CN108551622B - A kind of buffer circuits of low noise MEMS microphone - Google Patents
A kind of buffer circuits of low noise MEMS microphone Download PDFInfo
- Publication number
- CN108551622B CN108551622B CN201810385250.XA CN201810385250A CN108551622B CN 108551622 B CN108551622 B CN 108551622B CN 201810385250 A CN201810385250 A CN 201810385250A CN 108551622 B CN108551622 B CN 108551622B
- Authority
- CN
- China
- Prior art keywords
- module
- negative feedback
- feedback module
- pmos tube
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 14
- 230000005611 electricity Effects 0.000 claims 1
- 230000003068 static effect Effects 0.000 abstract 1
- 238000004088 simulation Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R19/00—Electrostatic transducers
- H04R19/04—Microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/003—Mems transducers or their use
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2430/00—Signal processing covered by H04R, not provided for in its groups
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
Abstract
本发明公开一种低噪声MEMS麦克风的缓冲器电路,包括偏置模块、负反馈模块、信号读取模块三部分。偏置模块的输出端与负反馈模块的输入端连接,负反馈模块的输出端与偏置模块的输入端连接,负反馈模块的输出端与信号读取模块的输入端连接,信号读取模块的输出端连接至负反馈模块的输入端。本发明能够简化电路结构,稳定读取信号模块的静态电流,降低电路噪声,使得MEMS麦克风的缓冲器电路在声音带宽频率内能够准确地读取出声压作用下的电压信号,适用于MEMS麦克风传感器读出接口电路的输入级。
The invention discloses a buffer circuit of a low-noise MEMS microphone, which comprises three parts: a bias module, a negative feedback module and a signal reading module. The output end of the bias module is connected with the input end of the negative feedback module, the output end of the negative feedback module is connected with the input end of the bias module, the output end of the negative feedback module is connected with the input end of the signal reading module, and the signal reading module The output is connected to the input of the negative feedback module. The invention can simplify the circuit structure, stably read the static current of the signal module, and reduce circuit noise, so that the buffer circuit of the MEMS microphone can accurately read the voltage signal under the action of sound pressure within the sound bandwidth frequency, and is suitable for the MEMS microphone. The input stage of the sensor readout interface circuit.
Description
技术领域technical field
本发明属于电子技术领域,更进一步涉及模拟集成电路技术领域中的一种低噪声MEMS(Micro-Electro-Mechanical System)麦克风的缓冲器电路。本发明可以作为MEMS麦克风传感器读出接口电路的输入级,能够准确读取出声压作用下的电压信号。The invention belongs to the technical field of electronics, and further relates to a buffer circuit of a low-noise MEMS (Micro-Electro-Mechanical System) microphone in the technical field of analog integrated circuits. The invention can be used as the input stage of the readout interface circuit of the MEMS microphone sensor, and can accurately read the voltage signal under the action of sound pressure.
背景技术Background technique
MEMS麦克风应用广泛,在MEMS麦克风读出接口电路设计中,缓冲器电路是一个关键模块,这个模块需要准确读取出声压作用下的电压信号。传统的缓冲器电路通常采用运放实现,但是运放结构复杂,功耗和噪声较大,处理噪声所需的成本较高,占用芯片面积较大。为了满足缓冲器电路能够准确读取出信号,缓冲器电路必须具有低噪声的性能。MEMS microphones are widely used. In the design of the MEMS microphone readout interface circuit, the buffer circuit is a key module. This module needs to accurately read the voltage signal under the action of sound pressure. The traditional buffer circuit is usually implemented with an operational amplifier, but the operational amplifier has a complex structure, high power consumption and noise, high cost to deal with the noise, and a large chip area. In order to meet the requirement that the buffer circuit can accurately read the signal, the buffer circuit must have low noise performance.
周锋在其发表的论文“电容式MEMS麦克风调理电路研究与设计”(益州大学,微电子学与固体电子学专业的硕士论文,2012年,5月)中公开了一种MEMS麦克风的单位增益缓冲器电路。该单位增益缓冲器电路结构为运放的输出与一端输入相连,其增益为单位增益,运放内部采用两级运算放大器实现,第一级为折叠共源共栅结构,第二级为共源结构。该电路虽然容易实现,但是,该电路仍然存在的不足之处是,功耗大,噪声较高,处理噪声所需的成本较高,占用芯片面积较大。Zhou Feng disclosed a unit of MEMS microphone in his paper "Research and Design of Conditioning Circuit of Condenser MEMS Microphone" (Master's thesis of Microelectronics and Solid State Electronics, Yizhou University, May 2012) gain buffer circuit. The circuit structure of the unity gain buffer is that the output of the op amp is connected to the input of one end, and its gain is unity. structure. Although the circuit is easy to implement, the disadvantages of the circuit are that the power consumption is large, the noise is high, the noise processing cost is high, and the chip area is large.
Electronics and Telecommunications Research Institute,Daejeon(KR)在其申请的专利文献“READ-OUT CIRCUIT WITH HIGH INPUT IMPEDANCE”(申请号15/511,361公开号US8,300,850B2)中公开了一种应用于麦克风的高输入阻抗的读出电路。该电路主要包括:一个反馈电阻和一个接成缓冲器结构的运放,反馈电阻的一端与运放的输入相连,另一端接运放的输出。该电路结构具有输入阻抗高,能够很好的读取信号的优点,但是,该读出电路仍然存在的不足之处是,由于该电路使用电阻和运放来实现高输入阻抗,这种方式比较复杂,并且电阻占用芯片面积较大。Electronics and Telecommunications Research Institute, Daejeon (KR), in its patent document "READ-OUT CIRCUIT WITH HIGH INPUT IMPEDANCE" (Application No. 15/511, 361 Publication No. US8,300,850B2), discloses an application to a microphone the high input impedance of the readout circuit. The circuit mainly includes: a feedback resistor and an operational amplifier connected into a buffer structure, one end of the feedback resistor is connected to the input of the operational amplifier, and the other end is connected to the output of the operational amplifier. The circuit structure has the advantages of high input impedance and can read signals well. However, the readout circuit still has the disadvantage that since the circuit uses resistors and op amps to achieve high input impedance, this method is more It is complex, and the resistance occupies a large area of the chip.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术存在的不足,提供一种低噪声MEMS麦克风的缓冲器电路。The purpose of the present invention is to provide a buffer circuit for a low-noise MEMS microphone in view of the above-mentioned deficiencies in the prior art.
为实现上述目的,本发明的缓冲器电路包括偏置模块、负反馈模块、信号读取模块,所述的偏置模块包括一个PMOS管3、两个NMOS管4和5;所述负反馈模块包括两个PMOS管6和7、三个NMOS管8、9、10、两个NPN双极型晶体管Q1和Q2、一个电阻R、一个电容C;所述信号读取模块包括三个PMOS管2、1、11;所述偏置模块的输出端与负反馈模块的输入端连接,负反馈模块的输出端与偏置模块的输入端连接,负反馈模块的输出端与信号读取模块的输入端连接,信号读取模块的输出端连接至负反馈模块的输入端。In order to achieve the above purpose, the buffer circuit of the present invention includes a bias module, a negative feedback module, and a signal reading module. The bias module includes a PMOS tube 3 and two NMOS tubes 4 and 5; the negative feedback module It includes two PMOS transistors 6 and 7, three NMOS transistors 8, 9, and 10, two NPN bipolar transistors Q1 and Q2, a resistor R, and a capacitor C; the signal reading module includes three PMOS transistors 2 , 1, 11; the output end of the bias module is connected with the input end of the negative feedback module, the output end of the negative feedback module is connected with the input end of the bias module, and the output end of the negative feedback module is connected with the input end of the signal reading module The output terminal of the signal reading module is connected to the input terminal of the negative feedback module.
与现有技术相比本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
第1,本发明利用负反馈模块中的两个NPN双极型晶体管Q1和Q2和电阻,为信号读取模块提供静态电流,使用NPN双极型晶体管克服了现有技术中噪声较高的问题,使得本发明具有降低了噪声的优点。First, the present invention utilizes two NPN bipolar transistors Q1 and Q2 and resistors in the negative feedback module to provide quiescent current for the signal reading module, and uses NPN bipolar transistors to overcome the problem of high noise in the prior art , so that the present invention has the advantage of reducing noise.
第2,本发明由于两个NPN双极型晶体管的集电极和发射极两端电压不同,导致流过两个NPN双极型晶体管的电流不同,利用NMOS管抵消了这种电流不同所引起的系统失调,使得本发明具有减少系统失调的优点。Second, in the present invention, the currents flowing through the two NPN bipolar transistors are different due to the different voltages between the collectors and the emitters of the two NPN bipolar transistors. system imbalance, so that the present invention has the advantage of reducing system imbalance.
第3,本发明利用负反馈模块中的负反馈环路对静态电流进行反馈,克服了现有技术中电路的功耗较大、噪声较高的缺点,使得本发明不仅稳定了信号读取模块中的静态电流,而且抑制了除NPN双极型晶体管和信号读取模块中的第二PMOS管1外的所有其他管子的1/f噪声。Third, the present invention utilizes the negative feedback loop in the negative feedback module to feedback the quiescent current, which overcomes the disadvantages of high power consumption and high noise of the circuit in the prior art, so that the present invention not only stabilizes the signal reading module In addition, the quiescent current in the NPN bipolar transistor and the second PMOS transistor 1 in the signal reading module are suppressed, and the 1/f noise of all other tubes is suppressed.
第4,本发明利用信号读取模块中的PMOS管11为信号输入端提供直流偏置,同时PMOS管11保证了高的输入阻抗,PMOS管11是栅极和漏极连接在一起的二极管连接方式,工作在深亚阈值区,克服了现有技术中实现高输入阻抗的方式比较复杂的缺点,使得本发明所流的芯片占有面积减少。Fourth, the present invention uses the PMOS transistor 11 in the signal reading module to provide a DC bias for the signal input terminal, and at the same time, the PMOS transistor 11 ensures high input impedance, and the PMOS transistor 11 is a diode connection with a gate and a drain connected together. The method works in the deep sub-threshold region, which overcomes the disadvantage that the method of realizing high input impedance in the prior art is relatively complicated, so that the occupied area of the chip in the present invention is reduced.
附图说明Description of drawings
图1为本发明的电原理图;1 is an electrical schematic diagram of the present invention;
图2为本发明等效输入噪声的仿真结果图。FIG. 2 is a simulation result diagram of equivalent input noise of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的描述。The present invention will be further described below with reference to the accompanying drawings.
参照图1,对本发明的具体电路作进一步的描述。Referring to FIG. 1 , the specific circuit of the present invention will be further described.
由本发明的电原理图图1中的虚线将本发明的电原理图分为偏置模块、负反馈模块、信号读取模块三部分。The electrical schematic diagram of the present invention is divided into three parts: a bias module, a negative feedback module, and a signal reading module by the dotted line in FIG. 1 .
本发明的电原理图图1中的虚线部分所描述的偏置模块包括一个PMOS管3、两个NMOS管4和5,偏置模块的输出端与负反馈模块的输入端连接,偏置模块的输入端与负反馈模块的输出端连接。The electrical schematic diagram of the present invention The bias module described by the dotted line in FIG. 1 includes a PMOS transistor 3 and two NMOS transistors 4 and 5. The output end of the bias module is connected to the input end of the negative feedback module. The bias module The input end is connected with the output end of the negative feedback module.
偏置模块中PMOS管3的栅极分别与负反馈模块中的第二个PMOS管7的漏极、负反馈模块中的第三个NMOS管10的漏极、负反馈模块中的电容C、信号读取模块中的第一个PMOS管2的栅极连接,PMOS管3的源极与电源电压VCC连接,所述PMOS管3的漏极分别与偏置模块中的第一个NMOS管4的漏极、偏置模块中的第一个NMOS管4的栅极、负反馈模块中的第一个NMOS管8的栅极连接。偏置模块中的第一个NMOS管4的源极分别与偏置模块中的第二个NMOS管5的漏极、偏置模块中的第二个NMOS管5的栅极连接。偏置模块中的第二个NMOS管5的源极与公共地端GND连接。The gate of the PMOS tube 3 in the bias module is respectively connected with the drain of the second PMOS tube 7 in the negative feedback module, the drain of the third NMOS tube 10 in the negative feedback module, and the capacitor C in the negative feedback module. The gate of the first PMOS tube 2 in the signal reading module is connected, the source of the PMOS tube 3 is connected to the power supply voltage VCC, and the drain of the PMOS tube 3 is respectively connected to the first NMOS tube 4 in the bias module. The drain of , the gate of the first NMOS transistor 4 in the bias module, and the gate of the first NMOS transistor 8 in the negative feedback module are connected. The source of the first NMOS transistor 4 in the bias module is respectively connected to the drain of the second NMOS transistor 5 in the bias module and the gate of the second NMOS transistor 5 in the bias module. The source of the second NMOS transistor 5 in the bias module is connected to the common ground terminal GND.
本发明的电原理图图1中的虚线部分所描述的负反馈模块包括两个PMOS管6和7、三个NMOS管8、9、10、两个NPN双极型晶体管Q1和Q2、一个电阻R、一个电容C,负反馈模块的输出端与偏置模块的输入端连接,负反馈模块的输出端与信号读取模块的输入端连接,负反馈模块的输入端与偏置模块的输出端连接。The negative feedback module described by the dotted line in the electrical schematic diagram of the present invention includes two PMOS transistors 6 and 7, three NMOS transistors 8, 9, 10, two NPN bipolar transistors Q 1 and Q 2 , A resistor R, a capacitor C, the output terminal of the negative feedback module is connected to the input terminal of the bias module, the output terminal of the negative feedback module is connected to the input terminal of the signal reading module, and the input terminal of the negative feedback module is connected to the input terminal of the bias module. output connection.
负反馈模块中第一个PMOS管6的栅极分别与其漏极、负反馈模块中的第一个NMOS管8的漏极、负反馈模块中的第二个PMOS管7的栅极连接,负反馈模块中的第一个PMOS管6的源极与电源电压VCC连接。负反馈模块中的第二个PMOS管7的源极与电源电压VCC连接,负反馈模块中的第二个PMOS管7的漏极分别与负反馈模块中的第三个NMOS管10的漏极、负反馈模块中的电容C、偏置模块中的PMOS管3的栅极、信号读取模块中的第一个PMOS管2的栅极连接。负反馈模块中的第一个NMOS管8的栅极分别与偏置模块中的PMOS管3的漏极、偏置模块中的第一个NMOS管4的漏极、偏置模块中的第一个NMOS管4的栅极连接,第一个NMOS管8的源极与负反馈模块中的第一个NPN双极型晶体管Q1的集电极连接。负反馈模块中的第一个NPN双极型晶体管Q1的基极分别与负反馈模块中的第二个NPN双极型晶体管Q2的基极、负反馈模块中的电阻R、负反馈模块中的电容C、信号读取模块中的第二个PMOS管1的漏极连接,第一个NPN双极型晶体管Q1的发射极与公共地端GND连接。负反馈模块中的第二个NPN双极型晶体管Q2的集电极分别与负反馈模块中的第二个NMOS管9的漏极、负反馈模块中的第二个NMOS管9的栅极、负反馈模块中的第三个NMOS管10的栅极、电流源IREF连接,第二个NPN双极型晶体管Q2的发射极与公共地端GND连接;负反馈模块中的第二个NMOS管9的源极与公共地端GND连接。负反馈模块中的第三个NMOS管10的源极与公共地端GND连接。负反馈模块中的电容C与负反馈模块中的电阻R串联,分别与负反馈模块中的第二PMOS管7的漏极,公共地端GND连接。The gate of the first PMOS tube 6 in the negative feedback module is connected to its drain, the drain of the first NMOS tube 8 in the negative feedback module, and the gate of the second PMOS tube 7 in the negative feedback module, respectively. The source of the first PMOS transistor 6 in the feedback module is connected to the power supply voltage VCC. The source of the second PMOS tube 7 in the negative feedback module is connected to the power supply voltage VCC, and the drain of the second PMOS tube 7 in the negative feedback module is respectively connected to the drain of the third NMOS tube 10 in the negative feedback module. , The capacitor C in the negative feedback module, the gate of the PMOS tube 3 in the bias module, and the gate of the first PMOS tube 2 in the signal reading module are connected. The gate of the first NMOS tube 8 in the negative feedback module is respectively connected with the drain of the PMOS tube 3 in the bias module, the drain of the first NMOS tube 4 in the bias module, and the first NMOS tube 4 in the bias module. The gates of the first NMOS transistors 4 are connected, and the source of the first NMOS transistor 8 is connected to the collector of the first NPN bipolar transistor Q1 in the negative feedback module. The base of the first NPN bipolar transistor Q1 in the negative feedback module is respectively connected with the base of the second NPN bipolar transistor Q2 in the negative feedback module, the resistor R in the negative feedback module, the negative feedback module The capacitor C in the signal reading module is connected to the drain of the second PMOS transistor 1 , and the emitter of the first NPN bipolar transistor Q1 is connected to the common ground terminal GND. The collector of the second NPN bipolar transistor Q2 in the negative feedback module is respectively connected with the drain of the second NMOS transistor 9 in the negative feedback module, the gate of the second NMOS transistor 9 in the negative feedback module, The gate of the third NMOS tube 10 in the negative feedback module is connected to the current source I REF , and the emitter of the second NPN bipolar transistor Q2 is connected to the common ground terminal GND; the second NMOS in the negative feedback module The source of the tube 9 is connected to the common ground terminal GND. The source of the third NMOS transistor 10 in the negative feedback module is connected to the common ground terminal GND. The capacitor C in the negative feedback module is connected in series with the resistor R in the negative feedback module, and is respectively connected to the drain of the second PMOS transistor 7 in the negative feedback module and the common ground terminal GND.
本发明的电原理图图1中的虚线部分所描述的信号读取模块包括三个PMOS管2、1、11,信号读取模块的输出端连接至负反馈模块的输入端,信号读取模块的输入端与负反馈模块的输出端连接。The electrical schematic diagram of the present invention The signal reading module described by the dotted line in FIG. 1 includes three PMOS transistors 2, 1 and 11. The output end of the signal reading module is connected to the input end of the negative feedback module. The signal reading module The input end is connected with the output end of the negative feedback module.
信号读取模块中第一个PMOS管2的栅极分别与偏置模块中的PMOS管3的栅极、负反馈模块中的第二个PMOS管7的漏极、负反馈模块中的第三个NMOS管10的漏极、负反馈模块中的电容C连接,第一个PMOS管2的源极与电源电压VCC连接,第一个PMOS管2的漏极与信号读取模块中的第二个PMOS管1的源极连接。信号读取模块中的第二个PMOS管1的栅极与信号读取模块中的第三个PMOS管11的源极连接,第二个PMOS管1的漏极分别与负反馈模块中的第一个NPN双极型晶体管Q1的基极、负反馈模块中的第二个NPN双极型晶体管Q2的基极、负反馈模块中的电阻R、负反馈模块中的电容C连接。信号读取模块中的第三个PMOS管11的栅极分别与其漏极、公共地端GND连接。The gate of the first PMOS tube 2 in the signal reading module is respectively connected with the gate of the PMOS tube 3 in the bias module, the drain of the second PMOS tube 7 in the negative feedback module, and the third in the negative feedback module. The drain of each NMOS transistor 10 is connected to the capacitor C in the negative feedback module, the source of the first PMOS transistor 2 is connected to the power supply voltage VCC, and the drain of the first PMOS transistor 2 is connected to the second in the signal reading module. The source of each PMOS transistor 1 is connected. The gate of the second PMOS tube 1 in the signal reading module is connected to the source of the third PMOS tube 11 in the signal reading module, and the drain of the second PMOS tube 1 is respectively connected with the third PMOS tube 1 in the negative feedback module. The base of one NPN bipolar transistor Q1, the base of the second NPN bipolar transistor Q2 in the negative feedback module, the resistor R in the negative feedback module, and the capacitor C in the negative feedback module are connected. The gate of the third PMOS transistor 11 in the signal reading module is connected to its drain and the common ground terminal GND respectively.
下面结合仿真实验对本发明的效果作进一步的描述。The effects of the present invention will be further described below in conjunction with simulation experiments.
1.仿真条件:1. Simulation conditions:
本发明的仿真实验是基于0.18μm BCD工艺,应用Cadence软件的Spectre仿真工具实现的。电源电压设定为3V,仿真温度设置为常温(25℃),扫描频率范围为1Hz~10MHz。The simulation experiment of the present invention is realized based on the 0.18 μm BCD process and using the Spectre simulation tool of the Cadence software. The power supply voltage is set to 3V, the simulation temperature is set to normal temperature (25°C), and the scanning frequency range is 1Hz to 10MHz.
2.仿真内容:2. Simulation content:
在软件LINUX操作系统下,基于0.18μm BCD工艺,应用Cadence软件的Spectre仿真工具对本发明的缓冲器电路进行等效输入噪声仿真。电源电压设定为3V,仿真温度设置为常温(25℃),扫描频率范围为1Hz~10MHz,合理设置器件参数,使该缓冲器电路在音频带宽范围内满足低噪声的要求。Under the software LINUX operating system, based on the 0.18 μm BCD process, the equivalent input noise simulation of the buffer circuit of the present invention is performed by using the Spectre simulation tool of the Cadence software. The power supply voltage is set to 3V, the simulation temperature is set to normal temperature (25°C), and the scanning frequency range is 1Hz to 10MHz. The device parameters are set reasonably so that the buffer circuit can meet the requirements of low noise within the audio bandwidth range.
3.仿真结果分析:3. Analysis of simulation results:
本发明的图2为本发明等效输入噪声的仿真结果图。图2中的横坐标轴代表频率,纵坐标轴代表等效输入噪声。以三角形标示的点M0代表频率20.0Hz时的等效输入噪声值,以圆圈标示的点M1代表频率20KHz时的等效输入噪声值,以正方形标示的点M2代表频率1KHz时的等效输入噪声值。由本发明的仿真图2可见,点M0的横坐标为20.0Hz,纵坐标为119.6nV/sqrt(Hz),点M1的横坐标为20KHz,纵坐标为8.433nV/sqrt(Hz),表示在音频带宽范围内的等效输入噪声的均方根值都为nV级别。点M2的纵坐标为18.66nV/sqrt(Hz),其标线是在横坐标为1KHz的位置,表示频率为1KHz时的等效输入噪声只有18.66nV/sqrt(Hz)。综上所述,本发明的缓冲器电路满足低噪声的要求。FIG. 2 of the present invention is a simulation result diagram of the equivalent input noise of the present invention. The abscissa axis in Fig. 2 represents the frequency, and the ordinate axis represents the equivalent input noise. The point M0 marked with a triangle represents the equivalent input noise value at a frequency of 20.0Hz, the point M1 marked with a circle represents the equivalent input noise value at a frequency of 20KHz, and the point M2 marked with a square represents the equivalent input noise at a frequency of 1KHz value. It can be seen from the simulation Fig. 2 of the present invention that the abscissa of point M0 is 20.0Hz, the ordinate of point M0 is 119.6nV/sqrt(Hz), the abscissa of point M1 is 20KHz, and the ordinate of point M1 is 8.433nV/sqrt(Hz). The rms value of the equivalent input noise over the bandwidth is in the nV level. The ordinate of point M2 is 18.66nV/sqrt(Hz), and the marking line is at the position of 1KHz on the abscissa, indicating that the equivalent input noise when the frequency is 1KHz is only 18.66nV/sqrt(Hz). To sum up, the buffer circuit of the present invention meets the requirement of low noise.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810385250.XA CN108551622B (en) | 2018-04-26 | 2018-04-26 | A kind of buffer circuits of low noise MEMS microphone |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810385250.XA CN108551622B (en) | 2018-04-26 | 2018-04-26 | A kind of buffer circuits of low noise MEMS microphone |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108551622A CN108551622A (en) | 2018-09-18 |
| CN108551622B true CN108551622B (en) | 2019-07-23 |
Family
ID=63512473
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810385250.XA Active CN108551622B (en) | 2018-04-26 | 2018-04-26 | A kind of buffer circuits of low noise MEMS microphone |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108551622B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101711446A (en) * | 2007-06-15 | 2010-05-19 | 通用电气公司 | Mems based motor starter with motor failure detection |
| CN103686578A (en) * | 2012-09-25 | 2014-03-26 | 应美盛股份有限公司 | Microphone with programmable frequency response |
| CN103888077A (en) * | 2012-12-20 | 2014-06-25 | 硅谷实验室公司 | Use of electronic attenuator for mems oscillator overdrive protection |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA1208314A (en) * | 1984-10-09 | 1986-07-22 | William A. Cole | Buffer circuit suitable for low voltage operation |
| TWI339007B (en) * | 2006-11-21 | 2011-03-11 | Ind Tech Res Inst | Design method of low frequency analog circuit and low frequency analog circuit using the same |
| KR101183986B1 (en) * | 2008-12-19 | 2012-09-19 | 한국전자통신연구원 | A read-out circuit with high impedance |
| US9590571B2 (en) * | 2012-10-02 | 2017-03-07 | Knowles Electronics, Llc | Single stage buffer with filter |
| CN103455075B (en) * | 2013-08-30 | 2015-02-11 | 江苏物联网研究发展中心 | MEMS (Micro Electro Mechanical Systems) sensor-based voltage reference general start-up circuit |
| GB2525674B (en) * | 2014-05-02 | 2017-11-29 | Cirrus Logic Int Semiconductor Ltd | Low noise amplifier for MEMS capacitive transducers |
-
2018
- 2018-04-26 CN CN201810385250.XA patent/CN108551622B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101711446A (en) * | 2007-06-15 | 2010-05-19 | 通用电气公司 | Mems based motor starter with motor failure detection |
| CN103686578A (en) * | 2012-09-25 | 2014-03-26 | 应美盛股份有限公司 | Microphone with programmable frequency response |
| CN103888077A (en) * | 2012-12-20 | 2014-06-25 | 硅谷实验室公司 | Use of electronic attenuator for mems oscillator overdrive protection |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108551622A (en) | 2018-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6160450A (en) | Self-biased, phantom-powered and feedback-stabilized amplifier for electret microphone | |
| JP5522818B2 (en) | Amplifier circuit | |
| CN103066934B (en) | For the variable gain operational amplifier in infrared remote receiver | |
| CN104167999B (en) | Error amplifier used for switching power supply | |
| CN101115328A (en) | microphone amplifier | |
| KR100733288B1 (en) | Microphone amplifier | |
| WO2011132240A1 (en) | Amplification device for capacitor microphone | |
| US6359512B1 (en) | Slew rate boost circuitry and method | |
| CN104284289B (en) | A kind of double lead microphone circuit and the method for operating double lead microphone | |
| CN106953605B (en) | High Performance Operational Amplifier with JFET Input | |
| JPS5913409A (en) | Power amplifying circuit | |
| CN114157252B (en) | A power amplifier circuit and a radio frequency signal processing method | |
| CN108551622B (en) | A kind of buffer circuits of low noise MEMS microphone | |
| CN106254999B (en) | Microphone amplifier circuit | |
| CN103997303A (en) | High-gain pre-amplifier for electret microphone and electret microphone | |
| JP2005109842A (en) | Amplifier circuit for condenser microphone | |
| CN114840046A (en) | A Linear Regulator Based on Current Miller Compensation | |
| CN102841626A (en) | Voltage control circuit | |
| CN109428555B (en) | Bootstrap Application Arrangement and Application in Unity Gain Follower | |
| CN201039088Y (en) | Amplifier structure and amplifier system thereof | |
| CN106207966B (en) | A kind of thermal-shutdown circuit | |
| CN219247808U (en) | Circuit with bandwidth frequency expansion function of operational amplifier | |
| CN210247030U (en) | MIC amplifying circuit | |
| CN118646372B (en) | Operational amplifier circuit, chip and electronic device | |
| CN221531630U (en) | Interchangeable formula electret formula conference microphone |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |