CN108631047A - Blocking type inductant-capacitance coupling helicon plasma antenna - Google Patents
Blocking type inductant-capacitance coupling helicon plasma antenna Download PDFInfo
- Publication number
- CN108631047A CN108631047A CN201810242900.5A CN201810242900A CN108631047A CN 108631047 A CN108631047 A CN 108631047A CN 201810242900 A CN201810242900 A CN 201810242900A CN 108631047 A CN108631047 A CN 108631047A
- Authority
- CN
- China
- Prior art keywords
- antenna
- plasma
- helical
- inductive
- blocking type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 11
- 238000010168 coupling process Methods 0.000 title claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 11
- 230000000903 blocking effect Effects 0.000 title claims abstract description 8
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 title abstract 2
- 239000010453 quartz Substances 0.000 claims abstract description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000001939 inductive effect Effects 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 abstract description 4
- 239000003708 ampul Substances 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/364—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
- H01Q1/366—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor using an ionized gas
Landscapes
- Plasma Technology (AREA)
Abstract
Description
技术领域:Technical field:
本发明涉及等离子体天线领域,特别是涉及于在宽气压条件下工作的基于射频功率源的等离子体天线放电方式。The invention relates to the field of plasma antennas, in particular to a plasma antenna discharge mode based on a radio frequency power source working under wide pressure conditions.
背景技术:Background technique:
随等离子体工业的不断发展,其在材料处理,集成电路,微机械加工,等离子体推进等方面应用前景极为广泛。现有的放电方式有电容性耦合,电感性耦合及螺旋波放电。但以上方法在射频条件下放电时气压均需低于1Toor(133.3Pa),在更高气压条件下无法实现稳定放电。With the continuous development of the plasma industry, its application prospects in material processing, integrated circuits, micromachining, plasma propulsion, etc. are extremely broad. The existing discharge methods include capacitive coupling, inductive coupling and helical wave discharge. However, the air pressure of the above methods must be lower than 1Toor (133.3Pa) when discharging under radio frequency conditions, and stable discharge cannot be achieved under higher air pressure conditions.
发明内容:Invention content:
本发明克服了现有技术的不足,能够在宽气压范围内实现射频频率下的稳定放电,并获得高电离效率及射流速度。The invention overcomes the disadvantages of the prior art, can realize stable discharge at radio frequency in a wide air pressure range, and obtain high ionization efficiency and jet velocity.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following scheme:
采用频率为13.56MHz的射频功率源,将射频功率加载在螺旋电感天线1上,并将螺旋电感天线2接地,将两个螺旋电感天线套设在绝缘石英管上,并分开一段距离,以空气作为阻隔;气源和真空泵分设于石英管两侧,分别用于提供相应气体,及维持一定的真空度。在射频功率源的激发下,把工作介质激发为等离子体并加速形成等离子体射流。Using a radio frequency power source with a frequency of 13.56MHz, the radio frequency power is loaded on the helical inductive antenna 1, and the helical inductive antenna 2 is grounded. As a barrier; the gas source and the vacuum pump are located on both sides of the quartz tube, which are used to provide the corresponding gas and maintain a certain degree of vacuum. Under the excitation of the radio frequency power source, the working medium is excited into plasma and accelerated to form a plasma jet.
本发明适用的工作气体为惰性气体及空气;The applicable working gas of the present invention is inert gas and air;
本发明所述气体工作压强范围为150Pa-2500Pa;The gas working pressure range of the present invention is 150Pa-2500Pa;
本发明所述石英管管径可调,内径范围为6mm-20mm;The diameter of the quartz tube of the present invention is adjustable, and the inner diameter ranges from 6mm to 20mm;
本发明所述螺旋电感天线1和螺旋电感天线2均采用中空紫铜管制作而成。在本发明一个较佳实例中,线圈匝数为7圈,材料为直径2mm中空紫铜管。Both the spiral inductance antenna 1 and the spiral inductance antenna 2 of the present invention are made of hollow copper tubes. In a preferred example of the present invention, the number of turns of the coil is 7 turns, and the material is a hollow copper tube with a diameter of 2 mm.
本发明所述螺旋电感天线1和螺旋电感天线2所用紫铜管管径可根据不同需求进行选择。The diameters of the copper tubes used in the spiral inductive antenna 1 and the spiral inductive antenna 2 of the present invention can be selected according to different requirements.
本发明所述石英管与气源及真空泵连接方式均为密封橡胶管连接。The quartz tube of the present invention is connected with the gas source and the vacuum pump by a sealed rubber tube.
本发明中采用中空紫铜管作为天线材料,散热条件好,能够长时间稳定工作。In the present invention, the hollow copper tube is used as the antenna material, which has good heat dissipation conditions and can work stably for a long time.
本发明将电感耦合与电容耦合有机结合,将等离子体电离和加速整合到一起,电离效率高,并能获得高射流速度。The invention organically combines inductive coupling and capacitive coupling, integrates plasma ionization and acceleration, has high ionization efficiency, and can obtain high jet velocity.
附图说明:Description of drawings:
为了更清楚地说明本发明中涉及器材及技术方案,下面对说明书附图做简要介绍。In order to more clearly illustrate the equipment and technical solutions involved in the present invention, the accompanying drawings of the description are briefly introduced below.
图1为本发明提供的阻断式感容耦合螺旋等离子体天线的结构。Fig. 1 shows the structure of the blocking type inductive coupling helical plasma antenna provided by the present invention.
附图中各部件名称,材料及作用如下表所示:The names, materials and functions of the components in the drawings are shown in the table below:
各器件连接如图所示,将螺旋电感天线1套设在石英管上,并连接射频功率源阳极;The connection of each device is shown in the figure, set the spiral inductive antenna 1 on the quartz tube, and connect the anode of the RF power source;
将螺旋电感天线2套设在石英管另一端,并与螺旋电感天线1间隔一段距离,以空气作为阻断,并连接地线;Set the helical inductive antenna 2 on the other end of the quartz tube, and keep a certain distance from the helical inductive antenna 1, use air as a block, and connect the ground wire;
石英管左端采用密封橡胶管与气源相接;The left end of the quartz tube is connected to the gas source with a sealed rubber tube;
石英管右端采用密封橡胶管与真空泵抽气口相连接。The right end of the quartz tube is connected with the air port of the vacuum pump with a sealed rubber tube.
具体实施方式:Detailed ways:
现结合附图及实例对本发明进行进一步的阐述。The present invention will be further described in conjunction with the accompanying drawings and examples.
如附图所示,该装置包含有石英管,螺旋电感天线1,螺旋电感天线2,射频功率源,真空泵和气源。能够实现射频条件下宽气压范围内等离子体的电离和加速。As shown in the figure, the device includes a quartz tube, a helical inductive antenna 1, a helical inductive antenna 2, a radio frequency power source, a vacuum pump and a gas source. It can realize the ionization and acceleration of plasma in a wide pressure range under radio frequency conditions.
在具体实施中需注意射频电缆的接头是否拧紧,电缆弯曲尽量自然,输出电缆的末端的芯线与电极紧密相连,两者之间的线尽可能短。注意真空泵,气压计,石英管,气源之间密封紧密。In the specific implementation, it is necessary to pay attention to whether the connector of the RF cable is tightened, the cable is bent as naturally as possible, the core wire at the end of the output cable is closely connected with the electrode, and the wire between the two is as short as possible. Pay attention to the tight seal between the vacuum pump, the barometer, the quartz tube and the gas source.
在具体实施中应调节反射功率尽可能小。In the specific implementation, the reflected power should be adjusted to be as small as possible.
在具体实施过程中,石英管管径可调,内径范围为5mm-20mm;一个实例中采用管内径为 5mm,外径8mm的直通石英管,可得到直径充满整个管内径,长度250mm的稳定等离子体射流。In the specific implementation process, the diameter of the quartz tube is adjustable, and the inner diameter ranges from 5mm to 20mm; in one example, a straight-through quartz tube with an inner diameter of 5mm and an outer diameter of 8mm can be used to obtain a stable plasma with a diameter that fills the entire inner diameter of the tube and a length of 250mm. body jet.
在具体实施过程中,螺旋电感天线1,螺旋电感天线2,管径及绕线匝数可调。一个实例中采用管径2mm,匝数为7圈的紫铜管作为电感天线,电离效率高,加速性能优秀。In the specific implementation process, the helical inductive antenna 1 and the helical inductive antenna 2 are adjustable in pipe diameter and winding turns. In an example, a copper tube with a tube diameter of 2mm and 7 turns is used as the inductive antenna, which has high ionization efficiency and excellent acceleration performance.
在具体实施过程中,射频功率加载在螺旋电感天线1上,使其分别以电感耦合的方式电离气体介质产生等离子体,两段电感天线之间有空气作为阻断,即以电容的方式形成轴向压降,从而加速等离子体获得高速射流。In the specific implementation process, the radio frequency power is loaded on the spiral inductive antenna 1, so that it ionizes the gas medium by inductive coupling to generate plasma, and there is air between the two inductive antennas as a block, that is, the shaft is formed in a capacitive manner. To the pressure drop, thereby accelerating the plasma to obtain a high-speed jet.
在具体实例中,将本发明中的阻断式感容耦合螺旋等离子体天线与现有天线进行放电对比实验。实验中,对同一型号石英管,同一气压及同一输出的等离子体电离装置分别采用电感性耦合天线,电容性耦合天线及螺旋波放电天线,并与本发明中所述天线进行比较。实验证明,在输入为射频功率源的条件下,电感性耦合天线,电容性耦合天线及螺旋波放电天线均无法实现气压为150Pa-2500Pa下的稳定放电。而本发明所述天线放电稳定,且电离效率高。In a specific example, a discharge comparison experiment was carried out between the blocked inductively coupled helical plasma antenna of the present invention and the existing antenna. In the experiment, the plasma ionization device with the same type of quartz tube, the same air pressure and the same output adopts the inductive coupling antenna, the capacitive coupling antenna and the helical wave discharge antenna respectively, and compares them with the antenna described in the present invention. Experiments have proved that under the condition that the input is a radio frequency power source, the inductively coupled antenna, the capacitively coupled antenna and the helical wave discharge antenna cannot achieve a stable discharge at an air pressure of 150Pa-2500Pa. However, the antenna of the present invention has stable discharge and high ionization efficiency.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810242900.5A CN108631047A (en) | 2018-03-23 | 2018-03-23 | Blocking type inductant-capacitance coupling helicon plasma antenna |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810242900.5A CN108631047A (en) | 2018-03-23 | 2018-03-23 | Blocking type inductant-capacitance coupling helicon plasma antenna |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108631047A true CN108631047A (en) | 2018-10-09 |
Family
ID=63696271
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810242900.5A Pending CN108631047A (en) | 2018-03-23 | 2018-03-23 | Blocking type inductant-capacitance coupling helicon plasma antenna |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108631047A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110913558A (en) * | 2019-12-10 | 2020-03-24 | 四川大学 | High-efficiency radio frequency plasma discharge device under near space air pressure condition |
| CN111997853A (en) * | 2020-06-05 | 2020-11-27 | 中国科学院合肥物质科学研究院 | Near space environment air suction type radio frequency plasma propeller |
| CN112888132A (en) * | 2020-12-11 | 2021-06-01 | 中国人民解放军战略支援部队航天工程大学 | Tandem type double-coil radio frequency driving gas discharge device |
| CN113173266A (en) * | 2021-04-16 | 2021-07-27 | 中国科学院合肥物质科学研究院 | Plasma vector propeller without moving part |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6228229B1 (en) * | 1995-11-15 | 2001-05-08 | Applied Materials, Inc. | Method and apparatus for generating a plasma |
| CN1648283A (en) * | 2004-01-30 | 2005-08-03 | 三星电子株式会社 | Plasma chemical vapor deposition system and method for coating both sides of a substrate |
| KR20060014207A (en) * | 2004-08-10 | 2006-02-15 | 주식회사 뉴파워 프라즈마 | Fluorescent lamp with coil antenna and surface light source device using same |
| CN101027481A (en) * | 2004-09-22 | 2007-08-29 | 埃尔温公司 | Spacecraft thruster |
| CN101218859A (en) * | 2005-07-19 | 2008-07-09 | 显示器生产服务株式会社 | Plasma Reactor with Composite Antenna Coil Set |
-
2018
- 2018-03-23 CN CN201810242900.5A patent/CN108631047A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6228229B1 (en) * | 1995-11-15 | 2001-05-08 | Applied Materials, Inc. | Method and apparatus for generating a plasma |
| CN1648283A (en) * | 2004-01-30 | 2005-08-03 | 三星电子株式会社 | Plasma chemical vapor deposition system and method for coating both sides of a substrate |
| KR20060014207A (en) * | 2004-08-10 | 2006-02-15 | 주식회사 뉴파워 프라즈마 | Fluorescent lamp with coil antenna and surface light source device using same |
| CN101027481A (en) * | 2004-09-22 | 2007-08-29 | 埃尔温公司 | Spacecraft thruster |
| CN101218859A (en) * | 2005-07-19 | 2008-07-09 | 显示器生产服务株式会社 | Plasma Reactor with Composite Antenna Coil Set |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110913558A (en) * | 2019-12-10 | 2020-03-24 | 四川大学 | High-efficiency radio frequency plasma discharge device under near space air pressure condition |
| CN111997853A (en) * | 2020-06-05 | 2020-11-27 | 中国科学院合肥物质科学研究院 | Near space environment air suction type radio frequency plasma propeller |
| CN112888132A (en) * | 2020-12-11 | 2021-06-01 | 中国人民解放军战略支援部队航天工程大学 | Tandem type double-coil radio frequency driving gas discharge device |
| CN113173266A (en) * | 2021-04-16 | 2021-07-27 | 中国科学院合肥物质科学研究院 | Plasma vector propeller without moving part |
| CN113173266B (en) * | 2021-04-16 | 2024-04-09 | 中国科学院合肥物质科学研究院 | Plasma vector propeller without moving parts |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108631047A (en) | Blocking type inductant-capacitance coupling helicon plasma antenna | |
| KR100396214B1 (en) | Plasma processing apparatus having parallel resonance antenna for very high frequency | |
| US10147586B2 (en) | Inductively coupled coil and inductively coupled plasma device using the same | |
| CN107801286B (en) | Microwave plasma excitation system based on dielectric barrier discharge pre-ionization | |
| US6239553B1 (en) | RF plasma source for material processing | |
| CN113357109B (en) | Ignition device of radio frequency ion thruster | |
| US20040012319A1 (en) | Rf loaded line type capacitive plasma source for broad range of operating gas pressure | |
| CN109769335A (en) | A radio frequency microdischarge long-scale plasma generating device and method | |
| CN102361531B (en) | Device and method for generating large-area, uniform and non-magnetized plasmas | |
| CN104936370A (en) | Atmospheric pressure low temperature plasma jet array adjustable device | |
| CN101378616A (en) | Atmosphere plasma cylindrical microwave excitation cavity | |
| WO2023093283A1 (en) | Small beam-diameter spiral wave plasma generation device and method | |
| CN201528464U (en) | A New Atmospheric Pressure Jet Cooling Plasma Generator | |
| CN113851368B (en) | Method for enhancing discharge in radio frequency magnetization capacitive coupling discharge device | |
| JP2025114670A (en) | Plasma Generator | |
| CN110913558A (en) | High-efficiency radio frequency plasma discharge device under near space air pressure condition | |
| CN220629635U (en) | Atmospheric microwave plasma jet source for processing embedded small-sized materials | |
| CN219740700U (en) | A variable-diameter spiral high-frequency resonance device | |
| CN209982804U (en) | Device for improving plasma glow starting and stability | |
| CN109462929B (en) | Method and device for improving plasma ignition and stability | |
| CN116801470A (en) | An inductively coupled remote plasma generator with a magnetic core | |
| CN116133226A (en) | A variable-diameter helical high-frequency resonance device | |
| CN118737806A (en) | Narrow cavity dielectric barrier low pressure separated discharge vacuum ultraviolet light source | |
| CN103025042B (en) | Radio frequency discharge device and hollow-core fiber radio frequency discharge system | |
| CN201048242Y (en) | Coaxial tube structured media blocked corona discharge reactor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181009 |
|
| WD01 | Invention patent application deemed withdrawn after publication |