[go: up one dir, main page]

CN108604622B - Light emitting device and light emitting device package including the same - Google Patents

Light emitting device and light emitting device package including the same Download PDF

Info

Publication number
CN108604622B
CN108604622B CN201780009234.4A CN201780009234A CN108604622B CN 108604622 B CN108604622 B CN 108604622B CN 201780009234 A CN201780009234 A CN 201780009234A CN 108604622 B CN108604622 B CN 108604622B
Authority
CN
China
Prior art keywords
layer
light emitting
emitting device
type semiconductor
current spreading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780009234.4A
Other languages
Chinese (zh)
Other versions
CN108604622A (en
Inventor
崔炳然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Liyu Semiconductor Co ltd
Original Assignee
Suzhou Lekin Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Lekin Semiconductor Co Ltd filed Critical Suzhou Lekin Semiconductor Co Ltd
Publication of CN108604622A publication Critical patent/CN108604622A/en
Application granted granted Critical
Publication of CN108604622B publication Critical patent/CN108604622B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • H10H20/8162Current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/814Bodies having reflecting means, e.g. semiconductor Bragg reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • H10H20/8252Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/831Electrodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/832Electrodes characterised by their material
    • H10H20/833Transparent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/032Manufacture or treatment of electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors

Landscapes

  • Led Devices (AREA)

Abstract

An embodiment of the light emitting device comprises: a substrate; a first conductive type semiconductor layer disposed on the substrate; an active layer disposed on the first conductive type semiconductor layer, a plurality of quantum well layers and a plurality of quantum barrier layers being alternately stacked in the active layer; a second conductive type semiconductor layer disposed on the active layer; a contact layer disposed on the second conductive type semiconductor layer; a current spreading layer disposed on the contact layer; and a current blocking layer disposed on the second conductive type semiconductor layer, wherein the contact layer and/or the current spreading layer may be formed to surround at least a portion of the current blocking layer and have a maximum intensity value of the diffracted X-ray beam when a miller plane index is 400.

Description

发光器件和包括发光器件的发光器件封装Light emitting device and light emitting device package including light emitting device

技术领域technical field

实施例涉及发光器件和包括发光器件的发光器件封装。Embodiments relate to light emitting devices and light emitting device packages including the light emitting devices.

背景技术Background technique

在本章节中的陈述仅提供与实施例有关的背景信息,并且可能不构成现有技术。The statements in this section merely provide background information related to the embodiments and may not constitute prior art.

诸如GaN和AlGaN的III-V族化合物半导体由于诸如宽范围和易于调节的能带隙等其许多优点而已广泛用于电子器件和光电子器件。III-V compound semiconductors such as GaN and AlGaN have been widely used in electronic and optoelectronic devices due to their many advantages such as wide range and easily tunable energy bandgap.

具体地,使用III-V族或II-VI族化合物半导体材料的发光器件,诸如发光二极管LED或激光二极管,由于薄膜生长技术的进步和器件材料的发展,可以发射各种颜色,诸如红色、绿色、蓝色和紫外光等。发光器件还可以使用荧光材料或通过颜色的组合高效地发射白光。与诸如荧光灯和白炽灯的传统光源相比,发光器件具有低功耗、半永久寿命、快速响应时间、安全性和环境友好性的优点。Specifically, light-emitting devices using III-V or II-VI compound semiconductor materials, such as light-emitting diodes LEDs or laser diodes, can emit various colors, such as red, green, due to the advancement of thin film growth technology and the development of device materials. , blue and ultraviolet light, etc. Light emitting devices can also efficiently emit white light using fluorescent materials or through a combination of colors. Compared with conventional light sources such as fluorescent lamps and incandescent lamps, light emitting devices have the advantages of low power consumption, semi-permanent lifetime, fast response time, safety, and environmental friendliness.

因此,发光器件已经越来越多地应用于光通信装置的传输模块、替换构成液晶显示(LCD)装置的背光的冷阴极荧光灯(CCFL)的LED背光、可以替换荧光灯或白炽灯的白色LED照明装置、车辆的前照灯和信号灯。Accordingly, light emitting devices have been increasingly applied to transmission modules of optical communication devices, LED backlights to replace cold cathode fluorescent lamps (CCFLs) constituting the backlights of liquid crystal display (LCD) devices, white LED lighting to replace fluorescent lamps or incandescent lamps devices, headlights and signal lights of vehicles.

一直在进行关于平滑操作和提高能量效率的发光器件的研究。例如,已经需要开发具有低工作电压和高光输出的发光器件。Research has been ongoing on light-emitting devices that operate smoothly and improve energy efficiency. For example, there has been a need to develop light emitting devices with low operating voltages and high light output.

发明内容SUMMARY OF THE INVENTION

技术问题technical problem

因此,实施例提供具有低工作电压和高光输出的发光器件。Accordingly, embodiments provide light emitting devices with low operating voltages and high light output.

能够通过本发明实现的技术目的不限于上文具体描述的内容,并且本领域的技术人员从以下详细描述中将更清楚地理解在此未描述的其他技术目的。The technical objects that can be achieved by the present invention are not limited to the content specifically described above, and other technical objects not described herein will be more clearly understood by those skilled in the art from the following detailed description.

技术方案Technical solutions

在一个实施例中,发光器件可以包括:衬底;第一导电类型半导体层,该第一导电类型半导体层被布置在衬底上;有源层,该有源层被布置在第一导电类型半导体层上,多个量子阱层和多个量子势垒层被交替地堆叠在有源层中;第二导电类型半导体层,该第二导电类型半导体层被布置在有源层上;接触层,该接触层被布置在第二导电类型半导体层上;电流扩展层,该电流扩展层被布置在接触层上;以及电流阻挡层,该电流阻挡层被布置在第二导电类型半导体层上,其中接触层和/或电流扩展层被形成以围绕电流阻挡层的至少一部分并且当米勒平面指数(Miller plane index)为400时具有衍射的X射线光束(diffracted X-ray beam)的最大强度值。In one embodiment, a light emitting device may include: a substrate; a first conductivity type semiconductor layer arranged on the substrate; an active layer arranged on the first conductivity type On the semiconductor layer, a plurality of quantum well layers and a plurality of quantum barrier layers are alternately stacked in the active layer; a second conductive type semiconductor layer, the second conductive type semiconductor layer is arranged on the active layer; a contact layer , the contact layer is arranged on the second conductivity type semiconductor layer; the current spreading layer is arranged on the contact layer; and the current blocking layer is arranged on the second conductivity type semiconductor layer, wherein the contact layer and/or the current spreading layer is formed to surround at least a portion of the current blocking layer and has a maximum intensity value of a diffracted X-ray beam when the Miller plane index is 400 .

在另一实施例中,发光器件可以包括:反射层;衬底,该衬底被布置在反射层上;第一导电类型半导体层,该第一导电类型半导体层被布置在衬底上;有源层,该有源层被布置在第一导电类型半导体层上;第二导电类型半导体层,该第二导电类型半导体层被布置在有源层上;接触层,该接触层被布置在第二导电类型半导体层上;以及电流扩展层,该电流扩展层被布置在接触层上并由铟锡氧化物(ITO)材料形成;钝化层,该钝化层被布置在电流扩展层上;第一电极,该第一电极被布置在第一导电类型半导体层上;第二电极,该第二电极被布置在第二导电类型半导体层上;以及电流阻挡层,该电流阻挡层被布置在第二导电类型半导体层和第二电极之间。In another embodiment, a light emitting device may include: a reflective layer; a substrate arranged on the reflective layer; a first conductive type semiconductor layer arranged on the substrate; an active layer, which is arranged on the first conductivity type semiconductor layer; a second conductivity type semiconductor layer, which is arranged on the active layer; and a contact layer, which is arranged on the first conductivity type semiconductor layer. on the two-conductivity-type semiconductor layer; and a current spreading layer arranged on the contact layer and formed of an indium tin oxide (ITO) material; a passivation layer arranged on the current spreading layer; a first electrode arranged on the first conductivity type semiconductor layer; a second electrode arranged on the second conductivity type semiconductor layer; and a current blocking layer arranged on the between the second conductive type semiconductor layer and the second electrode.

在一个实施例中,发光器件封装可以包括:主体,该主体包括腔体;引线框架,该引线框架被安装在主体上;以及发光器件,该发光器件被电连接到引线框架。In one embodiment, a light emitting device package may include: a body including a cavity; a lead frame mounted on the body; and a light emitting device electrically connected to the lead frame.

有益效果beneficial effect

在实施例中,接触层用作从第二导电类型半导体层将空穴平滑地注入到有源层,使得实施例的发光器件能够降低工作电压并增加光输出。In the embodiment, the contact layer functions to smoothly inject holes from the second conductive type semiconductor layer to the active layer, so that the light emitting device of the embodiment can reduce the operating voltage and increase the light output.

在实施例中,具有非化学计量结构的ITO材料的电流扩展层减少电流阻抗(current resistance),使得从第二电极供应的电流均匀地扩展到电流扩展层,并且结果,发光器件的工作电压被降低并且发光器件的光输出被提高。In an embodiment, the current spreading layer of the ITO material having the non-stoichiometric structure reduces current resistance, so that the current supplied from the second electrode spreads uniformly to the current spreading layer, and as a result, the operating voltage of the light emitting device is reduced by is reduced and the light output of the light emitting device is increased.

附图说明Description of drawings

图1a是根据实施例的发光器件的截面图。1a is a cross-sectional view of a light emitting device according to an embodiment.

图1b是包括具有与图1a不同的结构的钝化层的发光器件的截面图。FIG. 1b is a cross-sectional view of a light emitting device including a passivation layer having a different structure from that of FIG. 1a.

图2是根据实施例的发光器件的示意性平面图。FIG. 2 is a schematic plan view of a light emitting device according to an embodiment.

图3是图1a和图1b的部分A的放大图。Figure 3 is an enlarged view of part A of Figures 1a and 1b.

图4是图1a和图1b的部分B的放大图。Figure 4 is an enlarged view of part B of Figures 1a and 1b.

图5是图1a和图1b的部分C的放大图。Figure 5 is an enlarged view of part C of Figures 1a and 1b.

图6和7是示出用于解释根据实施例的发光器件的X射线衍射的实验结果的曲线图。6 and 7 are graphs showing experimental results for explaining X-ray diffraction of the light emitting device according to the embodiment.

图8和9是示出表2的实验结果的曲线图。8 and 9 are graphs showing the experimental results of Table 2. FIG.

图10和11是示出表3的实验结果的曲线图。10 and 11 are graphs showing the experimental results of Table 3. FIG.

图12是示出根据实施例的发光器件封装10的视图。FIG. 12 is a view illustrating the light emitting device package 10 according to the embodiment.

具体实施方式Detailed ways

现在将详细参考实施例,其示例在附图中被图示。虽然本公开易受各种修改和替换形式的影响,但是其具体实施例在附图中以示例的方式示出。然而,本公开不应被解释为限于这里阐述的实施例,而是相反,本公开将覆盖落入实施例的精神和范围内的所有修改、等同物和替代物。Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings. While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the accompanying drawings. However, the present disclosure should not be construed as limited to the embodiments set forth herein, but on the contrary, this disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the embodiments.

虽然诸如“第一”、“第二”等术语可以被用于描述各种组件,但是这些组件不应受上述术语的限制。上述术语仅用于将一个组件与另一个组件区分开。另外,考虑到实施例的构造和操作而特别定义的术语仅用于描述实施例,并且没有限定实施例的范围。Although terms such as "first," "second," etc. may be used to describe various components, these components should not be limited by the above terms. The above terms are only used to distinguish one component from another. In addition, terms specifically defined in consideration of the configuration and operation of the embodiments are only used to describe the embodiments, and do not limit the scope of the embodiments.

在实施例的描述中,应理解,当元件被称为在另一元件“上”或“下”形成时,其能够直接在另一元件“上”或“下”或者在其间间接地形成有中间元件。还将会理解,当元件被称为“在......上”或“在......下”时,能够基于元件包括“在元件下”以及“在元件上”。In the description of the embodiments, it will be understood that when an element is referred to as being formed "on" or "under" another element, it can be directly formed "on" or "under" the other element or be indirectly formed therebetween. intermediate element. It will also be understood that when an element is referred to as being "on" or "under", "under the element" as well as "on the element" can be included based on the element.

如在此所使用的,在没有必要要求或暗示这样的实体或元件之间的任何物理或逻辑关系或顺序的情况下,诸如“上”/“上部”/“上方”、“下面”/“下部”/“下方”等的关系术语仅用于区分一个实体或元件与另一实体或元件。As used herein, any physical or logical relationship or order between such entities or elements such as "on"/"upper"/"over", "below"/" is not necessarily required or implied. Relational terms such as "lower"/"under" are only used to distinguish one entity or element from another entity or element.

图1a是根据实施例的发光器件的截面图。图1b是包括钝化层220的发光器件的截面图,该钝化层220具有与图1a不同的结构。图2是根据实施例的发光器件的示意性平面图。1a is a cross-sectional view of a light emitting device according to an embodiment. FIG. 1b is a cross-sectional view of a light emitting device including a passivation layer 220 having a different structure from that of FIG. 1a. FIG. 2 is a schematic plan view of a light emitting device according to an embodiment.

本实施例的发光器件可以包括衬底110、第一导电类型半导体层120、有源层130、第二导电类型半导体层140、接触层150、电流扩展层160、第一电极170、第二电极180、电流阻挡层190、反射层210和钝化层220。The light emitting device of this embodiment may include a substrate 110, a first conductive type semiconductor layer 120, an active layer 130, a second conductive type semiconductor layer 140, a contact layer 150, a current spreading layer 160, a first electrode 170, a second electrode 180 , the current blocking layer 190 , the reflective layer 210 and the passivation layer 220 .

第一导电类型半导体层120、有源层130和第二导电类型半导体层140可以构成发光结构。The first conductive type semiconductor layer 120 , the active layer 130 and the second conductive type semiconductor layer 140 may constitute a light emitting structure.

衬底110可以支撑发光结构。衬底110可以是蓝宝石衬底、硅(Si)衬底、氧化锌(ZnO)衬底和氮化物半导体衬底中的任何一个,或者可以是在其上GaN、InGaN、AlGaN或AlInGaN中的至少一种被堆叠的模板衬底(template substrate)。The substrate 110 may support the light emitting structure. The substrate 110 may be any one of a sapphire substrate, a silicon (Si) substrate, a zinc oxide (ZnO) substrate, and a nitride semiconductor substrate, or may be at least one of GaN, InGaN, AlGaN, or AlInGaN thereon A stacked template substrate.

发光结构可以布置在衬底110上并用于产生光。在这种情况下,衬底110和发光结构之间的晶格常数和热膨胀系数的差异可能引起衬底110和发光结构之间的边界表面周围的应力。A light emitting structure may be arranged on the substrate 110 and used to generate light. In this case, the difference in lattice constant and thermal expansion coefficient between the substrate 110 and the light emitting structure may cause stress around the boundary surface between the substrate 110 and the light emitting structure.

为了减轻这种应力,可以在衬底110和发光结构之间插入缓冲层(未示出)。另外,为了提高第一导电类型半导体层120的结晶度,可以在衬底110和发光结构之间插入未掺杂的半导体层(未示出)。值得注意的是,可能在制造工艺中形成N空位(N-vacancy),并且然后可能无意地执行掺杂。To alleviate such stress, a buffer layer (not shown) may be interposed between the substrate 110 and the light emitting structure. In addition, in order to improve the crystallinity of the first conductive type semiconductor layer 120, an undoped semiconductor layer (not shown) may be interposed between the substrate 110 and the light emitting structure. Notably, N-vacancy may be formed during the fabrication process, and then doping may be performed unintentionally.

这里,缓冲层可以在低温下生长。缓冲层可以是GaN层或AlN层,但是实施例不限于此。除了未掺杂的半导体层具有比第一导电类型的半导体层120低的导电率(因为未掺杂的半导体层没有掺杂有n型掺杂物),未掺杂的半导体层可以与第一导电类型的半导体层120相同。Here, the buffer layer can be grown at low temperature. The buffer layer may be a GaN layer or an AlN layer, but the embodiment is not limited thereto. Except that the undoped semiconductor layer has a lower conductivity than the first conductivity type semiconductor layer 120 (because the undoped semiconductor layer is not doped with n-type dopant), the undoped semiconductor layer may be similar to the first conductivity type semiconductor layer 120. The semiconductor layers 120 of the same conductivity type are the same.

如图1a中所图示,第一电极170可以布置在第一导电类型半导体层120的暴露的台阶部分上,并且第二电极180可以布置在第二导电类型半导体层140的上部暴露部分上。如果通过第一电极170和第二电极180施加电流,则本实施例的发光器件可以发射光。As illustrated in FIG. 1 a , the first electrode 170 may be disposed on the exposed stepped portion of the first conductive type semiconductor layer 120 , and the second electrode 180 may be disposed on the upper exposed portion of the second conductive type semiconductor layer 140 . The light emitting device of the present embodiment may emit light if current is applied through the first electrode 170 and the second electrode 180 .

尽管图1a和1b示出具有水平结构的发光器件,但还可以提供具有垂直结构或倒装芯片结构的发光器件。Although FIGS. 1 a and 1 b illustrate a light emitting device having a horizontal structure, a light emitting device having a vertical structure or a flip-chip structure may also be provided.

如上所述,发光结构可以包括第一导电类型半导体层120、有源层130和第二导电类型半导体层140。As described above, the light emitting structure may include the first conductive type semiconductor layer 120 , the active layer 130 and the second conductive type semiconductor layer 140 .

第一导电类型半导体层120可以布置在衬底110上,并且可以由例如氮化物半导体形成。The first conductive type semiconductor layer 120 may be disposed on the substrate 110 and may be formed of, for example, a nitride semiconductor.

也就是说,第一导电类型半导体层120可以由选自具有InxAlyGa1-x-yN(0≤x≤1,0≤y≤1和0≤x+y≤1)的组成的半导体材料,例如,GaN、AlN、AlGaN、InGaN、InN、InAlGaN和AlInN的材料形成,并且可以掺杂有诸如Si、Ge、Sn、Se或Te的n型掺杂物。That is, the first conductive type semiconductor layer 120 may be composed of a semiconductor selected from the group consisting of InxAlyGa1 -xyN ( 0≤x≤1 , 0≤y≤1 and 0≤x+y≤1) The material is formed of, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, and AlInN, and may be doped with an n-type dopant such as Si, Ge, Sn, Se, or Te.

有源层130可以布置在第一导电类型半导体层120上,并且通过在分别从第一导电类型半导体层120和第二导电类型半导体层140供应的电子和空穴的重新组合期间产生的能量产生光。The active layer 130 may be disposed on the first conductive type semiconductor layer 120 and generated by energy generated during recombination of electrons and holes supplied from the first conductive type semiconductor layer 120 and the second conductive type semiconductor layer 140, respectively. Light.

有源层130可以由化合物半导体,例如,III-V族或II-VI族化合物半导体形成,并且可以具有单量子阱结构、多量子阱结构、量子线结构、或量子点结构。The active layer 130 may be formed of a compound semiconductor, eg, a group III-V or group II-VI compound semiconductor, and may have a single quantum well structure, a multiple quantum well structure, a quantum wire structure, or a quantum dot structure.

当有源层130具有量子阱结构时,有源层130可以具有单量子阱结构或多量子阱结构,其包括具有InxAlyGa1-x-yN(0≤x≤1,0≤y≤1并且0≤x+y≤1)的组成的量子阱层和具有InaAlbGa1-a-bN(0≤a≤1,0≤b≤1并且0≤a+b≤1)的组成的量子势垒层。When the active layer 130 has a quantum well structure, the active layer 130 may have a single quantum well structure or a multi-quantum well structure including a structure having InxAlyGa1 -xyN ( 0≤x≤1, 0≤y≤ Quantum well layer with composition of 1 and 0≤x+y≤1) and composition with In a Al b Ga 1-ab N (0≤a≤1,0≤b≤1 and 0≤a+b≤1) the quantum barrier layer.

在这种情况下,量子阱层的能带隙可以小于量子势垒层的能带隙。当实施例的有源层130具有多量子阱结构时,有源层130可以包括其中可以交替地堆叠多个量子阱层和多个量子势垒层的结构。In this case, the energy band gap of the quantum well layer may be smaller than that of the quantum barrier layer. When the active layer 130 of the embodiment has a multi-quantum well structure, the active layer 130 may include a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers may be alternately stacked.

第二导电类型半导体层140可以布置在有源层130上。第二导电类型半导体层140可以由例如氮化物半导体形成。The second conductive type semiconductor layer 140 may be arranged on the active layer 130 . The second conductive type semiconductor layer 140 may be formed of, for example, a nitride semiconductor.

也就是说,第二导电类型半导体层140可以由选自具有InxAlyGa1-x-yN(0≤x≤1,0≤y≤1并且0≤x+y≤1)的组成的半导体材料,例如,GaN、AlN、AlGaN、InGaN、InN、InAlGaN和AlInN的材料形成,并且可以掺杂有诸如Mg、Zn、Ca、Sr或Ba的p型掺杂物。That is, the second conductive type semiconductor layer 140 may be composed of a semiconductor selected from the group consisting of InxAlyGa1 -xyN ( 0≤x≤1 , 0≤y≤1 and 0≤x+y≤1) The material is formed of, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, and AlInN, and may be doped with a p-type dopant such as Mg, Zn, Ca, Sr, or Ba.

接触层150可以布置在第二导电类型半导体层140上,并且可以用于改善布置在其上的电流扩展层160和布置在其下的第二导电类型半导体层140之间的接触性能,使得空穴可以从第二导电类型半导体层140平滑地注入到有源层130中。The contact layer 150 may be disposed on the second conductive type semiconductor layer 140, and may serve to improve the contact performance between the current spreading layer 160 disposed thereon and the second conductive type semiconductor layer 140 disposed thereunder, so that the air is empty. Holes may be smoothly injected into the active layer 130 from the second conductive type semiconductor layer 140 .

也就是说,接触层150被布置在电流扩展层160和第一导电类型半导体层120之间的边界表面处,并且用于减小可能在电流扩展层160和第二导电类型半导体层140之间的边界表面处产生的电阻抗(electrical resistance),使得被供应到电流扩展层160的电流可以平滑地流入到第二导电类型半导体层140中。That is, the contact layer 150 is arranged at the boundary surface between the current spreading layer 160 and the first conductivity type semiconductor layer 120 and serves to reduce the possibility of being between the current spreading layer 160 and the second conductivity type semiconductor layer 140 The electrical resistance generated at the boundary surface of , so that the current supplied to the current spreading layer 160 can smoothly flow into the second conductive type semiconductor layer 140 .

以这种方式,电流可以平稳地流入第二导电类型半导体层140,并且然后,可以从第二导电类型半导体层140产生大量空穴并且该大量空穴可以被注入到有源层130中。In this way, current may smoothly flow into the second conductive type semiconductor layer 140 , and then, a large number of holes may be generated from the second conductive type semiconductor layer 140 and injected into the active layer 130 .

在实施例中,接触层150可以使空穴从第二导电类型半导体层140平滑地注入到有源层130中,使得工作电压降低并且在根据实施例的发光器件中光输出被提升。In the embodiment, the contact layer 150 may smoothly inject holes from the second conductive type semiconductor layer 140 into the active layer 130, so that the operating voltage is lowered and the light output is improved in the light emitting device according to the embodiment.

接触层150可以由例如铟锡氧化物(ITO)、NiO或NiAu中的至少一种材料形成,并且可以形成为具有低电阻抗的结构。The contact layer 150 may be formed of, for example, at least one material of indium tin oxide (ITO), NiO, or NiAu, and may be formed in a structure having a low electrical impedance.

为了形成具有低电阻抗结构的接触层150,可以适当地提高例如氧(O2)成分的孔隙率(porosity)。氧可以被包括在构成接触层150的组分中,并且氧倾向于提高接触层150的电阻抗。In order to form the contact layer 150 having a low electrical impedance structure, the porosity of, for example, oxygen (O 2 ) components may be appropriately increased. Oxygen may be included in the components constituting the contact layer 150 , and oxygen tends to increase the electrical impedance of the contact layer 150 .

因此,为了减小接触层150的电阻抗,可以适当地形成接触层150以具有其中缺少氧成分的非化学计量结构,而不是具有高氧孔隙率的化学计量结构。Therefore, in order to reduce the electrical impedance of the contact layer 150, the contact layer 150 may be appropriately formed to have a non-stoichiometric structure in which an oxygen component is lacking, rather than a stoichiometric structure with high oxygen porosity.

在接触层150的沉积期间,可以在没有混合氧气的情况下使用包括氩气的工艺气体来实现缺少氧成分的非化学计量结构。During the deposition of the contact layer 150, a process gas including argon can be used without mixing oxygen to achieve a non-stoichiometric structure lacking the oxygen component.

也就是说,工艺气体中不包括氧气,使得在接触层150中可以仅包括源材料中包含的氧成分。因为通过工艺气体没有额外的氧供应,所以接触层150可以形成为缺少氧成分的非化学计量结构。That is, oxygen gas is not included in the process gas, so that only the oxygen component included in the source material may be included in the contact layer 150 . Because there is no additional supply of oxygen through the process gas, the contact layer 150 may be formed as a non-stoichiometric structure lacking oxygen components.

然而,为了提高接触层150的透光率,例如,可以使用其中氧和/或氢(H2)与氩气混合的工艺气体。当执行接触层150的X射线衍射测试时,可以以222或400的米勒平面指数提供具有衍射光束的最大强度值的晶体结构。However, in order to improve the light transmittance of the contact layer 150, for example, a process gas in which oxygen and/or hydrogen (H 2 ) is mixed with argon may be used. When an X-ray diffraction test of the contact layer 150 is performed, the crystal structure with the maximum intensity value of the diffracted beam may be provided at a Miller plane index of 222 or 400.

电流扩展层160可以布置在接触层150上并且可以电连接到第二电极180。电流扩展层160可以起作用,因为从第二电极180施加的电流可以均匀地扩展在第二导电类型半导体层140的整个表面上。The current spreading layer 160 may be disposed on the contact layer 150 and may be electrically connected to the second electrode 180 . The current spreading layer 160 may function because the current applied from the second electrode 180 may spread uniformly over the entire surface of the second conductive type semiconductor layer 140 .

如果通过第二电极180施加到第二导电类型半导体层140的电流不均匀地扩展,则电流可能集中在第二导电类型半导体层140的特定部分处。结果,从第二导电类型半导体层140注入到有源层130的空穴可能集中在有源层130的特定部分中。If the current applied to the second conductive type semiconductor layer 140 through the second electrode 180 spreads unevenly, the current may be concentrated at a specific portion of the second conductive type semiconductor layer 140 . As a result, holes injected from the second conductive type semiconductor layer 140 into the active layer 130 may be concentrated in a specific portion of the active layer 130 .

空穴注入的浓度可能显著地劣化发光器件的光输出。为了防止这种情况,通过电流扩展层160在第二导电类型半导体层140的整个表面上均匀地扩展电流可能是合适的。The concentration of hole injection can significantly degrade the light output of the light emitting device. In order to prevent this, it may be appropriate to spread the current uniformly over the entire surface of the second conductive type semiconductor layer 140 through the current spreading layer 160 .

电流扩展层160可以由ITO形成。如上所述,需要如上所述在接触层150上减小电流扩展层160的电阻抗。The current spreading layer 160 may be formed of ITO. As described above, the electrical impedance of the current spreading layer 160 needs to be reduced on the contact layer 150 as described above.

因此,因为构成电流扩展层160的组分中的氧倾向于提高电阻抗,所以为了减小电流扩展层160的电阻抗,可以适当地形成电流扩展层160以具有缺少氧成分的非化学计量结构,而不是具有高氧孔隙率的化学计量结构。稍后将详细描述形成缺少氧成分的非化学计量结构的方法。Therefore, since oxygen in the components constituting the current spreading layer 160 tends to increase the electrical impedance, in order to reduce the electrical impedance of the current spreading layer 160, the current spreading layer 160 may be appropriately formed to have a non-stoichiometric structure lacking an oxygen component , rather than a stoichiometric structure with high oxygen porosity. The method of forming the non-stoichiometric structure lacking the oxygen component will be described in detail later.

电流阻挡层190可以布置在第二导电类型半导体层140上,即,在第二导电类型半导体层140和第二电极180之间。这里,电流阻挡层190的面积可以被形成为大于第二电极180的面积。The current blocking layer 190 may be disposed on the second conductive type semiconductor layer 140 , that is, between the second conductive type semiconductor layer 140 and the second electrode 180 . Here, the area of the current blocking layer 190 may be formed to be larger than that of the second electrode 180 .

可以提供接触层150和/或电流扩展层160以围绕电流阻挡层190的至少一部分。例如,参考图4,接触层150和/或电流扩展层160可以形成为围绕电流阻挡层190的上表面和/或电流阻挡层190的侧表面。The contact layer 150 and/or the current spreading layer 160 may be provided to surround at least a portion of the current blocking layer 190 . For example, referring to FIG. 4 , the contact layer 150 and/or the current spreading layer 160 may be formed to surround the upper surface of the current blocking layer 190 and/or the side surface of the current blocking layer 190 .

电流阻挡层190可以用作防止从第二电极180施加的电流集中在第二导电类型半导体层140中的面对第二电极180的部分中。The current blocking layer 190 may function to prevent the current applied from the second electrode 180 from being concentrated in a portion of the second conductive type semiconductor layer 140 facing the second electrode 180 .

这是因为电流阻挡层190阻止电流从第二电极180立即流入到第二导电类型半导体层140中。为此,电流阻挡层190可以由例如电绝缘材料形成。This is because the current blocking layer 190 prevents current from flowing from the second electrode 180 into the second conductive type semiconductor layer 140 immediately. To this end, the current blocking layer 190 may be formed of, for example, an electrically insulating material.

电流阻挡层190可以防止电流集中在第二导电类型半导体层140的特定部分处,并且因此,防止从第二导电类型半导体层140注入到有源层130中的空穴被集中在有源层130的特定部分,使得可以防止实施例的发光器件的光输出的劣化。The current blocking layer 190 may prevent current from being concentrated at a specific portion of the second conductive type semiconductor layer 140 , and thus, prevent holes injected from the second conductive type semiconductor layer 140 into the active layer 130 from being concentrated in the active layer 130 of the specific portion, so that deterioration of the light output of the light emitting device of the embodiment can be prevented.

也就是说,电流阻挡层190可以用作在电流扩展层160上均匀地扩展电流,该电流可以在垂直方向上集中在面对第二电极180的部分处。That is, the current blocking layer 190 may function to uniformly spread the current on the current spreading layer 160 , and the current may be concentrated at the portion facing the second electrode 180 in the vertical direction.

如图1a和图1b中所示,在其中布置第二电极180的台面可以被形成在发光器件中,并且从台面到第一电极170的距离L1可以是,例如3μm至10μm。As shown in FIGS. 1a and 1b , a mesa in which the second electrode 180 is arranged may be formed in the light emitting device, and a distance L1 from the mesa to the first electrode 170 may be, for example, 3 μm to 10 μm.

这里,台面表示发光器件中的突出部分,并且距离L1表示从台面的第一导电类型半导体层120的侧表面到最近的第一导电类型半导体层120的侧表面的第一电极170的点的距离。Here, the mesa represents a protruding portion in the light emitting device, and the distance L1 represents the distance from the side surface of the first conductive type semiconductor layer 120 of the mesa to the point of the first electrode 170 of the nearest side surface of the first conductive type semiconductor layer 120 .

如图2中所示,第二电极180可以包括形成在电流扩展层160上的第二分支电极181,并且第一电极170可以包括形成在第一导电类型半导体层120上的第一分支电极171。As shown in FIG. 2 , the second electrode 180 may include the second branch electrode 181 formed on the current spreading layer 160 , and the first electrode 170 may include the first branch electrode 171 formed on the first conductive type semiconductor layer 120 .

值得注意的是,其中形成第一分支电极171的部分可以形成为具有其中可以在垂直方向中蚀刻电流扩展层160、第二导电类型半导体层140和有源层130的结构,以便于第一分支电极171不与电流扩展层160、第二导电类型半导体层140和有源层130电连接。Notably, the portion where the first branch electrode 171 is formed may be formed to have a structure in which the current spreading layer 160, the second conductive type semiconductor layer 140, and the active layer 130 may be etched in a vertical direction so as to facilitate the first branch The electrode 171 is not electrically connected to the current spreading layer 160 , the second conductive type semiconductor layer 140 and the active layer 130 .

在这种情况下,电流阻挡层190也可以在垂直方向上形成在面对第二分支电极181的部分中。这用作通过防止电流在垂直方向上集中地流过第一分支电极171进入面对第一分支电极171的第二导电类型半导体层140中而在电流扩展层160上均匀地扩展电流。In this case, the current blocking layer 190 may also be formed in a portion facing the second branch electrode 181 in the vertical direction. This serves to uniformly spread the current on the current spreading layer 160 by preventing the current from flowing concentratedly in the vertical direction through the first branch electrode 171 into the second conductive type semiconductor layer 140 facing the first branch electrode 171 .

从台面到第一分支电极171的距离可以小于从台面到第一电极170的距离L1。The distance from the mesa to the first branch electrode 171 may be smaller than the distance L1 from the mesa to the first electrode 170 .

反射层210可以布置在衬底110下面,并且可以用作提高发光器件的发光效率。也就是说,从有源层130发射的光的一部分可以通过衬底110的下部发射。考虑到这一点,反射层210可以布置在衬底110下面使得反射通过衬底110的下部发射的光,并且沿发光器件的向上方向透射光。结果,可以提高发光器件的发光效率。The reflective layer 210 may be disposed under the substrate 110 and may serve to improve the luminous efficiency of the light emitting device. That is, a part of the light emitted from the active layer 130 may be emitted through the lower portion of the substrate 110 . In consideration of this, the reflective layer 210 may be disposed under the substrate 110 so as to reflect light emitted through the lower portion of the substrate 110 and transmit the light in the upward direction of the light emitting device. As a result, the light emitting efficiency of the light emitting device can be improved.

反射层210可以是具有多层结构的分布式布拉格反射层,其中具有不同折射率的至少两个层交替地堆叠至少一次。反射层210反射从发光结构引入的光。The reflection layer 210 may be a distributed Bragg reflection layer having a multi-layer structure in which at least two layers having different refractive indices are alternately stacked at least once. The reflective layer 210 reflects light introduced from the light emitting structure.

也就是说,反射层210可以具有其中交替地堆叠具有相对高折射率的第一层和具有相对低折射率的第二层的结构。在这种情况下,反射层210的反射率可以根据第一层和第二层的反射指数与第一层和第二层中的每个的厚度之间的差异而不同。That is, the reflection layer 210 may have a structure in which a first layer having a relatively high refractive index and a second layer having a relatively low refractive index are alternately stacked. In this case, the reflectivity of the reflective layer 210 may be different according to the difference between the reflection index of the first layer and the second layer and the thickness of each of the first layer and the second layer.

钝化层220的至少一部分可以布置在电流扩展层160上。具体地,如图1a中所示,钝化层220可以布置在电流扩展层160的上表面和第一导电类型半导体层120的台阶部分的上表面处。At least a portion of the passivation layer 220 may be disposed on the current spreading layer 160 . Specifically, as shown in FIG. 1 a , the passivation layer 220 may be disposed at the upper surface of the current spreading layer 160 and the upper surface of the stepped portion of the first conductive type semiconductor layer 120 .

另外,钝化层220可以布置在第一导电类型半导体层120、有源层130、第二导电类型半导体层和电流扩展层160的侧表面的至少一部分处。In addition, the passivation layer 220 may be disposed at at least a portion of the side surfaces of the first conductive type semiconductor layer 120 , the active layer 130 , the second conductive type semiconductor layer, and the current spreading layer 160 .

具有上述结构的钝化层220可以用作保护构成发光器件的每个层。特别地,钝化层220可以用作防止第一导电类型半导体层120和第二导电类型半导体层140之间的电短路。The passivation layer 220 having the above structure may serve to protect each layer constituting the light emitting device. In particular, the passivation layer 220 may function to prevent an electrical short between the first conductive type semiconductor layer 120 and the second conductive type semiconductor layer 140 .

作为实施例,钝化层220可以形成为不覆盖第一导电类型半导体层120的侧表面的一部分,如图1a中所示。作为另一实施例,钝化层220可以形成为覆盖如图1b中所示的第一导电类型半导体层120的所有侧表面。As an example, the passivation layer 220 may be formed not to cover a portion of the side surface of the first conductive type semiconductor layer 120, as shown in FIG. 1a. As another example, the passivation layer 220 may be formed to cover all side surfaces of the first conductive type semiconductor layer 120 as shown in FIG. 1b.

钝化层220的厚度可为约100nm。根据钝化层220的厚度,发光结构的折射率可以变化。因此,发光器件的发光效率,即,发光器件的光提取效率,可以根据钝化层220的厚度变化而不同。The thickness of the passivation layer 220 may be about 100 nm. According to the thickness of the passivation layer 220, the refractive index of the light emitting structure may vary. Therefore, the luminous efficiency of the light emitting device, that is, the light extraction efficiency of the light emitting device, may vary according to the thickness of the passivation layer 220 .

作为实施例,可以提供钝化层220以暴露第一电极和第二电极的侧表面,如图1a和图1b中所示。作为另一实施例,可以提供钝化层220以覆盖第一电极和第二电极的侧表面。作为又一实施例,可以提供钝化层220,使得钝化层220的侧表面与第一电极和第二电极的侧表面隔开了预定距离。然而,实施例不限于此。As an example, the passivation layer 220 may be provided to expose side surfaces of the first and second electrodes, as shown in FIGS. 1 a and 1 b. As another example, the passivation layer 220 may be provided to cover the side surfaces of the first and second electrodes. As yet another embodiment, the passivation layer 220 may be provided such that the side surfaces of the passivation layer 220 are spaced apart from the side surfaces of the first and second electrodes by a predetermined distance. However, embodiments are not limited thereto.

图3是图1a和图1b的部分A的放大图。如图3中所示,电流扩展层160可以堆叠在接触层150上。Figure 3 is an enlarged view of part A of Figures 1a and 1b. As shown in FIG. 3 , the current spreading layer 160 may be stacked on the contact layer 150 .

接触层150可以形成为具有例如1nm至5nm的厚度T1。例如,电流扩展层160可以形成为具有20nm至70nm的厚度T2。然而,在其中布置电流阻挡层190的部分处的接触层150的厚度可以与上述厚度T1不同。The contact layer 150 may be formed to have a thickness T1 of, for example, 1 nm to 5 nm. For example, the current spreading layer 160 may be formed to have a thickness T2 of 20 nm to 70 nm. However, the thickness of the contact layer 150 at the portion where the current blocking layer 190 is arranged may be different from the above-described thickness T1.

电流阻挡层190的厚度与接触层150和电流扩展层160的总厚度的比率可以是,例如,2:1至5:1(电流阻挡层190的厚度:总厚度)。然而,实施例不限于此。The ratio of the thickness of the current blocking layer 190 to the total thickness of the contact layer 150 and the current spreading layer 160 may be, for example, 2:1 to 5:1 (thickness of the current blocking layer 190 : total thickness). However, embodiments are not limited thereto.

电流扩展层160的厚度与接触层150的厚度的比率可以是,例如,6:1至10:1(电流扩展层160的厚度:接触层150的厚度)。然而,实施例不限于此。The ratio of the thickness of the current spreading layer 160 to the thickness of the contact layer 150 may be, for example, 6:1 to 10:1 (thickness of the current spreading layer 160 : thickness of the contact layer 150 ). However, embodiments are not limited thereto.

如果电流扩展层160的厚度小于20nm,则电流扩展层160的电阻抗上升,并且然后发光器件的工作电压也上升。这可能对发光器件的性能具有不利影响。If the thickness of the current spreading layer 160 is less than 20 nm, the electrical impedance of the current spreading layer 160 rises, and then the operating voltage of the light emitting device also rises. This may have an adverse effect on the performance of the light emitting device.

如果电流扩展层160的厚度T2超过70nm,则电流扩展层160的透光率被减少,并且然后发光器件的光输出被减小。这可能对发光器件的性能产生不利影响。If the thickness T2 of the current spreading layer 160 exceeds 70 nm, the light transmittance of the current spreading layer 160 is reduced, and then the light output of the light emitting device is reduced. This may adversely affect the performance of the light emitting device.

钝化层220可以被提供有约100nm的厚度T5,如上所述,并且可以比接触层150和/或电流扩展层160厚。The passivation layer 220 may be provided with a thickness T5 of about 100 nm, as described above, and may be thicker than the contact layer 150 and/or the current spreading layer 160 .

钝化层220的厚度T5与电流扩展层160的厚度T2的比率可以是,例如T5:T2=1.4:1至5:1。The ratio of the thickness T5 of the passivation layer 220 to the thickness T2 of the current spreading layer 160 may be, for example, T5:T2=1.4:1 to 5:1.

如上所述,电流扩展层160可以由ITO形成。为了减小电阻抗,电流扩展层160可以具有缺少氧成分的非化学计量结构。As described above, the current spreading layer 160 may be formed of ITO. To reduce electrical impedance, the current spreading layer 160 may have a non-stoichiometric structure lacking oxygen components.

可以通过例如等离子体真空沉积将电流扩展层160形成为堆叠。电流扩展层160的非化学计量结构可以通过下面描述的方案被形成。The current spreading layer 160 may be formed into a stack by, for example, plasma vacuum deposition. The non-stoichiometric structure of the current spreading layer 160 may be formed by the scheme described below.

可以通过在氩(Ar)气氛下沉积来形成电流扩展层160。也就是说,通过在等离子体状态下的工艺气体在接触层150上喷射构成电流扩展层160的源材料,可以在高温下执行电流扩展层160的沉积工艺。这种等离子体真空沉积可以在真空室中执行。The current spreading layer 160 may be formed by deposition under an argon (Ar) atmosphere. That is, by spraying the source material constituting the current spreading layer 160 on the contact layer 150 by a process gas in a plasma state, the deposition process of the current spreading layer 160 can be performed at a high temperature. This plasma vacuum deposition can be performed in a vacuum chamber.

等离子体真空沉积的一种方法包括溅射。当等离子体状态的工艺气体中包含的离子对源材料,即,目标材料施加冲击时,可以通过从靶材料中喷射原子和/或分子来形成薄膜而执行溅射。One method of plasma vacuum deposition includes sputtering. When ions contained in a process gas in a plasma state apply an impact to a source material, ie, a target material, sputtering may be performed by ejecting atoms and/or molecules from the target material to form a thin film.

溅射在薄膜的粘附力方面是优异的,并且可以形成具有均匀厚度和均匀密度的薄膜,因为靶材料广泛分布在真空室中。通过溅射形成的薄膜具有诸如优异的台阶覆盖和易于沉积氧化物系列材料的优点。Sputtering is excellent in the adhesion of thin films, and can form thin films with uniform thickness and uniform density because the target material is widely distributed in the vacuum chamber. Thin films formed by sputtering have advantages such as excellent step coverage and easy deposition of oxide series materials.

工艺气体可以包括惰性气体,例如,氩。通常,氩气和氧气的混合物或氩气、氧气和氢气的混合物可以用作沉积ITO的工艺气体。The process gas may include an inert gas such as argon. Typically, a mixture of argon and oxygen or a mixture of argon, oxygen and hydrogen can be used as the process gas for depositing ITO.

然而,当使用与氧气混合的气体作为工艺气体时,氧气被充分供应到沉积的ITO。然后,可以堆叠其中化学计量地包含氧的ITO。However, when a gas mixed with oxygen is used as the process gas, oxygen is sufficiently supplied to the deposited ITO. Then, ITO in which oxygen is contained stoichiometrically can be stacked.

化学计量结构的ITO由于其中含有氧而具有高电阻抗的特性。因此,由ITO材料形成的实施例的电流扩展层160可以使用氩作为工艺气体以便于降低其电阻抗。The stoichiometric structure of ITO has the characteristics of high electrical impedance due to the oxygen contained therein. Therefore, the current spreading layer 160 of an embodiment formed of an ITO material may use argon as a process gas in order to reduce its electrical impedance.

当使用氩时,电流扩展层160的氧气孔隙率可能增加。因为氧气孔用作电流扩展层160中的电子载流子,所以可以减小电流扩展层160的电阻抗。When argon is used, the oxygen porosity of the current spreading layer 160 may increase. Since the oxygen holes are used as electron carriers in the current spreading layer 160, the electrical impedance of the current spreading layer 160 can be reduced.

作为另一实施例,工艺气体可以单独使用不含氧的惰性气体或各种类型的惰性气体的混合物。As another example, the process gas may use an oxygen-free inert gas alone or a mixture of various types of inert gas.

当使用包含氩而不含氧的工艺气体形成ITO材料的电流扩展层160时,电流扩展层160可以形成为在化学计量方面缺少氧的非化学计量结构。When the current spreading layer 160 of ITO material is formed using a process gas containing argon and no oxygen, the current spreading layer 160 may be formed as a non-stoichiometric structure that is stoichiometrically deficient in oxygen.

在这种情况下,当X射线衍射实验中的Millar平面指数为400时,电流扩展层160可以具有衍射光束的最大强度值。In this case, when the Millar plane index in the X-ray diffraction experiment is 400, the current spreading layer 160 may have the maximum intensity value of the diffracted beam.

表1示出实施例的ITO材料的电流扩展层160的阻抗的实验结果值。在表1中,比较样本指的是当使用其中氩与氧混合的工艺气体形成电流扩展层160时的样本,并且实施例样本指的是当使用仅包括氩的工艺气体形成电流扩展层160时的样本。这里,阻抗指的是薄层阻抗(sheet resistance)。因此,阻抗单位为Ω/□。Table 1 shows experimental result values of the impedance of the current spreading layer 160 of the ITO material of the embodiment. In Table 1, the comparative samples refer to samples when the current spreading layer 160 is formed using a process gas in which argon is mixed with oxygen, and the example samples refer to when the current spreading layer 160 is formed using a process gas including only argon sample. Here, the impedance refers to sheet resistance. Therefore, the impedance unit is Ω/□.

当电流扩展层160的厚度T2为约40nm、50nm和60nm时,已经测量样本的实验值。实验进行多次,并且阻抗值是通过多次实验获得的值的平均值。The experimental values of the samples have been measured when the thickness T2 of the current spreading layer 160 is about 40 nm, 50 nm and 60 nm. The experiment was performed multiple times, and the impedance value was an average value of the values obtained through the multiple experiments.

[表1][Table 1]

样本/ITO厚度(nm)Sample/ITO thickness (nm) 阻抗值(Ω/□)Impedance value (Ω/□) 透光率(%)Transmittance(%) 比较样本/40Compare Samples/40 78.3278.32 94.3994.39 实施例样本/40Example sample/40 50.8350.83 94.9294.92 比较样本/50Compare Samples/50 53.2553.25 92.8492.84 实施例样本/50Example sample/50 32.5532.55 92.3992.39 比较样本/60Compare Samples/60 49.0349.03 92.2992.29 实施例样本/60Example sample/60 24.0124.01 92.2492.24

参考表1,可以理解,实施例样本的阻抗值显著地低于比较样本的阻抗值。也就是说,通过使用仅包括氩的工艺气体形成的电流扩展层160具有比通过使用包括氩和氧的混合物的工艺气体形成的ITO材料的电流扩展层160显著更低的阻抗值。因此,可以理解,当使用实施例的电流扩展层160时,从第二电极180供应的电流能够被更均匀地扩展在电流扩展层160上。Referring to Table 1, it can be understood that the impedance values of the example samples are significantly lower than those of the comparative samples. That is, the current spreading layer 160 formed by using the process gas including only argon has a significantly lower resistance value than the current spreading layer 160 of the ITO material formed by using the process gas including the mixture of argon and oxygen. Therefore, it can be understood that when the current spreading layer 160 of the embodiment is used, the current supplied from the second electrode 180 can be spread on the current spreading layer 160 more uniformly.

就透光率而言,相对于相同厚度的电流扩展层160,比较样本和实施例样本之间的透光率差异很小。因此,可以清楚地理解,根据实施例的非化学计量结构的ITO材料的电流扩展层160的电阻抗大大降低,但透光率几乎没有变化。In terms of light transmittance, with respect to the current spreading layer 160 of the same thickness, the light transmittance difference between the comparative sample and the example sample is small. Therefore, it can be clearly understood that the electrical impedance of the current spreading layer 160 of the non-stoichiometric structure of the ITO material according to the embodiment is greatly reduced, but the light transmittance is hardly changed.

也就是说,当使用仅包括氩的工艺气体形成电流扩展层160时,因为电阻抗减小并且光透射率不降低,所以能够提高发光器件的光输出。That is, when the current spreading layer 160 is formed using a process gas including only argon, since the electrical impedance is reduced and the light transmittance is not lowered, the light output of the light emitting device can be improved.

在实施例中,因为非化学计量结构的ITO材料的电流扩展层160具有减小的电流阻抗,因此从第二电极180供应的电流均匀地分布在电流扩展层160上。结果,降低发光器件的工作电压并提高发光器件的光输出。In an embodiment, the current supplied from the second electrode 180 is uniformly distributed on the current spreading layer 160 because the current spreading layer 160 of the ITO material of the non-stoichiometric structure has a reduced current resistance. As a result, the operating voltage of the light emitting device is lowered and the light output of the light emitting device is increased.

图4是图1a和图1b的部分B的放大图。在实施例中,电流阻挡层190可以形成为具有例如90nm至150nm的厚度T3。Figure 4 is an enlarged view of part B of Figures 1a and 1b. In an embodiment, the current blocking layer 190 may be formed to have a thickness T3 of, for example, 90 nm to 150 nm.

如图4中所示,接触层150和电流扩展层160可以从电流阻挡层190和第二电极180之间的底部沿向上方向顺序地堆叠。As shown in FIG. 4 , the contact layer 150 and the current spreading layer 160 may be sequentially stacked in an upward direction from the bottom between the current blocking layer 190 and the second electrode 180 .

在这种情况下,为了确保布置电流阻挡层190的空间,接触层150和电流扩展层160的每个侧表面的厚度,即,与接触层150和电流扩展层160的每个其他部分的厚度相比,在电流阻挡层190的侧表面处的电流扩展层160与接触层150的每个侧表面的厚度可以形成得薄。In this case, in order to secure a space for arranging the current blocking layer 190, the thickness of each side surface of the contact layer 150 and the current spreading layer 160, that is, the thickness of each other portion of the contact layer 150 and the current spreading layer 160 In comparison, the thickness of each side surface of the current spreading layer 160 and the contact layer 150 at the side surfaces of the current blocking layer 190 may be formed thin.

在另一实施例中,为了确保其中布置电流阻挡层190的空间,可以仅在电流阻挡层190和第二电极180之间形成电流扩展层160。In another embodiment, in order to secure a space in which the current blocking layer 190 is arranged, the current spreading layer 160 may be formed only between the current blocking layer 190 and the second electrode 180 .

如上所述,电流阻挡层190的面积可以大于第二电极180的面积。这里,第二电极180的末端与电流阻挡层190之间的距离L2可以是大约3μm。As described above, the area of the current blocking layer 190 may be larger than that of the second electrode 180 . Here, the distance L2 between the end of the second electrode 180 and the current blocking layer 190 may be about 3 μm.

图5是图1a和图1b的C部分的放大图。也就是说,在其中形成第二电极的台面区域中,电流扩展层160和/或接触层150的侧表面与第二导电类型半导体层140的侧表面之间的距离T4可以是,例如,3μm至10μm。Figure 5 is an enlarged view of part C of Figures 1a and 1b. That is, in the mesa region in which the second electrode is formed, the distance T4 between the side surface of the current spreading layer 160 and/or the contact layer 150 and the side surface of the second conductive type semiconductor layer 140 may be, for example, 3 μm to 10 μm.

如果距离T4小于3μm,则电子跃迁可能发生在电流扩展层160、接触层150的侧表面和/或第二导电类型半导体层140的侧表面中,并且因此,可能发生电流泄漏。If the distance T4 is less than 3 μm, electron transitions may occur in the current spreading layer 160 , the side surface of the contact layer 150 and/or the side surface of the second conductive type semiconductor layer 140 , and thus, current leakage may occur.

如果距离T4超过10μm,则可以提高发光器件的工作电压并且可以减小发光器件的光输出。If the distance T4 exceeds 10 μm, the operating voltage of the light emitting device can be increased and the light output of the light emitting device can be reduced.

图6和7是示出用于解释根据实施例的发光器件的X射线衍射的实验结果的图。X射线衍射实验是通过用X射线光束照射电流扩展层160来分析衍射光束的类型的结果。6 and 7 are diagrams showing experimental results for explaining X-ray diffraction of the light emitting device according to the embodiment. The X-ray diffraction experiment is a result of analyzing the type of diffracted beam by irradiating the current spreading layer 160 with the X-ray beam.

在曲线图中,横轴表示通过用X射线光束照射电流扩展层160而衍射的X射线光束的衍射角(°),并且纵轴表示衍射X射线光束的强度(a.u)。In the graph, the horizontal axis represents the diffraction angle (°) of the X-ray beam diffracted by irradiating the current spreading layer 160 with the X-ray beam, and the vertical axis represents the intensity (a.u) of the diffracted X-ray beam.

在图6和7中,实际上示出其中工艺气体包括氩气,工艺气体包括氩气和氧气的混合物,并且工艺气体包括氩气、氧气和氢气的混合物的情况。图6实际上示出在各种情况下衍射光束的强度。图7示出在各种情况下衍射光束强度的近似匹配的非峰值,以便于比较各种情况下衍射光束的强度的峰值。In FIGS. 6 and 7 , the case is actually shown in which the process gas includes argon, the process gas includes a mixture of argon and oxygen, and the process gas includes a mixture of argon, oxygen, and hydrogen. Figure 6 actually shows the intensity of the diffracted beam in each case. Figure 7 shows approximately matched non-peak values of diffracted beam intensities under various conditions to facilitate comparison of peaks in diffracted beam intensities under various conditions.

在附图中,数字222、400和440表示米勒平面指数。米勒平面指数表示作为实验目标的电流扩展层160的特定晶面。因此,当在米勒平面指数相等的部分中衍射光束的强度的峰值不同时,这可能意指晶体结构不同。In the drawings, numerals 222, 400 and 440 represent Miller plane indices. The Miller plane index represents a specific crystal plane of the current spreading layer 160 that is an experimental target. Therefore, when the peaks of the intensities of the diffracted beams are different in the portions where the Miller plane indices are equal, this may mean that the crystal structures are different.

参考图6和7,通过在Ar气氛下沉积形成的电流扩展层160可以根据X射线衍射实验中的Millar平面指数在衍射光束的强度上具有多个峰值。6 and 7 , the current spreading layer 160 formed by deposition in an Ar atmosphere may have a plurality of peaks in the intensity of the diffracted beam according to the Millar plane index in the X-ray diffraction experiment.

参考图7,当米勒平面指数为222时,在其中工艺气体是氩气和氧气的混合物的情况下,衍射光束的强度具有峰值。当米勒平面指数为400时,在其中工艺气体为氩气的情况下,衍射光束的强度具有峰值。也就是说,在实施例中,当在X射线衍射实验中Millar平面指数为400时,电流扩展层160可以具有衍射光束的最大强度峰值。Referring to FIG. 7 , when the Miller plane index is 222, in the case where the process gas is a mixture of argon and oxygen, the intensity of the diffracted beam has a peak. When the Miller plane index is 400, in the case where the process gas is argon, the intensity of the diffracted beam has a peak. That is, in the embodiment, when the Millar plane index is 400 in the X-ray diffraction experiment, the current spreading layer 160 may have the maximum intensity peak of the diffracted beam.

因此,根据电流扩展层160的X射线衍射实验中的Millar平面指数,可以通过衍射光束的强度峰值分布来识别工艺气体的成分。Therefore, according to the Millar plane index in the X-ray diffraction experiment of the current spreading layer 160, the composition of the process gas can be identified through the intensity peak distribution of the diffracted beam.

如上所述,当使用氩作为工艺气体通过溅射工艺沉积电流扩展层160时,电流扩展层160可以形成为具有高孔隙率的氧成分的结构。然后,减小电流扩展层160的电阻抗,使得电流可以在电流扩展层160上平滑地扩展。As described above, when the current spreading layer 160 is deposited by a sputtering process using argon as a process gas, the current spreading layer 160 may be formed into a structure having an oxygen component with high porosity. Then, the electrical impedance of the current spreading layer 160 is reduced so that the current can spread smoothly on the current spreading layer 160 .

表2和3示出使用实施例的发光器件的发光芯片的工作值和光输出的实验值。在额定输出为95mA的情况下测试每个发光芯片。Tables 2 and 3 show operating values and experimental values of light output of light-emitting chips using the light-emitting devices of the Examples. Each light-emitting chip was tested with a rated output of 95mA.

在表2中,所有发光芯片的尺寸为1200×600。情况1是在发光器件的中心处测量工作电压和光输出的情况,并且情况2是其中在与发光器件的中心分离的特定部分处测量工作电压和光输出的情况。使用包括具有厚度为约40nm的ITO材料的电流扩展层160的发光器件。In Table 2, the size of all light-emitting chips is 1200×600. Case 1 is a case where the operating voltage and light output are measured at the center of the light emitting device, and Case 2 is a case where the operating voltage and light output are measured at a specific portion separated from the center of the light emitting device. A light emitting device including a current spreading layer 160 having an ITO material with a thickness of about 40 nm was used.

测试1对应于当使用普通ITO材料的电流扩展层160时,即,当使用氩和氧的混合物作为工艺气体并且使用其中接触层150没有被形成的结构的发光器件时的测试。Test 1 corresponds to a test when using the current spreading layer 160 of a common ITO material, that is, when using a mixture of argon and oxygen as a process gas and using a light emitting device of a structure in which the contact layer 150 is not formed.

测试2对应于当使用实施例的ITO材料的电流扩展层160时,即,当使用氩气作为不含氧的工艺气体并且使用具有接触层150被形成的结构的发光器件时的测试。Test 2 corresponds to a test when using the current spreading layer 160 of the ITO material of the embodiment, that is, when using argon as a process gas not containing oxygen and using a light emitting device having a structure in which the contact layer 150 is formed.

[表2][Table 2]

Figure GDA0001750011010000191
Figure GDA0001750011010000191

在表3中,使用具有尺寸为1200×700的发光芯片,并且其他条件与表2中描述的那些相同。In Table 3, a light-emitting chip having a size of 1200×700 was used, and other conditions were the same as those described in Table 2.

[表3][table 3]

Figure GDA0001750011010000192
Figure GDA0001750011010000192

考虑到测试结果,测试2中的工作电压低于测试1的工作电压,并且测试2中的光输出高于测试1中的光输出。Considering the test results, the working voltage in Test 2 is lower than that of Test 1, and the light output in Test 2 is higher than that in Test 1.

因此,可以理解,当使用其中形成非化学计量结构的ITO材料的电流扩展层160并且形成接触层150的实施例的发光器件时,与使用化学计量结构的ITO材料的电流扩展层160并且未形成接触层150的情况相比,发光器件的工作电压被降低并且发光器件的光输出被增加。Therefore, it can be understood that when using the light emitting device of the embodiment in which the current spreading layer 160 of the ITO material of the non-stoichiometric structure is formed and the contact layer 150 is formed, the current spreading layer 160 of the ITO material of the stoichiometric structure is used and not formed. Compared with the case of the contact layer 150, the operating voltage of the light emitting device is lowered and the light output of the light emitting device is increased.

图8和9是示出表2的实验结果的曲线图。图8中示出的VF3表示以伏特(V)为单位的工作电压,并且Po表示以毫瓦(mW)为单位的光输出。在由圆圈表示的曲线图中,左侧的半球表示测试1,并且右侧的半球表示测试2。因为图8和9示出发光器件的整个区域的两半,所以图8和9的曲线包括情况1和情况2。8 and 9 are graphs showing the experimental results of Table 2. FIG. VF3 shown in FIG. 8 represents the operating voltage in volts (V), and Po represents the light output in milliwatts (mW). In the graph represented by the circle, the hemisphere on the left represents Test 1, and the hemisphere on the right represents Test 2. Since FIGS. 8 and 9 show two halves of the entire area of the light emitting device, the curves of FIGS. 8 and 9 include Case 1 and Case 2.

参考示出工作电压的图8,能够理解,测试2中的工作电压整体上低于测试1中的工作电压。参考示出光输出的图9,能够理解,测试2中的光输出整体上高于测试1中的光输出。Referring to FIG. 8 , which shows the operating voltage, it can be understood that the operating voltage in Test 2 is generally lower than the operating voltage in Test 1 . Referring to FIG. 9 showing the light output, it can be appreciated that the light output in Test 2 is generally higher than that in Test 1 .

图10和11是示出表3的实验结果的曲线图。与图8和9相似,在由圆圈表示的曲线图中,左侧的半球表示测试1,并且右侧的半球表示测试2。图10和图11的曲线图包括情况1和情况2。10 and 11 are graphs showing the experimental results of Table 3. FIG. Similar to Figures 8 and 9, in the graphs represented by the circles, the hemisphere on the left represents Test 1 and the hemisphere on the right represents Test 2. The graphs of Figures 10 and 11 include Case 1 and Case 2.

参考示出工作电压的图10,能够理解,测试2中的工作电压整体上低于测试1中的工作电压。参考示出光输出的图11,能够理解,测试2中的光输出整体上高于测试1中的光输出。Referring to FIG. 10 showing the operating voltage, it can be understood that the operating voltage in Test 2 is generally lower than the operating voltage in Test 1 . Referring to FIG. 11 showing the light output, it can be appreciated that the light output in Test 2 is generally higher than that in Test 1 .

图12是示出根据实施例的发光器件封装10的视图。FIG. 12 is a view illustrating the light emitting device package 10 according to the embodiment.

根据实施例的发光器件封装10包括:主体11,其包括腔体;第一和第二引线框架12和13,其被安装在主体11上;上述实施例的发光器件20,其被安装在主体11上并且电连接到第一和第二引线框架12和13;以及模制部(molding portion)16,其被形成在腔体上。The light emitting device package 10 according to the embodiment includes: a main body 11 including a cavity; first and second lead frames 12 and 13 mounted on the main body 11; and the light emitting device 20 of the above-described embodiment mounted on the main body 11 and electrically connected to the first and second lead frames 12 and 13; and a molding portion 16, which is formed on the cavity.

主体11可以包括硅酮材料(silicone material)、合成树脂材料或金属材料。如果主体11由诸如金属材料的导电材料形成,则主体11的表面可以被涂覆有绝缘层(虽然在附图中未示出),使得第一和第二引线框架12和13之间的电短路可以被防止。腔体可以形成在封装主体11中,并且发光器件20可以布置在腔体的底表面处。The main body 11 may include a silicone material, a synthetic resin material, or a metal material. If the main body 11 is formed of a conductive material such as a metal material, the surface of the main body 11 may be coated with an insulating layer (although not shown in the drawings), so that the electrical connection between the first and second lead frames 12 and 13 is Short circuit can be prevented. A cavity may be formed in the package body 11, and the light emitting device 20 may be arranged at a bottom surface of the cavity.

第一引线框架12和第二引线框架13彼此电隔离并且向发光器件20供应电流。第一引线框架12和第二引线框架13可以通过反射由发光器件20产生的光来增加发光效率并且将发光器件20产生的热量散发到外部。The first lead frame 12 and the second lead frame 13 are electrically isolated from each other and supply current to the light emitting device 20 . The first lead frame 12 and the second lead frame 13 may increase luminous efficiency by reflecting light generated by the light emitting device 20 and dissipate heat generated by the light emitting device 20 to the outside.

可以形成根据上述实施例的发光器件20。发光器件20可以经由导线14电连接到第一引线框架12和第二引线框架13。The light emitting device 20 according to the above-described embodiments may be formed. The light emitting device 20 may be electrically connected to the first lead frame 12 and the second lead frame 13 via the wires 14 .

可以通过导电膏(未示出)将发光器件20固定到封装主体11的底表面。模制部16可以通过围绕发光器件20来保护发光器件20。荧光物质17可以被包括在模制部16中,使得荧光物质17可以由从发光器件20发射的第一波长区域的光激发以发射第二波长区域的光。The light emitting device 20 may be fixed to the bottom surface of the package body 11 by a conductive paste (not shown). The molding part 16 may protect the light emitting device 20 by surrounding the light emitting device 20 . The fluorescent substance 17 may be included in the molding part 16 so that the fluorescent substance 17 can be excited by the light of the first wavelength region emitted from the light emitting device 20 to emit light of the second wavelength region.

发光器件封装10可以包括根据上述实施例的一个或多个发光器件,但不限于此。The light emitting device package 10 may include one or more light emitting devices according to the above-described embodiments, but is not limited thereto.

上述发光器件和发光器件封装可以用作照明系统的光源。例如,发光器件和发光器件封装可以用于诸如图像显示装置和照明装置的发光装置。The light emitting device and the light emitting device package described above can be used as a light source of a lighting system. For example, the light emitting device and the light emitting device package can be used for light emitting devices such as image display devices and lighting devices.

当发光器件或发光器件封装用作图像显示装置的背光单元时,发光器件或发光器件封装可以用作边缘型的背光单元或直下型(direct type)的背光单元。当发光器件或发光器件封装被用于照明装置时,发光器件或发光器件封装可以用作灯器具或内置型光源。When the light emitting device or the light emitting device package is used as a backlight unit of an image display apparatus, the light emitting device or the light emitting device package may be used as an edge type backlight unit or a direct type backlight unit. When the light emitting device or the light emitting device package is used for a lighting apparatus, the light emitting device or the light emitting device package may be used as a light fixture or a built-in light source.

尽管上面仅关于实施例描述数个实施例,但是各种其他实施例是可能的。上述实施例的技术内容可以以各种形式组合,除非它们不兼容,并且因此可以在新的实施例中实现。Although only a few embodiments are described above with respect to embodiments, various other embodiments are possible. The technical contents of the above-described embodiments can be combined in various forms unless they are incompatible, and thus can be implemented in a new embodiment.

工业实用性Industrial Applicability

在实施例中,接触层用作将空穴从第二导电类型半导体层平滑地注入到有源层,使得实施例的发光器件能够降低工作电压并提高光输出。因此,发光器件在工业上是可适用的。In the embodiment, the contact layer functions to smoothly inject holes from the second conductive type semiconductor layer to the active layer, so that the light emitting device of the embodiment can reduce the operating voltage and improve the light output. Therefore, the light emitting device is industrially applicable.

Claims (20)

1.一种发光器件,包括:1. A light-emitting device, comprising: 衬底;substrate; 第一导电类型半导体层,所述第一导电类型半导体层被布置在所述衬底上;a first-conductivity-type semiconductor layer disposed on the substrate; 有源层,所述有源层被布置在所述第一导电类型半导体层上,多个量子阱层和多个量子势垒层被交替地堆叠在所述有源层中;an active layer arranged on the first conductivity type semiconductor layer, a plurality of quantum well layers and a plurality of quantum barrier layers are alternately stacked in the active layer; 第二导电类型半导体层,所述第二导电类型半导体层被布置在所述有源层上;a second conductive type semiconductor layer disposed on the active layer; 接触层,所述接触层被布置在所述第二导电类型半导体层上;a contact layer disposed on the second conductivity type semiconductor layer; 电流扩展层,所述电流扩展层被布置在所述接触层上;以及a current spreading layer disposed on the contact layer; and 电流阻挡层,所述电流阻挡层被布置在所述第二导电类型半导体层上,a current blocking layer disposed on the second conductive type semiconductor layer, 其中,所述接触层和/或所述电流扩展层被形成以覆盖所述电流阻挡层的至少一部分并且当米勒平面指数为400时具有衍射的X射线光束的最大强度值;wherein the contact layer and/or the current spreading layer is formed to cover at least a portion of the current blocking layer and has a maximum intensity value of the diffracted X-ray beam when the Miller plane index is 400; 所述电流扩展层和/或所述接触层的侧表面与所述第二导电类型半导体层的侧表面之间的距离在3μm至10μm的范围中。The distance between the side surfaces of the current spreading layer and/or the contact layer and the side surfaces of the second conductive type semiconductor layer is in the range of 3 μm to 10 μm. 2.根据权利要求1所述的发光器件,其中,所述电流扩展层在氩(Ar)气氛下通过沉积来被形成,在X射线衍射实验中根据米勒平面指数具有衍射光束的多个强度峰值,并且当所述米勒平面指数是400时具有衍射光束的最大强度峰值。2 . The light emitting device according to claim 1 , wherein the current spreading layer is formed by deposition in an argon (Ar) atmosphere, and has a plurality of intensities of diffracted beams according to Miller plane index in an X-ray diffraction experiment. 3 . peak, and has the maximum intensity peak of the diffracted beam when the Miller plane index is 400. 3.根据权利要求1所述的发光器件,其中,所述电流阻挡层的厚度与所述接触层和所述电流扩展层的总厚度的比率为2:1至5:1。3. The light emitting device of claim 1, wherein a ratio of the thickness of the current blocking layer to the total thickness of the contact layer and the current spreading layer is 2:1 to 5:1. 4.根据权利要求1所述的发光器件,其中,所述接触层由铟锡氧化物(ITO)、NiO或NiAu中的至少一种材料形成。4. The light emitting device of claim 1, wherein the contact layer is formed of at least one of indium tin oxide (ITO), NiO, or NiAu. 5.根据权利要求1所述的发光器件,其中,所述接触层具有1nm至5nm的厚度。5. The light emitting device of claim 1, wherein the contact layer has a thickness of 1 nm to 5 nm. 6.根据权利要求1所述的发光器件,其中,所述电流扩展层具有20nm至70nm的厚度。6. The light emitting device of claim 1, wherein the current spreading layer has a thickness of 20 nm to 70 nm. 7.根据权利要求1所述的发光器件,还包括:反射层,所述反射层被布置在所述衬底下面。7. The light emitting device of claim 1, further comprising: a reflective layer disposed under the substrate. 8.根据权利要求1所述的发光器件,还包括:钝化层,所述钝化层的至少一部分被布置在所述电流扩展层上。8. The light emitting device of claim 1, further comprising: a passivation layer, at least a portion of the passivation layer being disposed on the current spreading layer. 9.根据权利要求8所述的发光器件,其中,所述钝化层的厚度与所述电流扩展层的厚度的比率为1.4:1至5:1。9. The light emitting device of claim 8, wherein a ratio of the thickness of the passivation layer to the thickness of the current spreading layer is 1.4:1 to 5:1. 10.根据权利要求1所述的发光器件,其中,所述接触层由具有缺少氧成分的非化学计量结构的铟锡氧化物(ITO)形成。10. The light emitting device of claim 1, wherein the contact layer is formed of indium tin oxide (ITO) having a non-stoichiometric structure lacking oxygen components. 11.根据权利要求1所述的发光器件,其中,所述电流扩展层由铟锡氧化物(ITO)材料形成。11. The light emitting device of claim 1, wherein the current spreading layer is formed of an indium tin oxide (ITO) material. 12.根据权利要求11所述的发光器件,其中,所述电流扩展层具有非化学计量结构。12. The light emitting device of claim 11, wherein the current spreading layer has a non-stoichiometric structure. 13.根据权利要求1所述的发光器件,还包括:13. The light emitting device of claim 1, further comprising: 第一电极,所述第一电极被布置在所述第一导电类型半导体层上;以及a first electrode disposed on the first conductivity type semiconductor layer; and 第二电极,所述第二电极被布置在所述第二导电类型半导体层上,a second electrode arranged on the second conductivity type semiconductor layer, 其中,所述电流阻挡层被布置在所述第二导电类型半导体层和所述第二电极之间。Wherein, the current blocking layer is arranged between the second conductive type semiconductor layer and the second electrode. 14.根据权利要求13所述的发光器件,其中,所述电流扩展层被布置在所述电流阻挡层和所述第二电极之间。14. The light emitting device of claim 13, wherein the current spreading layer is disposed between the current blocking layer and the second electrode. 15.根据权利要求13所述的发光器件,其中,所述电流阻挡层具有90nm至150nm的厚度。15. The light emitting device of claim 13, wherein the current blocking layer has a thickness of 90 nm to 150 nm. 16.一种发光器件,包括:16. A light emitting device comprising: 反射层;reflective layer; 衬底,所述衬底被布置在所述反射层上;a substrate disposed on the reflective layer; 第一导电类型半导体层,所述第一导电类型半导体层被布置在所述衬底上;a first-conductivity-type semiconductor layer disposed on the substrate; 有源层,所述有源层被布置在所述第一导电类型半导体层上;an active layer disposed on the first conductivity type semiconductor layer; 第二导电类型半导体层,所述第二导电类型半导体层被布置在所述有源层上;a second conductive type semiconductor layer disposed on the active layer; 接触层,所述接触层被布置在所述第二导电类型半导体层上;a contact layer disposed on the second conductivity type semiconductor layer; 电流扩展层,所述电流扩展层被布置在所述接触层上并且由铟锡氧化物(ITO)形成;a current spreading layer disposed on the contact layer and formed of indium tin oxide (ITO); 所述电流扩展层和/或所述接触层的侧表面与所述第二导电类型半导体层的侧表面之间的距离在3μm至10μm的范围中;the distance between the side surfaces of the current spreading layer and/or the contact layer and the side surfaces of the second conductivity type semiconductor layer is in the range of 3 μm to 10 μm; 钝化层,所述钝化层被布置在所述电流扩展层上;a passivation layer disposed on the current spreading layer; 第一电极,所述第一电极被布置在所述第一导电类型半导体层上;a first electrode disposed on the first conductivity type semiconductor layer; 第二电极,所述第二电极被布置在所述第二导电类型半导体层上;以及a second electrode disposed on the second conductive type semiconductor layer; and 电流阻挡层,所述电流阻挡层被布置在所述第二导电类型半导体层和所述第二电极之间。a current blocking layer disposed between the second conductive type semiconductor layer and the second electrode. 17.根据权利要求16所述的发光器件,其中,形成在其中布置所述第二电极的台面并且从所述台面的第一导电类型半导体层的侧表面到所述第一电极的最接近所述第一导电类型半导体的侧表面的点的距离为3μm至10μm。17. The light emitting device according to claim 16, wherein a mesa in which the second electrode is arranged is formed and is closest to the first electrode from a side surface of the first conductive type semiconductor layer of the mesa. The distance of the point of the side surface of the first conductive type semiconductor is 3 μm to 10 μm. 18.根据权利要求16所述的发光器件,其中,所述电流阻挡层的面积大于所述第二电极的面积。18. The light emitting device of claim 16, wherein an area of the current blocking layer is larger than an area of the second electrode. 19.根据权利要求16所述的发光器件,其中,所述电流扩展层的厚度与所述接触层的厚度的比率为6:1至10:1。19. The light emitting device of claim 16, wherein a ratio of the thickness of the current spreading layer to the thickness of the contact layer is 6:1 to 10:1. 20.一种发光器件封装,包括:20. A light emitting device package, comprising: 主体,所述主体包括腔体;a body, the body comprising a cavity; 引线框架,所述引线框架被安装在所述主体上;以及a lead frame mounted on the body; and 根据权利要求1至19中任意一项所述的发光器件,所述发光器件被电连接到所述引线框架。The light emitting device according to any one of claims 1 to 19, the light emitting device being electrically connected to the lead frame.
CN201780009234.4A 2016-02-02 2017-02-02 Light emitting device and light emitting device package including the same Active CN108604622B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0012663 2016-02-02
KR1020160012663A KR102506957B1 (en) 2016-02-02 2016-02-02 Light emitting device
PCT/KR2017/001104 WO2017135688A1 (en) 2016-02-02 2017-02-02 Light-emitting element and light-emitting element package comprising same

Publications (2)

Publication Number Publication Date
CN108604622A CN108604622A (en) 2018-09-28
CN108604622B true CN108604622B (en) 2022-04-15

Family

ID=59500422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780009234.4A Active CN108604622B (en) 2016-02-02 2017-02-02 Light emitting device and light emitting device package including the same

Country Status (4)

Country Link
US (1) US20190081208A1 (en)
KR (1) KR102506957B1 (en)
CN (1) CN108604622B (en)
WO (1) WO2017135688A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123322B2 (en) * 2017-08-31 2022-08-23 東芝マテリアル株式会社 Semiconductor light emitting device and manufacturing method thereof
US11244930B2 (en) * 2018-08-10 2022-02-08 Innolux Corporation Electronic device with light emitting units with reduced power consumption
CN110931619A (en) * 2019-11-20 2020-03-27 厦门士兰明镓化合物半导体有限公司 Flip LED chip and manufacturing method thereof
CN114093991B (en) * 2022-01-20 2022-05-17 泉州三安半导体科技有限公司 Light-emitting diodes and light-emitting devices
CN116978999B (en) * 2023-09-22 2024-01-02 南昌凯捷半导体科技有限公司 Current-limited Micro-LED chip and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025610A1 (en) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Optoelectronic component with several current spreading layers and method for its production
JP5232970B2 (en) * 2006-04-13 2013-07-10 豊田合成株式会社 Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and lamp including the same
JP2008028042A (en) * 2006-07-19 2008-02-07 Toshiba Corp Light emitting device
CN100438110C (en) * 2006-12-29 2008-11-26 北京太时芯光科技有限公司 LED with the current transfer penetration-enhanced window layer structure
JP2009031742A (en) * 2007-04-10 2009-02-12 Fujifilm Corp Organic electroluminescence display
JP5045248B2 (en) * 2007-06-01 2012-10-10 日亜化学工業株式会社 Semiconductor light emitting device and manufacturing method thereof
KR20120053571A (en) * 2010-11-18 2012-05-29 서울옵토디바이스주식회사 Light emitting diode chip having plurality of mesa structures
DE112011103819T5 (en) * 2010-11-18 2013-08-22 Seoul Opto Device Co., Ltd. Light emitting diode chip with electrode field
JP2012136759A (en) * 2010-12-27 2012-07-19 Sharp Corp Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element
KR101364721B1 (en) * 2012-03-09 2014-02-20 서울바이오시스 주식회사 Light emitting diode chip having electrode pad
KR101537330B1 (en) * 2012-12-28 2015-07-16 일진엘이디(주) Method of manufacturing nitride semiconductor light emitting device
KR20140118654A (en) * 2013-03-29 2014-10-08 서울바이오시스 주식회사 Light emitting diode chip
CN105226158A (en) * 2015-10-10 2016-01-06 厦门乾照光电股份有限公司 A kind of large scale light-emitting diode

Also Published As

Publication number Publication date
CN108604622A (en) 2018-09-28
KR102506957B1 (en) 2023-03-08
US20190081208A1 (en) 2019-03-14
KR20170091863A (en) 2017-08-10
WO2017135688A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
CN102709417B (en) Luminescent device and its manufacture method
KR101712049B1 (en) Light emitting device
US10910519B2 (en) Semiconductor device having layers including aluminum and semiconductor device package including same
US8994001B2 (en) Light emitting device for improving a light emission efficiency
CN108604622B (en) Light emitting device and light emitting device package including the same
KR101646664B1 (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
US8865494B2 (en) Manufacturing method for compound semiconductor light-emitting element
US8637893B2 (en) Light emitting device package, method of manufacturing the same, and lighting system
CN110494992A (en) Semiconductor devices and light emitting device package including the semiconductor devices
US20190013437A1 (en) Light-emitting element and light-emitting element package comprising same
US20110108868A1 (en) Light emitting device, light emitting device package and lighting system
KR101945808B1 (en) Light emitting device and light emitting device package
KR101011757B1 (en) Light emitting device, manufacturing method and light emitting device package
KR102486331B1 (en) Light emitting device
KR102728500B1 (en) Semiconductor device
KR102007401B1 (en) Light emitting device
KR101662242B1 (en) A light emitting device and a light emitting device package
KR102449557B1 (en) Light emitting device
KR20120011198A (en) Light emitting device, light emitting device package and manufacturing method of light emitting device
KR102302320B1 (en) Light emitting device
KR101672321B1 (en) Light emitting device
KR20140094093A (en) Light emittng device
KR102034709B1 (en) Light emitting device
KR102455225B1 (en) Light emitting device
KR20180051848A (en) Semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210715

Address after: 168 Changsheng North Road, Taicang City, Suzhou City, Jiangsu Province

Applicant after: Suzhou Leyu Semiconductor Co.,Ltd.

Address before: Seoul, South Kerean

Applicant before: LG INNOTEK Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 215499 No. 168, Changsheng North Road, Taicang City, Suzhou City, Jiangsu Province

Patentee after: Suzhou Liyu Semiconductor Co.,Ltd.

Country or region after: China

Address before: 168 Changsheng North Road, Taicang City, Suzhou City, Jiangsu Province

Patentee before: Suzhou Leyu Semiconductor Co.,Ltd.

Country or region before: China