into electrical energy. Thin-film solar cells are mainly composed of copper indium gallium selenide (abbreviated as: CIGS) materials and other materials to form a P-N junction film on the substrate to generate electricity. It has strong light absorption capacity, high conversion efficiency, low manufacturing cost, and flexibility. The advantages of stable power generation and environmental friendliness. The conversion efficiency of thin-film solar cells refers to the percentage of the converted effective electric energy to the incident sunlight energy. At present, the highest conversion efficiency of solar cells in the laboratory has exceeded 22%, but it is still difficult to achieve such a high conversion efficiency in actual industrial production. . Improving the light energy conversion efficiency of solar cells can effectively save production costs and further solve the problem of energy crisis.
发明内容Contents of the invention
针对现有技术中存在的技术问题,本发明提出了一种太阳能电池,包括:基底;背电极层,其设置于所述基底上方,所述背电极层包括第一层和第二层,所述第一层紧邻基底一侧,所述第二层体积密度小于所述第一层体积密度;光吸收层,其设置在所述第二层上方;以及前电极层,其设置在所述第二层上方。Aiming at the technical problems existing in the prior art, the present invention proposes a solar cell, comprising: a substrate; a back electrode layer disposed above the substrate, the back electrode layer comprising a first layer and a second layer, the The first layer is adjacent to the substrate side, the volume density of the second layer is smaller than the volume density of the first layer; the light absorbing layer is arranged above the second layer; and the front electrode layer is arranged on the first layer Above the second floor.
如上所述的太阳能电池,所述第一背电极层和第二背电极层包括金属钼。In the above solar cell, the first back electrode layer and the second back electrode layer include metal molybdenum.
如上所述的太阳能电池,所述第二背电极层的厚度为5-30nm。In the above solar cell, the thickness of the second back electrode layer is 5-30 nm.
如上所述的太阳能电池,所述第一背电极层的厚度为300-1000nm。According to the above solar cell, the thickness of the first back electrode layer is 300-1000nm.
如上所述的太阳能电池,所述第二背电极层单位体积内钼含量约为6g/cm3。As for the above solar cell, the molybdenum content per unit volume of the second back electrode layer is about 6 g/cm 3 .
如上所述的太阳能电池,所述第一背电极层单位体积内钼含量约为10g/cm3。As for the above solar cell, the molybdenum content per unit volume of the first back electrode layer is about 10 g/cm 3 .
如上所述的太阳能电池,所述第二背电极层具有粗糙面层,粗糙度Ra为Ra<30nm。In the above solar cell, the second back electrode layer has a rough surface layer, and the roughness Ra is Ra<30nm.
如上所述的太阳能电池,所述第一背电极层还可以进一步包括第一沉积层和第二沉积层,所述第一沉积层体积密度小于所述第二沉积层的体积密度,其中所述第一沉积层紧邻所述基底。In the above solar cell, the first back electrode layer may further include a first deposition layer and a second deposition layer, the volume density of the first deposition layer is smaller than the volume density of the second deposition layer, wherein the The first deposited layer is proximate to the substrate.
一种薄膜太阳能电池的制备方法,包括:在基底上制备第一背电极层;在所述第一背电极层上制备第二背电极层,其中第二背电极层的体积密度小于所述第一背电极层的体积密度;在所述第二背电极层上制备光吸收层;在所述光吸收层上制备前电极层。A method for preparing a thin film solar cell, comprising: preparing a first back electrode layer on a substrate; preparing a second back electrode layer on the first back electrode layer, wherein the volume density of the second back electrode layer is smaller than that of the first back electrode layer A volume density of the back electrode layer; a light absorbing layer is prepared on the second back electrode layer; a front electrode layer is prepared on the light absorbing layer.
相比于现有技术中含有光滑背电极表面的太阳能电池,包含具有适度体积密度粗糙表面层的背电极表的太阳能电池有利于自发形成限光效应,降低太阳能电池的光反射率,提高光吸收率。Compared with solar cells with a smooth back electrode surface in the prior art, a solar cell with a back electrode surface with a moderate volume density rough surface layer is conducive to the spontaneous formation of a light confinement effect, reducing the light reflectance of the solar cell, and improving light absorption Rate.
附图说明Description of drawings
下面,将结合附图对本发明的优选实施方式进行进一步详细的说明,其中:Below, preferred embodiment of the present invention will be described in further detail in conjunction with accompanying drawing, wherein:
图1A和图1B是根据本发明的一个实施例的薄膜太阳能电池示意图;以及1A and 1B are schematic diagrams of a thin film solar cell according to an embodiment of the present invention; and
图2是根据本发明的一个实施例的薄膜太阳能电池的制备流程图。Fig. 2 is a flow chart of the preparation of a thin film solar cell according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在以下的详细描述中,可以参看作为本申请一部分用来说明本申请的特定实施例的各个说明书附图。在附图中,相似的附图标记在不同图式中描述大体上类似的组件。本申请的各个特定实施例在以下进行了足够详细的描述,使得具备本领域相关知识和技术的普通技术人员能够实施本申请的技术方案。应当理解,还可以利用其它实施例或者对本申请的实施例进行结构、逻辑或者电性的改变。In the following detailed description, reference is made to the accompanying drawings which are included in the specification and which illustrate specific embodiments of the application and which are included in this application. In the drawings, like reference numerals describe substantially similar components in different views. Various specific embodiments of the present application are described in sufficient detail below, so that those of ordinary skill in the art can implement the technical solutions of the present application. It should be understood that other embodiments may also be utilized or structural, logical or electrical changes may be made to the embodiments of the present application.
太阳能电池工作的基础是半导体PN结的光生伏特效应,即太阳光照射在太阳能电池中的PN结上时,其内电荷分布状态发生变化,在PN结的两边产生电动势和电流。The basis of solar cell work is the photovoltaic effect of the semiconductor PN junction, that is, when sunlight shines on the PN junction in the solar cell, the internal charge distribution state changes, and electromotive force and current are generated on both sides of the PN junction.
图1A和图1B是根据本发明的一个实施例的薄膜太阳能电池示意图。根据本发明的一个实施例,采用普通的钠钙玻璃作为基底101,其中的钠元素以扩散形式进入CIGS晶粒(光吸收层103)中,促进CIGS晶粒(光吸收层103)的生长,优化光吸收层103的电学性能,尤其能提高其P型特性。作为可选的实施例,基底101也可以使用其他刚性材料如玻璃、陶瓷等,或者柔性材料如金属、塑料等。需要注意的是,有的玻璃在使用时可能需要采用特殊工艺处理,如硼硅玻璃、聚酰亚胺玻璃;如选择金属作为基底101,需在金属上表面与太阳能电池其他组分接触的一侧镀绝缘的阻挡层,如氧化硅、氮化硅等;如选择塑料作为基底,需注意所选塑料所耐受的温度限度。1A and 1B are schematic diagrams of a thin film solar cell according to an embodiment of the present invention. According to an embodiment of the present invention, common soda-lime glass is used as the
背电极102镀制于基底101表面,根据本发明的一个实施例,采用金属钼(Mo)作为背电极102,其具有稳定性好、反射率高、电阻低的优点。作为可选的实施例,也可以使用金属钨(W)或者透明导电层(TCO)作为背电极。根据本发明的一个实施例,背电极102具有两层结构,其中第一层1021紧邻基底101,第二层1022包括粗糙面层。根据本发明的一个实施例,第一层与第二层间无明显分界。根据本发明的一个实施例,粗糙面层1022体积密度小于第一层1021,体积密度约4-8g/cm3,表面粗糙度不超过30nm。具有适当粗糙度的粗糙面层可以改进背电极与其上附着层的附着。现有技术中,背电极体积密度约9-10g/cm3,表面粗糙度约为4nm,为光滑表面,继续在其上镀制其余膜层时,形成光滑的表面。该情况下,光吸收层103表面的粗糙度过低,体积密度高,反射率较高,不利于光能的充分吸收。相比于现有技术中含有光滑背电极表面的太阳能电池,包含适度的粗糙背电极表面的太阳能电池具有较低体积密度的表面,有利于自发形成限光效应,降低太阳能电池的光反射率,提高光吸收率。根据本发明的一个实施例,通过实验得出,背电极表面体积密度约4-8g/cm3,表面粗糙度在30nm以下为佳。采集分析本发明的实施例结果得出,表面体积密度约5-7g/cm3、粗糙度约在10-20nm之间时,太阳能电池的转化效率有较明显提高。根据本发明的一个实施例,所述的体积密度也可以定义为单位体积内某种材料的体积,第一背电极层的体积密度大于第二背电极层的体积密度可以为在单位体积内,第一背电极层的中Mo的含量大于第二背电极层Mo的含量,也可以为在单位体积内,第一被电极层所占的体积大于第二背电极层所占的体积。The
根据本发明的一个实施例,第一层1021可以进一步包括第一沉积层和第二沉积层。其中第一沉积层紧邻基底一侧,第二沉积层设置在第一沉积层和第二层之间。根据本发明的一个实施例,第一沉积层体积密度小于所述第二沉积层,也就是说第一沉积层较第二沉积层具有更大的粗糙度,可以增加背电极的附着力;第二沉积层较第一沉积层更为致密,体积密度大,表面光滑,粗糙度低,具有更好的导电性。结合本发明中第二层1022粗糙面层,使太阳能电池的转化效率明显提高。According to an embodiment of the present invention, the
背电极粗糙面层1022表面为光吸收层103。背电极具有光滑面层,则其上光吸收层也具有光滑表面;背电极具有粗糙面层,则其上光吸收层也具有粗糙面层。根据本发明的一个实施例,光吸收层可以为厚度均匀的CIGS薄膜。CIGS薄膜是由铜(Cu)、铟(In)、镓(Ga)、硒(Se)四种元素按比例构成的黄铜矿结晶,在太阳能电池中具有P型特性。根据其中镓取代铟比率的不同,其带隙宽度在1.02eV至1.65eV范围内连续可调,使其可以应用于不同光照条件下。如带隙增加,也可以使用硫代替硒,使价带下降。根据本发明的一个实施例,光吸收层镀在粗糙度小于30nm的背电极表面,相应也具有粗糙面层。将具有粗糙面层的光吸收层的太阳能电池置于阳光下,其粗糙表面对光能的反射降低,吸收率升高。The surface of the back electrode
光吸收层103上表面的缓冲层104位于光吸收层103和前电极层之间,可以降低两者带隙不连续性,解决其晶格不匹配问题,从而解决禁带宽度不匹配问题。根据本发明的一个实施例,使用硫化镉(CdS)作为缓冲层,其具有N型半导体材料特性。硫化镉,具有较高的光透过率可以减少薄膜太阳能电池的光损失,从而有效增加太阳能电池的光电转化效率,是一种理想的太阳能电池电池缓冲材料。The
前电极层包括高阻氧化锌和低阻氧化锌,分别构成高阻层105和透明电极层106。根据本发明的一个实施例,高阻层105为本征氧化锌层(i-ZnO)。透明电极层106可以做为太阳能电池的上电极。在实际的生产中,透明电极层106可以采用n掺杂透明导电物的组合材料(n-ZnO),如AZO、GZO、IZO、ITO等。根据本发明的一个实施例,透明电极层106使用的是铝掺杂氧化锌(AZO),其可见光透过率高,且表面电阻低,可以降低串联电阻损耗,提高太阳能电池的转化效率。前电极层最终与光吸收层103共同组成太阳能电池的PN结部分,实现太阳能发电功能。The front electrode layer includes high-resistance zinc oxide and low-resistance zinc oxide, which respectively constitute the high-
栅极107镀制在前电极层之上,用于收集电流。基于以上101-107,最终形成可实现光伏发电的太阳能电池。A
图2是根据本发明的一个实施例的薄膜太阳能电池的制备流程图。如图所示,制备太阳能电池的方法200包括以下步骤:首先获取基底201,选取合适的材料作为太阳能电池的基底。根据本发明的一个实施例,所选用的基底为钠钙玻璃。根据本发明可选的实施例,实际运用及生产中,基底的选取也可以为其他刚性材料如玻璃、陶瓷等,或者柔性材料如金属、塑料等。Fig. 2 is a flow chart of the preparation of a thin film solar cell according to an embodiment of the present invention. As shown in the figure, the
获取基底201后,在选取好的基底上镀制背电极202。根据本发明的一个实施例,选取金属钼作为背电极,通过磁控溅射的方法在基板上镀制一层约500nm的钼背电极层。根据本发明的一个实施例,先使用第一溅射气压,在基底上沉积10-100nm的第一沉积层,作为附着层;再使用第二溅射气压在其上继续沉积200-1000nm的第二沉积层,作为导电层,其中第一溅射气压高于第二溅射气压。此种通过改变溅射气压多次溅射,可以改进背电极的附着力和导电性。根据太阳能电池安装的环境及所需的输出电量,也可以仅使用其中一种溅射方式镀制背电极层。此处提及的第一溅射气压及第二溅射气压并不指代特定气压,只是相对概念。实际生产制造过程中,需根据实际使用情况调节溅射气压。After the
对背电极表面改性处理203。根据本发明的一个实施例,采用离子刻蚀方法实现对背电极的表面改性处理。即在镀制背电极202完成后,使其进入具有Ar+源的真空腔体,利用约1KV的电压加速Ar+,刻蚀背电极表面约2-10分钟,形成粗糙的膜表面。通过本发明相关实验得知,此条件下离子刻蚀2-10分钟所形成粗糙面层的粗糙度约为10-20nm。除离子刻蚀方法外,根据本发明的一个实施例,使用机械喷砂刻蚀的方式也可以使背电极表面形成同样粗糙程度的表面。
对背电极表面改性处理203不限于刻蚀的方式。根据本发明的一个实施例,还可以使用磁控溅射法,继续使用第三溅射气压在已镀制好的背电极表面继续镀制钼层。其中第三溅射气压高于第二溅射气压。本领域技术人员很容易理解,在高气压下磁控溅射法形成的膜疏松多孔、表面粗糙,若控制好气压及磁控溅射的时间,完全可以实现在背电极表面形成粗糙度小于30nm的粗糙面层。The method of modifying the surface of the
在改性的背电极表面镀制光吸收层204。根据本发明的一个实施例,采用共蒸发法镀制厚度约2000-3000nm的光吸收层,本发明中所述光吸收层均为CIGS层。根据本发明的另一个实施例,还可以使用溅射后硒化法镀制CIGS层。本领域技术人员应当理解,镀制CIGS层的方法有很多,除上述所列两种方法,还有三步共蒸法、电化学沉积法、喷涂热解法、丝网印刷法等。本发明中所用共蒸发法和溅射后硒化法是现研究最为广泛、技术较为成熟、制备出电池效率较高的方法。根据本发明的一个实施例,还可以将蒸发法与溅射后硒化法结合,镀制CIGC层。由于光吸收层以背电极为基础镀制,而背电极表面为粗糙面层,所以镀制后所得CIGS层也具有粗糙表面。A
镀制缓冲层205。根据本发明的一个实施例,缓冲层为硫化镉。根据本发明的一个实施例,采用化学水浴法在光吸收层表面镀制厚度约40nm的缓冲层。如本领域技术人员理解,缓冲层镀制也可以使用其他方法,如真空蒸发法、溅射原子层化学气相沉积法、电沉积法等。A
镀制前电极层-高阻层206。根据本发明的一个实施例,采用磁控溅射法在缓冲层上镀制厚度约50nm的本征氧化锌薄膜。根据本发明的一个实施例,还可以使用射频溅射法镀制高阻层。高阻层的镀制不限于此两种方法。The front electrode layer-
镀制前电极层-透明电极层207。根据本发明的一个实施例,透明电极层为铝掺杂氧化锌,采用磁控溅射法在高阻层上镀制厚度约300nm透明电极层。除此之外,镀制透明电极层还可以使用射频溅射法、反应溅射法等,如需大规模镀制,还可使用直流射频法。The front electrode layer-
最后镀制栅极208。在电池表面蒸镀栅极,使其最终与以上各层形成电池。Finally, the
使用如上方法制备的太阳能电池,电池性能如下表所示:Using the solar cell prepared by the above method, the cell performance is shown in the following table:
表1:Table 1:
如表1所示,表中表面粗糙度为背电极表面粗糙度,反映具有不同体积密度的背电极表面层。现有技术中,背电极体积密度约为10g/m3,粗糙度约为4nm。跟现有技术相比,当背电极表面粗糙度增加至15nm时,其开路电压VOC不变,短路电流密度JSC有明显升高,太阳能电池转化效率η明显升高;当背电极表面粗糙度增加至30nm时,短路电流密度JSC虽然有增加,但其开路电压VOC减小,填充因子FF减小,太阳能电池转化效率η反而下降。但是从表格中可以看出,当背电极表面粗糙度为15nm和30nm时,相比现有技术,其短路电流密度都增加,说明提高表面粗糙度有利于增大光吸收率。As shown in Table 1, the surface roughness in the table is the surface roughness of the back electrode, reflecting the surface layers of the back electrode with different volume densities. In the prior art, the volume density of the back electrode is about 10 g/m 3 , and the roughness is about 4 nm. Compared with the prior art, when the surface roughness of the back electrode increased to 15nm, its open circuit voltage V OC was constant, the short-circuit current density J SC was significantly increased, and the conversion efficiency η of the solar cell was significantly increased; when the surface of the back electrode was rough When the density increases to 30nm, although the short-circuit current density J SC increases, the open-circuit voltage V OC decreases, the fill factor FF decreases, and the conversion efficiency η of solar cells decreases instead. However, it can be seen from the table that when the surface roughness of the back electrode is 15nm and 30nm, compared with the prior art, the short-circuit current density increases, indicating that increasing the surface roughness is beneficial to increasing the light absorption rate.
通过多组实验得知,背电极表面改性处理后,其粗糙度在10-20nm范围内时,有利于提高太阳能电池转化效率。过于粗糙的背电极表面会影响CIGS的晶粒生长,继而影响太阳能电池的开路电压VOC,进而影响太阳能电池转化效率,使转化效率下降。It is known through multiple sets of experiments that after the surface modification treatment of the back electrode, when the roughness thereof is in the range of 10-20 nm, it is beneficial to improve the conversion efficiency of the solar cell. An overly rough surface of the back electrode will affect the grain growth of CIGS, and then affect the open-circuit voltage V OC of the solar cell, thereby affecting the conversion efficiency of the solar cell and reducing the conversion efficiency.
上述实施例仅供说明本发明之用,而并非是对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明范围的情况下,还可以做出各种变化和变型,因此,所有等同的技术方案也应属于本发明公开的范畴。The above-described embodiments are only for illustrating the present invention, rather than limiting the present invention. Those of ordinary skill in the relevant technical field can also make various changes and modifications without departing from the scope of the present invention. Therefore, all Equivalent technical solutions should also belong to the scope of the disclosure of the present invention.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810673308.0A CN108511537B (en) | 2018-06-26 | 2018-06-26 | Solar cell |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810673308.0A CN108511537B (en) | 2018-06-26 | 2018-06-26 | Solar cell |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108511537A CN108511537A (en) | 2018-09-07 |
| CN108511537B true CN108511537B (en) | 2022-11-29 |
Family
ID=63403810
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810673308.0A Active CN108511537B (en) | 2018-06-26 | 2018-06-26 | Solar cell |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108511537B (en) |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006165386A (en) * | 2004-12-09 | 2006-06-22 | Showa Shell Sekiyu Kk | CIS thin film solar cell and method for producing the same |
| KR101306529B1 (en) * | 2011-11-21 | 2013-09-09 | 엘지이노텍 주식회사 | Solar cell and method of fabricating the same |
| US20140283913A1 (en) * | 2012-11-09 | 2014-09-25 | Nanoco Technologies Ltd. | Molybdenum Substrates for CIGS Photovoltaic Devices |
| CN103354246A (en) * | 2013-07-10 | 2013-10-16 | 尚越光电科技有限公司 | CIGS (Copper Indium Gallium Selenium) solar cell back-electrode Mo film and preparation technology thereof |
| CN105355676B (en) * | 2015-11-18 | 2017-11-03 | 北京四方创能光电科技有限公司 | A kind of back electrode structure of flexible CIGS thin film solar cell |
| CN107887456A (en) * | 2017-10-30 | 2018-04-06 | 周燕红 | A kind of preparation method of back electrode molybdenum (Mo) film |
-
2018
- 2018-06-26 CN CN201810673308.0A patent/CN108511537B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN108511537A (en) | 2018-09-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN207320169U (en) | A kind of perovskite battery of graded bandgap | |
| US20100200059A1 (en) | Dual-side light-absorbing thin film solar cell | |
| KR102350885B1 (en) | Solar cell | |
| CN103560155A (en) | Compound semiconductor heterojunction solar cell based on crystalline silicon materials | |
| CN103474488A (en) | Thin-film solar cell and method for preparing same | |
| CN104272469A (en) | Solar cell device and manufacturing method thereof | |
| CN103222068B (en) | Solar cell and manufacturing method thereof | |
| CN102201480B (en) | Cadmium telluride semiconductor thin-film heterojunction solar cell based on N-shaped silicon slice | |
| EP2515342A2 (en) | Solar Cell | |
| CN104425642A (en) | Photovoltaic device with back reflector | |
| CN109004045B (en) | A kind of cadmium telluride solar cell and preparation method thereof | |
| CN208570618U (en) | a solar cell | |
| CN108511537B (en) | Solar cell | |
| CN103165695B (en) | A kind of CdTe thin film solar cell | |
| CN112786713B (en) | High-efficiency ultrathin copper indium gallium selenium thin-film solar cell and preparation method thereof | |
| Muhamad et al. | Strategic Review: The CZTS Thin-Film Using Tandem and Multi-Junction Solar Cell | |
| CN207925499U (en) | A kind of Cu2ZnSn(S,Se)4Thin-film solar cells | |
| KR20130068565A (en) | Method for enhancing conductivity of molybdenum layer | |
| CN105977320A (en) | Thin-film photovoltaic cell | |
| CN108538937B (en) | Solar cell and preparation method thereof | |
| KR101765924B1 (en) | Solar cell apparatus and method of fabricating the same | |
| CN105428439A (en) | Silicon-based SIS (Semiconductor-insulator-semiconductor) structure bypass diode and HIT (Hetero-junction Insulator thin film) solar cell device integration method | |
| CN203445135U (en) | Thin film solar cell | |
| US9349901B2 (en) | Solar cell apparatus and method of fabricating the same | |
| KR101305603B1 (en) | Solar cell apparatus and method of fabricating the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information |
Address after: 100076 6015, 6th floor, building 8, 9 Yingshun Road, Yinghai Town, Daxing District, Beijing Applicant after: Beijing Dingrong Photovoltaic Technology Co.,Ltd. Address before: 3001, room 6, building No. 7, Rongchang East Street, Beijing economic and Technological Development Zone, Beijing, Daxing District 100176, China Applicant before: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY Co.,Ltd. |
|
| CB02 | Change of applicant information | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20210420 Address after: No. 201, No. 1 A, No. 1 A (Shenzhen Qianhai business secretary Co., Ltd.), Qianhai Shenzhen Hong Kong cooperation zone, Qianhai Applicant after: Shenzhen Zhengyue development and Construction Co.,Ltd. Address before: 100076 6015, 6th floor, building 8, 9 Yingshun Road, Yinghai Town, Daxing District, Beijing Applicant before: Beijing Dingrong Photovoltaic Technology Co.,Ltd. |
|
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20210915 Address after: 201203 3rd floor, no.665 Zhangjiang Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai Applicant after: Shanghai zuqiang Energy Co.,Ltd. Address before: 518066 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.) Applicant before: Shenzhen Zhengyue development and Construction Co.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| PP01 | Preservation of patent right |
Effective date of registration: 20240930 Granted publication date: 20221129 |
|
| PP01 | Preservation of patent right |