[go: up one dir, main page]

CN108710404B - a mixed signal generator - Google Patents

a mixed signal generator Download PDF

Info

Publication number
CN108710404B
CN108710404B CN201810500621.4A CN201810500621A CN108710404B CN 108710404 B CN108710404 B CN 108710404B CN 201810500621 A CN201810500621 A CN 201810500621A CN 108710404 B CN108710404 B CN 108710404B
Authority
CN
China
Prior art keywords
module
waveform
mixed signal
mixed
data storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810500621.4A
Other languages
Chinese (zh)
Other versions
CN108710404A (en
Inventor
秦熙
朱明东
王淋
张闻哲
赵宇曦
荣星
杜江峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201810500621.4A priority Critical patent/CN108710404B/en
Publication of CN108710404A publication Critical patent/CN108710404A/en
Application granted granted Critical
Publication of CN108710404B publication Critical patent/CN108710404B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/022Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulation Of Pulses (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

The application discloses mixed signal generator includes: the device comprises a clock management module, a bus control module, a waveform data storage module and a mixed signal generation module, wherein the clock management module is respectively connected with the bus control module and the mixed signal generation module, receives a reference clock, and generates a high-speed clock and a working clock of the mixed signal generation module and working clocks required by the bus control module and the waveform data storage module; the bus control module is used for communication between the upper computer and the mixed signal generation module, and analyzing and processing instruction, address and waveform data sent to the mixed signal generation module by the upper computer in real time; the waveform data storage module is connected with the bus control module and stores data information of the waveform signals; the mixed signal generation module is connected with the waveform data storage module and outputs mixed signals based on the data information of the waveform signals stored by the waveform data storage module. The application can effectively output mixed signals.

Description

一种混合信号发生器a mixed signal generator

技术领域technical field

本申请属于信号发生器技术领域,尤其涉及一种混合信号发生器。The present application belongs to the technical field of signal generators, and in particular relates to a mixed signal generator.

背景技术Background technique

信号发生器在日常生活中扮演着重要的角色,在无线通信、雷达、量子计算等领域有着广泛的应用。在无线通信中控制接收与发送的频率,实现各种调制信号的产生;在雷达领域,需要产生抗干扰能力强的跳频信号;在量子计算领域,对量子比特的操控需要使用频率分辨率高、频率可调的信号。Signal generators play an important role in daily life and are widely used in wireless communication, radar, quantum computing and other fields. Control the frequency of reception and transmission in wireless communication, and realize the generation of various modulation signals; in the field of radar, it is necessary to generate frequency hopping signals with strong anti-interference ability; in the field of quantum computing, the manipulation of qubits requires the use of high frequency resolution , frequency adjustable signal.

常用的信号发生器包括基于PLL(Phase Locked Loop,锁相环)的信号发生器、采用DDS(Direct Digital Synthesis,直接数字合成)芯片的信号发生器、任意波形发生器等等。基于PLL的信号发生器通过闭环的负反馈控制,结合倍频、分频技术,使得输出信号频率与参考信号频率有着确定的数学关系、输出信号的相位与参考信号有着确定的关系,可以产生稳定度高、相位噪声小的单频信号,但也存在无法精确、快速地调节频率输出的问题。DDS芯片实时地构建出输出信号的数字波形,经DAC(Digital-to-Analog Converter,数字模拟转换器)输出模拟信号,输出信号频率切换速度快、调频带宽大,但生成复杂波形较为困难、存储的切换的频率数目不多。通常的任意波形发生器采用直接模式,将存储的数字波形逐点输出到DAC得到模拟信号,可以产生几乎任何波形的信号,但波形长度受限于存储容量,以2.8GHz采样率、14bit分辨率的AD9129为例,4GB的DDR3存储容量仅能存储约2.285G个样点,可以播放0.816s。现如今,随着技术的发展,有些任意波形发生器还具备了利用DDS实时产生一些简单波形的能力。Commonly used signal generators include signal generators based on PLL (Phase Locked Loop, phase-locked loop), signal generators using DDS (Direct Digital Synthesis, direct digital synthesis) chips, arbitrary waveform generators, and the like. The PLL-based signal generator uses closed-loop negative feedback control, combined with frequency multiplication and frequency division technology, so that the output signal frequency has a definite mathematical relationship with the reference signal frequency, and the phase of the output signal has a definite relationship with the reference signal, which can generate stable It is a single-frequency signal with high intensity and small phase noise, but there is also the problem that the frequency output cannot be adjusted accurately and quickly. The DDS chip constructs the digital waveform of the output signal in real time, and outputs the analog signal through the DAC (Digital-to-Analog Converter). The output signal frequency switching speed is fast and the frequency modulation bandwidth is large, but it is difficult to generate complex waveforms and store The number of switching frequencies is not large. The usual arbitrary waveform generator adopts the direct mode, and outputs the stored digital waveform to the DAC point by point to obtain an analog signal, which can generate almost any waveform signal, but the waveform length is limited by the storage capacity, with a sampling rate of 2.8GHz and a resolution of 14bit Taking the AD9129 as an example, the 4GB DDR3 storage capacity can only store about 2.285G samples and can play 0.816s. Nowadays, with the development of technology, some arbitrary waveform generators also have the ability to use DDS to generate some simple waveforms in real time.

目前,Analog Devices公司推出的DDS芯片3.5GHz采样率的AD9914,提供了单音模式、调制模式、线性扫描模式、跳频模式,内部寄存器满足8种频率/相位配置,支持串行总线或高速并行端口向芯片内部的频率寄存器写入频率字,再将I/O_UPDATE引脚置位实现更新。集成的DDS芯片,频率的切换速度快,波形连续。但在输出信号的类型上,受限于已有模式的种类,在输出复杂波形时较为困难。另外,现有技术中公开的任意波形发生器架构下的信号发生器,通过SRAM(Static Random-Access Memory,静态随机存取存储器)存储波形,实现任意波形的输出,可以输出多种用户自定义的信号,但波形长度受限于存储器的容量。At present, the AD9914 with a 3.5GHz sampling rate of DDS chip launched by Analog Devices provides monophonic mode, modulation mode, linear scanning mode, and frequency hopping mode. The internal registers meet 8 kinds of frequency/phase configurations, and support serial bus or high-speed parallel The port writes the frequency word to the frequency register inside the chip, and then sets the I/O_UPDATE pin to implement the update. Integrated DDS chip, the frequency switching speed is fast, and the waveform is continuous. However, the type of output signal is limited by the types of existing modes, and it is difficult to output complex waveforms. In addition, the signal generator under the framework of the arbitrary waveform generator disclosed in the prior art stores waveforms through SRAM (Static Random-Access Memory, static random access memory), realizes the output of arbitrary waveforms, and can output various user-defined functions. signal, but the waveform length is limited by the memory capacity.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本申请提供了一种混合信号发生器,能够使用固定存储空间的参数刻画波形,实时地解码波形数据字生成混合波形,进而输出混合信号,能够压缩存储相应的数字波形所需的空间,尽可能地规避任意波形发生器输出时波形长度受限于存储容量的问题。In view of this, the present application provides a mixed signal generator, which can use parameters of a fixed storage space to describe a waveform, decode waveform data words in real time to generate a mixed waveform, and then output a mixed signal, which can compress and store the required digital waveforms. space, and try to avoid the problem that the waveform length is limited by the storage capacity when the arbitrary waveform generator outputs.

本申请提供了一种混合信号发生器,包括:时钟管理模块、总线控制模块、波形数据存储模块和混合信号发生模块,其中:The application provides a mixed signal generator, including: a clock management module, a bus control module, a waveform data storage module and a mixed signal generation module, wherein:

所述时钟管理模块分别与所述总线控制模块和混合信号发生模块相连,用于接受参考时钟,生成所述混合信号发生模块的高速时钟和工作时钟,以及所述总线控制模块和所述波形数据存储模块所需的工作时钟;The clock management module is respectively connected with the bus control module and the mixed signal generation module, and is used for receiving a reference clock, generating a high-speed clock and a working clock of the mixed signal generation module, as well as the bus control module and the waveform data. The working clock required by the memory module;

所述总线控制模块分别与上位机和混合信号发生模块相连,用于上位机与所述混合信号发生模块之间的通信,实时解析并处理上位机发送至所述混合信号发生模块的指令、地址和波形数据;The bus control module is respectively connected with the host computer and the mixed signal generation module, and is used for the communication between the host computer and the mixed signal generation module, and analyzes and processes the instructions and addresses sent by the host computer to the mixed signal generation module in real time. and waveform data;

所述波形数据存储模块与所述总线控制模块相连,用于存储波形信号的数据信息;The waveform data storage module is connected to the bus control module, and is used for storing data information of the waveform signal;

所述混合信号发生模块与所述波形数据存储模块相连,用于基于所述波形数据存储模块存储的波形信号的数据信息输出混合信号。The mixed signal generating module is connected to the waveform data storage module, and is configured to output a mixed signal based on the data information of the waveform signal stored in the waveform data storage module.

优选地,所述混合信号发生模块包括:混合波形生成模块和高速的数字模拟转换模块;其中:Preferably, the mixed signal generation module includes: a mixed waveform generation module and a high-speed digital-to-analog conversion module; wherein:

所述混合波形生成模块与所述总线控制模块、波形数据存储模块和高速的数字模拟转换模块相连,用于对所述波形数据存储模块中存储的波形信号的数据信息进行解码实时生成混合信号的波形;The mixed waveform generation module is connected with the bus control module, the waveform data storage module and the high-speed digital-to-analog conversion module, and is used for decoding the data information of the waveform signal stored in the waveform data storage module to generate the mixed signal in real time. waveform;

所述高速的数字模拟转换模块,用于基于混合波形生成模块生成的混合信号的波形输出混合信号。The high-speed digital-to-analog conversion module is configured to output the mixed signal based on the waveform of the mixed signal generated by the mixed waveform generation module.

优选地,所述高速的数字模拟转换模块包括:并串转换模块和数字模拟转换器,其中:Preferably, the high-speed digital-to-analog conversion module includes: a parallel-to-serial conversion module and a digital-to-analog converter, wherein:

所述并串转换模块,用于将所述混合信号的波形编码到更高的频率发送至所述数字模拟转换器;the parallel-serial conversion module, for encoding the waveform of the mixed signal to a higher frequency and sending it to the digital-to-analog converter;

所述数字模拟转换器,用于基于接收到的所述混合信号的波形输出混合信号。The digital-to-analog converter is configured to output a mixed signal based on the received waveform of the mixed signal.

优选地,所述波形数据存储模块为基于FPGA内部BRAM与外部DDR3的数据存储模块。Preferably, the waveform data storage module is a data storage module based on FPGA internal BRAM and external DDR3.

优选地,所述混合波形生成模块包括:多个幅度、频率、相位均可调的单频波形生成模块。Preferably, the mixed waveform generation module includes: a plurality of single-frequency waveform generation modules with adjustable amplitude, frequency and phase.

优选地,所述单频波形生成模块包括:DDS单元和DSP乘法单元。Preferably, the single-frequency waveform generation module includes: a DDS unit and a DSP multiplication unit.

优选地,所述DDS单元包括:相位累加器、相位加法器和相位-幅度查找表。Preferably, the DDS unit includes: a phase accumulator, a phase adder and a phase-amplitude look-up table.

综上所述,本申请公开了一种混合信号发生器,包括:时钟管理模块、总线控制模块、波形数据存储模块和混合信号发生模块,其中:时钟管理模块分别与总线控制模块和混合信号发生模块相连,用于接受参考时钟,生成混合信号发生模块的高速时钟和工作时钟,以及总线控制模块和波形数据存储模块所需的工作时钟;总线控制模块分别与上位机和混合信号发生模块相连,用于上位机与混合信号发生模块之间的通信,实时解析并处理上位机发送至混合信号发生模块的指令、地址和波形数据;波形数据存储模块与总线控制模块和相连,用于存储波形信号的数据信息;混合信号发生模块与波形数据存储模块相连,用于基于波形数据存储模块存储的波形信号的数据信息输出混合信号。能够使用固定存储空间的参数刻画波形,实时地解码波形数据生成混合波形,进而输出混合信号,能够压缩存储相应的数字波形所需的空间,尽可能地规避任意波形发生器输出时波形长度受限于存储容量的问题。To sum up, the present application discloses a mixed signal generator, comprising: a clock management module, a bus control module, a waveform data storage module and a mixed signal generation module, wherein: the clock management module is respectively connected with the bus control module and the mixed signal to generate The module is connected to receive the reference clock to generate the high-speed clock and working clock of the mixed signal generation module, as well as the working clock required by the bus control module and the waveform data storage module; the bus control module is respectively connected with the host computer and the mixed signal generation module. It is used for communication between the host computer and the mixed signal generation module, and analyzes and processes the instructions, addresses and waveform data sent by the host computer to the mixed signal generation module in real time; the waveform data storage module is connected to the bus control module and is used to store waveform signals. The mixed signal generating module is connected with the waveform data storage module, and is used for outputting the mixed signal based on the data information of the waveform signal stored in the waveform data storage module. It can use the parameters of fixed storage space to describe the waveform, decode the waveform data in real time to generate a mixed waveform, and then output the mixed signal, which can compress the space required for storing the corresponding digital waveform, and avoid the limitation of the waveform length when the arbitrary waveform generator outputs as much as possible. on storage capacity issues.

附图说明Description of drawings

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.

图1为本申请公开的一种混合信号发生器实施例1的结构示意图;FIG. 1 is a schematic structural diagram of Embodiment 1 of a mixed signal generator disclosed in the application;

图2为本申请公开的一种混合信号发生器实施例2的结构示意图;2 is a schematic structural diagram of Embodiment 2 of a mixed signal generator disclosed in the application;

图3为本申请公开的混合信号发生模块的结构示意图;3 is a schematic structural diagram of a mixed signal generating module disclosed in the present application;

图4为本申请公开的单频波形的波形数据字示意图;4 is a schematic diagram of a waveform data word of a single-frequency waveform disclosed in the application;

图5为本申请公开的单频波形生成模块的结构示意图;5 is a schematic structural diagram of a single-frequency waveform generation module disclosed in the application;

图6为本申请公开的单频波形生成子模块的结构示意图;6 is a schematic structural diagram of a single-frequency waveform generation sub-module disclosed in the application;

图7为本申请公开的相位-幅度查找表图解示意图。FIG. 7 is a schematic diagram illustrating the phase-amplitude look-up table disclosed in the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.

如图1所示,为本申请公开的一种混合信号发生器实施例1的结构示意图,本混合信号发生器可以包括时钟管理模块、总线控制模块、波形数据存储模块和混合信号发生模块,其中:As shown in FIG. 1 , which is a schematic structural diagram of Embodiment 1 of a mixed signal generator disclosed in this application, the mixed signal generator may include a clock management module, a bus control module, a waveform data storage module and a mixed signal generation module, wherein :

时钟管理模块分别与总线控制模块和混合信号发生模块相连,用于接受参考时钟,生成混合信号发生模块的高速时钟和工作时钟,以及总线控制模块和波形数据存储模块所需的工作时钟;The clock management module is respectively connected with the bus control module and the mixed signal generation module, and is used to receive the reference clock, generate the high-speed clock and the working clock of the mixed signal generation module, and the working clock required by the bus control module and the waveform data storage module;

总线控制模块分别与上位机和混合信号发生模块相连,用于上位机与混合信号发生模块之间的通信,实时解析并处理上位机发送至混合信号发生模块的指令、地址和波形数据;The bus control module is respectively connected with the host computer and the mixed signal generation module, and is used for the communication between the host computer and the mixed signal generation module, and analyzes and processes the instructions, addresses and waveform data sent by the host computer to the mixed signal generation module in real time;

波形数据存储模块与总线控制模块相连,用于存储波形信号的数据信息;The waveform data storage module is connected with the bus control module, and is used for storing the data information of the waveform signal;

混合信号发生模块与波形数据存储模块相连,用于基于波形数据存储模块存储的波形信号的数据信息输出混合信号。The mixed signal generating module is connected with the waveform data storage module, and is used for outputting the mixed signal based on the data information of the waveform signal stored in the waveform data storage module.

上述实施例公开的混合信号发生器的工作原理为:The working principle of the mixed signal generator disclosed in the above embodiment is:

步骤(1)初始状态时,此状态下混合信号发生器不进行任何操作,等候上位机发送指令则进入步骤(2),反之停留在步骤(1);In the initial state of step (1), the mixed signal generator does not perform any operation in this state, and waits for the host computer to send an instruction to enter step (2), otherwise stay in step (1);

步骤(2)接受上位机发出的控制命令,进入指令判断,如果判断为错误的指令则返回步骤(1),判断为波形数据写入指令则进入步骤(3),判断为播放预设定指令则进入步骤(4),判断为播放波形则进入步骤(5);Step (2) Accept the control command sent by the host computer, enter the command judgment, if it is judged to be an incorrect command, return to step (1), judge that it is a waveform data write command, enter step (3), and judge that it is a playback preset command. Then enter step (4), judge to play waveform then enter step (5);

步骤(3)将从上位机接收到的波形数据写入到波形数据存储模块13,写入完毕后,将数据读回检验,若检验结果为正确,则返回步骤(1),若错误,则再次进入步骤(3);Step (3) writes the waveform data received from the host computer into the waveform data storage module 13, after the writing is completed, the data is read back for inspection, if the inspection result is correct, then return to step (1), if wrong, then Enter step (3) again;

步骤(4)进行播放的预设定,分为两部分,一是选择触发模式还是连续播放模式,二是波形数据存储模块13中存储数据的分段、波形数据解码方式的设定;Step (4) carries out the preset of playing, is divided into two parts, one is to select trigger mode or continuous play mode, the two is the setting of the segment of stored data in the waveform data storage module 13, the waveform data decoding mode;

步骤(5)播放开始,该过程会自动读取步骤(4)中的播放预设定,然后按照预设定中的解码方式读取步骤(3)中已写入的存储数据,实时地生成波形,将数字波形通过混合信号发生模块14输出混合信号。播放过程中若有新指令进入或是播放内容已播放完毕,则会返回步骤(1)。Step (5) playback starts, the process will automatically read the playback preset in step (4), and then read the stored data written in step (3) according to the decoding method in the preset, and generate in real time. The digital waveform is passed through the mixed signal generating module 14 to output the mixed signal. During the playback process, if a new command is entered or the playback content has been played, it will return to step (1).

综上所述,在上述实施例中,能够使用固定存储空间的参数刻画波形,实时地解码波形数据生成混合波形,进而输出混合信号,能够压缩存储相应的数字波形所需的空间,尽可能地规避任意波形发生器输出时波形长度受限于存储容量的问题。To sum up, in the above-mentioned embodiment, the parameters of the fixed storage space can be used to describe the waveform, the waveform data can be decoded in real time to generate a mixed waveform, and then the mixed signal can be output, which can compress the space required for storing the corresponding digital waveform, as much as possible. Avoid the problem that the waveform length is limited by the storage capacity when the arbitrary waveform generator outputs.

如图2所示,为本申请公开的一种混合信号发生器实施例2的结构示意图,本混合信号发生器可以包括时钟管理模块、总线控制模块、波形数据存储模块和混合信号发生模块,其中:混合信号发生模块包括:混合波形生成模块和高速的数字模拟转换模块;高速的数字模拟转换模块包括:并串转换模块和数字模拟转换器,其中:As shown in FIG. 2, which is a schematic structural diagram of Embodiment 2 of a mixed signal generator disclosed in the application, the mixed signal generator may include a clock management module, a bus control module, a waveform data storage module and a mixed signal generation module, wherein : The mixed signal generation module includes: a mixed waveform generation module and a high-speed digital-to-analog conversion module; the high-speed digital-to-analog conversion module includes: a parallel-to-serial conversion module and a digital-to-analog converter, wherein:

时钟管理模块分别与总线控制模块和混合信号发生模块相连,用于接受参考时钟,生成混合信号发生模块的高速时钟和工作时钟,以及总线控制模块和波形数据存储模块所需的工作时钟;The clock management module is respectively connected with the bus control module and the mixed signal generation module, and is used to receive the reference clock, generate the high-speed clock and the working clock of the mixed signal generation module, and the working clock required by the bus control module and the waveform data storage module;

总线控制模块分别与上位机和混合信号发生模块相连,用于上位机与混合信号发生模块之间的通信,实时解析并处理上位机发送至混合信号发生模块的指令、地址和波形数据;The bus control module is respectively connected with the host computer and the mixed signal generation module, and is used for the communication between the host computer and the mixed signal generation module, and analyzes and processes the instructions, addresses and waveform data sent by the host computer to the mixed signal generation module in real time;

波形数据存储模块与总线控制模块相连,用于存储波形信号的数据信息;The waveform data storage module is connected with the bus control module, and is used for storing the data information of the waveform signal;

混合信号发生模块与波形数据存储模块相连,用于基于波形数据存储模块存储的波形信号的数据信息输出混合信号;The mixed signal generating module is connected with the waveform data storage module, and is used for outputting the mixed signal based on the data information of the waveform signal stored in the waveform data storage module;

混合波形生成模块与总线控制模块、波形数据存储模块和高速的数字模拟转换模块相连,用于对波形数据存储模块中存储的波形信号的数据信息进行解码实时生成混合信号的波形;The mixed waveform generation module is connected with the bus control module, the waveform data storage module and the high-speed digital-to-analog conversion module, and is used for decoding the data information of the waveform signal stored in the waveform data storage module to generate the waveform of the mixed signal in real time;

高速的数字模拟转换模块,用于基于混合波形生成模块生成的混合信号的波形输出混合信号;A high-speed digital-to-analog conversion module is used to output the mixed signal based on the waveform of the mixed signal generated by the mixed waveform generation module;

并串转换模块,用于将混合信号的波形编码到更高的频率发送至数字模拟转换器;Parallel-to-serial conversion module, used to encode the waveform of the mixed signal to a higher frequency and send it to the digital-to-analog converter;

数字模拟转换器,用于基于接收到的混合信号的波形输出混合信号。A digital-to-analog converter for outputting a mixed signal based on the waveform of the received mixed signal.

具体的,在上述实施例中,总线控制模块可以为:USB总线控制模块、PCI总线控制模块、PXI总线控制模块或网口总线控制模块等。Specifically, in the above embodiment, the bus control module may be: a USB bus control module, a PCI bus control module, a PXI bus control module or a network port bus control module, and the like.

具体的,在上述实施例中混合信号发生模块的其中一种结构示意图如图3所示,以Virtex-7FPGA为例,其系统工作时钟的频率限制在400MHz以内,在DAC采样率达到GHz时,需要将FPGA系统时钟下产生的波形数据经过并串转换,编码到更高频率再向DAC传输。Specifically, one of the structural diagrams of the mixed-signal generation module in the above embodiment is shown in FIG. 3 . Taking Virtex-7FPGA as an example, the frequency of the system operating clock is limited to within 400MHz. When the DAC sampling rate reaches GHz, The waveform data generated under the FPGA system clock needs to be converted from parallel to serial, encoded to a higher frequency, and then transmitted to the DAC.

混合信号发生模块是本申请的核心技术,如图3所示,利用多个幅度、频率、相位均可调的单频波形生成模块实时产生单频波形,相加产生包含多个频率分量的混合波形,通过并串转换模块将生成的数字波形编码到更高的频率发送到DAC,进而由DAC输出混合信号。The mixed-signal generation module is the core technology of the present application. As shown in Figure 3, multiple single-frequency waveform generation modules with adjustable amplitude, frequency, and phase are used to generate single-frequency waveforms in real time, and add them to generate a mixture of multiple frequency components. The generated digital waveform is encoded to a higher frequency by the parallel-serial conversion module and sent to the DAC, and then the DAC outputs the mixed signal.

图中参数L、N、K,L为频率分量的个数,N为DAC的分辨率,K是DAC的采样率与系统工作时钟的比值。对于并串转换模块,K或K/2是它的转换比,需要考虑DAC的架构,当DAC采用交替采样方式获取波形数据时(如AD9129),会有两组N bit数据输入,这时采用的是K/2的并串转换比;当DAC只有一组N bit数据输入时(如AD9139、AD9161/2),这时采用的是K的并串转换比。在本发明的实现中,采用了AD9129作为DAC,这三项参数设置为:L取4,N取14,K取16,并串转换比为8。在本申请中,高速时钟的频率为700MHz,系统时钟的频率为175MHz。The parameters L, N, K in the figure, L is the number of frequency components, N is the resolution of the DAC, and K is the ratio of the sampling rate of the DAC to the system operating clock. For the parallel-to-serial conversion module, K or K/2 is its conversion ratio, and the DAC architecture needs to be considered. When the DAC uses the alternate sampling method to obtain waveform data (such as AD9129), there will be two sets of N bit data inputs. It is the parallel-to-serial conversion ratio of K/2; when the DAC has only one set of N-bit data input (such as AD9139, AD9161/2), the parallel-to-serial conversion ratio of K is used at this time. In the implementation of the present invention, AD9129 is used as the DAC, and the three parameters are set as: L is 4, N is 14, K is 16, and the parallel-to-serial conversion ratio is 8. In this application, the frequency of the high-speed clock is 700MHz, and the frequency of the system clock is 175MHz.

具体的,在上述实施例中,单频波形的波形数据字的示意图如图4所示,对于单个频率分量,其有效信息为:幅度、频率、初相位、播放时间,其中,幅度、频率和初相位为波形形状参数,播放时间为波形长度参数,这四个参数可以完整地描述一段正弦波波形。单频波形的波形数据字如图4示,每个频率分量占用128bit(即16B)的数据:16bit的幅度、32bit的频率与初相位,频率与初相位的范围是用32bit表示的0到2π,用于在播放时间内的正弦波波形的生成;48bit的播放时间最低位对应于DAC采样时钟的一个时钟周期,在本发明的实现中为357ps,故播放时间最高可达256T个DAC采样时钟的时钟周期即27小时54分。Specifically, in the above-mentioned embodiment, the schematic diagram of the waveform data word of the single-frequency waveform is shown in FIG. 4 . For a single frequency component, its valid information is: amplitude, frequency, initial phase, and playback time, wherein the amplitude, frequency and The initial phase is the waveform shape parameter, and the playback time is the waveform length parameter. These four parameters can completely describe a sine wave waveform. The waveform data word of the single-frequency waveform is shown in Figure 4. Each frequency component occupies 128bit (ie 16B) of data: 16bit amplitude, 32bit frequency and initial phase, and the range of frequency and initial phase is 0 to 2π represented by 32bit , used for the generation of the sine wave waveform within the playback time; the lowest bit of the 48bit playback time corresponds to one clock cycle of the DAC sampling clock, which is 357ps in the implementation of the present invention, so the maximum playback time can reach 256T DAC sampling clocks The clock cycle is 27 hours and 54 minutes.

具体的,在上述实施例中,单频波形生成模块的结构图如图5所示,DAC的数据率是DAC采样率×N bit,显然,在高速DAC的应用中,400MHz以内的系统时钟的一个时钟周期仅生成一个N bit的数据,是不能满足DAC的数据率的需求的。因此,需要在一个系统时钟周期下同时生成K×N bit的数据才能满足。通过K个单频波形生成子模块并行的处理实现一个时钟周期产生K×N bit的数据。Specifically, in the above-mentioned embodiment, the structure diagram of the single-frequency waveform generation module is shown in Figure 5, and the data rate of the DAC is the DAC sampling rate × N bit. Obviously, in the application of high-speed DAC, the system clock within 400MHz One clock cycle generates only one N bit of data, which cannot meet the data rate requirement of the DAC. Therefore, it is necessary to generate K×N bits of data at the same time in one system clock cycle. Through the parallel processing of K single-frequency waveform generating sub-modules, one clock cycle generates K×N bit data.

具体的,在上述实施例中,单频波形生成子模块的结构图如图6所示,生成的波形数据中,播放时间参量控制幅度、频率、初相位三个参量生效的时间,这三个参量只需经过流水线式的DDS单元、DSP乘法单元即可得到K个N bit数字波形。两个模块的作用分别是:DDS单元利用频率、相位产生DDS波形;乘法单元运用DSP将DDS波形与幅度控制字做相乘,实现幅度可调的同时对输出的数字波形做了截断以匹配DAC的位数。Specifically, in the above embodiment, the structure diagram of the single-frequency waveform generation sub-module is shown in FIG. 6 . In the generated waveform data, the playback time parameter controls the time when three parameters of amplitude, frequency and initial phase take effect. These three parameters The parameters only need to pass through the pipelined DDS unit and DSP multiplication unit to obtain K N-bit digital waveforms. The functions of the two modules are: the DDS unit uses the frequency and phase to generate the DDS waveform; the multiplication unit uses the DSP to multiply the DDS waveform and the amplitude control word to achieve adjustable amplitude and truncate the output digital waveform to match the DAC. number of digits.

具体的,如图7所示,为本申请公开的相位-幅度查找表图解,DDS单元内部,分为相位累加器、相位加法器、相位-幅度查找表三个部分,三部分协同作用实现频率、初相位到正弦波形的实时变换。相位累加器对频率控制字做累加操作,产生频率的累加结果;相位加法器将频率的累加结果与初相位做相加,生成当前相位;如图7示,相位-幅度查找表通过查找表,将当前相位变换得到当前相位所对应的正弦函数的幅度值,而当前相位在每个时钟周期累加,所得到的幅度也会对应到一个正弦函数曲线。另外,需要说明的是,上述的相位-幅度查找表采用的正弦函数只是本申请的其中一种实现方式,相位-幅度查找表还可以是其他的函数形式,例如,做了截断的对数与指数函数、高斯白噪声函数、三角波、锯齿波等。也就是说,相位-幅度查找表在实现时并不局限于多个可调且可快速切换的正弦波的混合输出。Specifically, as shown in FIG. 7 , which is an illustration of the phase-amplitude look-up table disclosed in the application, inside the DDS unit, it is divided into three parts: a phase accumulator, a phase adder, and a phase-amplitude look-up table. The three parts work together to realize the frequency , Real-time transformation from initial phase to sinusoidal waveform. The phase accumulator accumulates the frequency control word to generate the accumulated result of the frequency; the phase adder adds the accumulated result of the frequency and the initial phase to generate the current phase; as shown in Figure 7, the phase-amplitude lookup table is Transform the current phase to obtain the amplitude value of the sine function corresponding to the current phase, and the current phase is accumulated in each clock cycle, and the obtained amplitude also corresponds to a sine function curve. In addition, it should be noted that the sine function used in the above-mentioned phase-amplitude look-up table is only one of the implementation manners of the present application, and the phase-amplitude look-up table may also be in other functional forms, for example, the truncated logarithm and Exponential function, Gaussian white noise function, triangle wave, sawtooth wave, etc. That is, the implementation of the phase-amplitude lookup table is not limited to the mixed output of multiple adjustable and rapidly switchable sine waves.

综上所述,本申请在Virtex-7FPGA与AD9129上实现一种混合信号发生器,可以在核磁、雷达、电阻抗成像、量子计算等多个场合应用。本申请通过Virtex-7FPGA的高性能与并行化的处理模式、AD9129高速DAC的高分辨率和高采样率,实现实时地生成频率分量的幅度、频率、相位、播放时间均可调节混合波形并输出得到混合信号。In summary, this application implements a mixed signal generator on Virtex-7FPGA and AD9129, which can be applied in nuclear magnetic, radar, electrical impedance imaging, quantum computing and other occasions. In this application, through the high performance and parallel processing mode of Virtex-7FPGA, the high resolution and high sampling rate of AD9129 high-speed DAC, the amplitude, frequency, phase and playback time of frequency components can be generated in real time, and the mixed waveform can be adjusted and output. Get a mixed signal.

相比于通常的任意波形发生器,实时生成波形的机制与固定存储空间的参数,在一般情况下可以压缩存储相应的数字波形所需的空间,在本申请实现中采用4个频率分量的混合信号,在48bit的播放时间下,64B的存储空间最多可以产生448TB的数据,也就是256T个样点,可以播放27小时54分。可扩展性好,混合信号的频率分量数目的增加、波形数据字的位数的增加可以通过FPGA可重复配置的灵活性实现。频率分量的幅度、频率、相位、播放时间均可调。频率分量的切换速度快,更新最小间隔在亚ns量级。频率分量更新最小间隔为系统时钟的时钟周期,在本发明的实现中是357ps。频率分量的频率分辨率高、调频带宽大。Compared with the usual arbitrary waveform generator, the real-time waveform generation mechanism and the parameters of the fixed storage space can compress the space required to store the corresponding digital waveform in general. In the implementation of this application, a mixture of 4 frequency components is used. Signal, under 48bit playback time, 64B storage space can generate up to 448TB of data, that is, 256T samples, which can be played for 27 hours and 54 minutes. Good scalability, the increase in the number of frequency components of mixed signals and the increase in the number of bits of waveform data words can be achieved through the flexibility of FPGA reconfigurable configuration. The amplitude, frequency, phase and playback time of frequency components can be adjusted. The switching speed of frequency components is fast, and the minimum update interval is in the sub-ns order. The frequency component update minimum interval is the clock cycle of the system clock, which is 357ps in the implementation of the present invention. The frequency components have high frequency resolution and wide frequency modulation bandwidth.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.

专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Professionals may further realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, computer software, or a combination of the two, in order to clearly illustrate the possibilities of hardware and software. Interchangeability, the above description has generally described the components and steps of each example in terms of functionality. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.

结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of a method or algorithm described in conjunction with the embodiments disclosed herein may be directly implemented in hardware, a software module executed by a processor, or a combination of the two. A software module can be placed in random access memory (RAM), internal memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present application. Therefore, this application is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (6)

1.一种混合信号发生器,其特征在于,包括:时钟管理模块、总线控制模块、波形数据存储模块和混合信号发生模块,其中:1. a mixed signal generator, is characterized in that, comprises: clock management module, bus control module, waveform data storage module and mixed signal generation module, wherein: 所述时钟管理模块分别与所述总线控制模块和混合信号发生模块相连,用于接受参考时钟,生成所述混合信号发生模块的高速时钟和工作时钟,以及所述总线控制模块和所述波形数据存储模块所需的工作时钟;The clock management module is respectively connected with the bus control module and the mixed signal generation module, and is used for receiving a reference clock, generating a high-speed clock and a working clock of the mixed signal generation module, as well as the bus control module and the waveform data. The working clock required by the memory module; 所述总线控制模块分别与上位机和混合信号发生模块相连,用于上位机与所述混合信号发生模块之间的通信,实时解析并处理上位机发送至所述混合信号发生模块的指令、地址和波形数据;The bus control module is respectively connected with the host computer and the mixed signal generation module, and is used for the communication between the host computer and the mixed signal generation module, and analyzes and processes the instructions and addresses sent by the host computer to the mixed signal generation module in real time. and waveform data; 所述波形数据存储模块与所述总线控制模块相连,用于存储波形信号的数据信息;The waveform data storage module is connected to the bus control module, and is used for storing data information of the waveform signal; 所述混合信号发生模块与所述波形数据存储模块相连,用于基于所述波形数据存储模块存储的波形信号的数据信息输出混合信号;The mixed signal generating module is connected to the waveform data storage module, and is configured to output a mixed signal based on the data information of the waveform signal stored in the waveform data storage module; 其中,所述混合信号发生模块包括:混合波形生成模块和高速的数字模拟转换模块,其中:Wherein, the mixed signal generation module includes: a mixed waveform generation module and a high-speed digital-to-analog conversion module, wherein: 所述混合波形生成模块与所述总线控制模块、波形数据存储模块和高速的数字模拟转换模块相连,用于对所述波形数据存储模块中存储的波形信号的数据信息进行解码实时生成混合信号的波形;The mixed waveform generation module is connected with the bus control module, the waveform data storage module and the high-speed digital-to-analog conversion module, and is used for decoding the data information of the waveform signal stored in the waveform data storage module to generate the mixed signal in real time. waveform; 所述高速的数字模拟转换模块,用于基于混合波形生成模块生成的混合信号的波形输出混合信号。The high-speed digital-to-analog conversion module is configured to output the mixed signal based on the waveform of the mixed signal generated by the mixed waveform generation module. 2.根据权利要求1所述的混合信号发生器,其特征在于,所述高速的数字模拟转换模块包括:并串转换模块和数字模拟转换器,其中:2. The mixed-signal generator according to claim 1, wherein the high-speed digital-to-analog conversion module comprises: a parallel-to-serial conversion module and a digital-to-analog converter, wherein: 所述并串转换模块,用于将所述混合信号的波形编码到更高的频率发送至所述数字模拟转换器;the parallel-serial conversion module, for encoding the waveform of the mixed signal to a higher frequency and sending it to the digital-to-analog converter; 所述数字模拟转换器,用于基于接收到的所述混合信号的波形输出混合信号。The digital-to-analog converter is configured to output a mixed signal based on the received waveform of the mixed signal. 3.根据权利要求2所述的混合信号发生器,其特征在于,所述波形数据存储模块为基于FPGA内部BRAM与外部DDR3的数据存储模块。3 . The mixed signal generator according to claim 2 , wherein the waveform data storage module is a data storage module based on the internal BRAM of the FPGA and the external DDR3. 4 . 4.根据权利要求3所述的混合信号发生器,其特征在于,所述混合波形生成模块包括:多个幅度、频率、相位均可调的单频波形生成模块。4 . The mixed signal generator according to claim 3 , wherein the mixed waveform generation module comprises: a plurality of single frequency waveform generation modules with adjustable amplitude, frequency and phase. 5 . 5.根据权利要求4所述的混合信号发生器,其特征在于,所述单频波形生成模块包括:DDS单元和DSP乘法单元。5 . The mixed signal generator according to claim 4 , wherein the single-frequency waveform generation module comprises: a DDS unit and a DSP multiplication unit. 6 . 6.根据权利要求5所述的混合信号发生器,其特征在于,所述DDS单元包括:相位累加器、相位加法器和相位-幅度查找表。6. The mixed signal generator according to claim 5, wherein the DDS unit comprises: a phase accumulator, a phase adder and a phase-amplitude lookup table.
CN201810500621.4A 2018-05-23 2018-05-23 a mixed signal generator Active CN108710404B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810500621.4A CN108710404B (en) 2018-05-23 2018-05-23 a mixed signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810500621.4A CN108710404B (en) 2018-05-23 2018-05-23 a mixed signal generator

Publications (2)

Publication Number Publication Date
CN108710404A CN108710404A (en) 2018-10-26
CN108710404B true CN108710404B (en) 2020-08-28

Family

ID=63868463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810500621.4A Active CN108710404B (en) 2018-05-23 2018-05-23 a mixed signal generator

Country Status (1)

Country Link
CN (1) CN108710404B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109800882B (en) * 2018-12-28 2020-10-09 华东计算技术研究所(中国电子科技集团公司第三十二研究所) Extended feedback measurement device for multi-bit superconducting qubits
CN110234119B (en) * 2019-06-06 2022-05-06 四川九洲电器集团有限责任公司 Signal source generating system based on DAC chip
CN111416596B (en) * 2020-03-31 2023-09-26 上海工程技术大学 A waveform generator based on SoC FPGA
CN116048188B (en) * 2023-02-23 2023-06-16 苏州浪潮智能科技有限公司 Chip and system for controlling waveform of superconducting quantum chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859107A (en) * 2009-04-07 2010-10-13 西门子(中国)有限公司 Configurable mixed signal control system and method
CN203102268U (en) * 2013-01-30 2013-07-31 青岛汉泰电子有限公司 Control bus with trigger synchronization function and clock synchronization function
JP2016502799A (en) * 2012-11-15 2016-01-28 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Complementary output generator module
EP2787410B1 (en) * 2013-04-01 2016-04-27 Honeywell International Inc. Spurious frequency attenuation servo

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080925B2 (en) * 2012-06-13 2015-07-14 The Boeing Company Engine vibration and engine trim balance test system, apparatus and method
CN103595373B (en) * 2013-12-02 2016-07-06 哈尔滨理工大学 A kind of nine component mixed signal generators and nine component mixed signal method for generation
JP6372166B2 (en) * 2014-05-27 2018-08-15 富士通株式会社 Phase interpolator
CN105395193A (en) * 2015-12-08 2016-03-16 天津大学 Miniature wearable electroencephalogram acquisition device
CN105718404B (en) * 2016-01-18 2018-12-14 中国科学技术大学 A kind of square-wave generator and method based on FPGA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859107A (en) * 2009-04-07 2010-10-13 西门子(中国)有限公司 Configurable mixed signal control system and method
JP2016502799A (en) * 2012-11-15 2016-01-28 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Complementary output generator module
CN203102268U (en) * 2013-01-30 2013-07-31 青岛汉泰电子有限公司 Control bus with trigger synchronization function and clock synchronization function
EP2787410B1 (en) * 2013-04-01 2016-04-27 Honeywell International Inc. Spurious frequency attenuation servo

Also Published As

Publication number Publication date
CN108710404A (en) 2018-10-26

Similar Documents

Publication Publication Date Title
CN108710404B (en) a mixed signal generator
CN105718404B (en) A kind of square-wave generator and method based on FPGA
CN107168098B (en) Electronic countermeasure simulation system
CN107368144B (en) Arbitrary waveform generator and waveform playing method
CN103178870B (en) A kind of Frequency Hopping Signal generator and frequency-hopping method
CN102468806B (en) A kind of white noise signal generator
CN104267385B (en) There is the LFM waveforms generator of predistortion function
CN110488228B (en) Linear frequency modulation signal generation method and device and storage medium
CN102508180B (en) Frequency amplitude phase rapid adjustable microwave generator
CN103179066A (en) Multi-system phase shifting keying (MPSK) modulation method, MPSK modulation device and function signal generator
CN106502309A (en) It is zeroed based on DA and keeps time domain intertexture random waveform synthesizer and the method for function
CN108107389A (en) Magnetic nuclear resonance radio frequency impulse generator and control method based on digital modulation technique
CN103179065B (en) Offset quadrature phase-shift-keying modulator approach, device and digital signal generator
CN106568996A (en) High-efficiency low-distortion digital oscilloscope training signal generation circuit and method
CN102866272A (en) Integrated signal generator of virtual instrument integrated system for electronic measuring
CN103178784B (en) Oscillation keying modulation method and device and function signal generator
CN102467152A (en) Method, device and system for realizing amplitude modulation and amplitude keying functions in signal source
Langlois et al. Low power direct digital frequency synthesizers in 0.18/spl mu/m CMOS
CN112487354B (en) Multi-channel high-speed real-time cross-correlation operation device based on comparator and FPGA
Curticapean et al. Low-power direct digital frequency synthesizer
CN115173887B (en) Chirp signal generation method, device, terminal and computer-readable storage medium
Liu Design of typical waveform generator based on DDS/SOPC
Ibrahim et al. Hardware Implementation of 32‐Bit High‐Speed Direct Digital Frequency Synthesizer
CN115826674A (en) Implementation method and system of clock signal generator with stepped frequency in millihertz level
CN115166640A (en) Time domain Frank code signal generation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant