[go: up one dir, main page]

CN108563144A - A kind of missile-borne radar signal processing semi-hardware type simulation test system - Google Patents

A kind of missile-borne radar signal processing semi-hardware type simulation test system Download PDF

Info

Publication number
CN108563144A
CN108563144A CN201810295010.0A CN201810295010A CN108563144A CN 108563144 A CN108563144 A CN 108563144A CN 201810295010 A CN201810295010 A CN 201810295010A CN 108563144 A CN108563144 A CN 108563144A
Authority
CN
China
Prior art keywords
signal
radar
data
digital
fpga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810295010.0A
Other languages
Chinese (zh)
Other versions
CN108563144B (en
Inventor
刘峥
韩斐
宋凤博
宋超
张元超
张政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810295010.0A priority Critical patent/CN108563144B/en
Publication of CN108563144A publication Critical patent/CN108563144A/en
Application granted granted Critical
Publication of CN108563144B publication Critical patent/CN108563144B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于雷达信号仿真处理领域,公开了一种弹载雷达信号处理半实物仿真测试系统,包括雷达导引头综合测试装置、模数转换模块、FPGA预处理模块、DSP成像处理模块、上位机显示终端;由信号源输出两路参考时钟,一路给雷达导引头综合测试装置作为参考时钟,一路给信号处理器作为采样时钟,由雷达导引头综合测试装置输出模拟雷达回波信号以及帧同步和脉冲同步信号,模数转换模块完成对模拟雷达回波的A/D采样,FPGA作为预处理模块,完成数据预处理和数据的乒乓传输,DSP成像处理模块中两片DSP芯片完成成像处理,另一片DSP芯片完成成像结果到上位机的传输,在上位机显示终端上实时显示成像处理结果。

The invention belongs to the field of radar signal simulation processing, and discloses a semi-physical simulation test system for missile-borne radar signal processing, including a radar seeker comprehensive test device, an analog-to-digital conversion module, an FPGA preprocessing module, a DSP imaging processing module, and a host computer Display terminal; the signal source outputs two reference clocks, one for the radar seeker comprehensive test device as a reference clock, one for the signal processor as a sampling clock, and the radar seeker comprehensive test device outputs simulated radar echo signals and frames Synchronization and pulse synchronization signal, the analog-to-digital conversion module completes the A/D sampling of the simulated radar echo, FPGA is used as the preprocessing module to complete the data preprocessing and data ping-pong transmission, and the two DSP chips in the DSP imaging processing module complete the imaging processing , another DSP chip completes the transmission of the imaging results to the host computer, and displays the imaging processing results in real time on the display terminal of the host computer.

Description

一种弹载雷达信号处理半实物仿真测试系统A hardware-in-the-loop simulation test system for missile-borne radar signal processing

技术领域technical field

本发明属于雷达信号仿真处理技术领域,尤其涉及一种弹载雷达信号处理半实物仿真测试系统,用于高速飞行器成像跟踪制导等领域。The invention belongs to the technical field of radar signal simulation processing, and in particular relates to a hardware-in-the-loop simulation test system for missile-borne radar signal processing, which is used in the fields of high-speed aircraft imaging tracking guidance and the like.

背景技术Background technique

为了适应日益复杂的战场环境,雷达科学技术飞速发展,对现代实时信号处理算法也提出了更高的要求。合成孔径雷达信号处理技术也成为各国探索和发展的热点,然而对于信号处理算法的性能并不能限于理论仿真,需要在实际应用中进一步验证。In order to adapt to the increasingly complex battlefield environment, the rapid development of radar technology also puts forward higher requirements for modern real-time signal processing algorithms. Synthetic aperture radar signal processing technology has also become a hot spot for exploration and development in various countries. However, the performance of signal processing algorithms cannot be limited to theoretical simulation, and needs to be further verified in practical applications.

在以往合成孔径雷达信号处理机的测试验证过程中,有以下几个缺陷:一是信号处理机的实际性能往往需要外场实验验证,这种方法费时费力,无疑使研发周期增长,而且容易受到天气等外在条件的影响;二是,实际的弹载信号处理板又是一弹一板,没有统一的硬件平台,这对于新算法的验证带来很大困难;三是全实物的导引头系统外设较多,造价较高,用于信号处理算法的测试验证会带来额外的开销。因此对于雷达信号处理半实物仿真测试系统的构建对于实验室阶段信号处理机的仿真测试是十分必要的。In the previous test and verification process of synthetic aperture radar signal processors, there are the following defects: First, the actual performance of signal processors often needs to be verified by field experiments. and other external conditions; second, the actual missile-borne signal processing board is one bomb and one board, and there is no unified hardware platform, which brings great difficulties to the verification of the new algorithm; the third is the full physical seeker There are many peripherals in the system and the cost is high, and the test and verification of the signal processing algorithm will bring additional overhead. Therefore, the construction of hardware-in-the-loop simulation test system for radar signal processing is very necessary for the simulation test of signal processor in the laboratory stage.

发明内容Contents of the invention

针对上述问题,本发明的目的在于提供一种弹载雷达信号处理半实物仿真测试系统,使实验室阶段测试验证更加接近外场实验,用于解决外场实验易受环境影响、开发周期长、成本高等一系列问题。In view of the above problems, the object of the present invention is to provide a hardware-in-the-loop simulation test system for missile-borne radar signal processing, which makes the laboratory stage test verification closer to the field experiment, and is used to solve the problem that the field experiment is easily affected by the environment, the development cycle is long, and the cost is high. series of questions.

雷达信号处理半实物仿真测试系统由雷达导引头综合测试装置模拟实际雷达前端输出模拟雷达回波,在信号处理器中完成一系列的信号处理算法,从而验证信号处理算法性能以及信号处理系统工作是否正常。The radar signal processing hardware-in-the-loop simulation test system uses the radar seeker comprehensive test device to simulate the actual radar front-end output simulated radar echo, and completes a series of signal processing algorithms in the signal processor, thereby verifying the performance of the signal processing algorithm and the work of the signal processing system Is it normal.

为达到上述目的,本发明采用如下技术方案予以实现。In order to achieve the above object, the present invention adopts the following technical solutions to achieve.

一种弹载雷达信号处理半实物仿真测试系统,所述系统包括:时钟信号源、雷达导引头综合测试装置、信号处理器以及上位机显示终端;所述信号处理器包含:模数转换模块、FPGA信号预处理模块、DSP成像处理模块;A hardware-in-the-loop simulation test system for missile-borne radar signal processing, the system includes: a clock signal source, a radar seeker comprehensive test device, a signal processor, and an upper computer display terminal; the signal processor includes: an analog-to-digital conversion module , FPGA signal preprocessing module, DSP imaging processing module;

所述时钟信号源上设置的参考时钟输出端与所述雷达导引头综合测试装置上设置的参考时钟输入端连接;The reference clock output terminal provided on the clock signal source is connected with the reference clock input terminal provided on the radar seeker comprehensive testing device;

所述时钟信号源上设置的采样时钟输出端与所述模数转换模块上设置的采样时钟输入端连接;The sampling clock output terminal set on the clock signal source is connected to the sampling clock input terminal set on the analog-to-digital conversion module;

所述雷达导引头综合测试装置上设置的模拟信号输出端与所述模数转换模块上设置的模拟信号输入端连接;The analog signal output terminal provided on the radar seeker comprehensive test device is connected with the analog signal input terminal provided on the analog-to-digital conversion module;

所述雷达导引头综合测试装置上设置的同步信号输出端与所述FPGA信号预处理模块的同步信号输入端连接;The synchronous signal output terminal that is provided with on the radar seeker comprehensive testing device is connected with the synchronous signal input terminal of the FPGA signal preprocessing module;

所述模数转换模块的数字信号输出端与所述FPGA信号预处理模块的数字信号输入端连接;The digital signal output end of described analog-to-digital conversion module is connected with the digital signal input end of described FPGA signal preprocessing module;

所述FPGA信号预处理模块的数字信号输出端与所述DSP成像处理模块的数字信号输入端连接;The digital signal output end of described FPGA signal preprocessing module is connected with the digital signal input end of described DSP imaging processing module;

所述DSP成像处理模块的数字信号输出端通过以太网与所述上位机显示终端的数字信号输入端连接。The digital signal output end of the DSP imaging processing module is connected with the digital signal input end of the host computer display terminal through Ethernet.

本发明技术方案的特点和进一步的改进为:Features and further improvements of the technical solution of the present invention are:

(1)所述雷达导引头综合测试装置,用于从仿真软件获取仿真雷达回波信号,完成所述仿真雷达回波信号到模拟雷达回波信号的转换,并将所述模拟雷达回波信号通过四路SMA接口发送给模数转换模块的四路模拟信号输入端;(1) The radar seeker comprehensive test device is used to obtain the simulated radar echo signal from the simulation software, complete the conversion of the simulated radar echo signal to the simulated radar echo signal, and convert the simulated radar echo signal The signal is sent to the four-way analog signal input terminal of the analog-to-digital conversion module through the four-way SMA interface;

所述雷达导引头综合测试装置,还用于设置雷达回波帧同步信号和脉冲同步信号,并将所述雷达回波帧同步信号和所述脉冲同步信号通过BNC接口发送给FPGA信号预处理模块;The radar seeker comprehensive test device is also used to set the radar echo frame synchronization signal and the pulse synchronization signal, and send the radar echo frame synchronization signal and the pulse synchronization signal to the FPGA signal preprocessing through the BNC interface module;

所述模数转换模块,用于对所述模拟雷达回波信号依次进行放大、单端转差分操作以及A/D采样,并将采样后得到的数字雷达信号通过12位LVDS接口发送给FPGA信号预处理模块;The analog-to-digital conversion module is used to sequentially amplify the analog radar echo signal, perform single-ended to differential operation and A/D sampling, and send the digital radar signal obtained after sampling to the FPGA signal through a 12-bit LVDS interface preprocessing module;

所述FPGA信号预处理模块,用于按照所述雷达回波帧同步信号和脉冲同步信号对所述数字雷达信号依次进行数字下变频和脉冲压缩的预处理操作,得到预处理后的数字雷达信号,并将所述预处理后的数字雷达信号通过SRIO接口乒乓发送给DSP成像处理模块;The FPGA signal preprocessing module is used to sequentially perform digital down-conversion and pulse compression preprocessing operations on the digital radar signal according to the radar echo frame synchronization signal and pulse synchronization signal, to obtain the preprocessed digital radar signal , and sending the preprocessed digital radar signal to the DSP imaging processing module through the SRIO interface ping-pong;

所述DSP成像处理模块,用于对所述预处理后的数字雷达信号进行成像,并将雷达信号成像结果通过千兆以太网发送给上位机显示终端;The DSP imaging processing module is used to image the preprocessed digital radar signal, and send the radar signal imaging result to the upper computer display terminal through Gigabit Ethernet;

所述上位机显示终端,用于实时显示雷达信号成像结果。The display terminal of the host computer is used to display the radar signal imaging results in real time.

(2)所述模数转换模块包含:四个放大器和四个A/D转换器,所述四个放大器与所述四个A/D转换器对应连接;(2) The analog-to-digital conversion module includes: four amplifiers and four A/D converters, and the four amplifiers are correspondingly connected to the four A/D converters;

所述放大器,用于对输入的模拟雷达回波信号进行放大,并将单端信号转成差分信号;所述放大器对模拟雷达回波信号进行放大的增益由FPGA信号预处理模块通过SPI接口进行控制;The amplifier is used to amplify the input analog radar echo signal, and convert the single-ended signal into a differential signal; the gain of the amplifier amplifying the analog radar echo signal is performed by the FPGA signal preprocessing module through the SPI interface control;

所述A/D转换器,用于对放大后的差分信号进行A/D采样得到数字雷达信号,并将所述数字雷达信号发送给FPGA信号预处理模块。The A/D converter is used to perform A/D sampling on the amplified differential signal to obtain a digital radar signal, and send the digital radar signal to an FPGA signal preprocessing module.

(3)所述FPGA信号预处理模块包含:数据整理子模块、数字下变频子模块、脉冲压缩子模块、数据缓冲子模块和SRIO传输子模块;(3) said FPGA signal preprocessing module comprises: data collation submodule, digital down-conversion submodule, pulse compression submodule, data buffer submodule and SRIO transmission submodule;

所述数据整理子模块,用于对所述数字雷达信号进行整理,将无符号数变为有符号数,并将数据位宽由12位扩展为16位,并将每个脉冲重复周期内的数据点数截取为4096点,对数据进行时钟域转换,并传输至数字下变频模块;The data sorting sub-module is used to sort out the digital radar signal, change the unsigned number into a signed number, expand the data bit width from 12 bits to 16 bits, and convert the The number of data points is intercepted to 4096 points, and the data is converted to the clock domain and transmitted to the digital down-conversion module;

所述数字下变频子模块,用于接收数据整理子模块处理后的数据,根据雷达回波帧同步信号和脉冲同步信号对数据进行混频、滤波,并产生雷达回波帧同步信号和脉冲同步信号,传送至脉冲压缩子模块;The digital down-conversion sub-module is used to receive the data processed by the data sorting sub-module, mix and filter the data according to the radar echo frame synchronization signal and pulse synchronization signal, and generate the radar echo frame synchronization signal and pulse synchronization signal The signal is sent to the pulse compression sub-module;

所述脉冲压缩子模块,用于接收数字下变频子模块处理后的数据,并根据雷达回波帧同步信号和脉冲同步信号对数据进行4096点FFT运算、匹配滤波以及4096点IFFT运算,并产生雷达回波帧同步信号和脉冲同步信号,传送至数据缓冲子模块;The pulse compression sub-module is used to receive the data processed by the digital down-conversion sub-module, and perform 4096-point FFT operations, matched filtering and 4096-point IFFT operations on the data according to the radar echo frame synchronization signal and the pulse synchronization signal, and generate The radar echo frame synchronization signal and pulse synchronization signal are sent to the data buffer sub-module;

所述数据缓冲子模块,用于对数据进行时钟域转换,并为SRIO传输子模块提供脉冲起始传输标志;The data buffering submodule is used to perform clock domain conversion on data, and provides a pulse start transmission flag for the SRIO transmission submodule;

所述SRIO传输子模块,用于接收数据缓冲子模块的数据,检测帧起始标志,完成SRIO流写协议,将数据乒乓传输给DSP成像处理模块。The SRIO transmission sub-module is used to receive data from the data buffer sub-module, detect the frame start flag, complete the SRIO stream writing protocol, and ping-pong transmit the data to the DSP imaging processing module.

(4)所述DSP成像处理模块包含三个DSP芯片,分别记为DSP1,DSP2,DSP3;所述DSP1通过Hyperlink接口与DSP2连接,所述DSP3通过PCI-Express接口与DSP2连接;(4) described DSP image processing module comprises three DSP chips, is respectively marked as DSP1, DSP2, DSP3; Described DSP1 is connected with DSP2 by Hyperlink interface, and described DSP3 is connected with DSP2 by PCI-Express interface;

FPGA信号预处理模块,用于向DSP1发送4096个脉冲数据之后,再向DSP3发送同样数据量的数据,在DSP1和DSP3之间依次轮换,将所述预处理后的数字雷达信号通过SRIO接口乒乓发送给DSP成像处理模块;The FPGA signal preprocessing module is used to send 4096 pulse data to DSP1, and then send data with the same amount of data to DSP3, alternate between DSP1 and DSP3 in turn, and ping-pong the preprocessed digital radar signal through the SRIO interface Send to the DSP imaging processing module;

所述DSP1和所述DSP3,用于乒乓接收FPGA信号预处理模块发送的预处理后的数字雷达信号;并分别对接收到的预处理后的数字雷达信号进行多普勒中心估计、距离走动校正、距离弯曲校正、二次距离脉压、运动误差估计与补偿、方位压缩以及几何校正的成像过程,得到雷达信号成像结果,并将所述雷达信号成像结果发送给DSP2;The DSP1 and the DSP3 are used to ping-pong receive the preprocessed digital radar signal sent by the FPGA signal preprocessing module; and perform Doppler center estimation and distance walking correction to the received preprocessed digital radar signal respectively , the imaging process of range bending correction, secondary range pulse pressure, motion error estimation and compensation, azimuth compression and geometric correction to obtain the radar signal imaging result, and send the radar signal imaging result to DSP2;

所述DSP2将雷达信号成像结果通过千兆以太网发送给上位机显示终端。The DSP2 sends the imaging result of the radar signal to the display terminal of the host computer through Gigabit Ethernet.

(5)所述DSP2通过SGMII接口连接至千兆以太网转换芯片,所述千兆以太网转换芯片通过RJ45网口连接至上位机显示终端。(5) The DSP2 is connected to the Gigabit Ethernet conversion chip through the SGMII interface, and the Gigabit Ethernet conversion chip is connected to the host computer display terminal through the RJ45 network port.

本发明具有以下优点:第一,本发明由于采用雷达导引头综合测试装置,该装置有8192GB的固态硬盘,存储量大,可以对MATALB产生的任意数据量的雷达回波信号进行回放;第二,本发明雷达导引头综合测试装置有四路最高500MHz的DA芯片,可以对MATLAB产生的满足硬件参数的最多四路雷达中频回波信号进行回放,四路信号可以相同,也可以不同,可以同时完成信号处理板多通道的验证;第三,本发明由于采用雷达导引头综合测试装置,该装置具有一路参考时钟输入接口,一路帧同步和一路脉冲同步输出接口,回波数据按照上述三种信号进行回放,模拟实际雷达前端工作情况;第四,本发明所涉及FPGA芯片选用逻辑资源、存储器资源、DSP资源较丰富的Virtex-6系列芯片,DSP芯片也选用业界最高性能的TMS320C6678芯片,每片DSP都外挂容量为2GByte的DDR SDRAM芯片,以满足该系统对处理大数据量和运行复杂算法的要求;第五,本发明中FPGA预处理模块以乒乓模式并采用高速串行通信接口SRIO完成与DSP1和DSP3芯片数据传输,另外一片DSP2芯片通过千兆以太网芯片与上位机进行通信,克服了现有技术传输速率慢的缺点,提高了本发明的实时性,满足弹载雷达信号处理器系统对高实时性以及快速的要求;第六,本发明实施过程简单,在实验室内即可对信号处理板的功能进行测试验证,不受外界条件的影响,节约人力物力,节省了外场实验的时间周期和开发成本;第七,本发明系统设备较少,连接方便,成本较低;第八,本发明可以更换信号处理板或信号处理算法,对不同的信号处理板或算法完成验证,通用性强。The present invention has the following advantages: the first, the present invention is owing to adopt radar seeker comprehensive testing device, and this device has the solid-state hard disk of 8192GB, and storage capacity is large, can play back the radar echo signal of the arbitrary data amount that MATALB produces; Two, the radar seeker comprehensive test device of the present invention has the DA chip of four roads up to 500MHz, can play back the radar intermediate frequency echo signals of up to four roads that meet the hardware parameters that MATLAB produces, and the four road signals can be the same or different, The multi-channel verification of the signal processing board can be completed at the same time; the 3rd, the present invention has one reference clock input interface, one frame synchronization and one pulse synchronization output interface, and the echo data is according to the above-mentioned Three kinds of signals are played back, and simulate actual radar front-end work situation; The 4th, the FPGA chip involved in the present invention selects the Virtex-6 series chip that logic resource, memory resource, DSP resource are richer, and DSP chip also selects the TMS320C6678 chip of the highest performance in the industry , each piece of DSP all plug-in capacity is the DDR SDRAM chip of 2GByte, to satisfy this system to the requirement of processing large amount of data and operation complex algorithm; SRIO completes the data transmission with the DSP1 and DSP3 chips, and another DSP2 chip communicates with the host computer through the Gigabit Ethernet chip, which overcomes the shortcoming of the slow transmission rate of the prior art, improves the real-time performance of the present invention, and satisfies the requirements of the missile-borne radar signal. The processor system requires high real-time performance and rapidity; sixth, the implementation process of the present invention is simple, and the function of the signal processing board can be tested and verified in the laboratory, which is not affected by external conditions, saves manpower and material resources, and saves The time period and development cost of field experiments; Seventh, the system equipment of the present invention is less, convenient to connect, and the cost is lower; Eighth, the present invention can replace the signal processing board or signal processing algorithm, and complete Verification, strong versatility.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1是本发明弹载雷达信号处理半实物仿真测试系统的实现结构框图;Fig. 1 is the realization structural block diagram of missile-borne radar signal processing hardware-in-the-loop simulation test system of the present invention;

图2是本发明的雷达导引头综合测试装置与信号处理器之间的连接示意图;Fig. 2 is a schematic diagram of the connection between the radar seeker comprehensive testing device of the present invention and the signal processor;

图3是本发明的模数转换模块与FPGA预处理模块之间的连接示意图;Fig. 3 is the schematic diagram of connection between the analog-to-digital conversion module of the present invention and the FPGA preprocessing module;

图4是本发明的DSP成像处理模块与FPGA预处理模块之间的连接示意图;Fig. 4 is the connection schematic diagram between DSP imaging processing module of the present invention and FPGA preprocessing module;

图5是本发明的上位机显示终端与信号处理器之间的连接示意图。Fig. 5 is a schematic diagram of the connection between the host computer display terminal and the signal processor of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

下面结合附图对本发明做进一步的说明描述。The present invention will be further described below in conjunction with the accompanying drawings.

根据附图1,本发明共包括以下几个模块:雷达导引头综合测试装置、信号处理器和上位机显示终端。其中:According to accompanying drawing 1, the present invention comprises following several modules altogether: radar seeker comprehensive testing device, signal processor and host computer display terminal. in:

雷达导引头综合测试装置,主要用来产生多路同步的模拟雷达回波信号。雷达导引头综合测试装置后面板上有4路SMA形式的D/A输出接口,DA芯片最大转换速率为500MHz,分辨率为16bit,一路外部参考时钟输入接口,一路帧同步输出接口和一路脉冲同步输出接口。The radar seeker comprehensive test device is mainly used to generate multiple synchronous simulated radar echo signals. There are 4 SMA D/A output interfaces on the rear panel of the radar seeker comprehensive test device. The maximum conversion rate of the DA chip is 500MHz, the resolution is 16bit, one external reference clock input interface, one frame synchronization output interface and one pulse Synchronous output interface.

雷达导引头综合测试装置主要有以下功能:用于MATLAB仿真回波数据到雷达导引头综合测试装置回波数据的格式转换;用于回波数据到雷达导引头综合测试装置固态硬盘的导入以及浏览;用于雷达导引头综合测试装置回放参数的设置;用于输出多路模拟雷达回波信号给信号处理器;用于输出雷达回波帧同步和脉冲同步信号给信号处理器。The radar seeker comprehensive test device mainly has the following functions: used for format conversion from MATLAB simulation echo data to radar seeker comprehensive test device echo data; used for echo data to radar seeker comprehensive test device SSD Import and browse; used to set the playback parameters of the radar seeker comprehensive test device; used to output multiple analog radar echo signals to the signal processor; used to output radar echo frame synchronization and pulse synchronization signals to the signal processor.

信号处理器,包括模数转换模块、FPGA预处理模块和DSP成像处理模块。Signal processor, including analog-to-digital conversion module, FPGA preprocessing module and DSP imaging processing module.

该模数转换模块采用四片模数转换芯片ADS5463,但不局限于此芯片,芯片最高采样率500MSPS(每秒采样多少兆次),12位LVDS输出,与雷达导引头综合测试装置单向连接,与FPGA预处理模块双向连接,用于接收雷达导引头综合测试装置输出的模拟雷达回波并进行采样,由于雷达导引头综合测试装置给出的是单端信号,并且其峰峰值为1.2Vpp,所以首先利用ADI公司的放大器AD8370把采集的模拟量进行单端信号转成差分信号,并进行放大,而AD8370芯片输出信号的增益可以由FPGA芯片通过SPI接口修改片内寄存器值来控制,而后将AD8370输出的差分信号输出给ADS5463完成模数转换,最后将采样后的数据发送给FPGA预处理模块。The analog-to-digital conversion module adopts four pieces of analog-to-digital conversion chip ADS5463, but is not limited to this chip, the maximum sampling rate of the chip is 500MSPS (how many megabytes of samples per second), 12-bit LVDS output, one-way with the radar seeker comprehensive test device Connection, two-way connection with the FPGA preprocessing module, used to receive and sample the simulated radar echo output by the radar seeker comprehensive test device, because the radar seeker comprehensive test device gives a single-ended signal, and its peak-to-peak value It is 1.2Vpp, so first use the amplifier AD8370 of ADI company to convert the collected analog signal into a differential signal and amplify it. The gain of the output signal of the AD8370 chip can be modified by the FPGA chip through the SPI interface. Control, and then output the differential signal output by AD8370 to ADS5463 to complete the analog-to-digital conversion, and finally send the sampled data to the FPGA preprocessing module.

该FPGA预处理模块选用一片XILINX公司的Virtex-6系列高性能XC6VLX240T-FF1156的芯片,但不局限于此芯片,该芯片的逻辑单元数量达241152个,DSP48E1 Slice数量达768个,速度高达600MHz,单端引脚600个,高速串行收发器20个,可以实现各种高速串行总线协议,该FPGA预处理模块分别与模数转换模块双向连接,于DSP成像处理模块双向连接。The FPGA preprocessing module selects a Virtex-6 series high-performance XC6VLX240T-FF1156 chip from XILINX Company, but it is not limited to this chip. The number of logic units of this chip reaches 241,152, the number of DSP48E1 slices reaches 768, and the speed is as high as 600MHz. There are 600 single-ended pins and 20 high-speed serial transceivers, which can realize various high-speed serial bus protocols. The FPGA preprocessing module is bidirectionally connected with the analog-to-digital conversion module and bidirectionally connected with the DSP imaging processing module.

该FPGA预处理模块,包括数据整理子模块、数字下变频子模块、脉冲压缩子模块、数据缓冲子模块和SRIO传输子模块,所述的数据整理子模块,用于对模数转换模块传送的回波数据进行整理,将无符号数变为有符号数,并将数据位宽由12位扩展为16位,并将每个脉冲重复周期内的数据点数截取为4096点,对数据进行时钟域转换,并传输至数字下变频模块;所述的数字下变频子模块,用于接收数据整理子模块处理后的数据,根据同步信号对数据进行混频、滤波,并产生帧同步和脉冲同步信号,传送至脉冲压缩子模块;所述的脉冲压缩子模块,用于接收数字下变频子模块处理后的数据,并根据脉冲同步信号对数据进行4096点FFT运算、匹配滤波以及4096点IFFT运算,并产生帧同步和脉冲同步信号,传送至数据缓冲子模块;所述的数据缓冲子模块,对数据进行时钟域转换,并为SRIO传输子模块提供脉冲起始传输标志;所述的SRIO传输子模块,用于接收数据缓冲子模块的数据,用于检测帧起始标志,用于完成SRIO流写协议,将数据的乒乓传输给DSP1和DSP3芯片,它向一片DSP芯片发送4096个脉冲数据之后,再向另一片DSP芯片发送同样数据量的数据,在两片DSP芯片之间依次轮换,用于完成门铃中断传输。The FPGA preprocessing module includes a data sorting submodule, a digital down-conversion submodule, a pulse compression submodule, a data buffering submodule, and an SRIO transmission submodule. The echo data is sorted, the unsigned number is changed into a signed number, and the data bit width is expanded from 12 bits to 16 bits, and the number of data points in each pulse repetition cycle is intercepted to 4096 points, and the data is clock domain Convert and transmit to the digital down-conversion module; the digital down-conversion sub-module is used to receive the data processed by the data sorting sub-module, mix and filter the data according to the synchronization signal, and generate frame synchronization and pulse synchronization signals , sent to the pulse compression sub-module; the pulse compression sub-module is used to receive the data processed by the digital down-conversion sub-module, and perform 4096-point FFT operations, matched filtering and 4096-point IFFT operations on the data according to the pulse synchronization signal, And generate frame synchronization and pulse synchronization signals, sent to the data buffer sub-module; the data buffer sub-module, the data clock domain conversion, and for the SRIO transmission sub-module to provide a pulse start transmission flag; the SRIO transmission sub-module Module, used to receive the data of the data buffer sub-module, used to detect the frame start flag, used to complete the SRIO stream writing protocol, and transmit the ping-pong data to the DSP1 and DSP3 chips, after it sends 4096 pulse data to a DSP chip , and then send the same amount of data to another DSP chip, and rotate between the two DSP chips in turn to complete the doorbell interrupt transmission.

该DSP成像处理模块选用三片TI公司的型号为TMS320C6678的DSP芯片,但不局限于该芯片,该芯片拥有8个速率高达1.25GHz的高性能定点/浮点CPU内核,片内有4096KB的多核共享存储器,片外可扩展最大8GB的DDR3存储器,片外DDR3运行速率最高为1600MHz,拥有4个SRIO通道,兼容1.25、2.5、3.125和5Gbps工作速率,每片DSP芯片都外挂容量为2GByte的DDR SDRAM芯片,用于存储FPGA预处理模块发送来的数据以及成像结果,DSP1和DSP3用于乒乓接收FPGA预处理模块发送过来的预处理的数据;DSP1和DSP3用于进行多普勒中心估计、距离走动校正、距离弯曲校正、二次距离脉压、运动误差估计与补偿、方位压缩以及几何校正算法,完成成像处理,并将成像结果通过Hyperlink接口和PCI-Express接口发送给DSP2芯片;DSP2芯片用于将DSP1和DSP3发送的成像结果通过千兆以太网发送给上位机显示终端。The DSP imaging processing module uses three TI DSP chips of the type TMS320C6678, but is not limited to this chip. The chip has 8 high-performance fixed-point/floating-point CPU cores with a rate of up to 1.25GHz, and there are 4096KB multi-core in the chip. Shared memory, the maximum 8GB DDR3 memory can be expanded outside the chip, the maximum running speed of the off-chip DDR3 is 1600MHz, it has 4 SRIO channels, compatible with 1.25, 2.5, 3.125 and 5Gbps working speed, and each DSP chip has an external DDR with a capacity of 2GByte The SDRAM chip is used to store the data and imaging results sent by the FPGA pre-processing module. DSP1 and DSP3 are used to ping-pong receive the pre-processed data sent by the FPGA pre-processing module; DSP1 and DSP3 are used for Doppler center estimation, distance Walking correction, distance bending correction, secondary distance pulse pressure, motion error estimation and compensation, azimuth compression and geometric correction algorithm, complete imaging processing, and send imaging results to DSP2 chip through Hyperlink interface and PCI-Express interface; DSP2 chip uses It is used to send the imaging results sent by DSP1 and DSP3 to the display terminal of the host computer through Gigabit Ethernet.

上位机显示终端,通过网线与信号处理器双向连接,在系统实施过程中由DSP2芯片将DSP成像处理模块中DSP1和DSP3得到的SAR图像通过千兆以太网发送给上位机,并在上位机显示终端中实时显示成像结果。The display terminal of the upper computer is bidirectionally connected with the signal processor through a network cable. During the system implementation, the DSP2 chip sends the SAR image obtained by DSP1 and DSP3 in the DSP imaging processing module to the upper computer through Gigabit Ethernet, and displays it on the upper computer. The imaging results are displayed in real time on the terminal.

参考附图2,对雷达导引头综合测试装置与信号处理器之间的连接作进一步的说明描述。With reference to accompanying drawing 2, the connection between the radar seeker comprehensive test device and the signal processor is described further.

该雷达导引头综合测试装置有四路SMA形式D/A输出接口:SMA1,SMA2,SMA3,SMA4,可同时输出最多四通道相参信号,DA输出接口通过同轴电缆线与模数转换模块的四路A/D输入接口AD1、AD2、AD3、AD4相连,雷达导引头综合测试装置参考时钟输入接口CLK_IN与信号源的一路输出相连,信号处理器AD采样时钟输入接口ADC_CLK与信号源的另外一路输出相连,该雷达导引头综合测试装置的帧同步信号IPPS_OUT和脉冲同步信号TRIG_OUT通过BNC接口输出,再通过同轴电缆线与信号处理器的帧同步输入sync_frame以及脉冲同步输入sync_pulse相连,为FPGA数据预处理提供参考。The radar seeker comprehensive test device has four SMA form D/A output interfaces: SMA1, SMA2, SMA3, SMA4, which can output up to four channels of coherent signals at the same time, and the DA output interface is connected to the analog-to-digital conversion module through the coaxial cable. The four-way A/D input interface AD1, AD2, AD3, AD4 is connected, the reference clock input interface CLK_IN of the radar seeker comprehensive test device is connected with one output of the signal source, and the signal processor AD sampling clock input interface ADC_CLK is connected with the signal source The other output is connected, the frame synchronization signal IPPS_OUT and the pulse synchronization signal TRIG_OUT of the radar seeker comprehensive test device are output through the BNC interface, and then connected to the frame synchronization input sync_frame and the pulse synchronization input sync_pulse of the signal processor through the coaxial cable, Provide reference for FPGA data preprocessing.

参考附图3,对模数转换模块与FPGA预处理模块之间的连接作进一步的说明描述。Referring to accompanying drawing 3, the connection between the analog-to-digital conversion module and the FPGA preprocessing module is further described.

模数转换模块采用四片A/D转换芯片,芯片选用TI公司的ADS5463,用于模拟雷达中频回波信号的采集,首先我们选择ADI公司的放大器AD8370把采集的模拟量进行单端信号转成差分信号,并进行放大,由FPGA芯片通过SPI接口修改AD8370片内寄存器值来控制输出信号的增益,具体的控制信号为DATA,CLK,LATCH,之后AD8370芯片将差分信号传输给ADS5463,由该芯片进行A/D采样,并将数据发送给FPGA预处理模块。模数转换芯片ADS5463与FPGA芯片连接的主要信号线如下:ADC_P[11:0]、ADC_N[11:0],为低电压差分信号,用来传输A/D采样数据,且数据输出模式为DDR模式;OVR_P、OVR_N为数据溢出信号线,用来指示输入信号值是否溢出;DRY_P、DRY_N为数据准备好信号线,用来指示采样已经完成。The analog-to-digital conversion module uses four A/D conversion chips, and the chip uses TI's ADS5463 for the acquisition of analog radar intermediate frequency echo signals. First, we choose ADI's amplifier AD8370 to convert the collected analog signals into single-ended signals. The differential signal is amplified, and the FPGA chip modifies the AD8370 on-chip register value through the SPI interface to control the gain of the output signal. The specific control signals are DATA, CLK, and LATCH. After that, the AD8370 chip transmits the differential signal to the ADS5463. Perform A/D sampling and send the data to the FPGA preprocessing module. The main signal lines connecting the analog-to-digital conversion chip ADS5463 and the FPGA chip are as follows: ADC_P[11:0], ADC_N[11:0], which are low-voltage differential signals, used to transmit A/D sampling data, and the data output mode is DDR Mode; OVR_P, OVR_N are data overflow signal lines, used to indicate whether the input signal value overflows; DRY_P, DRY_N are data ready signal lines, used to indicate that the sampling has been completed.

参考附图4,对DSP成像处理模块与FPGA预处理模块之间的连接作进一步的说明描述。With reference to accompanying drawing 4, the connection between the DSP imaging processing module and the FPGA preprocessing module is described further.

DSP成像处理模块选用三片型号为TMS320C6678的DSP芯片,三片DSP芯片均通过Serial Rapid IO(SRIO)接口与FPGA预处理模块相连,在FPGA中,有BANK112-BANK116这五个MGT高速收发模块,本发明中BANK112与DSP3相连;BANK113与DSP1相连,BANK116与DSP2相连,这三个SRIO接口设置为4通道,每个通道的速率为3.125GHz,终端器件是数据包的源或目的地,不同的终端器件以器件ID来区分,FPGA的ID号分别为0xFF、0x AA、0x 55,DSP1的ID号为D1,DSP2的ID号为D2,DSP3的ID号为D3。本发明中高速串行通信接口SRIO时钟频率为125MHz,串行通信接口采用以下信号线:srio_txp0、srio_txn0、srio_txpl、srio_txn1、srio_txp2、srio_txn2、srio_txp3、srio_txn3;srio_rxp0、srio_rxn0、srio_rxp1、srio_rxn1、srio_rxp2、srio_rxn2、srio_rxp3、srio_rxn3,为串行差分形式。在DSP1和DSP3完成成像算法之后,要将成像结果通过Hyperlink接口和PCI-Express接口发送给DSP2,由DSP2将数据从信号处理板传输给上位机显示终端,进行结果的实时显示。The DSP imaging processing module uses three DSP chips of the model TMS320C6678, and the three DSP chips are connected to the FPGA preprocessing module through the Serial Rapid IO (SRIO) interface. In the FPGA, there are five MGT high-speed transceiver modules of BANK112-BANK116. Among the present invention, BANK112 links to each other with DSP3; BANK113 links to each other with DSP1, and BANK116 links to each other with DSP2, and these three SRIO interfaces are set to 4 channels, and the rate of each channel is 3.125GHz, and terminal device is the source or the destination of data packet, different Terminal devices are distinguished by device ID. The ID numbers of FPGA are 0xFF, 0x AA, and 0x 55, the ID number of DSP1 is D1, the ID number of DSP2 is D2, and the ID number of DSP3 is D3.本发明中高速串行通信接口SRIO时钟频率为125MHz,串行通信接口采用以下信号线:srio_txp0、srio_txn0、srio_txpl、srio_txn1、srio_txp2、srio_txn2、srio_txp3、srio_txn3;srio_rxp0、srio_rxn0、srio_rxp1、srio_rxn1、srio_rxp2、srio_rxn2 , srio_rxp3, and srio_rxn3 are serial differential forms. After DSP1 and DSP3 complete the imaging algorithm, the imaging result should be sent to DSP2 through the Hyperlink interface and PCI-Express interface, and DSP2 will transmit the data from the signal processing board to the display terminal of the upper computer for real-time display of the result.

参考附图5,对上位机显示终端与信号处理器之间的连接作进一步的说明描述。Referring to Fig. 5, the connection between the host computer display terminal and the signal processor will be further described.

DSP2芯片的SGMII接口连接到千兆以太网转换芯片上,千兆以太网转换芯片选用88EE1111芯片,具体连接采用以下信号线:DSP2_SGMII1_RXP、DSP2_SGMII1_RXN、DSP2_SGMII1_TXP、DSP2_SGMII1_TXN,该信号线为差分形式的数据传输线;DSP2_MDIO为以太网转换芯片的双向IO控制线、DSP2_MDC为以太网转换芯片的时钟线,该转换芯片与一个RJ45网口相连,通过RJ45连接网线与上位机进行通信,实时传输成像处理结果。The SGMII interface of the DSP2 chip is connected to the Gigabit Ethernet conversion chip. The Gigabit Ethernet conversion chip uses the 88EE1111 chip. The specific connection uses the following signal lines: DSP2_SGMII1_RXP, DSP2_SGMII1_RXN, DSP2_SGMII1_TXP, DSP2_SGMII1_TXN. The signal lines are differential data transmission lines; DSP2_MDIO is the bidirectional IO control line of the Ethernet conversion chip, and DSP2_MDC is the clock line of the Ethernet conversion chip. The conversion chip is connected to an RJ45 network port, communicates with the host computer through the RJ45 connection network cable, and transmits the imaging processing results in real time.

本发明实施过程中的工作原理进行如下说明:Working principle in the implementation process of the present invention is described as follows:

回波仿真。根据测试需要自定义回波参数,在MATLAB中仿真产生回波数据,将数据写入后缀名为.dat的文件中,在数据转换软件中完成数据转换,在每个脉冲数据之前添加32个字节的包头信息,此包头主要用于系统内部硬件对于回波仿真数据的解析,数据转换完成之后,需要先通过嵌入式计算机将要回放的数据存储到SSD(固态硬盘)中,数据导入之后需要在软件界面进行数据浏览,确认导入数据无误之后,进行系统参数配置,包括时钟源、参考时钟、脉冲重复频率、帧脉冲数和脉冲宽度,设置完成之后进入回放界面,选择回放模式,等待信号处理板上电。Echo simulation. Customize the echo parameters according to the test needs, simulate the echo data in MATLAB, write the data into a file with the suffix .dat, complete the data conversion in the data conversion software, and add 32 words before each pulse data Section header information, this header is mainly used for the analysis of the echo simulation data by the internal hardware of the system. After the data conversion is completed, the data to be played back needs to be stored in the SSD (solid state drive) through the embedded computer. After the data is imported, it needs to be Browse the data on the software interface. After confirming that the imported data is correct, configure the system parameters, including clock source, reference clock, pulse repetition frequency, frame pulse number and pulse width. After the setting is completed, enter the playback interface, select the playback mode, and wait for the signal processing board Power-on.

系统连接。将雷达导引头综合测试装置的参考时钟输入接口与信号源输出接口通过同轴电缆线连接,将信号处理器的AD采样时钟输入接口与信号源另一路输出接口通过同轴电缆线连接,将雷达导引头综合测试装置DA输出接口与信号处理器AD输入接口通过同轴电缆线连接,将雷达导引头综合测试装置的帧同步、脉冲同步输出接口与信号处理器的帧同步、脉冲同步输入接口通过同轴电缆线连接,将信号处理器以太网接口与电脑主机通过网线连接。system connection. Connect the reference clock input interface of the radar seeker comprehensive test device with the signal source output interface through a coaxial cable, and connect the AD sampling clock input interface of the signal processor with the other output interface of the signal source through a coaxial cable. The DA output interface of the radar seeker comprehensive test device is connected with the AD input interface of the signal processor through a coaxial cable, and the frame synchronization and pulse synchronization output interface of the radar seeker comprehensive test device are connected with the frame synchronization and pulse synchronization of the signal processor The input interface is connected through a coaxial cable, and the Ethernet interface of the signal processor is connected with the host computer through a network cable.

信号处理板上电。点击雷达导引头综合测试装置软件界面的开始回放按钮,在外部参考时钟作用下输出模拟雷达回波信号以及帧同步和脉冲同步信号,FPGA芯片通过SPI接口修改AD8370片内寄存器值来控制输出信号的增益,信号处理器中的模数转换模块在采样时钟到来时对输入的模拟雷达回波信号进行A/D转换,FPGA预处理模块在帧同步和脉冲同步信号的指导下对模数转换模块传输的数据进行数据预处理,实现数字下变频、快速傅立叶变换、距离向脉冲压缩操作,随后FPGA预处理模块将预处理后的数据通过SerialRapid IO(SRIO)接口以乒乓模式发送给DSP成像处理模块中的DSP1和DSP3,FPGA预处理模块在发送4096个脉冲重复周期的数据会发送一个门铃中断,DSP1和DSP3收到中断之后,对预处理后的数据进行多普勒中心估计、距离走动校正、距离弯曲校正、二次距离脉压、运动误差估计与补偿、方位压缩以及几何校正算法,完成成像处理,随后DSP1和DSP3通过Hyperlink接口和PCI-Express接口将处理后的结果发送给DSP2,由DSP2通过千兆以太网将成像处理结果传输给上位机显示终端,并在上位机显示终端界面进行实时成像。The signal processing board is powered on. Click the start playback button on the software interface of the radar seeker comprehensive test device, and output the simulated radar echo signal, frame synchronization and pulse synchronization signals under the action of the external reference clock, and the FPGA chip modifies the AD8370 on-chip register value through the SPI interface to control the output signal Gain, the analog-to-digital conversion module in the signal processor performs A/D conversion on the input analog radar echo signal when the sampling clock arrives, and the FPGA pre-processing module converts the analog-to-digital conversion module The transmitted data is preprocessed to realize digital down-conversion, fast Fourier transform, and range-to-pulse compression operations, and then the FPGA preprocessing module sends the preprocessed data to the DSP imaging processing module in ping-pong mode through the SerialRapid IO (SRIO) interface In DSP1 and DSP3, the FPGA preprocessing module will send a doorbell interrupt when sending data of 4096 pulse repetition periods. After receiving the interrupt, DSP1 and DSP3 will perform Doppler center estimation, distance walking correction, and Range bending correction, secondary range pulse pressure, motion error estimation and compensation, azimuth compression, and geometric correction algorithms complete the imaging processing, and then DSP1 and DSP3 send the processed results to DSP2 through Hyperlink interface and PCI-Express interface, and DSP2 The imaging processing results are transmitted to the display terminal of the host computer through Gigabit Ethernet, and real-time imaging is performed on the display terminal interface of the host computer.

本发明的应用不受外界条件限制,可模拟实际雷达前端工作,此外本系统还具有稳定可靠,存储量大,传输速率高的优点,主要适用于高速飞行器成像跟踪制导等领域的实验室阶段的测试验证。The application of the present invention is not limited by external conditions, and can simulate the actual radar front-end work. In addition, the system also has the advantages of stability and reliability, large storage capacity, and high transmission rate. It is mainly suitable for laboratory stage in the field of imaging tracking guidance of high-speed aircraft Test verification.

本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps to realize the above method embodiments can be completed by hardware related to program instructions, and the aforementioned programs can be stored in computer-readable storage media. When the program is executed, the execution includes The steps of the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (6)

1. a kind of missile-borne radar signal processing semi-hardware type simulation test system, which is characterized in that the system comprises:Clock signal Source, radar seeker comprehensive test device, signal processor and host computer display terminal;The signal processor includes:Mould Number conversion module, FPGA signal pre-processing modules, DSP imaging modules;
It is arranged on the reference clock output end and the radar seeker comprehensive test device being arranged on the signal source of clock Reference clock input terminal connects;
The sampling clock output end being arranged on the signal source of clock and the sampling clock being arranged on the analog-to-digital conversion module are defeated Enter end connection;
The analog signal output being arranged on the radar seeker comprehensive test device is arranged on the analog-to-digital conversion module Input end of analog signal connection;
The synchronous signal output end being arranged on the radar seeker comprehensive test device and the FPGA signal pre-processing modules Synchronous signal input end connection;
The digital signal input end of the digital signal output end of the analog-to-digital conversion module and the FPGA signal pre-processing modules Connection;
The digital signal output end of the FPGA signal pre-processing modules and the digital signal of the DSP imagings module input End connection;
The digital signal output end of the DSP imagings module is believed by the number of Ethernet and the host computer display terminal The connection of number input terminal.
2. a kind of missile-borne radar signal processing semi-hardware type simulation test system according to claim 1, which is characterized in that
The radar seeker comprehensive test device is completed described imitative for obtaining emulation radar echo signal from simulation software True radar echo signal and is connect the guinea pig echo-signal by four road SMA to the conversion of guinea pig echo-signal Mouth is sent to four road input end of analog signal of analog-to-digital conversion module;
The radar seeker comprehensive test device is additionally operable to setting radar return frame synchronizing signal and pulse synchronous signal, and The radar return frame synchronizing signal and the pulse synchronous signal are sent to FPGA Signal Pretreatment moulds by bnc interface Block;
The analog-to-digital conversion module, for being amplified successively to the guinea pig echo-signal, single-ended transfer difference operation with And A/D samplings, and the digital radar signal obtained after A/D is sampled is sent to FPGA Signal Pretreatments by 12 LVDS interfaces Module;
The FPGA signal pre-processing modules are used for according to the radar return frame synchronizing signal and pulse synchronous signal to described Digital radar signal carries out the pretreatment operation of Digital Down Convert and pulse compression successively, obtains pretreated digital radar letter Number, and the pretreated digital radar signal is sent to DSP imaging modules by SRIO interfaces table tennis;
The DSP imagings module, for being imaged to the pretreated digital radar signal, and by radar signal Imaging results are sent to host computer display terminal by gigabit Ethernet;
The host computer display terminal is used for real-time display radar signal imaging results.
3. a kind of missile-borne radar signal processing semi-hardware type simulation test system according to claim 2, which is characterized in that institute Stating analog-to-digital conversion module includes:Four amplifiers and four A/D converters, four amplifiers are converted with four A/D Device is correspondingly connected with;
The amplifier is amplified for the guinea pig echo-signal to input, and amplified single-ended signal is changed into Differential signal;The amplifier is passed through the gain that guinea pig echo-signal is amplified by FPGA signal pre-processing modules SPI interface is controlled;
The A/D converter samples to obtain digital radar signal for carrying out A/D to amplified differential signal, and will be described Digital radar signal is sent to FPGA signal pre-processing modules.
4. a kind of missile-borne radar signal processing semi-hardware type simulation test system according to claim 2, which is characterized in that institute Stating FPGA signal pre-processing modules includes:Data preparation submodule, Digital Down Convert submodule, pulse compression submodule, data It buffers submodule and SRIO transmits submodule;
Unsigned number is become signed number for being arranged to the digital radar signal by the data preparation submodule, And by data bit width by 12 Bits Expandings be 16, and by each pulse repetition period data points interception be 4096 points, it is right Data carry out clock domain conversion, and are transmitted to Digital Down Converter Module;
The Digital Down Convert submodule, data that treated for receiving data preparation submodule are same according to radar return frame Step signal and pulse synchronous signal are mixed data, are filtered, and generate radar return frame synchronizing signal and impulsive synchronization letter Number, it is sent to pulse compression submodule;
Submodule is compressed in the pulse, data that treated for receiving Digital Down Convert submodule, and according to radar return frame Synchronizing signal and pulse synchronous signal carry out 4096 point FFT operations, matched filtering and 4096 point IFFT operations to data, and produce Raw radar return frame synchronizing signal and pulse synchronous signal, are sent to data buffering submodule;
The data buffering submodule for carrying out clock domain conversion to data, and transmits submodule for SRIO and provides pulse Begin transmission mark;
The SRIO transmits submodule, the data for receiving data buffering submodule, and detection frame beginning flag completes SRIO streams Agreement is write, data table tennis is transferred to DSP imaging modules.
5. a kind of missile-borne radar signal processing semi-hardware type simulation test system according to claim 2, which is characterized in that institute It includes three dsp chips to state DSP imaging modules, is denoted as DSP1, DSP2, DSP3 respectively;The DSP1 passes through Hyperlink Interface is connect with DSP2, and the DSP3 is connect by PCI-Express interfaces with DSP2;
FPGA signal pre-processing modules, for sending 4096 pulse datas to DSP1 and then sending same data to DSP3 The pretreated digital radar signal is passed through SRIO interface table tennis by the data of amount, the rotation successively between DSP1 and DSP3 Pang be sent to DSP imaging modules;
The DSP1 and DSP3, for the pretreated digital radar for receiving the transmission of FPGA signal pre-processing modules of rattling Signal;And respectively to the pretreated digital radar signal that receives carry out Doppler center estimation, Range Walk Correction, away from From curvature correction, the imaging process of secondary range pulse pressure, motion error extraction and compensation, Azimuth Compression and geometric correction, obtain It is sent to DSP2 to radar signal imaging results, and by the radar signal imaging results;
Radar signal imaging results are sent to host computer display terminal by the DSP2 by gigabit Ethernet.
6. a kind of missile-borne radar signal processing semi-hardware type simulation test system according to claim 5, which is characterized in that institute It states DSP2 and gigabit Ethernet conversion chip is connected to by SGMII interfaces, the gigabit Ethernet conversion chip passes through RJ45 nets Mouth is connected to host computer display terminal.
CN201810295010.0A 2018-03-30 2018-03-30 A hardware-in-the-loop simulation test system for missile-borne radar signal processing Active CN108563144B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810295010.0A CN108563144B (en) 2018-03-30 2018-03-30 A hardware-in-the-loop simulation test system for missile-borne radar signal processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810295010.0A CN108563144B (en) 2018-03-30 2018-03-30 A hardware-in-the-loop simulation test system for missile-borne radar signal processing

Publications (2)

Publication Number Publication Date
CN108563144A true CN108563144A (en) 2018-09-21
CN108563144B CN108563144B (en) 2021-06-29

Family

ID=63533964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810295010.0A Active CN108563144B (en) 2018-03-30 2018-03-30 A hardware-in-the-loop simulation test system for missile-borne radar signal processing

Country Status (1)

Country Link
CN (1) CN108563144B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194598A (en) * 2018-11-16 2019-01-11 上海工程技术大学 A kind of general PSK modulation demodulation system
CN110488291A (en) * 2019-08-23 2019-11-22 成都航天科工微电子系统研究院有限公司 A kind of biradical Forward-looking SAR Hardware In The Loop Simulation Method and device
CN110531331A (en) * 2019-03-31 2019-12-03 西安电子科技大学 Plasma coats target radar returns modeling and simulating method
CN110632568A (en) * 2019-11-05 2019-12-31 中国科学院电子学研究所 Test Signal Source for Synthetic Aperture Radar Real-time Imaging Processor
CN111367259A (en) * 2020-03-17 2020-07-03 四川九洲电器集团有限责任公司 Low-cost digital signal processing module automatic testing device and method
CN111650588A (en) * 2020-07-10 2020-09-11 国科北方电子科技(北京)有限公司 Small real-time processing device of SAR (synthetic aperture radar) and RD (RD) algorithm real-time processing method of SAR signals
CN111880438A (en) * 2020-08-21 2020-11-03 航天科工微电子系统研究院有限公司 Semi-physical simulation system based on double/multi-base SAR imaging
CN112505643A (en) * 2020-11-03 2021-03-16 湖北航天技术研究院总体设计所 Radar and infrared composite seeker open-loop semi-physical simulation method and system
CN112631977A (en) * 2020-12-17 2021-04-09 中国科学院光电技术研究所 Dynamic multi-target electric simulation system
CN113900089A (en) * 2021-10-12 2022-01-07 西安电子科技大学 FPGA and DSP based agile coherent target detection device and method
CN119291631A (en) * 2024-09-24 2025-01-10 中国船舶集团有限公司第七〇九研究所 A radar signal normalization device and method

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346909B1 (en) * 2000-09-06 2002-02-12 The United States Of America As Represented By The Secretary Of The Army System for generating simulated radar targets
US7053815B1 (en) * 1981-11-30 2006-05-30 Alenia Marconi Systems Limited Radar tracking system
EP1901143A1 (en) * 2006-09-15 2008-03-19 Saab Ab Onboard simulation device and simulation method
US20080088501A1 (en) * 2006-01-17 2008-04-17 Chandler Cole A Electronic target position control at millimeter wave for hardware-in-the-loop applications
CN102053241A (en) * 2009-11-02 2011-05-11 古野电气株式会社 Radar signal processing device, radar signal processing program and method
CN102590811A (en) * 2012-01-13 2012-07-18 西安电子科技大学 Small FMCW-based (frequency modulated continuous wave) SAR (synthetic aperture radar) imaging system by using FPGA (field programmable gate array)
CN103197292A (en) * 2013-04-03 2013-07-10 北京华清瑞达科技有限公司 Simulation and proof method of multi-channel radar echo signal
CN103336279A (en) * 2013-05-13 2013-10-02 西安电子科技大学 Missile-borne SAR (synthetic aperture radar) imaging real-time signal processing system
CN103558590A (en) * 2013-11-15 2014-02-05 上海无线电设备研究所 Radar signal analog source system and signal analog method thereof
CN103890605A (en) * 2012-10-16 2014-06-25 松下电器产业株式会社 Radar signal processing device, radar signal processing method, and radar signal processing program
CN104407333A (en) * 2014-12-01 2015-03-11 江西洪都航空工业集团有限责任公司 Low-cost radar seeker semi-physical simulation test platform
CN104484127A (en) * 2014-11-24 2015-04-01 中国电子科技集团公司第二十九研究所 Data storage and distribution system of hardware-in-the-loop radar simulation system
CN104635218A (en) * 2015-02-15 2015-05-20 南京理工大学 Millimeter wave radiometer semi-physical simulation system, signal generating method and linearity testing method
CN104698441A (en) * 2015-04-02 2015-06-10 芜湖航飞科技股份有限公司 Radar signal processing system
CN104730937A (en) * 2015-03-26 2015-06-24 北京润科通用技术有限公司 Semi-physical simulation system and semi-physical simulation method
CN105353360A (en) * 2015-11-12 2016-02-24 西安电子工程研究所 Radar seeker signal processing simulated analysis method and system
CN105629209A (en) * 2016-04-05 2016-06-01 武汉工程大学 Radar seeker part fault detection system and method
CN106646399A (en) * 2016-08-12 2017-05-10 南京理工大学 Semi-physical simulation device for fuze body object echo simulation
CN106886177A (en) * 2016-12-16 2017-06-23 北京华航无线电测量研究所 A kind of Radar Signal Processing System
CN106970364A (en) * 2017-05-11 2017-07-21 合肥工业大学 A kind of trailer-mounted radar is in ring real-time simulation test system and its method
CN107145081A (en) * 2017-06-27 2017-09-08 北京仿真中心 A kind of empty target-seeking Method of Hardware of feedback formula low frequency and system
CN107462876A (en) * 2017-07-28 2017-12-12 中国人民解放军海军航空工程学院 A kind of radar echo signal simulator
CN207020305U (en) * 2017-07-04 2018-02-16 上海一航凯迈光机电设备有限公司 Radar seeker composite performance tester
CN107831480A (en) * 2017-10-13 2018-03-23 西安电子科技大学 Missile-borne radar and the sane self-adapting clutter suppressing method of poor passage

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053815B1 (en) * 1981-11-30 2006-05-30 Alenia Marconi Systems Limited Radar tracking system
US6346909B1 (en) * 2000-09-06 2002-02-12 The United States Of America As Represented By The Secretary Of The Army System for generating simulated radar targets
US20080088501A1 (en) * 2006-01-17 2008-04-17 Chandler Cole A Electronic target position control at millimeter wave for hardware-in-the-loop applications
EP1901143A1 (en) * 2006-09-15 2008-03-19 Saab Ab Onboard simulation device and simulation method
CN102053241A (en) * 2009-11-02 2011-05-11 古野电气株式会社 Radar signal processing device, radar signal processing program and method
CN102590811A (en) * 2012-01-13 2012-07-18 西安电子科技大学 Small FMCW-based (frequency modulated continuous wave) SAR (synthetic aperture radar) imaging system by using FPGA (field programmable gate array)
CN103890605A (en) * 2012-10-16 2014-06-25 松下电器产业株式会社 Radar signal processing device, radar signal processing method, and radar signal processing program
CN103197292A (en) * 2013-04-03 2013-07-10 北京华清瑞达科技有限公司 Simulation and proof method of multi-channel radar echo signal
CN103336279A (en) * 2013-05-13 2013-10-02 西安电子科技大学 Missile-borne SAR (synthetic aperture radar) imaging real-time signal processing system
CN103558590A (en) * 2013-11-15 2014-02-05 上海无线电设备研究所 Radar signal analog source system and signal analog method thereof
CN104484127A (en) * 2014-11-24 2015-04-01 中国电子科技集团公司第二十九研究所 Data storage and distribution system of hardware-in-the-loop radar simulation system
CN104407333A (en) * 2014-12-01 2015-03-11 江西洪都航空工业集团有限责任公司 Low-cost radar seeker semi-physical simulation test platform
CN104635218A (en) * 2015-02-15 2015-05-20 南京理工大学 Millimeter wave radiometer semi-physical simulation system, signal generating method and linearity testing method
CN104730937A (en) * 2015-03-26 2015-06-24 北京润科通用技术有限公司 Semi-physical simulation system and semi-physical simulation method
CN104698441A (en) * 2015-04-02 2015-06-10 芜湖航飞科技股份有限公司 Radar signal processing system
CN105353360A (en) * 2015-11-12 2016-02-24 西安电子工程研究所 Radar seeker signal processing simulated analysis method and system
CN105629209A (en) * 2016-04-05 2016-06-01 武汉工程大学 Radar seeker part fault detection system and method
CN106646399A (en) * 2016-08-12 2017-05-10 南京理工大学 Semi-physical simulation device for fuze body object echo simulation
CN106886177A (en) * 2016-12-16 2017-06-23 北京华航无线电测量研究所 A kind of Radar Signal Processing System
CN106970364A (en) * 2017-05-11 2017-07-21 合肥工业大学 A kind of trailer-mounted radar is in ring real-time simulation test system and its method
CN107145081A (en) * 2017-06-27 2017-09-08 北京仿真中心 A kind of empty target-seeking Method of Hardware of feedback formula low frequency and system
CN207020305U (en) * 2017-07-04 2018-02-16 上海一航凯迈光机电设备有限公司 Radar seeker composite performance tester
CN107462876A (en) * 2017-07-28 2017-12-12 中国人民解放军海军航空工程学院 A kind of radar echo signal simulator
CN107831480A (en) * 2017-10-13 2018-03-23 西安电子科技大学 Missile-borne radar and the sane self-adapting clutter suppressing method of poor passage

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
YI YUSHENG. ETAL: "Range Doppler algorithm for bistatic missile-borne forward-looking SAR", 《2009 2ND ASIAN-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR》 *
张文博: "基于半实物仿真的雷达系统性能评估", 《中国优秀硕士学位论文数据库 信息科技辑》 *
朱火龙: "基于多核DSP的弹载SAR成像信号处理系统设计", 《中国优秀硕士学位论文数据库 信息科技辑》 *
王子龙等: "基于C PC I 总线的雷达导引头测试系统设计与实现", 《计算机测量与控制》 *
王钦伟等: "弹载合成孔径雷达制导半实物仿真及关键技术", 《计算机仿真》 *
邓倩岚等: "脉冲多普勒雷达导引头目标回波模拟器校准技术研究", 《宇航计测技术》 *
黄丰生: "弹载SAR半实物仿真测试平台的设计与实现", 《科技经济导刊》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194598A (en) * 2018-11-16 2019-01-11 上海工程技术大学 A kind of general PSK modulation demodulation system
CN109194598B (en) * 2018-11-16 2020-12-11 上海工程技术大学 A General PSK Modulation and Demodulation System
CN110531331A (en) * 2019-03-31 2019-12-03 西安电子科技大学 Plasma coats target radar returns modeling and simulating method
CN110488291A (en) * 2019-08-23 2019-11-22 成都航天科工微电子系统研究院有限公司 A kind of biradical Forward-looking SAR Hardware In The Loop Simulation Method and device
CN110632568A (en) * 2019-11-05 2019-12-31 中国科学院电子学研究所 Test Signal Source for Synthetic Aperture Radar Real-time Imaging Processor
CN111367259B (en) * 2020-03-17 2021-09-14 四川九洲电器集团有限责任公司 Low-cost digital signal processing module automatic testing device and method
CN111367259A (en) * 2020-03-17 2020-07-03 四川九洲电器集团有限责任公司 Low-cost digital signal processing module automatic testing device and method
CN111650588A (en) * 2020-07-10 2020-09-11 国科北方电子科技(北京)有限公司 Small real-time processing device of SAR (synthetic aperture radar) and RD (RD) algorithm real-time processing method of SAR signals
CN111880438B (en) * 2020-08-21 2022-11-15 航天科工微电子系统研究院有限公司 Semi-physical simulation system based on double/multi-base SAR imaging
CN111880438A (en) * 2020-08-21 2020-11-03 航天科工微电子系统研究院有限公司 Semi-physical simulation system based on double/multi-base SAR imaging
CN112505643A (en) * 2020-11-03 2021-03-16 湖北航天技术研究院总体设计所 Radar and infrared composite seeker open-loop semi-physical simulation method and system
CN112505643B (en) * 2020-11-03 2024-02-02 湖北航天技术研究院总体设计所 Radar and infrared composite seeker open-loop semi-physical simulation method and system
CN112631977A (en) * 2020-12-17 2021-04-09 中国科学院光电技术研究所 Dynamic multi-target electric simulation system
CN112631977B (en) * 2020-12-17 2022-12-30 中国科学院光电技术研究所 Dynamic multi-target electric simulation system
CN113900089A (en) * 2021-10-12 2022-01-07 西安电子科技大学 FPGA and DSP based agile coherent target detection device and method
CN113900089B (en) * 2021-10-12 2024-09-03 西安电子科技大学 Agile phase-change target detection device and method based on FPGA and DSP
CN119291631A (en) * 2024-09-24 2025-01-10 中国船舶集团有限公司第七〇九研究所 A radar signal normalization device and method

Also Published As

Publication number Publication date
CN108563144B (en) 2021-06-29

Similar Documents

Publication Publication Date Title
CN108563144A (en) A kind of missile-borne radar signal processing semi-hardware type simulation test system
CN109946666A (en) Millimeter wave radar signal processing system based on MPSoC
CN104022828B (en) A kind of optical fiber data transmission method based on asynchronous communication model
CN111782566A (en) PCIe-based multi-channel high-speed data acquisition device for high-frequency ground wave radar
CN110445727B (en) Data cache transmission device for high-speed ADC performance test
CN110108938B (en) Real-time electromagnetic spectrum analysis system and method based on GPU data stream drive
CN205507073U (en) Weather radar signal processing device based on FPGA
CN105224428A (en) Method and system for testing dynamic characteristics of rocket-borne computer for digital transmission of control signals
CN107908587A (en) Real-time data acquisition transmitting device based on USB3.0
KR101549426B1 (en) Packet-based propagation of testing information
CN102819006A (en) Broadband direction finding control method based on frequency domain correlation interferometer
CN106326179A (en) Fingerprint collection tooling and method based on SPI (serial peripheral interface) protocol
TW201810037A (en) Input/output expander chip and verification method therefor
CN116506524B (en) Millimeter wave radar data acquisition card and data acquisition control method thereof
CN110166754A (en) A kind of LVDS signal remote transmission emulation mode based on electro-optic conversion
CN203224746U (en) Real-time parallel multichannel signal acquisition system
CN105183954B (en) A kind of universal serial bus health monitoring platform based on PXI
CN102944301A (en) Digital peak detection method and system for ultrasonic signals based on variable-pitch sectioning method
CN117150310A (en) An FPGA-based fast Fourier transform spectrum extraction optimization method
CN108900259A (en) A kind of online underwater sound communication test of heuristics device based on multi-core processor
Wang et al. High-speed ADC interface design based on JESD204B protocol
CN104535835B (en) Binary channels pci data capture card and method
CN205656610U (en) High performance assembly line ADC frequency domain parameter evaluation system based on soPC
ChanglangOu et al. FPGA Implementation of TKIS-II Imaging Sonar Data Acquisition and Communication
CN206657348U (en) A kind of asynchronous serial communication interface based on FPGA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant