CN108604622B - Light emitting device and light emitting device package including the same - Google Patents
Light emitting device and light emitting device package including the same Download PDFInfo
- Publication number
- CN108604622B CN108604622B CN201780009234.4A CN201780009234A CN108604622B CN 108604622 B CN108604622 B CN 108604622B CN 201780009234 A CN201780009234 A CN 201780009234A CN 108604622 B CN108604622 B CN 108604622B
- Authority
- CN
- China
- Prior art keywords
- layer
- light emitting
- emitting device
- type semiconductor
- current spreading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/814—Bodies having reflecting means, e.g. semiconductor Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
- H10H20/8252—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/032—Manufacture or treatment of electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
实施例涉及发光器件和包括发光器件的发光器件封装。Embodiments relate to light emitting devices and light emitting device packages including the light emitting devices.
背景技术Background technique
在本章节中的陈述仅提供与实施例有关的背景信息,并且可能不构成现有技术。The statements in this section merely provide background information related to the embodiments and may not constitute prior art.
诸如GaN和AlGaN的III-V族化合物半导体由于诸如宽范围和易于调节的能带隙等其许多优点而已广泛用于电子器件和光电子器件。III-V compound semiconductors such as GaN and AlGaN have been widely used in electronic and optoelectronic devices due to their many advantages such as wide range and easily tunable energy bandgap.
具体地,使用III-V族或II-VI族化合物半导体材料的发光器件,诸如发光二极管LED或激光二极管,由于薄膜生长技术的进步和器件材料的发展,可以发射各种颜色,诸如红色、绿色、蓝色和紫外光等。发光器件还可以使用荧光材料或通过颜色的组合高效地发射白光。与诸如荧光灯和白炽灯的传统光源相比,发光器件具有低功耗、半永久寿命、快速响应时间、安全性和环境友好性的优点。Specifically, light-emitting devices using III-V or II-VI compound semiconductor materials, such as light-emitting diodes LEDs or laser diodes, can emit various colors, such as red, green, due to the advancement of thin film growth technology and the development of device materials. , blue and ultraviolet light, etc. Light emitting devices can also efficiently emit white light using fluorescent materials or through a combination of colors. Compared with conventional light sources such as fluorescent lamps and incandescent lamps, light emitting devices have the advantages of low power consumption, semi-permanent lifetime, fast response time, safety, and environmental friendliness.
因此,发光器件已经越来越多地应用于光通信装置的传输模块、替换构成液晶显示(LCD)装置的背光的冷阴极荧光灯(CCFL)的LED背光、可以替换荧光灯或白炽灯的白色LED照明装置、车辆的前照灯和信号灯。Accordingly, light emitting devices have been increasingly applied to transmission modules of optical communication devices, LED backlights to replace cold cathode fluorescent lamps (CCFLs) constituting the backlights of liquid crystal display (LCD) devices, white LED lighting to replace fluorescent lamps or incandescent lamps devices, headlights and signal lights of vehicles.
一直在进行关于平滑操作和提高能量效率的发光器件的研究。例如,已经需要开发具有低工作电压和高光输出的发光器件。Research has been ongoing on light-emitting devices that operate smoothly and improve energy efficiency. For example, there has been a need to develop light emitting devices with low operating voltages and high light output.
发明内容SUMMARY OF THE INVENTION
技术问题technical problem
因此,实施例提供具有低工作电压和高光输出的发光器件。Accordingly, embodiments provide light emitting devices with low operating voltages and high light output.
能够通过本发明实现的技术目的不限于上文具体描述的内容,并且本领域的技术人员从以下详细描述中将更清楚地理解在此未描述的其他技术目的。The technical objects that can be achieved by the present invention are not limited to the content specifically described above, and other technical objects not described herein will be more clearly understood by those skilled in the art from the following detailed description.
技术方案Technical solutions
在一个实施例中,发光器件可以包括:衬底;第一导电类型半导体层,该第一导电类型半导体层被布置在衬底上;有源层,该有源层被布置在第一导电类型半导体层上,多个量子阱层和多个量子势垒层被交替地堆叠在有源层中;第二导电类型半导体层,该第二导电类型半导体层被布置在有源层上;接触层,该接触层被布置在第二导电类型半导体层上;电流扩展层,该电流扩展层被布置在接触层上;以及电流阻挡层,该电流阻挡层被布置在第二导电类型半导体层上,其中接触层和/或电流扩展层被形成以围绕电流阻挡层的至少一部分并且当米勒平面指数(Miller plane index)为400时具有衍射的X射线光束(diffracted X-ray beam)的最大强度值。In one embodiment, a light emitting device may include: a substrate; a first conductivity type semiconductor layer arranged on the substrate; an active layer arranged on the first conductivity type On the semiconductor layer, a plurality of quantum well layers and a plurality of quantum barrier layers are alternately stacked in the active layer; a second conductive type semiconductor layer, the second conductive type semiconductor layer is arranged on the active layer; a contact layer , the contact layer is arranged on the second conductivity type semiconductor layer; the current spreading layer is arranged on the contact layer; and the current blocking layer is arranged on the second conductivity type semiconductor layer, wherein the contact layer and/or the current spreading layer is formed to surround at least a portion of the current blocking layer and has a maximum intensity value of a diffracted X-ray beam when the Miller plane index is 400 .
在另一实施例中,发光器件可以包括:反射层;衬底,该衬底被布置在反射层上;第一导电类型半导体层,该第一导电类型半导体层被布置在衬底上;有源层,该有源层被布置在第一导电类型半导体层上;第二导电类型半导体层,该第二导电类型半导体层被布置在有源层上;接触层,该接触层被布置在第二导电类型半导体层上;以及电流扩展层,该电流扩展层被布置在接触层上并由铟锡氧化物(ITO)材料形成;钝化层,该钝化层被布置在电流扩展层上;第一电极,该第一电极被布置在第一导电类型半导体层上;第二电极,该第二电极被布置在第二导电类型半导体层上;以及电流阻挡层,该电流阻挡层被布置在第二导电类型半导体层和第二电极之间。In another embodiment, a light emitting device may include: a reflective layer; a substrate arranged on the reflective layer; a first conductive type semiconductor layer arranged on the substrate; an active layer, which is arranged on the first conductivity type semiconductor layer; a second conductivity type semiconductor layer, which is arranged on the active layer; and a contact layer, which is arranged on the first conductivity type semiconductor layer. on the two-conductivity-type semiconductor layer; and a current spreading layer arranged on the contact layer and formed of an indium tin oxide (ITO) material; a passivation layer arranged on the current spreading layer; a first electrode arranged on the first conductivity type semiconductor layer; a second electrode arranged on the second conductivity type semiconductor layer; and a current blocking layer arranged on the between the second conductive type semiconductor layer and the second electrode.
在一个实施例中,发光器件封装可以包括:主体,该主体包括腔体;引线框架,该引线框架被安装在主体上;以及发光器件,该发光器件被电连接到引线框架。In one embodiment, a light emitting device package may include: a body including a cavity; a lead frame mounted on the body; and a light emitting device electrically connected to the lead frame.
有益效果beneficial effect
在实施例中,接触层用作从第二导电类型半导体层将空穴平滑地注入到有源层,使得实施例的发光器件能够降低工作电压并增加光输出。In the embodiment, the contact layer functions to smoothly inject holes from the second conductive type semiconductor layer to the active layer, so that the light emitting device of the embodiment can reduce the operating voltage and increase the light output.
在实施例中,具有非化学计量结构的ITO材料的电流扩展层减少电流阻抗(current resistance),使得从第二电极供应的电流均匀地扩展到电流扩展层,并且结果,发光器件的工作电压被降低并且发光器件的光输出被提高。In an embodiment, the current spreading layer of the ITO material having the non-stoichiometric structure reduces current resistance, so that the current supplied from the second electrode spreads uniformly to the current spreading layer, and as a result, the operating voltage of the light emitting device is reduced by is reduced and the light output of the light emitting device is increased.
附图说明Description of drawings
图1a是根据实施例的发光器件的截面图。1a is a cross-sectional view of a light emitting device according to an embodiment.
图1b是包括具有与图1a不同的结构的钝化层的发光器件的截面图。FIG. 1b is a cross-sectional view of a light emitting device including a passivation layer having a different structure from that of FIG. 1a.
图2是根据实施例的发光器件的示意性平面图。FIG. 2 is a schematic plan view of a light emitting device according to an embodiment.
图3是图1a和图1b的部分A的放大图。Figure 3 is an enlarged view of part A of Figures 1a and 1b.
图4是图1a和图1b的部分B的放大图。Figure 4 is an enlarged view of part B of Figures 1a and 1b.
图5是图1a和图1b的部分C的放大图。Figure 5 is an enlarged view of part C of Figures 1a and 1b.
图6和7是示出用于解释根据实施例的发光器件的X射线衍射的实验结果的曲线图。6 and 7 are graphs showing experimental results for explaining X-ray diffraction of the light emitting device according to the embodiment.
图8和9是示出表2的实验结果的曲线图。8 and 9 are graphs showing the experimental results of Table 2. FIG.
图10和11是示出表3的实验结果的曲线图。10 and 11 are graphs showing the experimental results of Table 3. FIG.
图12是示出根据实施例的发光器件封装10的视图。FIG. 12 is a view illustrating the light
具体实施方式Detailed ways
现在将详细参考实施例,其示例在附图中被图示。虽然本公开易受各种修改和替换形式的影响,但是其具体实施例在附图中以示例的方式示出。然而,本公开不应被解释为限于这里阐述的实施例,而是相反,本公开将覆盖落入实施例的精神和范围内的所有修改、等同物和替代物。Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings. While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the accompanying drawings. However, the present disclosure should not be construed as limited to the embodiments set forth herein, but on the contrary, this disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the embodiments.
虽然诸如“第一”、“第二”等术语可以被用于描述各种组件,但是这些组件不应受上述术语的限制。上述术语仅用于将一个组件与另一个组件区分开。另外,考虑到实施例的构造和操作而特别定义的术语仅用于描述实施例,并且没有限定实施例的范围。Although terms such as "first," "second," etc. may be used to describe various components, these components should not be limited by the above terms. The above terms are only used to distinguish one component from another. In addition, terms specifically defined in consideration of the configuration and operation of the embodiments are only used to describe the embodiments, and do not limit the scope of the embodiments.
在实施例的描述中,应理解,当元件被称为在另一元件“上”或“下”形成时,其能够直接在另一元件“上”或“下”或者在其间间接地形成有中间元件。还将会理解,当元件被称为“在......上”或“在......下”时,能够基于元件包括“在元件下”以及“在元件上”。In the description of the embodiments, it will be understood that when an element is referred to as being formed "on" or "under" another element, it can be directly formed "on" or "under" the other element or be indirectly formed therebetween. intermediate element. It will also be understood that when an element is referred to as being "on" or "under", "under the element" as well as "on the element" can be included based on the element.
如在此所使用的,在没有必要要求或暗示这样的实体或元件之间的任何物理或逻辑关系或顺序的情况下,诸如“上”/“上部”/“上方”、“下面”/“下部”/“下方”等的关系术语仅用于区分一个实体或元件与另一实体或元件。As used herein, any physical or logical relationship or order between such entities or elements such as "on"/"upper"/"over", "below"/" is not necessarily required or implied. Relational terms such as "lower"/"under" are only used to distinguish one entity or element from another entity or element.
图1a是根据实施例的发光器件的截面图。图1b是包括钝化层220的发光器件的截面图,该钝化层220具有与图1a不同的结构。图2是根据实施例的发光器件的示意性平面图。1a is a cross-sectional view of a light emitting device according to an embodiment. FIG. 1b is a cross-sectional view of a light emitting device including a
本实施例的发光器件可以包括衬底110、第一导电类型半导体层120、有源层130、第二导电类型半导体层140、接触层150、电流扩展层160、第一电极170、第二电极180、电流阻挡层190、反射层210和钝化层220。The light emitting device of this embodiment may include a
第一导电类型半导体层120、有源层130和第二导电类型半导体层140可以构成发光结构。The first conductive
衬底110可以支撑发光结构。衬底110可以是蓝宝石衬底、硅(Si)衬底、氧化锌(ZnO)衬底和氮化物半导体衬底中的任何一个,或者可以是在其上GaN、InGaN、AlGaN或AlInGaN中的至少一种被堆叠的模板衬底(template substrate)。The
发光结构可以布置在衬底110上并用于产生光。在这种情况下,衬底110和发光结构之间的晶格常数和热膨胀系数的差异可能引起衬底110和发光结构之间的边界表面周围的应力。A light emitting structure may be arranged on the
为了减轻这种应力,可以在衬底110和发光结构之间插入缓冲层(未示出)。另外,为了提高第一导电类型半导体层120的结晶度,可以在衬底110和发光结构之间插入未掺杂的半导体层(未示出)。值得注意的是,可能在制造工艺中形成N空位(N-vacancy),并且然后可能无意地执行掺杂。To alleviate such stress, a buffer layer (not shown) may be interposed between the
这里,缓冲层可以在低温下生长。缓冲层可以是GaN层或AlN层,但是实施例不限于此。除了未掺杂的半导体层具有比第一导电类型的半导体层120低的导电率(因为未掺杂的半导体层没有掺杂有n型掺杂物),未掺杂的半导体层可以与第一导电类型的半导体层120相同。Here, the buffer layer can be grown at low temperature. The buffer layer may be a GaN layer or an AlN layer, but the embodiment is not limited thereto. Except that the undoped semiconductor layer has a lower conductivity than the first conductivity type semiconductor layer 120 (because the undoped semiconductor layer is not doped with n-type dopant), the undoped semiconductor layer may be similar to the first conductivity
如图1a中所图示,第一电极170可以布置在第一导电类型半导体层120的暴露的台阶部分上,并且第二电极180可以布置在第二导电类型半导体层140的上部暴露部分上。如果通过第一电极170和第二电极180施加电流,则本实施例的发光器件可以发射光。As illustrated in FIG. 1 a , the
尽管图1a和1b示出具有水平结构的发光器件,但还可以提供具有垂直结构或倒装芯片结构的发光器件。Although FIGS. 1 a and 1 b illustrate a light emitting device having a horizontal structure, a light emitting device having a vertical structure or a flip-chip structure may also be provided.
如上所述,发光结构可以包括第一导电类型半导体层120、有源层130和第二导电类型半导体层140。As described above, the light emitting structure may include the first conductive
第一导电类型半导体层120可以布置在衬底110上,并且可以由例如氮化物半导体形成。The first conductive
也就是说,第一导电类型半导体层120可以由选自具有InxAlyGa1-x-yN(0≤x≤1,0≤y≤1和0≤x+y≤1)的组成的半导体材料,例如,GaN、AlN、AlGaN、InGaN、InN、InAlGaN和AlInN的材料形成,并且可以掺杂有诸如Si、Ge、Sn、Se或Te的n型掺杂物。That is, the first conductive
有源层130可以布置在第一导电类型半导体层120上,并且通过在分别从第一导电类型半导体层120和第二导电类型半导体层140供应的电子和空穴的重新组合期间产生的能量产生光。The
有源层130可以由化合物半导体,例如,III-V族或II-VI族化合物半导体形成,并且可以具有单量子阱结构、多量子阱结构、量子线结构、或量子点结构。The
当有源层130具有量子阱结构时,有源层130可以具有单量子阱结构或多量子阱结构,其包括具有InxAlyGa1-x-yN(0≤x≤1,0≤y≤1并且0≤x+y≤1)的组成的量子阱层和具有InaAlbGa1-a-bN(0≤a≤1,0≤b≤1并且0≤a+b≤1)的组成的量子势垒层。When the
在这种情况下,量子阱层的能带隙可以小于量子势垒层的能带隙。当实施例的有源层130具有多量子阱结构时,有源层130可以包括其中可以交替地堆叠多个量子阱层和多个量子势垒层的结构。In this case, the energy band gap of the quantum well layer may be smaller than that of the quantum barrier layer. When the
第二导电类型半导体层140可以布置在有源层130上。第二导电类型半导体层140可以由例如氮化物半导体形成。The second conductive
也就是说,第二导电类型半导体层140可以由选自具有InxAlyGa1-x-yN(0≤x≤1,0≤y≤1并且0≤x+y≤1)的组成的半导体材料,例如,GaN、AlN、AlGaN、InGaN、InN、InAlGaN和AlInN的材料形成,并且可以掺杂有诸如Mg、Zn、Ca、Sr或Ba的p型掺杂物。That is, the second conductive
接触层150可以布置在第二导电类型半导体层140上,并且可以用于改善布置在其上的电流扩展层160和布置在其下的第二导电类型半导体层140之间的接触性能,使得空穴可以从第二导电类型半导体层140平滑地注入到有源层130中。The
也就是说,接触层150被布置在电流扩展层160和第一导电类型半导体层120之间的边界表面处,并且用于减小可能在电流扩展层160和第二导电类型半导体层140之间的边界表面处产生的电阻抗(electrical resistance),使得被供应到电流扩展层160的电流可以平滑地流入到第二导电类型半导体层140中。That is, the
以这种方式,电流可以平稳地流入第二导电类型半导体层140,并且然后,可以从第二导电类型半导体层140产生大量空穴并且该大量空穴可以被注入到有源层130中。In this way, current may smoothly flow into the second conductive
在实施例中,接触层150可以使空穴从第二导电类型半导体层140平滑地注入到有源层130中,使得工作电压降低并且在根据实施例的发光器件中光输出被提升。In the embodiment, the
接触层150可以由例如铟锡氧化物(ITO)、NiO或NiAu中的至少一种材料形成,并且可以形成为具有低电阻抗的结构。The
为了形成具有低电阻抗结构的接触层150,可以适当地提高例如氧(O2)成分的孔隙率(porosity)。氧可以被包括在构成接触层150的组分中,并且氧倾向于提高接触层150的电阻抗。In order to form the
因此,为了减小接触层150的电阻抗,可以适当地形成接触层150以具有其中缺少氧成分的非化学计量结构,而不是具有高氧孔隙率的化学计量结构。Therefore, in order to reduce the electrical impedance of the
在接触层150的沉积期间,可以在没有混合氧气的情况下使用包括氩气的工艺气体来实现缺少氧成分的非化学计量结构。During the deposition of the
也就是说,工艺气体中不包括氧气,使得在接触层150中可以仅包括源材料中包含的氧成分。因为通过工艺气体没有额外的氧供应,所以接触层150可以形成为缺少氧成分的非化学计量结构。That is, oxygen gas is not included in the process gas, so that only the oxygen component included in the source material may be included in the
然而,为了提高接触层150的透光率,例如,可以使用其中氧和/或氢(H2)与氩气混合的工艺气体。当执行接触层150的X射线衍射测试时,可以以222或400的米勒平面指数提供具有衍射光束的最大强度值的晶体结构。However, in order to improve the light transmittance of the
电流扩展层160可以布置在接触层150上并且可以电连接到第二电极180。电流扩展层160可以起作用,因为从第二电极180施加的电流可以均匀地扩展在第二导电类型半导体层140的整个表面上。The current spreading
如果通过第二电极180施加到第二导电类型半导体层140的电流不均匀地扩展,则电流可能集中在第二导电类型半导体层140的特定部分处。结果,从第二导电类型半导体层140注入到有源层130的空穴可能集中在有源层130的特定部分中。If the current applied to the second conductive
空穴注入的浓度可能显著地劣化发光器件的光输出。为了防止这种情况,通过电流扩展层160在第二导电类型半导体层140的整个表面上均匀地扩展电流可能是合适的。The concentration of hole injection can significantly degrade the light output of the light emitting device. In order to prevent this, it may be appropriate to spread the current uniformly over the entire surface of the second conductive
电流扩展层160可以由ITO形成。如上所述,需要如上所述在接触层150上减小电流扩展层160的电阻抗。The current spreading
因此,因为构成电流扩展层160的组分中的氧倾向于提高电阻抗,所以为了减小电流扩展层160的电阻抗,可以适当地形成电流扩展层160以具有缺少氧成分的非化学计量结构,而不是具有高氧孔隙率的化学计量结构。稍后将详细描述形成缺少氧成分的非化学计量结构的方法。Therefore, since oxygen in the components constituting the current spreading
电流阻挡层190可以布置在第二导电类型半导体层140上,即,在第二导电类型半导体层140和第二电极180之间。这里,电流阻挡层190的面积可以被形成为大于第二电极180的面积。The
可以提供接触层150和/或电流扩展层160以围绕电流阻挡层190的至少一部分。例如,参考图4,接触层150和/或电流扩展层160可以形成为围绕电流阻挡层190的上表面和/或电流阻挡层190的侧表面。The
电流阻挡层190可以用作防止从第二电极180施加的电流集中在第二导电类型半导体层140中的面对第二电极180的部分中。The
这是因为电流阻挡层190阻止电流从第二电极180立即流入到第二导电类型半导体层140中。为此,电流阻挡层190可以由例如电绝缘材料形成。This is because the
电流阻挡层190可以防止电流集中在第二导电类型半导体层140的特定部分处,并且因此,防止从第二导电类型半导体层140注入到有源层130中的空穴被集中在有源层130的特定部分,使得可以防止实施例的发光器件的光输出的劣化。The
也就是说,电流阻挡层190可以用作在电流扩展层160上均匀地扩展电流,该电流可以在垂直方向上集中在面对第二电极180的部分处。That is, the
如图1a和图1b中所示,在其中布置第二电极180的台面可以被形成在发光器件中,并且从台面到第一电极170的距离L1可以是,例如3μm至10μm。As shown in FIGS. 1a and 1b , a mesa in which the
这里,台面表示发光器件中的突出部分,并且距离L1表示从台面的第一导电类型半导体层120的侧表面到最近的第一导电类型半导体层120的侧表面的第一电极170的点的距离。Here, the mesa represents a protruding portion in the light emitting device, and the distance L1 represents the distance from the side surface of the first conductive
如图2中所示,第二电极180可以包括形成在电流扩展层160上的第二分支电极181,并且第一电极170可以包括形成在第一导电类型半导体层120上的第一分支电极171。As shown in FIG. 2 , the
值得注意的是,其中形成第一分支电极171的部分可以形成为具有其中可以在垂直方向中蚀刻电流扩展层160、第二导电类型半导体层140和有源层130的结构,以便于第一分支电极171不与电流扩展层160、第二导电类型半导体层140和有源层130电连接。Notably, the portion where the
在这种情况下,电流阻挡层190也可以在垂直方向上形成在面对第二分支电极181的部分中。这用作通过防止电流在垂直方向上集中地流过第一分支电极171进入面对第一分支电极171的第二导电类型半导体层140中而在电流扩展层160上均匀地扩展电流。In this case, the
从台面到第一分支电极171的距离可以小于从台面到第一电极170的距离L1。The distance from the mesa to the
反射层210可以布置在衬底110下面,并且可以用作提高发光器件的发光效率。也就是说,从有源层130发射的光的一部分可以通过衬底110的下部发射。考虑到这一点,反射层210可以布置在衬底110下面使得反射通过衬底110的下部发射的光,并且沿发光器件的向上方向透射光。结果,可以提高发光器件的发光效率。The
反射层210可以是具有多层结构的分布式布拉格反射层,其中具有不同折射率的至少两个层交替地堆叠至少一次。反射层210反射从发光结构引入的光。The
也就是说,反射层210可以具有其中交替地堆叠具有相对高折射率的第一层和具有相对低折射率的第二层的结构。在这种情况下,反射层210的反射率可以根据第一层和第二层的反射指数与第一层和第二层中的每个的厚度之间的差异而不同。That is, the
钝化层220的至少一部分可以布置在电流扩展层160上。具体地,如图1a中所示,钝化层220可以布置在电流扩展层160的上表面和第一导电类型半导体层120的台阶部分的上表面处。At least a portion of the
另外,钝化层220可以布置在第一导电类型半导体层120、有源层130、第二导电类型半导体层和电流扩展层160的侧表面的至少一部分处。In addition, the
具有上述结构的钝化层220可以用作保护构成发光器件的每个层。特别地,钝化层220可以用作防止第一导电类型半导体层120和第二导电类型半导体层140之间的电短路。The
作为实施例,钝化层220可以形成为不覆盖第一导电类型半导体层120的侧表面的一部分,如图1a中所示。作为另一实施例,钝化层220可以形成为覆盖如图1b中所示的第一导电类型半导体层120的所有侧表面。As an example, the
钝化层220的厚度可为约100nm。根据钝化层220的厚度,发光结构的折射率可以变化。因此,发光器件的发光效率,即,发光器件的光提取效率,可以根据钝化层220的厚度变化而不同。The thickness of the
作为实施例,可以提供钝化层220以暴露第一电极和第二电极的侧表面,如图1a和图1b中所示。作为另一实施例,可以提供钝化层220以覆盖第一电极和第二电极的侧表面。作为又一实施例,可以提供钝化层220,使得钝化层220的侧表面与第一电极和第二电极的侧表面隔开了预定距离。然而,实施例不限于此。As an example, the
图3是图1a和图1b的部分A的放大图。如图3中所示,电流扩展层160可以堆叠在接触层150上。Figure 3 is an enlarged view of part A of Figures 1a and 1b. As shown in FIG. 3 , the current spreading
接触层150可以形成为具有例如1nm至5nm的厚度T1。例如,电流扩展层160可以形成为具有20nm至70nm的厚度T2。然而,在其中布置电流阻挡层190的部分处的接触层150的厚度可以与上述厚度T1不同。The
电流阻挡层190的厚度与接触层150和电流扩展层160的总厚度的比率可以是,例如,2:1至5:1(电流阻挡层190的厚度:总厚度)。然而,实施例不限于此。The ratio of the thickness of the
电流扩展层160的厚度与接触层150的厚度的比率可以是,例如,6:1至10:1(电流扩展层160的厚度:接触层150的厚度)。然而,实施例不限于此。The ratio of the thickness of the current spreading
如果电流扩展层160的厚度小于20nm,则电流扩展层160的电阻抗上升,并且然后发光器件的工作电压也上升。这可能对发光器件的性能具有不利影响。If the thickness of the current spreading
如果电流扩展层160的厚度T2超过70nm,则电流扩展层160的透光率被减少,并且然后发光器件的光输出被减小。这可能对发光器件的性能产生不利影响。If the thickness T2 of the current spreading
钝化层220可以被提供有约100nm的厚度T5,如上所述,并且可以比接触层150和/或电流扩展层160厚。The
钝化层220的厚度T5与电流扩展层160的厚度T2的比率可以是,例如T5:T2=1.4:1至5:1。The ratio of the thickness T5 of the
如上所述,电流扩展层160可以由ITO形成。为了减小电阻抗,电流扩展层160可以具有缺少氧成分的非化学计量结构。As described above, the current spreading
可以通过例如等离子体真空沉积将电流扩展层160形成为堆叠。电流扩展层160的非化学计量结构可以通过下面描述的方案被形成。The current spreading
可以通过在氩(Ar)气氛下沉积来形成电流扩展层160。也就是说,通过在等离子体状态下的工艺气体在接触层150上喷射构成电流扩展层160的源材料,可以在高温下执行电流扩展层160的沉积工艺。这种等离子体真空沉积可以在真空室中执行。The current spreading
等离子体真空沉积的一种方法包括溅射。当等离子体状态的工艺气体中包含的离子对源材料,即,目标材料施加冲击时,可以通过从靶材料中喷射原子和/或分子来形成薄膜而执行溅射。One method of plasma vacuum deposition includes sputtering. When ions contained in a process gas in a plasma state apply an impact to a source material, ie, a target material, sputtering may be performed by ejecting atoms and/or molecules from the target material to form a thin film.
溅射在薄膜的粘附力方面是优异的,并且可以形成具有均匀厚度和均匀密度的薄膜,因为靶材料广泛分布在真空室中。通过溅射形成的薄膜具有诸如优异的台阶覆盖和易于沉积氧化物系列材料的优点。Sputtering is excellent in the adhesion of thin films, and can form thin films with uniform thickness and uniform density because the target material is widely distributed in the vacuum chamber. Thin films formed by sputtering have advantages such as excellent step coverage and easy deposition of oxide series materials.
工艺气体可以包括惰性气体,例如,氩。通常,氩气和氧气的混合物或氩气、氧气和氢气的混合物可以用作沉积ITO的工艺气体。The process gas may include an inert gas such as argon. Typically, a mixture of argon and oxygen or a mixture of argon, oxygen and hydrogen can be used as the process gas for depositing ITO.
然而,当使用与氧气混合的气体作为工艺气体时,氧气被充分供应到沉积的ITO。然后,可以堆叠其中化学计量地包含氧的ITO。However, when a gas mixed with oxygen is used as the process gas, oxygen is sufficiently supplied to the deposited ITO. Then, ITO in which oxygen is contained stoichiometrically can be stacked.
化学计量结构的ITO由于其中含有氧而具有高电阻抗的特性。因此,由ITO材料形成的实施例的电流扩展层160可以使用氩作为工艺气体以便于降低其电阻抗。The stoichiometric structure of ITO has the characteristics of high electrical impedance due to the oxygen contained therein. Therefore, the current spreading
当使用氩时,电流扩展层160的氧气孔隙率可能增加。因为氧气孔用作电流扩展层160中的电子载流子,所以可以减小电流扩展层160的电阻抗。When argon is used, the oxygen porosity of the current spreading
作为另一实施例,工艺气体可以单独使用不含氧的惰性气体或各种类型的惰性气体的混合物。As another example, the process gas may use an oxygen-free inert gas alone or a mixture of various types of inert gas.
当使用包含氩而不含氧的工艺气体形成ITO材料的电流扩展层160时,电流扩展层160可以形成为在化学计量方面缺少氧的非化学计量结构。When the current spreading
在这种情况下,当X射线衍射实验中的Millar平面指数为400时,电流扩展层160可以具有衍射光束的最大强度值。In this case, when the Millar plane index in the X-ray diffraction experiment is 400, the current spreading
表1示出实施例的ITO材料的电流扩展层160的阻抗的实验结果值。在表1中,比较样本指的是当使用其中氩与氧混合的工艺气体形成电流扩展层160时的样本,并且实施例样本指的是当使用仅包括氩的工艺气体形成电流扩展层160时的样本。这里,阻抗指的是薄层阻抗(sheet resistance)。因此,阻抗单位为Ω/□。Table 1 shows experimental result values of the impedance of the current spreading
当电流扩展层160的厚度T2为约40nm、50nm和60nm时,已经测量样本的实验值。实验进行多次,并且阻抗值是通过多次实验获得的值的平均值。The experimental values of the samples have been measured when the thickness T2 of the current spreading
[表1][Table 1]
参考表1,可以理解,实施例样本的阻抗值显著地低于比较样本的阻抗值。也就是说,通过使用仅包括氩的工艺气体形成的电流扩展层160具有比通过使用包括氩和氧的混合物的工艺气体形成的ITO材料的电流扩展层160显著更低的阻抗值。因此,可以理解,当使用实施例的电流扩展层160时,从第二电极180供应的电流能够被更均匀地扩展在电流扩展层160上。Referring to Table 1, it can be understood that the impedance values of the example samples are significantly lower than those of the comparative samples. That is, the current spreading
就透光率而言,相对于相同厚度的电流扩展层160,比较样本和实施例样本之间的透光率差异很小。因此,可以清楚地理解,根据实施例的非化学计量结构的ITO材料的电流扩展层160的电阻抗大大降低,但透光率几乎没有变化。In terms of light transmittance, with respect to the current spreading
也就是说,当使用仅包括氩的工艺气体形成电流扩展层160时,因为电阻抗减小并且光透射率不降低,所以能够提高发光器件的光输出。That is, when the current spreading
在实施例中,因为非化学计量结构的ITO材料的电流扩展层160具有减小的电流阻抗,因此从第二电极180供应的电流均匀地分布在电流扩展层160上。结果,降低发光器件的工作电压并提高发光器件的光输出。In an embodiment, the current supplied from the
图4是图1a和图1b的部分B的放大图。在实施例中,电流阻挡层190可以形成为具有例如90nm至150nm的厚度T3。Figure 4 is an enlarged view of part B of Figures 1a and 1b. In an embodiment, the
如图4中所示,接触层150和电流扩展层160可以从电流阻挡层190和第二电极180之间的底部沿向上方向顺序地堆叠。As shown in FIG. 4 , the
在这种情况下,为了确保布置电流阻挡层190的空间,接触层150和电流扩展层160的每个侧表面的厚度,即,与接触层150和电流扩展层160的每个其他部分的厚度相比,在电流阻挡层190的侧表面处的电流扩展层160与接触层150的每个侧表面的厚度可以形成得薄。In this case, in order to secure a space for arranging the
在另一实施例中,为了确保其中布置电流阻挡层190的空间,可以仅在电流阻挡层190和第二电极180之间形成电流扩展层160。In another embodiment, in order to secure a space in which the
如上所述,电流阻挡层190的面积可以大于第二电极180的面积。这里,第二电极180的末端与电流阻挡层190之间的距离L2可以是大约3μm。As described above, the area of the
图5是图1a和图1b的C部分的放大图。也就是说,在其中形成第二电极的台面区域中,电流扩展层160和/或接触层150的侧表面与第二导电类型半导体层140的侧表面之间的距离T4可以是,例如,3μm至10μm。Figure 5 is an enlarged view of part C of Figures 1a and 1b. That is, in the mesa region in which the second electrode is formed, the distance T4 between the side surface of the current spreading
如果距离T4小于3μm,则电子跃迁可能发生在电流扩展层160、接触层150的侧表面和/或第二导电类型半导体层140的侧表面中,并且因此,可能发生电流泄漏。If the distance T4 is less than 3 μm, electron transitions may occur in the current spreading
如果距离T4超过10μm,则可以提高发光器件的工作电压并且可以减小发光器件的光输出。If the distance T4 exceeds 10 μm, the operating voltage of the light emitting device can be increased and the light output of the light emitting device can be reduced.
图6和7是示出用于解释根据实施例的发光器件的X射线衍射的实验结果的图。X射线衍射实验是通过用X射线光束照射电流扩展层160来分析衍射光束的类型的结果。6 and 7 are diagrams showing experimental results for explaining X-ray diffraction of the light emitting device according to the embodiment. The X-ray diffraction experiment is a result of analyzing the type of diffracted beam by irradiating the current spreading
在曲线图中,横轴表示通过用X射线光束照射电流扩展层160而衍射的X射线光束的衍射角(°),并且纵轴表示衍射X射线光束的强度(a.u)。In the graph, the horizontal axis represents the diffraction angle (°) of the X-ray beam diffracted by irradiating the current spreading
在图6和7中,实际上示出其中工艺气体包括氩气,工艺气体包括氩气和氧气的混合物,并且工艺气体包括氩气、氧气和氢气的混合物的情况。图6实际上示出在各种情况下衍射光束的强度。图7示出在各种情况下衍射光束强度的近似匹配的非峰值,以便于比较各种情况下衍射光束的强度的峰值。In FIGS. 6 and 7 , the case is actually shown in which the process gas includes argon, the process gas includes a mixture of argon and oxygen, and the process gas includes a mixture of argon, oxygen, and hydrogen. Figure 6 actually shows the intensity of the diffracted beam in each case. Figure 7 shows approximately matched non-peak values of diffracted beam intensities under various conditions to facilitate comparison of peaks in diffracted beam intensities under various conditions.
在附图中,数字222、400和440表示米勒平面指数。米勒平面指数表示作为实验目标的电流扩展层160的特定晶面。因此,当在米勒平面指数相等的部分中衍射光束的强度的峰值不同时,这可能意指晶体结构不同。In the drawings,
参考图6和7,通过在Ar气氛下沉积形成的电流扩展层160可以根据X射线衍射实验中的Millar平面指数在衍射光束的强度上具有多个峰值。6 and 7 , the current spreading
参考图7,当米勒平面指数为222时,在其中工艺气体是氩气和氧气的混合物的情况下,衍射光束的强度具有峰值。当米勒平面指数为400时,在其中工艺气体为氩气的情况下,衍射光束的强度具有峰值。也就是说,在实施例中,当在X射线衍射实验中Millar平面指数为400时,电流扩展层160可以具有衍射光束的最大强度峰值。Referring to FIG. 7 , when the Miller plane index is 222, in the case where the process gas is a mixture of argon and oxygen, the intensity of the diffracted beam has a peak. When the Miller plane index is 400, in the case where the process gas is argon, the intensity of the diffracted beam has a peak. That is, in the embodiment, when the Millar plane index is 400 in the X-ray diffraction experiment, the current spreading
因此,根据电流扩展层160的X射线衍射实验中的Millar平面指数,可以通过衍射光束的强度峰值分布来识别工艺气体的成分。Therefore, according to the Millar plane index in the X-ray diffraction experiment of the current spreading
如上所述,当使用氩作为工艺气体通过溅射工艺沉积电流扩展层160时,电流扩展层160可以形成为具有高孔隙率的氧成分的结构。然后,减小电流扩展层160的电阻抗,使得电流可以在电流扩展层160上平滑地扩展。As described above, when the current spreading
表2和3示出使用实施例的发光器件的发光芯片的工作值和光输出的实验值。在额定输出为95mA的情况下测试每个发光芯片。Tables 2 and 3 show operating values and experimental values of light output of light-emitting chips using the light-emitting devices of the Examples. Each light-emitting chip was tested with a rated output of 95mA.
在表2中,所有发光芯片的尺寸为1200×600。情况1是在发光器件的中心处测量工作电压和光输出的情况,并且情况2是其中在与发光器件的中心分离的特定部分处测量工作电压和光输出的情况。使用包括具有厚度为约40nm的ITO材料的电流扩展层160的发光器件。In Table 2, the size of all light-emitting chips is 1200×600. Case 1 is a case where the operating voltage and light output are measured at the center of the light emitting device, and Case 2 is a case where the operating voltage and light output are measured at a specific portion separated from the center of the light emitting device. A light emitting device including a current spreading
测试1对应于当使用普通ITO材料的电流扩展层160时,即,当使用氩和氧的混合物作为工艺气体并且使用其中接触层150没有被形成的结构的发光器件时的测试。Test 1 corresponds to a test when using the current spreading
测试2对应于当使用实施例的ITO材料的电流扩展层160时,即,当使用氩气作为不含氧的工艺气体并且使用具有接触层150被形成的结构的发光器件时的测试。Test 2 corresponds to a test when using the current spreading
[表2][Table 2]
在表3中,使用具有尺寸为1200×700的发光芯片,并且其他条件与表2中描述的那些相同。In Table 3, a light-emitting chip having a size of 1200×700 was used, and other conditions were the same as those described in Table 2.
[表3][table 3]
考虑到测试结果,测试2中的工作电压低于测试1的工作电压,并且测试2中的光输出高于测试1中的光输出。Considering the test results, the working voltage in Test 2 is lower than that of Test 1, and the light output in Test 2 is higher than that in Test 1.
因此,可以理解,当使用其中形成非化学计量结构的ITO材料的电流扩展层160并且形成接触层150的实施例的发光器件时,与使用化学计量结构的ITO材料的电流扩展层160并且未形成接触层150的情况相比,发光器件的工作电压被降低并且发光器件的光输出被增加。Therefore, it can be understood that when using the light emitting device of the embodiment in which the current spreading
图8和9是示出表2的实验结果的曲线图。图8中示出的VF3表示以伏特(V)为单位的工作电压,并且Po表示以毫瓦(mW)为单位的光输出。在由圆圈表示的曲线图中,左侧的半球表示测试1,并且右侧的半球表示测试2。因为图8和9示出发光器件的整个区域的两半,所以图8和9的曲线包括情况1和情况2。8 and 9 are graphs showing the experimental results of Table 2. FIG. VF3 shown in FIG. 8 represents the operating voltage in volts (V), and Po represents the light output in milliwatts (mW). In the graph represented by the circle, the hemisphere on the left represents Test 1, and the hemisphere on the right represents Test 2. Since FIGS. 8 and 9 show two halves of the entire area of the light emitting device, the curves of FIGS. 8 and 9 include Case 1 and Case 2.
参考示出工作电压的图8,能够理解,测试2中的工作电压整体上低于测试1中的工作电压。参考示出光输出的图9,能够理解,测试2中的光输出整体上高于测试1中的光输出。Referring to FIG. 8 , which shows the operating voltage, it can be understood that the operating voltage in Test 2 is generally lower than the operating voltage in Test 1 . Referring to FIG. 9 showing the light output, it can be appreciated that the light output in Test 2 is generally higher than that in Test 1 .
图10和11是示出表3的实验结果的曲线图。与图8和9相似,在由圆圈表示的曲线图中,左侧的半球表示测试1,并且右侧的半球表示测试2。图10和图11的曲线图包括情况1和情况2。10 and 11 are graphs showing the experimental results of Table 3. FIG. Similar to Figures 8 and 9, in the graphs represented by the circles, the hemisphere on the left represents Test 1 and the hemisphere on the right represents Test 2. The graphs of Figures 10 and 11 include Case 1 and Case 2.
参考示出工作电压的图10,能够理解,测试2中的工作电压整体上低于测试1中的工作电压。参考示出光输出的图11,能够理解,测试2中的光输出整体上高于测试1中的光输出。Referring to FIG. 10 showing the operating voltage, it can be understood that the operating voltage in Test 2 is generally lower than the operating voltage in Test 1 . Referring to FIG. 11 showing the light output, it can be appreciated that the light output in Test 2 is generally higher than that in Test 1 .
图12是示出根据实施例的发光器件封装10的视图。FIG. 12 is a view illustrating the light emitting
根据实施例的发光器件封装10包括:主体11,其包括腔体;第一和第二引线框架12和13,其被安装在主体11上;上述实施例的发光器件20,其被安装在主体11上并且电连接到第一和第二引线框架12和13;以及模制部(molding portion)16,其被形成在腔体上。The light emitting
主体11可以包括硅酮材料(silicone material)、合成树脂材料或金属材料。如果主体11由诸如金属材料的导电材料形成,则主体11的表面可以被涂覆有绝缘层(虽然在附图中未示出),使得第一和第二引线框架12和13之间的电短路可以被防止。腔体可以形成在封装主体11中,并且发光器件20可以布置在腔体的底表面处。The
第一引线框架12和第二引线框架13彼此电隔离并且向发光器件20供应电流。第一引线框架12和第二引线框架13可以通过反射由发光器件20产生的光来增加发光效率并且将发光器件20产生的热量散发到外部。The
可以形成根据上述实施例的发光器件20。发光器件20可以经由导线14电连接到第一引线框架12和第二引线框架13。The
可以通过导电膏(未示出)将发光器件20固定到封装主体11的底表面。模制部16可以通过围绕发光器件20来保护发光器件20。荧光物质17可以被包括在模制部16中,使得荧光物质17可以由从发光器件20发射的第一波长区域的光激发以发射第二波长区域的光。The
发光器件封装10可以包括根据上述实施例的一个或多个发光器件,但不限于此。The light emitting
上述发光器件和发光器件封装可以用作照明系统的光源。例如,发光器件和发光器件封装可以用于诸如图像显示装置和照明装置的发光装置。The light emitting device and the light emitting device package described above can be used as a light source of a lighting system. For example, the light emitting device and the light emitting device package can be used for light emitting devices such as image display devices and lighting devices.
当发光器件或发光器件封装用作图像显示装置的背光单元时,发光器件或发光器件封装可以用作边缘型的背光单元或直下型(direct type)的背光单元。当发光器件或发光器件封装被用于照明装置时,发光器件或发光器件封装可以用作灯器具或内置型光源。When the light emitting device or the light emitting device package is used as a backlight unit of an image display apparatus, the light emitting device or the light emitting device package may be used as an edge type backlight unit or a direct type backlight unit. When the light emitting device or the light emitting device package is used for a lighting apparatus, the light emitting device or the light emitting device package may be used as a light fixture or a built-in light source.
尽管上面仅关于实施例描述数个实施例,但是各种其他实施例是可能的。上述实施例的技术内容可以以各种形式组合,除非它们不兼容,并且因此可以在新的实施例中实现。Although only a few embodiments are described above with respect to embodiments, various other embodiments are possible. The technical contents of the above-described embodiments can be combined in various forms unless they are incompatible, and thus can be implemented in a new embodiment.
工业实用性Industrial Applicability
在实施例中,接触层用作将空穴从第二导电类型半导体层平滑地注入到有源层,使得实施例的发光器件能够降低工作电压并提高光输出。因此,发光器件在工业上是可适用的。In the embodiment, the contact layer functions to smoothly inject holes from the second conductive type semiconductor layer to the active layer, so that the light emitting device of the embodiment can reduce the operating voltage and improve the light output. Therefore, the light emitting device is industrially applicable.
Claims (20)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2016-0012663 | 2016-02-02 | ||
| KR1020160012663A KR102506957B1 (en) | 2016-02-02 | 2016-02-02 | Light emitting device |
| PCT/KR2017/001104 WO2017135688A1 (en) | 2016-02-02 | 2017-02-02 | Light-emitting element and light-emitting element package comprising same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108604622A CN108604622A (en) | 2018-09-28 |
| CN108604622B true CN108604622B (en) | 2022-04-15 |
Family
ID=59500422
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201780009234.4A Active CN108604622B (en) | 2016-02-02 | 2017-02-02 | Light emitting device and light emitting device package including the same |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20190081208A1 (en) |
| KR (1) | KR102506957B1 (en) |
| CN (1) | CN108604622B (en) |
| WO (1) | WO2017135688A1 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7123322B2 (en) * | 2017-08-31 | 2022-08-23 | 東芝マテリアル株式会社 | Semiconductor light emitting device and manufacturing method thereof |
| US11244930B2 (en) * | 2018-08-10 | 2022-02-08 | Innolux Corporation | Electronic device with light emitting units with reduced power consumption |
| CN110931619A (en) * | 2019-11-20 | 2020-03-27 | 厦门士兰明镓化合物半导体有限公司 | Flip LED chip and manufacturing method thereof |
| CN114093991B (en) * | 2022-01-20 | 2022-05-17 | 泉州三安半导体科技有限公司 | Light-emitting diodes and light-emitting devices |
| CN116978999B (en) * | 2023-09-22 | 2024-01-02 | 南昌凯捷半导体科技有限公司 | Current-limited Micro-LED chip and manufacturing method thereof |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102004025610A1 (en) * | 2004-04-30 | 2005-11-17 | Osram Opto Semiconductors Gmbh | Optoelectronic component with several current spreading layers and method for its production |
| JP5232970B2 (en) * | 2006-04-13 | 2013-07-10 | 豊田合成株式会社 | Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and lamp including the same |
| JP2008028042A (en) * | 2006-07-19 | 2008-02-07 | Toshiba Corp | Light emitting device |
| CN100438110C (en) * | 2006-12-29 | 2008-11-26 | 北京太时芯光科技有限公司 | LED with the current transfer penetration-enhanced window layer structure |
| JP2009031742A (en) * | 2007-04-10 | 2009-02-12 | Fujifilm Corp | Organic electroluminescence display |
| JP5045248B2 (en) * | 2007-06-01 | 2012-10-10 | 日亜化学工業株式会社 | Semiconductor light emitting device and manufacturing method thereof |
| KR20120053571A (en) * | 2010-11-18 | 2012-05-29 | 서울옵토디바이스주식회사 | Light emitting diode chip having plurality of mesa structures |
| DE112011103819T5 (en) * | 2010-11-18 | 2013-08-22 | Seoul Opto Device Co., Ltd. | Light emitting diode chip with electrode field |
| JP2012136759A (en) * | 2010-12-27 | 2012-07-19 | Sharp Corp | Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element |
| KR101364721B1 (en) * | 2012-03-09 | 2014-02-20 | 서울바이오시스 주식회사 | Light emitting diode chip having electrode pad |
| KR101537330B1 (en) * | 2012-12-28 | 2015-07-16 | 일진엘이디(주) | Method of manufacturing nitride semiconductor light emitting device |
| KR20140118654A (en) * | 2013-03-29 | 2014-10-08 | 서울바이오시스 주식회사 | Light emitting diode chip |
| CN105226158A (en) * | 2015-10-10 | 2016-01-06 | 厦门乾照光电股份有限公司 | A kind of large scale light-emitting diode |
-
2016
- 2016-02-02 KR KR1020160012663A patent/KR102506957B1/en active Active
-
2017
- 2017-02-02 CN CN201780009234.4A patent/CN108604622B/en active Active
- 2017-02-02 US US16/074,697 patent/US20190081208A1/en not_active Abandoned
- 2017-02-02 WO PCT/KR2017/001104 patent/WO2017135688A1/en active Application Filing
Also Published As
| Publication number | Publication date |
|---|---|
| CN108604622A (en) | 2018-09-28 |
| KR102506957B1 (en) | 2023-03-08 |
| US20190081208A1 (en) | 2019-03-14 |
| KR20170091863A (en) | 2017-08-10 |
| WO2017135688A1 (en) | 2017-08-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102709417B (en) | Luminescent device and its manufacture method | |
| KR101712049B1 (en) | Light emitting device | |
| US10910519B2 (en) | Semiconductor device having layers including aluminum and semiconductor device package including same | |
| US8994001B2 (en) | Light emitting device for improving a light emission efficiency | |
| CN108604622B (en) | Light emitting device and light emitting device package including the same | |
| KR101646664B1 (en) | Light emitting device, method for fabricating the light emitting device and light emitting device package | |
| US8865494B2 (en) | Manufacturing method for compound semiconductor light-emitting element | |
| US8637893B2 (en) | Light emitting device package, method of manufacturing the same, and lighting system | |
| CN110494992A (en) | Semiconductor devices and light emitting device package including the semiconductor devices | |
| US20190013437A1 (en) | Light-emitting element and light-emitting element package comprising same | |
| US20110108868A1 (en) | Light emitting device, light emitting device package and lighting system | |
| KR101945808B1 (en) | Light emitting device and light emitting device package | |
| KR101011757B1 (en) | Light emitting device, manufacturing method and light emitting device package | |
| KR102486331B1 (en) | Light emitting device | |
| KR102728500B1 (en) | Semiconductor device | |
| KR102007401B1 (en) | Light emitting device | |
| KR101662242B1 (en) | A light emitting device and a light emitting device package | |
| KR102449557B1 (en) | Light emitting device | |
| KR20120011198A (en) | Light emitting device, light emitting device package and manufacturing method of light emitting device | |
| KR102302320B1 (en) | Light emitting device | |
| KR101672321B1 (en) | Light emitting device | |
| KR20140094093A (en) | Light emittng device | |
| KR102034709B1 (en) | Light emitting device | |
| KR102455225B1 (en) | Light emitting device | |
| KR20180051848A (en) | Semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20210715 Address after: 168 Changsheng North Road, Taicang City, Suzhou City, Jiangsu Province Applicant after: Suzhou Leyu Semiconductor Co.,Ltd. Address before: Seoul, South Kerean Applicant before: LG INNOTEK Co.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: 215499 No. 168, Changsheng North Road, Taicang City, Suzhou City, Jiangsu Province Patentee after: Suzhou Liyu Semiconductor Co.,Ltd. Country or region after: China Address before: 168 Changsheng North Road, Taicang City, Suzhou City, Jiangsu Province Patentee before: Suzhou Leyu Semiconductor Co.,Ltd. Country or region before: China |