CN108831834A - Method for forming power semiconductor device - Google Patents
Method for forming power semiconductor device Download PDFInfo
- Publication number
- CN108831834A CN108831834A CN201810651306.1A CN201810651306A CN108831834A CN 108831834 A CN108831834 A CN 108831834A CN 201810651306 A CN201810651306 A CN 201810651306A CN 108831834 A CN108831834 A CN 108831834A
- Authority
- CN
- China
- Prior art keywords
- forming
- semiconductor device
- power semiconductor
- semiconductor layer
- carrier absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0291—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
Landscapes
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种功率半导体器件的形成方法。The invention relates to the technical field of semiconductors, in particular to a method for forming a power semiconductor device.
背景技术Background technique
垂直导电双扩散MOS结构(VDMOS)器件功率集成电路及功率集成系统的核心元器件之一。VDMOS的栅极和源极在衬底的上表面,而漏极位于衬底的下表面。源极和漏极在衬底的相对的平面,当电流从漏极流向源极时,电流在硅片内部垂直流动,因此可以充分的应用硅片的面积,来提高通过电流的能力。One of the core components of vertical conductive double-diffused MOS structure (VDMOS) device power integrated circuits and power integrated systems. The gate and source of VDMOS are on the upper surface of the substrate, while the drain is on the lower surface of the substrate. The source and drain are on the opposite plane of the substrate. When the current flows from the drain to the source, the current flows vertically inside the silicon chip, so the area of the silicon chip can be fully utilized to improve the ability to pass current.
功率VDMOS器件兼有双极晶体管和MOS晶体管的优点,开关速度快、输入阻抗高、驱动功耗低,具有负的温度系数,无二次击穿,在航空、航天、核能等领域有广泛应用。但是,在功率VDMOS器件在空间辐射环境下,容易受到各种射线及带电粒子的照射,特别是极易被重离子诱发单粒子烧毁效应(SEB)和单粒子栅穿效应(SEGR),造成器件损伤。Power VDMOS devices have the advantages of both bipolar transistors and MOS transistors, fast switching speed, high input impedance, low driving power consumption, negative temperature coefficient, no secondary breakdown, and are widely used in aviation, aerospace, nuclear energy and other fields . However, in the space radiation environment, power VDMOS devices are vulnerable to various rays and charged particles, especially heavy ions-induced single event burnout (SEB) and single event gate penetration (SEGR), resulting in device damage.
如何提高器件的抗SEGR能力是目前亟待解决的问题。How to improve the anti-SEGR ability of the device is an urgent problem to be solved at present.
发明内容Contents of the invention
本发明所要解决的技术问题是,提供一种功率半导体器件的形成方法,所述形成方法能够改善器件的单粒子烧毁效应(SEB)和单粒子栅穿效应(SEGR)。The technical problem to be solved by the present invention is to provide a method for forming a power semiconductor device, which can improve the single event burnout effect (SEB) and single event gate wear-through effect (SEGR) of the device.
为了解决上述问题,本发明提供了一种功率半导体器件的形成方法,包括:提供第一类型掺杂的半导体层;在所述半导体层表面形成具有开口的图形化掩膜层;采用扩散工艺对所述开口下方的半导体层内进行离子掺杂,形成载流子吸收区,所述扩散工艺采用的掺杂离子能够在所述载流子吸收区内形成能级缺陷。In order to solve the above problems, the present invention provides a method for forming a power semiconductor device, comprising: providing a first-type doped semiconductor layer; forming a patterned mask layer with openings on the surface of the semiconductor layer; using a diffusion process to Ion doping is performed in the semiconductor layer below the opening to form a carrier absorption region, and the dopant ions used in the diffusion process can form energy level defects in the carrier absorption region.
可选的,所述扩散工艺采用的掺杂离子包括重金属离子。Optionally, the dopant ions used in the diffusion process include heavy metal ions.
可选的,所述扩散工艺采用的掺杂离子包括Pt、Au、Cu或Pd中的至少一种。Optionally, the dopant ions used in the diffusion process include at least one of Pt, Au, Cu or Pd.
可选的,所述载流子吸收区内的重金属离子的掺杂浓度为5e13cm-3~5e15cm-3。Optionally, the doping concentration of the heavy metal ions in the carrier absorption region is 5e13cm -3 -5e15cm -3 .
可选的,在采用扩散工艺对所述开口下方的半导体层内进行离子掺杂之前,还包括沿所述开口对所述半导体层进行离子注入,在所述开口下方的半导体层内形成注入缺陷。Optionally, before performing ion doping in the semiconductor layer below the opening by a diffusion process, further comprising performing ion implantation on the semiconductor layer along the opening to form implantation defects in the semiconductor layer below the opening .
可选的,所述离子注入采用的注入离子为H或He中的至少一种。Optionally, the implanted ion used in the ion implantation is at least one of H or He.
可选的,所述离子注入采用的注入能量为0.1MeV~5MeV,注入剂量1e11cm-2~1e14cm-2。Optionally, the implantation energy used in the ion implantation is 0.1MeV-5MeV, and the implantation dose is 1e11cm -2 -1e14cm -2 .
可选的,所述载流子吸收区的表面与所述半导体层表面共面。Optionally, the surface of the carrier absorption region is coplanar with the surface of the semiconductor layer.
可选的,所述载流子吸收区包括多个分立的子吸收区。Optionally, the carrier absorption region includes a plurality of discrete carrier absorption regions.
可选的,相邻的所述子吸收区之间的间距小于2μm。Optionally, the distance between adjacent sub-absorbing regions is less than 2 μm.
可选的,还包括:去除所述图形化掩膜层之后,在所述半导体层表面形成栅极结构,所述栅极结构位于所述载流子吸收区上方;在所述栅极结构两侧的半导体层内形成第二类型掺杂的体区。Optionally, it also includes: after removing the patterned mask layer, forming a gate structure on the surface of the semiconductor layer, the gate structure is located above the carrier absorption region; A body region doped with the second type is formed in the semiconductor layer on the side.
可选的,所述载流子吸收区边缘与所述体区之间的最小距离大于0且小于等于2μm。Optionally, the minimum distance between the edge of the carrier absorption region and the body region is greater than 0 and less than or equal to 2 μm.
可选的,所述载流子吸收区的掺杂深度小于或等于所述体区的掺杂深度。Optionally, the doping depth of the carrier absorption region is less than or equal to the doping depth of the body region.
本发明的功率半导体器件的形成方法,通过扩散工艺,在半导体层内形成具有能级缺陷的载流子吸收区,可以对器件体区之间由于重离子产生的过量载流子进行吸收,从而提高功率半导体器件的抗SEGR能力。In the method for forming a power semiconductor device of the present invention, a carrier absorption region with energy level defects is formed in the semiconductor layer through a diffusion process, which can absorb excess carriers generated by heavy ions between device body regions, thereby Improve the anti-SEGR ability of power semiconductor devices.
附图说明Description of drawings
图1至图5为本发明一具体实施方式的半导体器件的形成过程的结构示意图。1 to 5 are structural schematic diagrams of the formation process of a semiconductor device according to a specific embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明提供的功率半导体器件的形成方法的具体实施方式做详细说明。The specific implementation of the method for forming a power semiconductor device provided by the present invention will be described in detail below in conjunction with the accompanying drawings.
请参考图1至图5,为本发明一具体实施方式的功率半导体器件的形成过程的结构示意图。Please refer to FIG. 1 to FIG. 5 , which are schematic structural diagrams of the forming process of a power semiconductor device according to a specific embodiment of the present invention.
请参考图1,提供第一类型掺杂的半导体层100。Referring to FIG. 1 , a semiconductor layer 100 doped with a first type is provided.
所述半导体层100可以为第一类型掺杂的单晶硅衬底,或者可以包括衬底以及位于所述衬底表面的第一类型掺杂的外延层,或者,所述半导体层100还可以包括多个堆叠的第一类型掺杂的外延层。所述半导体层的材料可以为硅、锗或锗硅等半导体材料。本领域技术人员可以根据功率半导体器件的性能需求,选择合适结构、材料以及掺杂浓度的所述半导体层100。The semiconductor layer 100 may be a first-type doped single crystal silicon substrate, or may include a substrate and a first-type doped epitaxial layer located on the surface of the substrate, or, the semiconductor layer 100 may also be A plurality of stacked first type doped epitaxial layers is included. The material of the semiconductor layer may be semiconductor materials such as silicon, germanium or silicon germanium. Those skilled in the art can select the semiconductor layer 100 with a suitable structure, material and doping concentration according to the performance requirements of the power semiconductor device.
该具体实施方式中,所述第一类型掺杂为N型掺杂,所述第二类型掺杂为P型掺杂;在其他具体实施方式中,所述第一类型掺杂还可以为P型掺杂,所述第二类型掺杂为N型掺杂。所述N型掺杂的掺杂离子可以为P、As或Td中的至少一种,所述P型掺杂的掺杂离子可以为B、In或Ga中的至少一种。In this specific implementation, the first type of doping is N-type doping, and the second type of doping is P-type doping; in other specific implementations, the first type of doping can also be P type doping, the second type doping is N type doping. The N-type doping ions may be at least one of P, As or Td, and the P-type doping ions may be at least one of B, In or Ga.
该具体实施方式中,所述半导体层100包括N型重掺杂的衬底,以及位于所述衬底表面的N型轻掺杂的外延层。In this specific embodiment, the semiconductor layer 100 includes an N-type heavily doped substrate, and an N-type lightly doped epitaxial layer located on the surface of the substrate.
请参考图2,在所述半导体层100表面形成具有开口201的图形化掩膜层200。Referring to FIG. 2 , a patterned mask layer 200 having openings 201 is formed on the surface of the semiconductor layer 100 .
所述图形化掩膜层200为硬掩膜层。所述图形化掩膜层200的形成方法包括:采用沉积或生长工艺在所述半导体衬底100表面形成掩膜材料层之后,在所述掩膜材料层表面形成图形化光刻胶层202,所述图形化光刻胶层202暴露出部分掩膜材料层表面,以所述图形化光刻胶层202为掩膜,刻蚀所述掩膜材料层,形成具有开口201的图形化掩膜层200。The patterned mask layer 200 is a hard mask layer. The method for forming the patterned mask layer 200 includes: after forming a mask material layer on the surface of the semiconductor substrate 100 by a deposition or growth process, forming a patterned photoresist layer 202 on the surface of the mask material layer, The patterned photoresist layer 202 exposes part of the surface of the mask material layer, and the patterned photoresist layer 202 is used as a mask to etch the mask material layer to form a patterned mask with an opening 201 Layer 200.
所述图形化掩膜层200可以为单层或多层结构,所述图形化掩膜层200的材料包括二氧化硅、氮化硅以及碳化硅等硬掩膜材料中的一种或几种。所述图形化掩膜层200采用硬掩膜材料,具有较强的扩散阻挡能力。The patterned mask layer 200 can be a single-layer or multi-layer structure, and the material of the patterned mask layer 200 includes one or more of hard mask materials such as silicon dioxide, silicon nitride, and silicon carbide. . The patterned mask layer 200 adopts a hard mask material, which has a strong diffusion barrier capability.
请参考图3,采用扩散工艺对所述开口201下方的半导体层100内进行离子掺杂,形成载流子吸收区300。Referring to FIG. 3 , the semiconductor layer 100 below the opening 201 is ion-doped by a diffusion process to form a carrier absorption region 300 .
该具体实施方式中,在进行扩散工艺之前,先去除所述图形化光刻胶层202。由于扩散过程在高温下进行,去除所述图形化光刻胶层202可以避免图形化光刻胶层202对半导体层100表面造成污染。In this specific implementation manner, before performing the diffusion process, the patterned photoresist layer 202 is removed first. Since the diffusion process is performed at high temperature, removing the patterned photoresist layer 202 can prevent the patterned photoresist layer 202 from polluting the surface of the semiconductor layer 100 .
所述扩散工艺采用的掺杂离子能够在所述载流子吸收区内形成深能级杂质。在一个具体实施方式中,所述掺杂离子为重金属离子,例如包括Pt、Au、Cu或Pd等重金属离子中的至少一种。重金属离子掺杂会在所述载流子吸收区104内为深能级杂质,可以作为复合中心,吸收重离子产生的过量载流子。同时,重金属杂质属于深能级缺陷,不会明显的影响器件掺杂和器件性能。The dopant ions used in the diffusion process can form deep-level impurities in the carrier absorption region. In a specific embodiment, the dopant ions are heavy metal ions, for example including at least one of heavy metal ions such as Pt, Au, Cu or Pd. The doping of heavy metal ions will be a deep-level impurity in the carrier absorption region 104 , which can act as a recombination center to absorb excess carriers generated by heavy ions. At the same time, heavy metal impurities are deep-level defects, which will not significantly affect device doping and device performance.
所述重金属离子的掺杂浓度可以为5e13cm-3~5e15cm-3。本领域的技术人员可以在该掺杂浓度范围基础上,根据对器件的耐压要求,合理调整重金属离子的掺杂浓度。The doping concentration of the heavy metal ions may be 5e13cm -3 -5e15cm -3 . Those skilled in the art can reasonably adjust the doping concentration of heavy metal ions based on the doping concentration range and according to the withstand voltage requirements of the device.
在一个具体的实施方式中,所述扩散工艺采用的掺杂离子为Pt,采用液态源,旋涂在所述半导体层100以及图形化掩膜层200表面,扩散温度范围为550℃~850℃,扩散时间范围为20min~40min,在所述半导体层100内形成一定扩散深度及掺杂浓度的载流子吸收区300。在其他具体实施方式中,也可以在开口201下方的半导体层100表面形成重金属合金,然后再高温推进,使得重金属离子扩散进入半导体层100内。In a specific embodiment, the dopant ion used in the diffusion process is Pt, which is spin-coated on the surface of the semiconductor layer 100 and the patterned mask layer 200 by using a liquid source, and the diffusion temperature range is 550°C-850°C. , the diffusion time ranges from 20 min to 40 min, and a carrier absorption region 300 with a certain diffusion depth and doping concentration is formed in the semiconductor layer 100 . In other specific implementation manners, a heavy metal alloy may also be formed on the surface of the semiconductor layer 100 below the opening 201 , and then advanced at a high temperature, so that the heavy metal ions diffuse into the semiconductor layer 100 .
在其他具体实施方式中,所述扩散工艺还可以采用其他能够在半导体层100内产生深能级缺陷的掺杂离子,在此不做限定。In other specific implementation manners, the diffusion process may also use other dopant ions capable of generating deep level defects in the semiconductor layer 100 , which is not limited here.
可以调整所述扩散工艺的扩散温度、扩散时间等参数,调整所述载流子吸收区300的掺杂浓度、深度等参数,以满足实际器件的要求。Parameters such as diffusion temperature and diffusion time of the diffusion process can be adjusted, and parameters such as doping concentration and depth of the carrier absorption region 300 can be adjusted to meet the requirements of actual devices.
在本发明的另一具体实施方式中,还包括在进行扩散工艺之前,还包括沿所述开口201对所述半导体层100进行离子注入,在所述开口下方的半导体层100内形成注入缺陷,然后再进行扩散工艺,在已形成注入缺陷的半导体层100内进行离子掺杂,形成载流子吸收区。In another specific embodiment of the present invention, before performing the diffusion process, further comprising performing ion implantation on the semiconductor layer 100 along the opening 201, forming implant defects in the semiconductor layer 100 below the opening, Then, a diffusion process is performed, and ion doping is performed in the semiconductor layer 100 where implanted defects have been formed to form a carrier absorption region.
具体的,所述离子注入采用的注入离子为H或He中的至少一种,用于在半导体层内形成注入缺陷。所述离子注入在室温下进行,注入能量可以为0.1MeV~5MeV,注入剂可以为1e11cm-2~1e14cm-2。Specifically, the implanted ions used in the ion implantation are at least one of H or He, and are used to form implanted defects in the semiconductor layer. The ion implantation is carried out at room temperature, the implantation energy can be 0.1MeV˜5 MeV, and the implantation agent can be 1e11cm −2 ˜1e14cm −2 .
半导体层100内形成的注入缺陷更有利于后续通过扩散工艺进行离子掺杂,并且在相同的掺杂条件下,在扩散工艺进行之前形成注入缺陷,能够有效提高载流子吸收区内的掺杂离子的浓度,并且提高缺陷能级数量,从而进一步提高载流子吸收区对载流子的吸收能力。The implantation defects formed in the semiconductor layer 100 are more conducive to the subsequent ion doping through the diffusion process, and under the same doping conditions, the implantation defects are formed before the diffusion process, which can effectively improve the doping in the carrier absorption region. The concentration of ions is increased, and the number of defect energy levels is increased, thereby further improving the carrier absorption capacity of the carrier absorption region.
在一个具体的实施方式中,形成具有开口201的图形化掩膜层200之后,沿所述开口201对所述半导体层100进行He离子注入,注入能量为3.3MeV,注入剂量为1e13cm-2;注入完成之后,进行扩散工艺,向开口201下方的半导体层100内扩散Pt,扩散温度为700℃,时间为30min。In a specific implementation manner, after the patterned mask layer 200 having the opening 201 is formed, the semiconductor layer 100 is implanted with He ions along the opening 201, the implantation energy is 3.3 MeV, and the implantation dose is 1e13cm −2 ; After the implantation is completed, a diffusion process is performed to diffuse Pt into the semiconductor layer 100 below the opening 201 at a temperature of 700° C. for 30 minutes.
所述载流子吸收区300的表面与所述半导体层100表面共面,自所述半导体层100表面向半导体层100内扩散形成,从而使得所述载流子吸收区300与后续形成的栅介质层距离最为接近,能够最大程度减小重离子轰击器件后产生的电子-空穴对栅介质层的影响。The surface of the carrier absorption region 300 is coplanar with the surface of the semiconductor layer 100, and is formed by diffusion from the surface of the semiconductor layer 100 into the semiconductor layer 100, so that the carrier absorption region 300 and the subsequently formed gate The distance between the dielectric layers is the closest, which can minimize the influence of electron-holes generated after the heavy ions bombard the device on the gate dielectric layer.
该具体实施方式中,所述开口201暴露出半导体层100的部分连续表面,因此,形成的所述载流子吸收区300为一个完整连续的掺杂区。在其他具体实施方式中,所述开口201还可以包括多个分立的子开口301,使得最终形成的所述载流子吸收区300包括多个分立的子吸收区。为了提高各个子吸收区对载流子的吸收能力,相邻的所述子吸收区之间的间距小于2μm。In this specific embodiment, the opening 201 exposes part of the continuous surface of the semiconductor layer 100 , therefore, the formed carrier absorption region 300 is a complete and continuous doped region. In other specific implementation manners, the opening 201 may further include a plurality of discrete sub-openings 301 , so that the finally formed carrier absorption region 300 includes a plurality of discrete sub-absorption regions. In order to improve the ability of each sub-absorption region to absorb carriers, the distance between adjacent sub-absorption regions is less than 2 μm.
请参考图4,去除所述图形化掩膜层200之后,在所述半导体层100表面形成栅极结构,所述栅极结构位于所述载流子吸收区300上方;在所述栅极结构两侧的半导体层100内形成第二类型掺杂的体区403。Please refer to FIG. 4, after removing the patterned mask layer 200, a gate structure is formed on the surface of the semiconductor layer 100, the gate structure is located above the carrier absorption region 300; Body regions 403 doped with the second type are formed in the semiconductor layer 100 on both sides.
所述栅极结构包括栅极402、位于栅极402与半导体层100之间的栅介质层401。所述栅极402的材料可以为多晶硅或其他合适的栅极材料,所述栅介质层401的材料可以为氧化硅、氧化铪、氧化锆等介质材料。The gate structure includes a gate 402 and a gate dielectric layer 401 between the gate 402 and the semiconductor layer 100 . The material of the gate 402 may be polysilicon or other suitable gate materials, and the material of the gate dielectric layer 401 may be dielectric materials such as silicon oxide, hafnium oxide, and zirconium oxide.
该具体实施方式中,所述栅极402的材料为多晶硅,所述栅介质层401的材料为氧化硅,所述栅极结构的形成方法包括:采用热氧化工艺,在所述半导体层100表面形成氧化硅层,再在所述栅介质材料层表面沉积多晶硅层;刻蚀所述多晶硅层和氧化硅层,分别形成栅极402和栅介质层401。In this specific embodiment, the material of the gate 402 is polysilicon, the material of the gate dielectric layer 401 is silicon oxide, and the method for forming the gate structure includes: adopting a thermal oxidation process, forming A silicon oxide layer is formed, and then a polysilicon layer is deposited on the surface of the gate dielectric material layer; the polysilicon layer and the silicon oxide layer are etched to form gate 402 and gate dielectric layer 401 respectively.
所述栅极结构位于所述载流子吸收区300上方,且所述栅极结构完全覆盖所述载流子吸收区300所在区域,使得所述载流子吸收区300完全位于所述栅极结构下方的半导体层100内。The gate structure is located above the carrier absorption region 300, and the gate structure completely covers the area where the carrier absorption region 300 is located, so that the carrier absorption region 300 is completely located on the gate In the semiconductor layer 100 below the structure.
通过扩散或离子注入工艺在所述栅极结构两侧的半导体层100内形成第二掺杂类型的体区403。通过控制所述栅极结构与载流子吸收区300的尺寸和位置,可以调整所述载流子吸收区300与所述体区403之间的距离。Body regions 403 of the second doping type are formed in the semiconductor layer 100 on both sides of the gate structure by diffusion or ion implantation process. By controlling the size and position of the gate structure and the carrier absorption region 300 , the distance between the carrier absorption region 300 and the body region 403 can be adjusted.
在一个具体实施方式中,所述载流子吸收区300边缘与所述体区403之间的最小距离大于0且小于等于2μm。所述载流子吸收区300主要用于吸收体区403之间的半导体层100颈部的过量载流子,因此所述载流子吸收区300距离所述体区101越近,吸收效果越好。如果距离太长,吸收效果会变差。由于所述颈区内形成有所述载流子吸收区300,为了满足击穿电压和导通电阻的要求,可以通过调整栅极结构的宽度,对颈区的宽度进行相应调整,所述颈区宽度为两个体区403之间的距离。In a specific embodiment, the minimum distance between the edge of the carrier absorption region 300 and the body region 403 is greater than 0 and less than or equal to 2 μm. The carrier absorption region 300 is mainly used to absorb excess carriers in the neck of the semiconductor layer 100 between the body regions 403, so the closer the carrier absorption region 300 is to the body region 101, the better the absorption effect. it is good. If the distance is too long, the absorption effect will be poor. Since the carrier absorption region 300 is formed in the neck region, in order to meet the requirements of breakdown voltage and on-resistance, the width of the neck region can be adjusted accordingly by adjusting the width of the gate structure. The region width is the distance between two body regions 403 .
所述载流子吸收区300主要通过边缘来吸过量的载流子,所以载流子吸收区300的边源形貌对载流子吸收作用有影响,特别是与体区403相邻的部分边缘。根据对器件的导通电阻、击穿电压等参数的要求,可以通过对所述开口201的形状调整,实现对载流子吸收区300的形貌进行调整。靠近体区403一侧的边缘可以为弧形、与半导体层100表面垂直或其他形状。The carrier absorption region 300 mainly absorbs excess carriers through the edge, so the edge source morphology of the carrier absorption region 300 has an impact on the carrier absorption, especially the part adjacent to the body region 403 edge. According to the requirements on parameters such as on-resistance and breakdown voltage of the device, the shape of the carrier absorption region 300 can be adjusted by adjusting the shape of the opening 201 . The edge near the body region 403 can be arc-shaped, perpendicular to the surface of the semiconductor layer 100 or other shapes.
在本发明的具体实施方式中,所述载流子吸收区104的掺杂深度小于或等于所述体区101的掺杂深度,以避免降低器件的击穿电压;在其他具体实施方式中,如果对器件的击穿电压要求不高,所述载流子吸收区104的掺杂深度也可以略大于所述体区101的掺杂深度。In a specific embodiment of the present invention, the doping depth of the carrier absorption region 104 is less than or equal to the doping depth of the body region 101, so as to avoid reducing the breakdown voltage of the device; in other specific embodiments, If the requirement for the breakdown voltage of the device is not high, the doping depth of the carrier absorption region 104 may also be slightly greater than the doping depth of the body region 101 .
请参考图5,在所述栅极结构两侧的体区101内形成第一类型掺杂的源区501;形成覆盖所述栅极结构的顶部和侧壁的盖帽层502;在所述盖帽层502、体区403以及源区501表面形成源极503;在所述半导体层100的与所述栅极结构相对的另一表面形成漏极504。Please refer to FIG. 5 , a first type doped source region 501 is formed in the body region 101 on both sides of the gate structure; a capping layer 502 covering the top and sidewalls of the gate structure is formed; A source 503 is formed on the surface of the layer 502 , the body region 403 and the source region 501 ; a drain 504 is formed on the other surface of the semiconductor layer 100 opposite to the gate structure.
对所述体区403内注入第一类型掺杂离子,以形成所述源区501。该具体实施方式中,所述源区501为N型掺杂。Implanting first type dopant ions into the body region 403 to form the source region 501 . In this specific implementation manner, the source region 501 is N-type doped.
所述盖帽层502的材料可以为氧化硅、氮化硅等介质材料,用于保护栅极结构。所述盖帽层502的形成方法包括:在所述半导体层100和栅极结构表面沉积盖帽材料层,对所述盖帽材料层进行图形化,形成覆盖所述栅极结构的顶部和侧壁的盖帽层502。The material of the capping layer 502 may be a dielectric material such as silicon oxide or silicon nitride, which is used to protect the gate structure. The method for forming the capping layer 502 includes: depositing a capping material layer on the surface of the semiconductor layer 100 and the gate structure, patterning the capping material layer, and forming a cap covering the top and sidewalls of the gate structure Layer 502.
所述源极503为金属层,通过在所述盖帽层502以及半导体层100表面沉积金属材料并对所述金属材料进行图形化以及合金化以形成所述源极503。The source electrode 503 is a metal layer, and the source electrode 503 is formed by depositing a metal material on the surface of the cap layer 502 and the semiconductor layer 100 and patterning and alloying the metal material.
还包括,在形成所述源极503之后,在所述半导体层100背面沉积金属层以形成漏极504。为了降低所述功率半导体器件的厚度,在形成所述漏极504之前,还包括对所述半导体层100背面进行减薄,再在减薄后表面形成所述漏极504。It also includes, after forming the source electrode 503 , depositing a metal layer on the back of the semiconductor layer 100 to form the drain electrode 504 . In order to reduce the thickness of the power semiconductor device, before forming the drain 504 , it also includes thinning the back of the semiconductor layer 100 , and then forming the drain 504 on the thinned surface.
本发明的具体实施方式的功率半导体器件的形成方法,通过扩散工艺,在体区之间的半导体层内形成具有能级缺陷的载流子吸收区,所述载流子吸收区可以对器件体区之间由于重离子产生的过量载流子进行吸收,从而提高功率半导体器件的抗SEGR能力。In the method for forming a power semiconductor device according to a specific embodiment of the present invention, a carrier absorption region with energy level defects is formed in the semiconductor layer between the body regions through a diffusion process, and the carrier absorption region can affect the device body. The excess carriers generated by heavy ions between the regions are absorbed, thereby improving the SEGR resistance of power semiconductor devices.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810651306.1A CN108831834A (en) | 2018-06-22 | 2018-06-22 | Method for forming power semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810651306.1A CN108831834A (en) | 2018-06-22 | 2018-06-22 | Method for forming power semiconductor device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108831834A true CN108831834A (en) | 2018-11-16 |
Family
ID=64137591
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810651306.1A Pending CN108831834A (en) | 2018-06-22 | 2018-06-22 | Method for forming power semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108831834A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113540207A (en) * | 2021-06-04 | 2021-10-22 | 复旦大学 | A radiation-hardened SiC device with lifetime control based on B doping diffusion |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1505170A (en) * | 2002-11-29 | 2004-06-16 | ���µ�����ҵ��ʽ���� | SiC-MISFET and its manufacturing method |
| US20110057202A1 (en) * | 2009-09-09 | 2011-03-10 | Kabushiki Kaisha Toshiba | Semiconductor device and method of fabricating the same |
| CN104157569A (en) * | 2014-08-26 | 2014-11-19 | 清华大学 | Technology for manufacturing fast recovery diode |
| CN105405759A (en) * | 2015-12-18 | 2016-03-16 | 江苏宏微科技股份有限公司 | Fast recovery diode preparation method by controlling recovery characteristics through hydrogen injection process |
| CN106611797A (en) * | 2015-10-23 | 2017-05-03 | 国网智能电网研究院 | Power device with local metal service life control and manufacturing method thereof |
| CN107302025A (en) * | 2017-07-27 | 2017-10-27 | 电子科技大学 | A kind of VDMOS device with anti-single particle effect |
| CN107946360A (en) * | 2017-05-02 | 2018-04-20 | 中国电子科技集团公司第二十四研究所 | A kind of power MOSFET device and its manufacture method with carrier lifetime regulatory region |
-
2018
- 2018-06-22 CN CN201810651306.1A patent/CN108831834A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1505170A (en) * | 2002-11-29 | 2004-06-16 | ���µ�����ҵ��ʽ���� | SiC-MISFET and its manufacturing method |
| US20110057202A1 (en) * | 2009-09-09 | 2011-03-10 | Kabushiki Kaisha Toshiba | Semiconductor device and method of fabricating the same |
| CN104157569A (en) * | 2014-08-26 | 2014-11-19 | 清华大学 | Technology for manufacturing fast recovery diode |
| CN106611797A (en) * | 2015-10-23 | 2017-05-03 | 国网智能电网研究院 | Power device with local metal service life control and manufacturing method thereof |
| CN105405759A (en) * | 2015-12-18 | 2016-03-16 | 江苏宏微科技股份有限公司 | Fast recovery diode preparation method by controlling recovery characteristics through hydrogen injection process |
| CN107946360A (en) * | 2017-05-02 | 2018-04-20 | 中国电子科技集团公司第二十四研究所 | A kind of power MOSFET device and its manufacture method with carrier lifetime regulatory region |
| CN107302025A (en) * | 2017-07-27 | 2017-10-27 | 电子科技大学 | A kind of VDMOS device with anti-single particle effect |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113540207A (en) * | 2021-06-04 | 2021-10-22 | 复旦大学 | A radiation-hardened SiC device with lifetime control based on B doping diffusion |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20150179764A1 (en) | Semiconductor device and method for manufacturing same | |
| US20240371940A1 (en) | Semiconductor device having dopant deactivation underneath gate | |
| CN104637821B (en) | The manufacturing method of super-junction device | |
| US20160079400A1 (en) | A junction-modulated tunneling field effect transistor and a fabrication method thereof | |
| US8748980B2 (en) | U-shape RESURF MOSFET devices and associated methods of manufacturing | |
| CN104810408A (en) | Super barrier rectifier and manufacturing method thereof | |
| US20130037878A1 (en) | Vdmos device and method for fabricating the same | |
| JP6327379B1 (en) | Gallium nitride semiconductor device and method for manufacturing gallium nitride semiconductor device | |
| CN104576398B (en) | A kind of VDMOS device manufacture method with anti-radiation performance | |
| CN110419111B (en) | Self-aligned and Robust Insulated Gate Bipolar Transistor Devices | |
| CN108538911B (en) | Optimized L-type Tunneling Field Effect Transistor and its Fabrication Method | |
| JP2012191053A (en) | Semiconductor device and method of manufacturing the same | |
| WO2018000223A1 (en) | Insulated gate bipolar transistor structure and manufacturing method therefor | |
| CN107946360B (en) | Power MOSFET device with carrier life adjusting region and manufacturing method thereof | |
| US11658239B2 (en) | Semiconductor device and fabrication method thereof | |
| CN108831834A (en) | Method for forming power semiconductor device | |
| CN101770949B (en) | Method for manufacturing a power semiconductor device | |
| CN104347403B (en) | A kind of manufacture method of insulated gate bipolar transistor | |
| CN102420245A (en) | Low voltage trigger silicon controlled rectifier for ESD protection and manufacturing method thereof | |
| CN112382568B (en) | Manufacturing method of MOS control thyristor | |
| CN111952187B (en) | SOI field effect transistor with electric leakage shielding structure and preparation method thereof | |
| CN104064463A (en) | Transistors and methods of forming them | |
| CN109346440B (en) | Manufacturing method of semiconductor device and manufacturing method of integrated circuit | |
| CN106803515A (en) | The terminal structure and its manufacture method of semiconductor power device | |
| CN108831835A (en) | Method for forming power semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181116 |