[go: up one dir, main page]

CN108878526A - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN108878526A
CN108878526A CN201710328760.9A CN201710328760A CN108878526A CN 108878526 A CN108878526 A CN 108878526A CN 201710328760 A CN201710328760 A CN 201710328760A CN 108878526 A CN108878526 A CN 108878526A
Authority
CN
China
Prior art keywords
layer
ions
forming
semiconductor structure
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710328760.9A
Other languages
Chinese (zh)
Other versions
CN108878526B (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201710328760.9A priority Critical patent/CN108878526B/en
Publication of CN108878526A publication Critical patent/CN108878526A/en
Application granted granted Critical
Publication of CN108878526B publication Critical patent/CN108878526B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • H10D30/6215Fin field-effect transistors [FinFET] having multiple independently-addressable gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体结构的形成方法,包括:提供衬底,所述衬底上设置有鳍部,相邻鳍部之间具有鳍部间隙;在所述鳍部上方设置硬掩模;在所述硬掩模上方形成防穿通层,所述防穿通层中有防穿通离子;形成防扩散层,所述防扩散层的高度低于所述鳍部的高度,向所述鳍部间隙中注入防扩散离子,所述防扩散离子能够阻止所述防穿通离子向鳍部顶部扩散;去除所述硬掩模;进行退火。

A method for forming a semiconductor structure, comprising: providing a substrate, on which fins are provided, and fin gaps are formed between adjacent fins; a hard mask is provided above the fins; An anti-penetration layer is formed above the mask, and there are anti-penetration ions in the anti-penetration layer; an anti-diffusion layer is formed, the height of the anti-diffusion layer is lower than the height of the fins, and an anti-diffusion layer is injected into the gap of the fins ions, the anti-diffusion ions can prevent the anti-puncture ions from diffusing to the top of the fin; remove the hard mask; perform annealing.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明涉及半导体制造技术领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a semiconductor structure and a forming method thereof.

背景技术Background technique

随着半导体器件集成度的提高,晶体管的关键尺寸不断缩小,关键尺寸的缩小意味着在芯片上可布置更多数量的晶体管,进而提高器件的性能。然而,随着晶体管尺寸的急剧减小,栅介质层厚度与工作电压不能相应改变使抑制短沟道效应的难度加大,从而使晶体管的沟道漏电流增大。With the improvement of the integration level of semiconductor devices, the critical dimensions of transistors are continuously reduced. The reduction of critical dimensions means that more transistors can be arranged on a chip, thereby improving the performance of devices. However, as the size of the transistor decreases sharply, the thickness of the gate dielectric layer and the operating voltage cannot be changed accordingly, which makes it more difficult to suppress the short channel effect, thereby increasing the channel leakage current of the transistor.

鳍式场效应晶体管(Fin Field-Effect Transistor,FinFET)的栅极成类似鱼鳍的叉状3D架构。FinFET的沟道凸出衬底表面形成鳍部,栅极覆盖鳍部的顶面和侧壁,从而使反型层形成在沟道各侧上,可于鳍部的多侧控制电路的接通与断开。这种设计能够增加栅极对沟道区的控制,从而能够很好地抑制晶体管的短沟道效应。然而,鳍式场效应晶体管仍然存在短沟道效应。The gate of the Fin Field-Effect Transistor (FinFET) has a forked 3D structure similar to a fish fin. The channel of the FinFET protrudes from the surface of the substrate to form a fin, and the gate covers the top surface and sidewall of the fin, so that the inversion layer is formed on each side of the channel, which can control the connection of the circuit on multiple sides of the fin. with disconnect. This design can increase the control of the gate to the channel region, so that the short channel effect of the transistor can be well suppressed. However, FinFETs still suffer from short-channel effects.

为了进一步减小短沟道效应对半导体器件的影响,降低沟道漏电流。一种方法是通过对鳍部底部进行防穿通注入,减少漏源穿通的可能性,降低短沟道效应。In order to further reduce the influence of the short channel effect on the semiconductor device, the channel leakage current is reduced. One method is to reduce the possibility of drain-source punch-through and reduce the short-channel effect by performing anti-penetration implantation on the bottom of the fin.

然而,所述半导体结构的形成方法容易影响所形成半导体结构的性能。However, the method of forming the semiconductor structure easily affects the performance of the formed semiconductor structure.

发明内容Contents of the invention

本发明解决的问题是提供一种半导体及其形成方法,能够改善半导体结构性能。The problem solved by the present invention is to provide a semiconductor and its forming method, which can improve the performance of the semiconductor structure.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供衬底,所述衬底上设置有鳍部,相邻鳍部之间具有鳍部间隙;在所述鳍部上方设置硬掩模;在所述硬掩模上方形成防穿通层,所述防穿通层中有防穿通离子;形成防扩散层,所述防扩散层的高度低于所述鳍部的高度,向所述鳍部间隙中注入防扩散离子,所述防扩散离子能够阻止所述防穿通离子向鳍部顶部扩散;去除所述硬掩模;进行退火。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, including: providing a substrate, on which fins are arranged, and there are fin gaps between adjacent fins; A hard mask; an anti-penetration layer is formed above the hard mask, and there are anti-penetration ions in the anti-penetration layer; an anti-diffusion layer is formed, the height of the anti-diffusion layer is lower than the height of the fins, Implanting anti-diffusion ions into the gaps of the fins, the anti-diffusion ions can prevent the diffusion of the anti-puncture ions to the top of the fins; remove the hard mask; perform annealing.

可选的,退火温度大于或等于850℃。Optionally, the annealing temperature is greater than or equal to 850°C.

可选的,向所述防扩散层中注入的离子是碳离子、锗离子和氮离子中的一种或多种组合。Optionally, the ions implanted into the anti-diffusion layer are one or more combinations of carbon ions, germanium ions and nitrogen ions.

可选的,所述防穿通层上方形成有保护层,所述保护层防止所述防穿通离子向上方扩散。Optionally, a protective layer is formed above the anti-puncture layer, and the protective layer prevents the upward diffusion of the anti-puncture ions.

可选的,所述保护层的材料是氮化硅、SION、SICB、SiBCN、SiOCN中的一种或几种。Optionally, the protective layer is made of one or more of silicon nitride, SION, SICB, SiBCN, and SiOCN.

可选的,所述防穿通层覆盖所述鳍部间隙。Optionally, the anti-penetration layer covers the fin gap.

可选的,形成防扩散层包含:形成初始防扩散层,所述初始防扩散层覆盖整个鳍部,所述初始防扩散层采用流体化学气相沉积工艺形成;对所述初始防扩散层进行第一退火工艺,所述第一退火工艺温度为400℃-650℃;对所述初始防扩散层进行热离子注入,所述热离子注入工艺温度为450℃-500℃;刻蚀所述初始防扩散层,使之高度低于所述鳍部的高度,形成防扩散层。Optionally, forming the anti-diffusion layer includes: forming an initial anti-diffusion layer, the initial anti-diffusion layer covers the entire fin, and the initial anti-diffusion layer is formed by a fluid chemical vapor deposition process; An annealing process, the temperature of the first annealing process is 400°C-650°C; performing thermal ion implantation on the initial anti-diffusion layer, the temperature of the thermal ion implantation process is 450°C-500°C; etching the initial anti-diffusion layer The diffusion layer is made to have a height lower than that of the fins, forming an anti-diffusion layer.

可选的,在进行热离子注入后,对所述初始防扩散层进行第二退火工艺,所述第二退火工艺温度为500℃-700℃。Optionally, after performing thermal ion implantation, a second annealing process is performed on the initial diffusion prevention layer, and the temperature of the second annealing process is 500°C-700°C.

可选的,所述热离子注入工艺中,注入的离子是He。Optionally, in the thermal ion implantation process, the implanted ions are He.

可选的,所述热离子注入的能量为1-50Kev,注入的剂量为1.0e14-1.0e19atm/cm2Optionally, the energy of the thermionic implantation is 1-50Kev, and the implantation dose is 1.0e14-1.0e19atm/cm 2 .

可选的,形成防扩散层后,刻蚀所述防穿通层和所述保护层,使防穿通层和所述保护层的高度与所述防扩散层齐平。Optionally, after the anti-diffusion layer is formed, the anti-penetration layer and the protective layer are etched so that the heights of the anti-penetration layer and the protective layer are equal to the anti-diffusion layer.

可选的,在设置硬掩模后,在硬掩模上方覆盖氧化层,所述氧化层在形成防穿通层之前去除。Optionally, after the hard mask is set, an oxide layer is covered on the hard mask, and the oxide layer is removed before forming the punch-through prevention layer.

可选的,所述衬底包含第一晶体管区和第二晶体管区,所述防穿通离子掺杂类型与其对应的区域的晶体管掺杂类型相反。Optionally, the substrate includes a first transistor region and a second transistor region, and the doping type of the anti-puncture ion is opposite to the doping type of the transistor in the corresponding region.

可选的,所述第一晶体管区是NMOS晶体管,所述第一晶体管区中的防穿通离子掺杂类型是P型。Optionally, the first transistor region is an NMOS transistor, and the ion doping type for preventing punch-through in the first transistor region is P-type.

可选的,防穿通层仅形成在所述第一晶体管区。Optionally, the anti-puncture layer is only formed in the first transistor region.

可选的,所述第一晶体管区中的防穿通层离子是硼离子或氟化硼离子。Optionally, the anti-puncture layer ions in the first transistor region are boron ions or boron fluoride ions.

本发明还包括一种半导体结构,采用上述任一项方法形成。The present invention also includes a semiconductor structure formed by any one of the above methods.

与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:

本发明的半导体形成方法中,形成有防穿通层,能够阻止或减少源区与漏区之间的穿通,从而减小漏电流;In the semiconductor forming method of the present invention, an anti-penetration layer is formed, which can prevent or reduce the penetration between the source region and the drain region, thereby reducing the leakage current;

进一步的,防穿通层旁边设置有防扩散层和保护层,保护层能够防止防穿通离子向外部扩散,防扩散层能够减小扩散进入晶体管沟道中的防穿通离子。Further, an anti-diffusion layer and a protective layer are arranged next to the anti-puncture layer, the protective layer can prevent the anti-puncture ions from diffusing to the outside, and the anti-diffusion layer can reduce the anti-puncture ions that diffuse into the channel of the transistor.

进一步的,防扩散离子形成在相邻鳍部间隙的防扩散层中,工艺操作更方便,同时有效地阻止防穿通层中的离子向鳍部顶部扩散。Further, the anti-diffusion ions are formed in the anti-diffusion layer in the gap between adjacent fins, making the process more convenient, and effectively preventing the ions in the anti-penetration layer from diffusing to the top of the fin.

进一步的,本发明例采用三步工艺制备防扩散层,并结合退火、热离子注入等工艺,引入热离子注入工艺降低了FCVD氧化物致密化的温度,使得形成的扩散层质量更高。Further, the example of the present invention adopts a three-step process to prepare the anti-diffusion layer, combined with annealing, thermal ion implantation and other processes, the introduction of thermal ion implantation process reduces the temperature of FCVD oxide densification, so that the quality of the formed diffusion layer is higher.

附图说明Description of drawings

图1-图3是一种半导体结构的形成方法各步骤的结构示意图。1-3 are structural schematic diagrams of each step of a method for forming a semiconductor structure.

图4-图13是本发明半导体结构的形成方法一实施例各步骤的结构示意图。4-13 are structural schematic diagrams of each step of an embodiment of a method for forming a semiconductor structure according to the present invention.

图14是本发明半导体结构形成步骤示意图。FIG. 14 is a schematic diagram of the steps of forming the semiconductor structure of the present invention.

具体实施方式Detailed ways

下面将结合示意图对本发明的晶圆测试结构进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。The wafer test structure of the present invention will be described in more detail below in conjunction with schematic diagrams, wherein a preferred embodiment of the present invention is represented, it should be understood that those skilled in the art can modify the present invention described here, and still realize the beneficial effects of the present invention . Therefore, the following description should be understood as the broad knowledge of those skilled in the art, but not as a limitation of the present invention.

半导体结构的形成方法存在诸多问题,难以保证所形成的半导体结构性能稳定。There are many problems in the formation method of the semiconductor structure, and it is difficult to guarantee the stable performance of the formed semiconductor structure.

经过研究发现,随着用于形成鳍式场效应晶体管的鳍部尺寸不断缩小,形成于鳍部内的源区和漏区底部容易发生底部穿通(punch through)现象,即所述源区和漏区的底部之间发生短接,在所述源区和漏区的底部产生漏电流。为了克服所述底部穿通现象,一种方法是在所述源区和漏区底部之间的区域内注入反型离子,以隔离源区和漏区底部。After research, it is found that as the size of the fin used to form the fin field effect transistor continues to shrink, the bottom of the source region and the drain region formed in the fin is prone to bottom punch through (punch through), that is, the source region and the drain region. A short circuit occurs between the bottoms, generating a leakage current at the bottoms of the source and drain regions. In order to overcome the bottom punch-through phenomenon, one method is to implant anti-type ions in the region between the bottom of the source region and the drain region to isolate the bottom of the source region and the drain region.

图1至图3是一种半导体结构的形成方法各个步骤的结构示意图。1 to 3 are structural schematic diagrams of various steps in a method for forming a semiconductor structure.

请参考图1,提供衬底,衬底100上方设置有鳍部101以及位于所述鳍部101顶部上的硬掩膜110。所述衬底包括:第一晶体管区A和第二晶体管区B。Referring to FIG. 1 , a substrate is provided, and a fin 101 and a hard mask 110 on top of the fin 101 are disposed on the substrate 100 . The substrate includes: a first transistor region A and a second transistor region B.

继续参考图1,在所述衬底100上形成防穿通层102,所述防穿通层102表面低于所述鳍部101顶部表面。Continuing to refer to FIG. 1 , an anti-penetration layer 102 is formed on the substrate 100 , the surface of the anti-penetration layer 102 is lower than the top surface of the fin portion 101 .

请参考图2,对所述防穿通层102进行离子注入,注入的是防穿通离子。Referring to FIG. 2 , ion implantation is performed on the anti-puncture layer 102 , and the anti-puncture ions are implanted.

请参考图3,防穿通离子注入之后,进行退火处理,使防穿通离子扩散进入鳍部101底部。Please refer to FIG. 3 , after the anti-puncture ions are implanted, an annealing treatment is performed to diffuse the anti-puncture ions into the bottom of the fin 101 .

其中,进行退火的过程中,防穿通离子容易向鳍部101顶部扩散,从而导致后续形成的晶体管的阈值电压升高,进而影响晶体管性能。Wherein, during the annealing process, the anti-puncture ions are easy to diffuse to the top of the fin portion 101 , thus causing the threshold voltage of the subsequently formed transistor to increase, thereby affecting the performance of the transistor.

为解决所述技术问题,本发明提供了一种半导体结构的形成方法,包括,提供衬底,所述衬底上设置有鳍部,相邻鳍部之间具有鳍部间隙;在所述鳍部上方设置硬掩模;在所述硬掩模上方形成防穿通层,所述防穿通层中有防穿通离子;形成防扩散层,所述防扩散层的高度低于所述鳍部的高度,向所述鳍部间隙中注入防扩散离子,所述防扩散离子能够阻止所述防穿通离子向鳍部顶部扩散;去除所述硬掩模;进行退火。In order to solve the above technical problem, the present invention provides a method for forming a semiconductor structure, comprising: providing a substrate, on which fins are arranged, and there are fin gaps between adjacent fins; A hard mask is arranged above the hard mask; an anti-penetration layer is formed above the hard mask, and there are anti-penetration ions in the anti-penetration layer; an anti-diffusion layer is formed, and the height of the anti-diffusion layer is lower than the height of the fins , implanting anti-diffusion ions into the gap of the fin, the anti-diffusion ions can prevent the diffusion of the anti-puncture ions to the top of the fin; removing the hard mask; performing annealing.

其中,本发明的半导体结构的形成方法中,在进行所述退火处理之前,形成防扩散层,向相邻鳍部的间隙,也就是防扩散层、防穿通层中注入防扩散离子,防扩散离子位于防扩散层、防穿通层的顶部,同时由于掺杂特性,掺杂浓度从防扩散离子掺杂源点向外逐渐浓度减小,因此防扩散离子也同时存在于鳍部,防扩散离子能够阻止所述防穿通层中的离子向鳍部顶部扩散,从而能够减小扩散进入晶体管沟道中的防穿通离子。因此,所述半导体结构的形成方法能够降低防穿通离子对所形成晶体管阈值电压的影响,从而改善所形成半导体结构的性能。此外,防扩散离子形成在防扩散层中,工艺操作更方便,同时有效地阻止防穿通层中的离子向鳍部顶部扩散。Wherein, in the forming method of the semiconductor structure of the present invention, before performing the annealing treatment, an anti-diffusion layer is formed, and anti-diffusion ions are implanted into the gap between adjacent fins, that is, the anti-diffusion layer and the anti-penetration layer. The ions are located on the top of the anti-diffusion layer and the anti-penetration layer. At the same time, due to the doping characteristics, the doping concentration gradually decreases from the doping source of the anti-diffusion ions outward, so the anti-diffusion ions also exist in the fins, and the anti-diffusion ions The ions in the anti-penetration layer can be prevented from diffusing to the top of the fin, so that the anti-penetration ions diffusing into the channel of the transistor can be reduced. Therefore, the method for forming the semiconductor structure can reduce the impact of the anti-puncture ions on the threshold voltage of the formed transistor, thereby improving the performance of the formed semiconductor structure. In addition, since the anti-diffusion ions are formed in the anti-diffusion layer, the process operation is more convenient, and at the same time, the ions in the anti-penetration layer are effectively prevented from diffusing to the top of the fin.

此外,本发明的防穿通层中具有防穿通离子,能够防止或减轻所述半导体结构中的源区和漏区穿通,从而减小漏电流。In addition, the anti-puncture layer of the present invention has anti-puncture ions, which can prevent or reduce the breakthrough of the source region and the drain region in the semiconductor structure, thereby reducing the leakage current.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图4至图13是本发明半导体结构的形成方法一实施例各步骤的结构示意图。4 to 13 are structural schematic diagrams of each step in an embodiment of a method for forming a semiconductor structure of the present invention.

本实施例中,所述衬底包括:第一晶体管区A和第二晶体管区B。在其他实施例中,所述衬底还可以仅包括第一晶体管区或第二晶体管区。In this embodiment, the substrate includes: a first transistor region A and a second transistor region B. In other embodiments, the substrate may also only include the first transistor region or the second transistor region.

本实施例中,所述第一晶体管区A用于形成NMOS晶体管;所述第二晶体管区B用于形成PMOS。在其他实施例中,所述第一晶体管区还可以用于形成PMOS晶体管;所述第二晶体管区用于形成NMOS。In this embodiment, the first transistor region A is used to form an NMOS transistor; the second transistor region B is used to form a PMOS. In other embodiments, the first transistor region can also be used to form a PMOS transistor; the second transistor region is used to form an NMOS.

请参照图4,衬底还包括:位于所述鳍部202顶部上的硬掩模204,所述硬掩模204能够在后续防穿通离子注入的过程中,保护鳍部202顶部不注入防穿通离子,从而减少防穿通离子注入对晶体管性能的影响。Referring to FIG. 4 , the substrate further includes: a hard mask 204 located on the top of the fin 202 , and the hard mask 204 can protect the top of the fin 202 from implanting anti-puncture in the subsequent anti-puncture ion implantation process. ions, thereby reducing the impact of anti-puncture ion implantation on transistor performance.

本本发明一个实施例中,所述衬底的形成步骤包括:提供初始衬底;在所述初始衬底上形成图形化的硬掩模204;以所述硬掩模204为掩膜,图形化所述初始衬底,形成衬底200和位于所述衬底200上的鳍部202,所述鳍部202用于形成晶体管沟道。In one embodiment of the present invention, the step of forming the substrate includes: providing an initial substrate; forming a patterned hard mask 204 on the initial substrate; using the hard mask 204 as a mask, patterning The initial substrate forms a substrate 200 and a fin 202 on the substrate 200, and the fin 202 is used to form a transistor channel.

可选地,在设置硬掩模后,在硬掩模204上方覆盖氧化层203,氧化层203覆盖硬掩模204、鳍部202以及鳍部间隙20。氧化层203的材料可以是SiO2。氧化层203后续会在防穿通层形成之前去除。Optionally, after the hard mask is set, an oxide layer 203 is covered on the hard mask 204 , and the oxide layer 203 covers the hard mask 204 , the fins 202 and the fin gaps 20 . The material of the oxide layer 203 may be SiO 2 . The oxide layer 203 is subsequently removed before the formation of the anti-puncture layer.

请参考图5,去除氧化层203,并形成防穿通层205,所述防穿通层205中具有防穿通离子,防穿通层覆盖所述鳍部及鳍部间隙,用于防止所述半导体结构中的源区和漏区穿通,从而减小漏电流。Please refer to FIG. 5, the oxide layer 203 is removed, and an anti-puncture layer 205 is formed. The anti-puncture layer 205 has anti-puncture ions in it. The anti-puncture layer covers the fins and the gaps between the fins, and is used to prevent the semiconductor structure from The source and drain regions are punched through, thereby reducing the leakage current.

请参照图6,在本发明一个实施例中,所述衬底包括第一晶体管区A和第二晶体管区B。可选地,第一晶体管区A是NMOS晶体管,第二晶体管区B是PMOS晶体管。防穿通离子掺杂类型与其对应的区域的晶体管掺杂类型相反。可选地,所述第一晶体管区的防穿通离子为P型离子,例如硼离子或氟化硼离子,所述第二晶体管区的防穿通离子为N型离子,例如磷离子或砷离子。Referring to FIG. 6 , in one embodiment of the present invention, the substrate includes a first transistor region A and a second transistor region B. Referring to FIG. Optionally, the first transistor region A is an NMOS transistor, and the second transistor region B is a PMOS transistor. The doping type of the anti-punching ion is opposite to the doping type of the transistor in the corresponding region. Optionally, the punch-through preventing ions in the first transistor region are P-type ions, such as boron ions or boron fluoride ions, and the punch-through preventing ions in the second transistor region are N-type ions, such as phosphorus ions or arsenic ions.

可选地,所述防穿通层仅设置在第一晶体管区A区域。具体地,在图5的工艺基础上,刻蚀掉第二晶体管区B中的防穿通层部分,仅保留第一晶体管区A中的防穿通层部分。或者在沉积防穿通层的工艺步骤中,利用掩模板,遮挡第二晶体管区B,使得防穿通层仅形成在第一晶体管区A中的防穿通层部分。这样设置是因为相比于PMOS晶体管,NMOS晶体管掺杂离子(例如B离子)损失更严重,从而更容易遭受电流穿通。Optionally, the anti-puncture layer is only provided in the region A of the first transistor region. Specifically, on the basis of the process in FIG. 5 , the part of the anti-puncture layer in the second transistor region B is etched away, and only the part of the anti-puncture layer in the first transistor region A remains. Alternatively, in the process step of depositing the punch-through prevention layer, a mask is used to block the second transistor region B, so that the punch-through prevention layer is only formed on the part of the punch-through prevention layer in the first transistor region A. This setting is because compared with PMOS transistors, NMOS transistors have more severe loss of dopant ions (eg, B ions), and thus are more likely to suffer from current breakthrough.

可选地,在本发明一个实施例中,所述衬底包括第一晶体管区A和第二晶体管区B。对第一晶体管区A进行第一防穿通离子注入,对第二晶体管区B进行第二防穿通离子注入。在其他实施例中,当所述衬底仅包括第一晶体管区或第二晶体管区,则所述防穿通离子注入的步骤仅包括:对第一晶体管区进行第一防穿通离子注入,或者对第二晶体管区进行第二防穿通离子注入。Optionally, in an embodiment of the present invention, the substrate includes a first transistor region A and a second transistor region B. The first anti-punching ion implantation is performed on the first transistor region A, and the second anti-punching ion implantation is performed on the second transistor region B. In other embodiments, when the substrate only includes the first transistor region or the second transistor region, the step of anti-puncture ion implantation only includes: performing the first anti-puncture ion implantation on the first transistor region, or The second transistor region is subjected to second anti-puncture ion implantation.

如果防穿通层205的厚度过大,容易产生材料浪费;如果防穿通层205的厚度过小,很难充分实现防止所形成晶体管出现源漏穿通的作用。因此,本实施例中,所述穿通层205的厚度为20埃~60埃。If the thickness of the anti-penetration layer 205 is too large, material waste is likely to occur; if the thickness of the anti-penetration layer 205 is too small, it is difficult to fully prevent the source-drain breakthrough of the formed transistor. Therefore, in this embodiment, the thickness of the through layer 205 is 20 angstroms to 60 angstroms.

本实施例中,如果所述防穿通层205中穿通离子的浓度过高,防穿通离子容易穿过防扩散层向鳍部202顶部扩散,从而容易影响所形成晶体管的性能;如果所述防穿通层205中防穿通离子的浓度过低,很难实现防止所形成晶体管出现源漏穿通的作用。因此,本实施例中,所述防穿通层205中防穿通离子的浓度为1.0E13atoms/cm2-1.0E15atoms/cm2In this embodiment, if the concentration of the punch-through ions in the punch-through prevention layer 205 is too high, the punch-through prevention ions will easily diffuse through the diffusion prevention layer to the top of the fin 202, thereby easily affecting the performance of the formed transistor; if the punch-through prevention The concentration of the anti-puncture ions in the layer 205 is too low, and it is difficult to prevent source-drain breakthrough of the formed transistor. Therefore, in this embodiment, the concentration of anti-puncture ions in the anti-puncture layer 205 is 1.0E13 atoms/cm 2 -1.0E15 atoms/cm 2 .

本实施例中,防穿通离子注入的工艺参数包括:注入剂量为1.0E13atoms/cm2-1.0E15atoms/cm2;注入能量为5KeV-100KeV。In this embodiment, the technological parameters of the anti-puncture ion implantation include: the implantation dose is 1.0E13 atoms/cm 2 -1.0E15 atoms/cm 2 ; the implantation energy is 5KeV-100KeV.

请参照图7,在本发明一个实施例中,所述防穿通层205上方还形成有保护层206,所述保护层205防止所述防穿通层205中的防穿通离子在退火中向上方扩散。由于防穿通层205的目的是阻止半导体器件中的源区、漏区穿通,若防穿通离子向上扩散,则不能实现这个目的,因此设置保护层205,阻止防穿通离子向上扩散。可选地,所述保护层的材料是氮化硅、SION、SICB、SiBCN、SiOCN中的一种或几种。Please refer to FIG. 7 , in one embodiment of the present invention, a protective layer 206 is formed above the anti-puncture layer 205, and the protective layer 205 prevents the anti-puncture ions in the anti-puncture layer 205 from diffusing upward during annealing. . Since the purpose of the anti-puncture layer 205 is to prevent the source region and the drain region in the semiconductor device from being penetrated, this purpose cannot be achieved if the anti-puncture ions diffuse upwards. Therefore, the protective layer 205 is provided to prevent the upward diffusion of the anti-puncture ions. Optionally, the protective layer is made of one or more of silicon nitride, SION, SICB, SiBCN, and SiOCN.

请参照图8,在本发明一个实施例中,形成初始防扩散层208,所述初始防扩散层208覆盖整个鳍部202,即覆盖鳍部的顶端及侧面,所述初始防扩散层208的材料可以是二氧化硅,初始防扩散层208可以采用流体化学气相沉积(FCVD)工艺形成,相比于其他沉积工艺,流体化学气相沉积的材料以高分子材料为载体,流动性好,填充能力佳。Please refer to FIG. 8 , in one embodiment of the present invention, an initial anti-diffusion layer 208 is formed, and the initial anti-diffusion layer 208 covers the entire fin portion 202, that is, covers the top and side surfaces of the fin portion, and the initial anti-diffusion layer 208 The material can be silicon dioxide, and the initial anti-diffusion layer 208 can be formed by a fluid chemical vapor deposition (FCVD) process. Compared with other deposition processes, the fluid chemical vapor deposition material uses a polymer material as a carrier, and has good fluidity and filling capacity. good.

随后,对所述初始防扩散层208进行第一退火工艺,所述第一退火工艺温度为400℃-650℃,第一退火工艺主要为了使高分子材料挥发,在第一次退火工艺中,Si-O键逐渐形成。随后对所述初始防扩散层208进行热离子注入,所述热离子注入工艺温度为450℃-500℃。由于材料中还包含大量水分,水分子间具有氢键,本次热离子注入的目的就是利用注入的离子的应力,打断其中多余的氢键。可选地,热离子注入工艺中注入的离子是He,注入的能量为1-50Kev,注入的剂量为1.0e14-1.0e19atm/cm2。可选地,可以对所述初始防扩散层208进行第二退火工艺,所述第二退火工艺温度为500℃-700℃,去除其中的H离子,同时固化形成的初始防扩散层;Subsequently, a first annealing process is performed on the initial anti-diffusion layer 208. The temperature of the first annealing process is 400°C-650°C. The first annealing process is mainly to volatilize the polymer material. In the first annealing process, Si-O bonds are gradually formed. Subsequently, thermal ion implantation is performed on the initial anti-diffusion layer 208, and the temperature of the thermal ion implantation process is 450°C-500°C. Since the material also contains a large amount of water, there are hydrogen bonds between water molecules. The purpose of this thermal ion implantation is to use the stress of the implanted ions to break the redundant hydrogen bonds. Optionally, the ion implanted in the thermal ion implantation process is He, the implantation energy is 1-50Kev, and the implantation dose is 1.0e14-1.0e19atm/cm 2 . Optionally, a second annealing process may be performed on the initial anti-diffusion layer 208, the temperature of the second annealing process is 500° C.-700° C. to remove H ions therein, and simultaneously cure the formed initial anti-diffusion layer;

最后刻蚀所述初始防扩散层208,使之高度低于所述鳍部的高度,形成防扩散层207(如图9所示)。本实施例采用三步工艺制备防扩散层,并结合退火、热离子注入等工艺,引入热离子注入工艺降低了FCVD氧化物致密化的温度,使得形成的扩散层质量更高。Finally, the initial anti-diffusion layer 208 is etched to make its height lower than that of the fins to form an anti-diffusion layer 207 (as shown in FIG. 9 ). In this embodiment, a three-step process is used to prepare the anti-diffusion layer, combined with annealing, thermal ion implantation and other processes, and the introduction of the thermal ion implantation process reduces the densification temperature of the FCVD oxide, so that the quality of the formed diffusion layer is higher.

本实施例中,所述初始防扩散层208、防扩散层207的材料可以为氧化硅或氮氧化硅。In this embodiment, the materials of the initial diffusion prevention layer 208 and the diffusion prevention layer 207 may be silicon oxide or silicon oxynitride.

请参照图10,形成防扩散层207后,刻蚀所述防穿通层205和所述保护层206,使防穿通层205和所述保护层206的高度与所述防扩散层齐平。Referring to FIG. 10 , after the anti-diffusion layer 207 is formed, the anti-penetration layer 205 and the protective layer 206 are etched so that the heights of the anti-puncture layer 205 and the protective layer 206 are flush with the anti-diffusion layer.

请参照图11,向所述鳍部间隙20中注入防扩散离子,所述防扩散离子能够阻止所述防穿通层中的离子向鳍部顶部扩散.具体地,防扩散离子注入在防扩散层207、保护层206以及防穿通层205中,由于掺杂特性,掺杂浓度从防扩散离子掺杂源点向外浓度逐渐降低,因此防扩散离子也同时存在于鳍部,例如防扩散离子存在于图12所示的掺杂区209,防扩散离子能够阻止所述防穿通层中的离子向鳍部顶部扩散,从而能够减小扩散进入晶体管沟道中的防穿通离子。Please refer to FIG. 11 , implant anti-diffusion ions into the fin gap 20, and the anti-diffusion ions can prevent the ions in the anti-penetration layer from diffusing to the top of the fin. Specifically, the anti-diffusion ions are implanted in the anti-diffusion layer 207. In the protective layer 206 and the anti-penetration layer 205, due to the doping characteristics, the doping concentration gradually decreases from the doping source point of the anti-diffusion ions to the outside, so the anti-diffusion ions also exist in the fins at the same time, for example, the anti-diffusion ions exist In the doped region 209 shown in FIG. 12 , the anti-diffusion ions can prevent the ions in the anti-puncture layer from diffusing to the top of the fin, thereby reducing the anti-puncture ions that diffuse into the channel of the transistor.

防扩散离子的元素为第四主族元素或不容易与鳍部原子成键的原子元素。第四主族元素原子的最外层与鳍部202的原子最外层电子数相同,从而不容易在所述鳍部202中形成多子,因此,不容易改变所述鳍部202的导电性;不容易与鳍部原子成键的原子在后续的退火过程中,不容易被激活。因此,不容易与鳍部原子成键的原子也不容易改变所述鳍部202的导电性。此外,所述防扩散离子可以进入所述鳍部202原子形成的间隙位置,从而阻挡防穿通离子通过所述间隙扩散到鳍部202顶部从而能够改善所形成半导体结构的性能。The element of the anti-diffusion ion is an element of the fourth main group or an atomic element that is not easily bonded to the fin atoms. The number of electrons in the outermost layer of the atoms of the fourth main group element is the same as that of the fin portion 202, so it is not easy to form many electrons in the fin portion 202, and therefore, it is not easy to change the conductivity of the fin portion 202. ; Atoms that are not easy to bond with fin atoms are not easily activated during the subsequent annealing process. Therefore, atoms that do not easily bond to fin atoms are also less likely to change the conductivity of the fin 202 . In addition, the anti-diffusion ions can enter the gaps formed by the atoms of the fins 202 , thereby preventing the anti-puncture ions from diffusing to the top of the fins 202 through the gaps, thereby improving the performance of the formed semiconductor structure.

因此,所述防扩散层207能够在后续的退火过程中阻挡鳍部202中的防穿通离子向鳍部202顶部扩散,从而能够减小扩散进入晶体管沟道中的防穿通离子,降低防穿通离子对所形成晶体管阈值电压的影响,从而改善所形成半导体结构的性能。Therefore, the anti-diffusion layer 207 can prevent the anti-puncture ions in the fin 202 from diffusing to the top of the fin 202 during the subsequent annealing process, thereby reducing the anti-puncture ions that diffuse into the channel of the transistor and reducing the anti-puncture ion pair. The effect of the threshold voltage of the formed transistor, thereby improving the performance of the formed semiconductor structure.

本实施例中,所述防扩散离子包括:碳离子、锗离子和氮离子中的一种或多种组合。碳离子、锗离子和氮离子进入鳍部202原子间隙后,能够阻挡防穿通离子向鳍部202顶部扩散。此外,在退火过程中氮离子不容易被激活从而不容易影响鳍部202的导电性;碳、锗为第四主族元素,在退火过程中被激活也不容易影响鳍部202的导电性能。In this embodiment, the anti-diffusion ions include: one or more combinations of carbon ions, germanium ions and nitrogen ions. After the carbon ions, germanium ions and nitrogen ions enter the atomic gap of the fin 202 , they can prevent the anti-puncture ions from diffusing to the top of the fin 202 . In addition, nitrogen ions are not easy to be activated during the annealing process so as not to affect the conductivity of the fin portion 202 ; carbon and germanium are elements of the fourth main group, and are not easily activated during the annealing process to affect the conductivity of the fin portion 202 .

如果所述防扩散层207中防扩散离子的浓度过高,容易影响鳍部202的导电性,降低晶体管性能;如果所述防扩散层207的浓度过高低,很难阻挡防穿通离子向鳍部202顶部扩散。因此,本实施例中,所述防扩散层207中防扩散离子的浓度为1.0E13atoms/cm2-1.0E16atoms/cm2If the concentration of anti-diffusion ions in the anti-diffusion layer 207 is too high, it will easily affect the conductivity of the fin 202 and reduce the transistor performance; 202 top spread. Therefore, in this embodiment, the concentration of the anti-diffusion ions in the anti-diffusion layer 207 is 1.0E13 atoms/cm 2 -1.0E16 atoms/cm 2 .

本实施例中,防扩散离子注入的工艺参数包括:注入能量为1KeV-30KeV;注入剂量为1.0E13atoms/cm2-1.0E16atoms/cm2In this embodiment, the process parameters of the anti-diffusion ion implantation include: the implantation energy is 1KeV-30KeV; the implantation dose is 1.0E13atoms/cm 2 -1.0E16atoms/cm 2 .

请参照图13,最后对半导体结构去除硬掩模并进行退火。Referring to FIG. 13 , finally, the hard mask is removed and annealed for the semiconductor structure.

所述退火处理用于激活所述防穿通离子,从而使所述防穿通离子起到防止源漏穿通的作用。在所述退火处理的过程中,所述防扩散层207中的防扩散离子能够阻挡所述防穿通层中的防穿通离子向鳍部202顶部扩散,从而能够减小防穿通离子对所形成晶体管的影响,进而改善半导体结构性能。The annealing treatment is used to activate the anti-punching ions, so that the anti-punching ions can prevent source-drain punch-through. During the annealing process, the anti-diffusion ions in the anti-diffusion layer 207 can block the diffusion of the anti-puncture ions in the anti-puncture layer to the top of the fin 202, thereby reducing the impact of the anti-puncture ions on the formed transistor. influence, thereby improving the performance of semiconductor structures.

本实施例中,所述退火处理的退火温度大于或等于850℃。In this embodiment, the annealing temperature of the annealing treatment is greater than or equal to 850°C.

需要说明的是,本实施例中,进行退化处理之后,所述形成方法还包括:形成横跨所述鳍部202的栅极结构,所述栅极结构覆盖所述鳍部203部分侧壁和顶部表面。It should be noted that, in this embodiment, after performing the degradation treatment, the forming method further includes: forming a gate structure across the fin 202 , the gate structure covers a part of the sidewall of the fin 203 and top surface.

本实施例中,所述防穿通层的顶部与所述防扩散层的底部齐平。在其他实施例中,所述防穿通层的顶部还可以低于所述防扩散层的底部,或者所述防穿通层的顶部高于所述防扩散层顶部,且所述防穿通层的底部低于所述防扩散层顶部。In this embodiment, the top of the anti-penetration layer is flush with the bottom of the anti-diffusion layer. In other embodiments, the top of the anti-penetration layer can also be lower than the bottom of the anti-diffusion layer, or the top of the anti-penetration layer is higher than the top of the anti-diffusion layer, and the bottom of the anti-penetration layer below the top of the diffusion barrier.

图14是本发明半导体结构形成步骤示意图。FIG. 14 is a schematic diagram of the steps of forming the semiconductor structure of the present invention.

本发明还包含一种半导体结构,采用上述的半导体形成方法制成。The present invention also includes a semiconductor structure made by the above-mentioned semiconductor forming method.

综上,本发明的半导体形成方法中,形成有防穿通层,能够阻止或减少源区与漏区之间的穿通,从而减小漏电流;In summary, in the semiconductor forming method of the present invention, an anti-penetration layer is formed, which can prevent or reduce the penetration between the source region and the drain region, thereby reducing the leakage current;

进一步的,防穿通层旁边设置有防扩散层和保护层,保护层能够防止防穿通离子向外部扩散,防扩散层能够减小扩散进入晶体管沟道中的防穿通离子。Further, an anti-diffusion layer and a protective layer are arranged next to the anti-puncture layer, the protective layer can prevent the anti-puncture ions from diffusing to the outside, and the anti-diffusion layer can reduce the anti-puncture ions that diffuse into the channel of the transistor.

进一步的,防扩散离子形成在相邻鳍部间隙的防扩散层中,工艺操作更方便,同时有效地阻止防穿通层中的离子向鳍部顶部扩散。Further, the anti-diffusion ions are formed in the anti-diffusion layer in the gap between adjacent fins, making the process more convenient, and effectively preventing the ions in the anti-penetration layer from diffusing to the top of the fin.

进一步的,本发明例采用三步工艺制备防扩散层,并结合退火、热离子注入等工艺,引入热离子注入工艺降低了FCVD氧化物致密化的温度,使得形成的扩散层质量更高。Further, the example of the present invention adopts a three-step process to prepare the anti-diffusion layer, combined with annealing, thermal ion implantation and other processes, the introduction of thermal ion implantation process reduces the temperature of FCVD oxide densification, so that the quality of the formed diffusion layer is higher.

因此,所述半导体结构的形成方法能够改善所形成半导体结构的性能。Therefore, the method for forming a semiconductor structure can improve the performance of the formed semiconductor structure.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (17)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 提供衬底,所述衬底上设置有鳍部,相邻鳍部之间具有鳍部间隙;providing a substrate, the substrate is provided with fins, and there is a fin gap between adjacent fins; 在所述鳍部上方设置硬掩模;placing a hard mask over the fins; 在所述硬掩模上方形成防穿通层,所述防穿通层中有防穿通离子;An anti-penetration layer is formed above the hard mask, and there are anti-penetration ions in the anti-penetration layer; 形成防扩散层,所述防扩散层的高度低于所述鳍部的高度,向所述鳍部间隙中注入防扩散离子,所述防扩散离子能够阻止所述防穿通离子向鳍部顶部扩散;forming an anti-diffusion layer, the height of the anti-diffusion layer is lower than the height of the fins, and injecting anti-diffusion ions into the gaps of the fins, the anti-diffusion ions can prevent the anti-diffusion ions from diffusing to the top of the fins ; 去除所述硬掩模;removing the hard mask; 进行退火。Annealed. 2.如权利要求1所述的半导体结构的形成方法,其特征在于,退火温度大于或等于850℃。2. The method for forming a semiconductor structure according to claim 1, wherein the annealing temperature is greater than or equal to 850°C. 3.如权利要求1所述的半导体结构的形成方法,其特征在于,向所述防扩散层中注入的离子是碳离子、锗离子和氮离子中的一种或多种组合。3. The method for forming a semiconductor structure according to claim 1, wherein the ions implanted into the anti-diffusion layer are one or more combinations of carbon ions, germanium ions and nitrogen ions. 4.如权利要求1所述的半导体结构的形成方法,其特征在于,所述防穿通层上方形成有保护层,所述保护层防止所述防穿通离子向上方扩散。4 . The method for forming a semiconductor structure according to claim 1 , wherein a protective layer is formed above the anti-puncture layer, and the protective layer prevents the upward diffusion of the anti-puncture ions. 5.如权利要求4所述的半导体结构的形成方法,其特征在于,所述保护层的材料是氮化硅、SION、SICB、SiBCN、SiOCN中的一种或几种。5. The method for forming a semiconductor structure according to claim 4, wherein the protective layer is made of one or more of silicon nitride, SION, SICB, SiBCN, and SiOCN. 6.如权利要求1所述的半导体结构的形成方法,其特征在于,所述防穿通层覆盖所述鳍部间隙。6 . The method for forming a semiconductor structure according to claim 1 , wherein the anti-puncture layer covers the fin gap. 7.如权利要求1所述的半导体结构的形成方法,其特征在于,形成防扩散层包含:7. The method for forming a semiconductor structure according to claim 1, wherein forming an anti-diffusion layer comprises: 形成初始防扩散层,所述初始防扩散层覆盖整个鳍部,所述初始防扩散层采用流体化学气相沉积工艺形成;forming an initial anti-diffusion layer, the initial anti-diffusion layer covers the entire fin, and the initial anti-diffusion layer is formed by a fluid chemical vapor deposition process; 对所述初始防扩散层进行第一退火工艺,所述第一退火工艺温度为400℃-650℃;performing a first annealing process on the initial anti-diffusion layer, and the temperature of the first annealing process is 400°C-650°C; 对所述初始防扩散层进行热离子注入,所述热离子注入工艺温度为450℃-500℃;Performing thermal ion implantation on the initial anti-diffusion layer, the temperature of the thermal ion implantation process is 450°C-500°C; 刻蚀所述初始防扩散层,使之高度低于所述鳍部的高度,形成防扩散层。Etching the initial anti-diffusion layer to make its height lower than that of the fins to form an anti-diffusion layer. 8.如权利要求7所述的半导体结构的形成方法,其特征在于,在进行热离子注入后,对所述初始防扩散层进行第二退火工艺,所述第二退火工艺温度为500℃-700℃。8. The method for forming a semiconductor structure according to claim 7, wherein after performing thermal ion implantation, a second annealing process is performed on the initial diffusion prevention layer, and the temperature of the second annealing process is 500°C- 700°C. 9.如权利要求6所述的半导体结构的形成方法,其特征在于,所述热离子注入工艺中,注入的离子是He。9. The method for forming a semiconductor structure according to claim 6, wherein in the thermal ion implantation process, the implanted ions are He. 10.如权利要求6所述的半导体结构的形成方法,其特征在于,所述热离子注入的能量为1-50Kev,注入的剂量为1.0e14-1.0e19atm/cm210 . The method for forming a semiconductor structure according to claim 6 , wherein the energy of the thermionic implantation is 1-50Kev, and the implantation dose is 1.0e14-1.0e19atm/cm 2 . 11.如权利要求4所述的半导体结构的形成方法,其特征在于,形成防扩散层后,刻蚀所述防穿通层和所述保护层,使防穿通层和所述保护层的高度与所述防扩散层齐平。11. The method for forming a semiconductor structure according to claim 4, wherein after forming the anti-diffusion layer, etching the anti-puncture layer and the protective layer, so that the heights of the anti-puncture layer and the protective layer are the same as The anti-diffusion layer is flush. 12.如权利要求1所述的半导体结构的形成方法,其特征在于,在设置硬掩模后,在硬掩模上方覆盖氧化层,所述氧化层在形成防穿通层之前去除。12 . The method for forming a semiconductor structure according to claim 1 , wherein after the hard mask is provided, an oxide layer is covered on the hard mask, and the oxide layer is removed before forming the punch-through prevention layer. 13 . 13.如权利要求1所述的半导体结构的形成方法,其特征在于,所述衬底包含第一晶体管区和第二晶体管区,所述防穿通离子掺杂类型与其对应的区域的晶体管掺杂类型相反。13. The method for forming a semiconductor structure according to claim 1, wherein the substrate includes a first transistor region and a second transistor region, and the doping type of the anti-puncture ion is the doping type of the transistor corresponding to the region. The type is reversed. 14.如权利要求13所述的半导体结构的形成方法,其特征在于,所述第一晶体管区是NMOS晶体管,所述第一晶体管区中的防穿通离子掺杂类型是P型。14 . The method for forming a semiconductor structure according to claim 13 , wherein the first transistor region is an NMOS transistor, and the ion doping type for preventing punch-through in the first transistor region is P-type. 15.如权利要求13所述的半导体结构的形成方法,其特征在于,防穿通层仅形成在所述第一晶体管区。15. The method for forming a semiconductor structure according to claim 13, wherein the anti-puncture layer is only formed in the first transistor region. 16.如权利要求14所述的半导体结构的形成方法,其特征在于,所述第一晶体管区中的防穿通层离子是硼离子或氟化硼离子。16 . The method for forming a semiconductor structure according to claim 14 , wherein the anti-puncture layer ions in the first transistor region are boron ions or boron fluoride ions. 17.一种半导体结构,采用如权利要求1-16所述的任一项的方法形成。17. A semiconductor structure formed by the method according to any one of claims 1-16.
CN201710328760.9A 2017-05-11 2017-05-11 Semiconductor structure and forming method thereof Active CN108878526B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710328760.9A CN108878526B (en) 2017-05-11 2017-05-11 Semiconductor structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710328760.9A CN108878526B (en) 2017-05-11 2017-05-11 Semiconductor structure and forming method thereof

Publications (2)

Publication Number Publication Date
CN108878526A true CN108878526A (en) 2018-11-23
CN108878526B CN108878526B (en) 2021-11-09

Family

ID=64319363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710328760.9A Active CN108878526B (en) 2017-05-11 2017-05-11 Semiconductor structure and forming method thereof

Country Status (1)

Country Link
CN (1) CN108878526B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018163A (en) * 2019-05-30 2020-12-01 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733313A (en) * 2013-12-18 2015-06-24 中芯国际集成电路制造(上海)有限公司 Fin-type field effect transistor forming method
CN105990430A (en) * 2015-02-27 2016-10-05 中芯国际集成电路制造(上海)有限公司 Semiconductor device and preparation method thereof, and electronic device
US20170069549A1 (en) * 2015-09-04 2017-03-09 International Business Machines Corporation Self aligned PTS liner for bulk FINFET
CN106601678A (en) * 2015-10-14 2017-04-26 中芯国际集成电路制造(上海)有限公司 Semiconductor device, preparation method therefor, and electronic device
CN106601620A (en) * 2015-10-16 2017-04-26 中芯国际集成电路制造(上海)有限公司 Semiconductor device, preparation method thereof and electronic device
CN106611789A (en) * 2015-10-26 2017-05-03 中芯国际集成电路制造(上海)有限公司 Fin field effect transistor and forming method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733313A (en) * 2013-12-18 2015-06-24 中芯国际集成电路制造(上海)有限公司 Fin-type field effect transistor forming method
CN105990430A (en) * 2015-02-27 2016-10-05 中芯国际集成电路制造(上海)有限公司 Semiconductor device and preparation method thereof, and electronic device
US20170069549A1 (en) * 2015-09-04 2017-03-09 International Business Machines Corporation Self aligned PTS liner for bulk FINFET
CN106601678A (en) * 2015-10-14 2017-04-26 中芯国际集成电路制造(上海)有限公司 Semiconductor device, preparation method therefor, and electronic device
CN106601620A (en) * 2015-10-16 2017-04-26 中芯国际集成电路制造(上海)有限公司 Semiconductor device, preparation method thereof and electronic device
CN106611789A (en) * 2015-10-26 2017-05-03 中芯国际集成电路制造(上海)有限公司 Fin field effect transistor and forming method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018163A (en) * 2019-05-30 2020-12-01 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Also Published As

Publication number Publication date
CN108878526B (en) 2021-11-09

Similar Documents

Publication Publication Date Title
CN104851912B (en) The strain of transistor causes scheme
KR101822267B1 (en) Forming punch-through stopper regions in finfet devices
CN103426769B (en) Semiconductor device manufacturing method
US9865505B2 (en) Method for reducing N-type FinFET source and drain resistance
CN109148578B (en) Semiconductor structure and method of forming the same
CN104103515B (en) Manufacturing method for PMOS transistor and manufacturing method for NMOS transistor
CN110047908B (en) Semiconductor device and manufacturing method thereof
CN110047754A (en) Semiconductor devices and its manufacturing method
CN108074973A (en) Semiconductor structure and forming method thereof
US20140120677A1 (en) Methods of forming enhanced mobility channel regions on 3d semiconductor devices, and devices comprising same
CN106449405A (en) Semiconductor structure forming method
US8728894B2 (en) Method for fabricating an NMOS transistor
CN104269358A (en) Semiconductor device preparation method
CN107591328A (en) Semiconductor structure and forming method thereof
CN108962822A (en) Semiconductor device and manufacturing method
CN102044438B (en) MOS (Metal Oxide Semiconductor) transistor and manufacturing method thereof
CN108281485B (en) Semiconductor structure and method of forming the same
CN106158657A (en) The forming method of MOS transistor
CN116504718B (en) A method of manufacturing a semiconductor structure
CN106856190B (en) Formation method of semiconductor structure
CN104183500A (en) Method for forming ion-implantation side wall protection layer on FinFET device
CN110838445B (en) Semiconductor device and method of forming the same
CN109427585B (en) Semiconductor device and method for manufacturing the same
CN106856169A (en) Transistor and forming method thereof
CN102420189B (en) Method for improving reliability of under-gate technology high-K gate dielectric medium CMOS (complementary metal oxide semiconductor)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant