[go: up one dir, main page]

CN108871329B - Indoor positioning method and device, electronic equipment and storage medium - Google Patents

Indoor positioning method and device, electronic equipment and storage medium Download PDF

Info

Publication number
CN108871329B
CN108871329B CN201711377199.XA CN201711377199A CN108871329B CN 108871329 B CN108871329 B CN 108871329B CN 201711377199 A CN201711377199 A CN 201711377199A CN 108871329 B CN108871329 B CN 108871329B
Authority
CN
China
Prior art keywords
target node
expression
convex
parameter
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711377199.XA
Other languages
Chinese (zh)
Other versions
CN108871329A (en
Inventor
邓中亮
胡恩文
宋汶轩
唐诗浩
尹露
刘延旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201711377199.XA priority Critical patent/CN108871329B/en
Publication of CN108871329A publication Critical patent/CN108871329A/en
Application granted granted Critical
Publication of CN108871329B publication Critical patent/CN108871329B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

The embodiment of the invention provides an indoor positioning method, an indoor positioning device, electronic equipment and a storage medium, wherein the method comprises the following steps: acquiring signal propagation delay and angle of a target node, and obtaining a coordinate expression of the target node according to the signal propagation delay and angle of the target node; obtaining a convex difference function of the error parameter of the target node relative to the position parameter according to the analytic equivalence of the Leeberg set of the convex function and the global optimality condition of an optimization theory; determining the value of each position parameter when the partial derivative of the convex difference function is zero according to an auxiliary problem principle and a sub-gradient algorithm; respectively bringing the values of the position parameters into the convex difference function, and determining the value of the position parameter when the convex difference function value is minimum as a target value; and determining the coordinates corresponding to the target values as target coordinates of the target nodes. The embodiment of the invention realizes the purpose of obtaining the global optimal solution with stable indoor target position.

Description

一种室内定位方法、装置、电子设备及存储介质Indoor positioning method, device, electronic device and storage medium

技术领域technical field

本发明涉及室内定位技术领域,特别是涉及一种室内定位方法、装置、电子设备及存储介质。The present invention relates to the technical field of indoor positioning, and in particular, to an indoor positioning method, device, electronic device and storage medium.

背景技术Background technique

精确的室内定位是广泛应用于商业、物联网、公共安全和军事应用的一个重要而新颖的新兴技术。然而,由于类似墙壁、天花板、移动的人等障碍造成的复杂的信号传播使得室内定位面临很多挑战。近年来,针对室内定位系统提出了各种技术方案,例如,红外、超声波、无线射频识别、wifi、蓝牙、传感器网络、超宽带、地磁、视觉分析、伪卫星等,每种系统都利用了特定的定位技术或集成了其中的一些技术,他们在IPS(Indoor PositioningSystems,室内定位系统)的性能和复杂性之间做出权衡。Precise indoor positioning is an important and novel emerging technology widely used in commercial, IoT, public safety, and military applications. However, indoor positioning faces many challenges due to complex signal propagation caused by obstacles such as walls, ceilings, moving people, etc. In recent years, various technical solutions have been proposed for indoor positioning systems, such as infrared, ultrasonic, radio frequency identification, wifi, Bluetooth, sensor networks, ultra-wideband, geomagnetic, visual analysis, pseudolites, etc. Each system utilizes specific The positioning technology or integrate some of these technologies, they make a trade-off between the performance and complexity of IPS (Indoor Positioning Systems, indoor positioning systems).

随着高精度定位需求的增加,基于混合信号的定位是一个很好的选择,现有技术中目前在获取定位最优解方面,SDR(Semi-Definite Relaxation,半定松弛法)得到了广泛应用。SDR是一种凸优化的定位方法,具体方式为将最小二乘或最大似然估计非线性问题转换为等价的凸优化问题,之后引入SDR将联合定位问题转换为低复杂度的半定规划问题,进而求得目标位置的全局最优解。With the increase of high-precision positioning requirements, positioning based on mixed signals is a good choice. In the existing technology, SDR (Semi-Definite Relaxation, semi-definite relaxation method) has been widely used in obtaining the optimal positioning solution. . SDR is a convex optimization localization method. The specific method is to convert the least squares or maximum likelihood estimation nonlinear problem into an equivalent convex optimization problem, and then introduce SDR to convert the joint localization problem into a low-complexity semi-definite programming. problem, and then obtain the global optimal solution of the target position.

然而,由于SDP是一种寻求有效的近似算法,求出的解为近似全局最优解,以及在求解定位问题时需要得到精确的下界,而半定规划计算的数值结果存在浮点数舍入误差,并且因为全局最优解有可能是代数式,因此计算结果只能是近似满足,即只能求得目标位置近似的全局最优解,而不能得出目标位置的稳定解。However, since SDP is an effective approximation algorithm, the solution obtained is an approximate global optimal solution, and an accurate lower bound needs to be obtained when solving the positioning problem, and the numerical results of the semi-definite programming calculation have floating-point rounding errors. , and because the global optimal solution may be an algebraic formula, the calculation result can only be approximately satisfied, that is, only the approximate global optimal solution of the target position can be obtained, but the stable solution of the target position cannot be obtained.

发明内容SUMMARY OF THE INVENTION

本发明实施例的目的在于提供一种室内定位方法、装置、电子设备及存储介质,以实现得到室内目标位置稳定的全局最优解。具体技术方案如下:The purpose of the embodiments of the present invention is to provide an indoor positioning method, an apparatus, an electronic device and a storage medium, so as to obtain a stable global optimal solution of an indoor target position. The specific technical solutions are as follows:

为实现上述发明目的,本发明实施例公开了一种室内定位方法,所述方法包括:To achieve the above purpose of the invention, an embodiment of the present invention discloses an indoor positioning method, the method comprising:

获取目标节点的信号传播延时和角度,并根据所述目标节点的信号传播延时和角度得到所述目标节点的坐标表达式,其中,所述坐标表达式包括所述目标节点的位置参数和误差参数;Acquire the signal propagation delay and angle of the target node, and obtain the coordinate expression of the target node according to the signal propagation delay and angle of the target node, wherein the coordinate expression includes the position parameter of the target node and error parameter;

根据凸函数的勒贝格集的解析等价性,以及优化理论的全局最优性条件,得到所述目标节点的误差参数关于所述位置参数的凸差分函数;According to the analytical equivalence of the Lebesgue set of the convex function and the global optimality condition of the optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained;

根据辅助问题原理以及次梯度型算法,确定所述凸差分函数的偏导数为零时各位置参数的值;Determine the value of each position parameter when the partial derivative of the convex difference function is zero according to the principle of the auxiliary problem and the sub-gradient algorithm;

将所述各位置参数的值分别带入所述凸差分函数,并将所述凸差分函数值最小时位置参数的值确定为目标值;将所述目标值对应的坐标,确定为所述目标节点的目标坐标。The value of each position parameter is respectively brought into the convex difference function, and the value of the position parameter when the convex difference function value is the smallest is determined as the target value; the coordinate corresponding to the target value is determined as the target The target coordinates of the node.

可选地,在所述获取目标节点的信号传播延时和角度之前,所述方法还包括:Optionally, before acquiring the signal propagation delay and angle of the target node, the method further includes:

分别建立预设数量的非共线传感器节点与所述目标节点的信号传播延时以及角度的方程组;Establishing equations of the signal propagation delay and angle of a preset number of non-collinear sensor nodes and the target node respectively;

所述根据所述目标节点的信号传播延时和角度得到所述目标节点的坐标表达式,包括:Obtaining the coordinate expression of the target node according to the signal propagation delay and angle of the target node, including:

求解所述预设数量的非共线传感器节点的各方程组,得到各传感器节点对应于所述目标节点的坐标表达式。Each equation system of the preset number of non-collinear sensor nodes is solved to obtain a coordinate expression of each sensor node corresponding to the target node.

可选地,所述根据所述目标节点的信号传播延时和角度得到所述目标节点的坐标表达式之后,所述方法还包括:Optionally, after obtaining the coordinate expression of the target node according to the signal propagation delay and angle of the target node, the method further includes:

将所述预设数量的非共线传感器节点的各方程组中各横坐标误差参数平方,并将各方程组中的横坐标误差参数的平方相加,得到第一表达式;Square each abscissa error parameter in each equation group of the preset number of non-collinear sensor nodes, and add the square of the abscissa error parameter in each equation group to obtain the first expression;

将所述预设数量的非共线传感器节点的各方程组中各纵坐标误差参数平方,并将各方程组中的纵坐标误差参数的平方相加,得到第二表达式;Square each ordinate error parameter in each equation group of the preset number of non-collinear sensor nodes, and add the square of the ordinate error parameter in each equation group to obtain a second expression;

将所述第一表达式与所述第二表达式相加的表达式,确定为所述目标节点的坐标表达式中包括的误差参数的表达式。An expression that adds the first expression and the second expression is determined as an expression of the error parameter included in the coordinate expression of the target node.

可选地,在所述根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到所述目标节点的误差参数关于所述位置参数的凸差分函数之前,所述方法还包括:Optionally, based on the analytical equivalence of the Lebesgue set according to the convex function, and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory, the error parameter of the target node is obtained with respect to the Before the convex difference function of the position parameter, the method further includes:

将包含误差值的所述目标节点的坐标表达式中所述位置参数转置得到的参数位置,确定为所述目标节点所述位置参数对应的第一位置;The parameter position obtained by transposing the position parameter in the coordinate expression of the target node including the error value is determined as the first position corresponding to the position parameter of the target node;

所述根据凸函数的勒贝格集的解析等价性,以及优化理论的凸最大化和逆凸优化的最优性条件,得到所述目标节点的误差参数关于所述位置参数的凸差分函数,包括:According to the analytical equivalence of the Lebesgue set of convex functions, and the optimality conditions of convex maximization and inverse convex optimization of optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained ,include:

将所述目标节点的坐标表达式包括的误差参数,通过凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,转换为关于所述位置参数以及所述第一位置对应的凸差分函数。The error parameters included in the coordinate expression of the target node, the analytical equivalence of the Lebesgue set of convex functions, and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory are converted into the position parameter and the convex difference function corresponding to the first position.

可选地,所述根据辅助问题原理以及次梯度型算法,确定所述凸差分函数的偏导数为零时各位置参数的值,包括:Optionally, determining the value of each position parameter when the partial derivative of the convex difference function is zero according to the principle of the auxiliary problem and the sub-gradient algorithm, including:

通过辅助问题原理中的预设不等式以及预设恒等式,将所述凸差分函数变换成能够利用次梯度型算法求解偏导数的目标函数;其中,所述目标函数为关于所述凸差分函数中所述目标节点的位置参数的函数;Through the preset inequality and preset identity in the auxiliary problem principle, the convex difference function is transformed into an objective function that can use a subgradient algorithm to solve the partial derivative; wherein, the objective function is about the convex difference function. Describe the function of the position parameter of the target node;

对所述目标函数求偏导,并确定所述目标函数的偏导数为零时位置参数的值。A partial derivative is obtained for the objective function, and the value of the position parameter when the partial derivative of the objective function is zero is determined.

为实现上述发明目的,本发明实施例还公开了一种室内定位装置,所述装置包括:To achieve the above purpose of the invention, an embodiment of the present invention further discloses an indoor positioning device, the device comprising:

表达式确定模块,用于获取目标节点的信号传播延时和角度,并根据所述目标节点的信号传播延时和角度得到所述目标节点的坐标表达式,其中,所述坐标表达式包括所述目标节点的位置参数和误差参数;The expression determination module is used to obtain the signal propagation delay and angle of the target node, and obtain the coordinate expression of the target node according to the signal propagation delay and angle of the target node, wherein the coordinate expression includes the Describe the position parameters and error parameters of the target node;

凸差分函数确定模块,用于根据凸函数的勒贝格集的解析等价性,以及优化理论的全局最优性条件,得到所述目标节点的误差参数关于所述位置参数的凸差分函数;The convex difference function determination module is used to obtain the convex difference function of the error parameter of the target node with respect to the position parameter according to the analytical equivalence of the Lebesgue set of the convex function and the global optimality condition of the optimization theory;

参数值确定模块,用于根据辅助问题原理以及次梯度型算法,确定所述凸差分函数的偏导数为零时各位置参数的值;The parameter value determination module is used for determining the value of each position parameter when the partial derivative of the convex difference function is zero according to the principle of the auxiliary problem and the sub-gradient algorithm;

目标坐标确定模块,用于将所述各位置参数的值分别带入所述凸差分函数,并将所述凸差分函数值最小时位置参数的值确定为目标值;将所述目标值对应的坐标,确定为所述目标节点的目标坐标。The target coordinate determination module is used to bring the value of each position parameter into the convex difference function respectively, and determine the value of the position parameter when the value of the convex difference function is the smallest as the target value; The coordinates are determined as the target coordinates of the target node.

可选地,所述装置还包括:Optionally, the device further includes:

方程组建立模块,用于分别建立预设数量的非共线传感器节点与所述目标节点的信号传播延时以及角度的方程组;a set of equations establishing module for respectively establishing a set of equations of the signal propagation delay and angle of a preset number of non-collinear sensor nodes and the target node;

所述表达式确定模块,具体用于求解所述预设数量的非共线传感器节点的各方程组,得到各传感器节点对应于所述目标节点的坐标表达式。The expression determination module is specifically configured to solve each equation system of the preset number of non-collinear sensor nodes, and obtain a coordinate expression of each sensor node corresponding to the target node.

可选地,所述装置还包括:Optionally, the device further includes:

第一表达式确定模块,用于将所述预设数量的非共线传感器节点的各方程组中各横坐标误差参数平方,并将各方程组中的横坐标误差参数的平方相加,得到第一表达式;The first expression determination module is used to square each abscissa error parameter in each equation group of the preset number of non-collinear sensor nodes, and add the square of the abscissa error parameter in each equation group to obtain first expression;

第二表达式确定模块,用于将所述预设数量的非共线传感器节点的各方程组中各纵坐标误差参数平方,并将各方程组中的纵坐标误差参数的平方相加,得到第二表达式;The second expression determination module is used for squaring each ordinate error parameter in each equation group of the preset number of non-collinear sensor nodes, and adding the squares of the ordinate error parameter in each equation group to obtain second expression;

第三表达式确定模块,用于将所述第一表达式与所述第二表达式相加的表达式,确定为所述目标节点的坐标表达式中包括的误差参数的表达式。The third expression determination module is configured to determine the expression for adding the first expression and the second expression as an expression of the error parameter included in the coordinate expression of the target node.

可选地,所述装置还包括:Optionally, the device further includes:

第一位置确定模块,用于将包含误差值的所述目标节点的坐标表达式中所述位置参数转置得到的参数位置,确定为所述目标节点所述位置参数对应的第一位置;a first position determination module, configured to determine the parameter position obtained by transposing the position parameter in the coordinate expression of the target node including the error value as the first position corresponding to the position parameter of the target node;

所述凸差分函数确定模块,具体用于将所述目标节点的坐标表达式包括的误差参数,通过凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,转换为关于所述位置参数以及所述第一位置对应的凸差分函数。The convex difference function determination module is specifically used to determine the error parameter included in the coordinate expression of the target node, the analytical equivalence of the Lebesgue set of the convex function, and the convex maximization and inverse convexity related to the optimization theory The optimized optimality condition is converted into a convex difference function corresponding to the position parameter and the first position.

可选地,所述参数值确定模块,具体用于通过辅助问题原理中的预设不等式以及预设恒等式,将所述凸差分函数变换成能够利用次梯度型算法求解偏导数的目标函数;其中,所述目标函数为关于所述凸差分函数中所述目标节点的位置参数的函数;对所述目标函数求偏导,并确定所述目标函数的偏导数为零时位置参数的值。Optionally, the parameter value determination module is specifically configured to transform the convex difference function into an objective function that can solve the partial derivative by using a sub-gradient algorithm by using a preset inequality and a preset identity in the auxiliary problem principle; wherein , the objective function is a function about the position parameter of the target node in the convex difference function; a partial derivative is obtained for the objective function, and the value of the position parameter when the partial derivative of the objective function is zero is determined.

为实现上述发明目的,本发明实施例还公开了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,所述处理器、所述通信接口、所述存储器通过所述通信总线完成相互间的通信;To achieve the above purpose of the invention, an embodiment of the present invention further discloses an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory pass through the communication bus complete communication with each other;

所述存储器,用于存放计算机程序;the memory for storing computer programs;

所述处理器,用于执行所述存储器上所存放的程序时,实现上述室内定位方法中任一所述的方法。The processor is configured to implement any one of the above indoor positioning methods when executing the program stored in the memory.

为实现上述发明目的,本发明实施例还公开了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现上述室内定位方法中任一所述的方法。In order to achieve the above purpose of the invention, an embodiment of the present invention further discloses a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned indoor positioning method is realized. any of the methods described.

本发明实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述室内定位方法中任一所述的方法。Embodiments of the present invention also provide a computer program product containing instructions, which, when executed on a computer, cause the computer to execute any one of the above indoor positioning methods.

本发明实施例提供的一种室内定位方法、装置、电子设备及存储介质,可以实现得到室内目标位置稳定的全局最优解。具体为,根据预设数量的非共线传感器节点检测的目标节点的信号传播延时和角度,得到目标节点的坐标表达式,该坐标表达式中包括目标节点的位置参数和误差参数。进而根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,即通过将该误差参数转换成凸差分函数,实现在凸差分函数下利用辅助问题原理以及次梯度型算法,确定出凸差分函数的偏导数为零对应的各位置参数的值。通过将偏导数为零对应的各位置参数的值带入该凸差分函数,进而确定出该凸差分函数的值最小时所对应的位置参数的值,即为最小的误差值。最终,将该最小的误差值对应的坐标确定为该目标节点的目标坐标,实现得到室内目标位置稳定的全局最优解。The indoor positioning method, device, electronic device and storage medium provided by the embodiments of the present invention can achieve a stable global optimal solution for the indoor target position. Specifically, according to the signal propagation delay and angle of the target node detected by a preset number of non-collinear sensor nodes, a coordinate expression of the target node is obtained, and the coordinate expression includes a position parameter and an error parameter of the target node. Then, according to the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained, that is, by The error parameter is converted into a convex difference function, and the auxiliary problem principle and sub-gradient algorithm are used under the convex difference function to determine the value of each position parameter corresponding to the zero partial derivative of the convex difference function. By bringing the value of each position parameter corresponding to zero partial derivative into the convex difference function, the value of the position parameter corresponding to the minimum value of the convex difference function is determined, that is, the minimum error value. Finally, the coordinate corresponding to the smallest error value is determined as the target coordinate of the target node, so as to obtain a stable global optimal solution for the indoor target position.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.

图1为本发明实施例的一种室内定位方法流程图;1 is a flowchart of an indoor positioning method according to an embodiment of the present invention;

图2为本发明实施例的一种室内定位方法中凸差分函数处理方法流程图;2 is a flowchart of a method for processing a convex difference function in an indoor positioning method according to an embodiment of the present invention;

图3为本发明实施例的一种室内定位装置结构示意图;3 is a schematic structural diagram of an indoor positioning device according to an embodiment of the present invention;

图4为本发明实施例的一种电子设备结构示意图。FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

由于信息技术的发展,室内定位技术也得到了更为广泛的应用。随着高精度定位需求的增加,基于混合信号的定位是一个很好的选择,目前在获取定位最优解方面,极大似然估计和非线性最小二乘法应用最多。由于极大似然估计和非线性最小二乘法需要用到代价函数,代价函数是多峰值的,而极大似然估计算法是非凸优化问题,因此很难保证取得全局性的收敛。凸优化中的半定程序松弛法在非线性和线性方法之间取得了平衡,即凸优化方法具有高准确度和全局收敛性的特点。非凸优化问题,如极大似然估计和非线性最小二乘法,可通过松弛法转换成一个凸二阶锥程序或者一个半理想程序,之后便可通过现有的解决方案进行解决。Due to the development of information technology, indoor positioning technology has also been more widely used. With the increasing demand for high-precision positioning, mixed-signal-based positioning is a good choice. Currently, maximum likelihood estimation and nonlinear least squares are the most used methods to obtain the optimal positioning solution. Since the maximum likelihood estimation and the nonlinear least squares method need to use a cost function, the cost function is multimodal, and the maximum likelihood estimation algorithm is a non-convex optimization problem, so it is difficult to ensure global convergence. The semidefinite program relaxation method in convex optimization achieves a balance between nonlinear and linear methods, that is, convex optimization methods have the characteristics of high accuracy and global convergence. Non-convex optimization problems, such as maximum likelihood estimation and nonlinear least squares, can be transformed into a convex second-order cone procedure or a semi-ideal procedure by relaxation methods, which can then be solved by existing solutions.

例如,现有的SDR(Semi-Definite Relaxation,半定松弛法)是一种凸优化的定位方法。具体方式为将最小二乘或最大似然估计非线性问题转换为等价的凸优化问题,之后引入SDR将联合定位问题转换为低复杂度的半定规划问题,进而求得目标位置的全局最优解。然而,由于SDP是一种寻求有效的近似算法,求出的解为近似全局最优解,而不能得出目标位置的稳定解。For example, the existing SDR (Semi-Definite Relaxation, semi-definite relaxation method) is a convex optimization localization method. The specific method is to convert the least squares or maximum likelihood estimation nonlinear problem into an equivalent convex optimization problem, and then introduce SDR to convert the joint localization problem into a low-complexity semidefinite programming problem, and then obtain the global minimum of the target position. optimal solution. However, since SDP is an effective approximation algorithm, the obtained solution is an approximate global optimal solution, and a stable solution for the target position cannot be obtained.

为解决上述问题,本发明实施例公开了一种室内定位方法、装置、电子设备及存储介质,以实现得到室内目标位置稳定的全局最优解。具体技术方案如下:In order to solve the above problem, the embodiments of the present invention disclose an indoor positioning method, device, electronic device and storage medium, so as to obtain a stable global optimal solution of the indoor target position. The specific technical solutions are as follows:

为实现上述发明目的,本发明实施例公开了一种室内定位方法,如图1所示。图1为本发明实施例的一种室内定位方法流程图,包括:To achieve the above purpose of the invention, an embodiment of the present invention discloses an indoor positioning method, as shown in FIG. 1 . 1 is a flowchart of an indoor positioning method according to an embodiment of the present invention, including:

S101,获取目标节点的信号传播延时和角度,并根据目标节点的信号传播延时和角度得到目标节点的坐标表达式,其中,坐标表达式包括目标节点的位置参数和误差参数。S101: Acquire the signal propagation delay and angle of the target node, and obtain a coordinate expression of the target node according to the signal propagation delay and angle of the target node, wherein the coordinate expression includes a position parameter and an error parameter of the target node.

针对现有技术的室内定位方法中无法求得稳定全局最优解的问题,本发明实施例提出了一种求解TOA(time of arrival,到达时间)和AOA(Angle of Arrival,到达角度)室内融合定位的稳定的全局最优解的方法,降低了室内定位的误差。In view of the problem that a stable global optimal solution cannot be obtained in the indoor positioning method of the prior art, an embodiment of the present invention proposes a solution for indoor fusion of TOA (time of arrival, time of arrival) and AOA (Angle of Arrival, angle of arrival). The method of positioning the stable global optimal solution reduces the error of indoor positioning.

TOA定位技术实现了网络定位,由于声波相对于无线射频信号而言,具有成本低,硬件复杂度低,有利于发送方和接收方时间同步。假设发送节点和接收节点时间同步并且每个节点均包含一个发射机和一个接收机,发射机发射一种命名为chirp的声波,并且同时在该声波中包含了发送时以告诉接收者。当接收机收到chirp声波后从中提取发送时间,利用声波在大气中的传播模型计算发送节点和接收节点之间的距离。从整体上来讲,基于TOA的定位实现简单,定位精度高,但是要求节点间保持精确的时间同步,这样对传感器节点网络的节点的硬件和功耗提出了较高的要求。TOA positioning technology realizes network positioning. Compared with wireless radio frequency signals, sound waves have low cost and low hardware complexity, which is beneficial to the time synchronization of sender and receiver. Assuming that the sending node and the receiving node are time-synchronized and each node contains a transmitter and a receiver, the transmitter emits a sound wave named chirp, and the time of transmission is also included in the sound wave to tell the receiver. When the receiver receives the chirp sound wave, the sending time is extracted from it, and the distance between the sending node and the receiving node is calculated using the propagation model of the sound wave in the atmosphere. On the whole, TOA-based positioning is simple to implement and has high positioning accuracy, but requires precise time synchronization between nodes, which puts forward higher requirements on the hardware and power consumption of nodes in the sensor node network.

AOA定位技术通过在两个以上的位置点设置方向性天线或阵列天线,获取终端发射的无线电波信号角度信息,然后通过交汇法估计终端的位置。它只需利用两个天线阵列就能完成目标的初始定位。建筑物分别密集、高度和地形地貌对AOA的定位精度影响较大,在室内、城区及乡村地区,AOA的典型值分别为360度、20度和1度。随着基站与终端之间的距离增加,AOA的定位精度逐渐降低。AOA定位误差主要由城市的多径传播及系统误差造成,可通过预先校正来抵消系统误差的影响,而建筑物密集地区的多径效应一直是困扰天线通信的难题,智能天线可在一定程度上减小多径干扰的影响,但由于实现复杂和设备成本的问题,尚未广泛应用。因此,AOA技术虽然结构简单,但是在城市蜂窝定位系统中并未得到应用。AOA positioning technology obtains the angle information of the radio wave signal emitted by the terminal by setting up directional antennas or array antennas at more than two position points, and then estimates the position of the terminal through the intersection method. It only needs to use two antenna arrays to complete the initial positioning of the target. The density of buildings, height and topography have a great influence on the positioning accuracy of AOA. In indoor, urban and rural areas, the typical values of AOA are 360 degrees, 20 degrees and 1 degree respectively. As the distance between the base station and the terminal increases, the positioning accuracy of AOA gradually decreases. AOA positioning error is mainly caused by urban multipath propagation and system error. The influence of system error can be offset by pre-correction. However, multipath effect in densely built areas has always been a problem that plagues antenna communication. To reduce the influence of multipath interference, it has not been widely used due to the complexity of implementation and equipment cost. Therefore, although the AOA technology has a simple structure, it has not been applied in the urban cellular positioning system.

在本步骤中,首先,基于TOA和AOA定位技术的基本原理,获取目标节点的信号传播延时和角度。进而根据目标节点的信号传播延时和角度得到目标节点的坐标表达式。In this step, first, based on the basic principles of TOA and AOA positioning technology, the signal propagation delay and angle of the target node are obtained. Then, the coordinate expression of the target node is obtained according to the signal propagation delay and angle of the target node.

具体为,可在观测区域任意部署多个非共线传感器节点,每个传感器节点分别获取与该目标节点的信号传播延时以及角度。将每个传感器节点与该目标节点的信号传播时延以及角度关系分别建立方程组,求解各方程组进而得到每个传感器节点对应的该目标节点的坐标表达式。因为每个传感器节点在检测与该目标节点的信号传播时延时存在时间误差,在检测与该目标节点的角度时存在角度误差,进而每个传感器节点与该目标节点建立的方程存在时间误差以及角度误差,故求解方程组得到该目标节点的坐标表达式中,包含该目标节点的空间位置,即为该目标节点的位置参数,以及包含对该目标节点准确位置估计过程中存在的误差,即为该目标节点的误差参数。Specifically, multiple non-collinear sensor nodes can be arbitrarily deployed in the observation area, and each sensor node obtains the signal propagation delay and angle with the target node respectively. Equations are established respectively for the signal propagation delay and angle relationship between each sensor node and the target node, and the equations are solved to obtain the coordinate expression of the target node corresponding to each sensor node. Because each sensor node has a time error when detecting the signal propagation with the target node, and there is an angle error when detecting the angle with the target node, and then the equation established by each sensor node and the target node has a time error and angle error, so the coordinate expression of the target node obtained by solving the equation system includes the spatial position of the target node, which is the position parameter of the target node, and the error existing in the process of estimating the accurate position of the target node, that is, is the error parameter of the target node.

S102,根据凸函数的勒贝格集的解析等价性,以及优化理论的全局最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数。S102 , according to the analytical equivalence of the Lebesgue set of the convex function and the global optimality condition of the optimization theory, obtain the convex difference function of the error parameter of the target node with respect to the position parameter.

凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量x1、x2,有f((x1+x2)/2)≤(f(x1)+f(x2))/2。A convex function is a real-valued function f defined on a convex subset C (interval) of a certain vector space, and for any two vectors x1 and x2 in the convex subset C, there is f((x1+x2)/2 )≤(f(x1)+f(x2))/2.

勒贝格定理揭示了几乎处处收敛与依测度收敛之间关系的定理。它断言:若f(x)(n=1,2,w)及f(x)是可测集E上几乎处处有限的可测函数,且函数列{人(x)}在E上几乎处处收敛于f(x),则{{f.,}x}在E上依测度收敛于f(x)。Lebesgue's theorem reveals the relationship between convergence almost everywhere and convergence in measure. It asserts: if f(x)(n=1,2,w) and f(x) are measurable functions that are finite almost everywhere on the measurable set E, and the function sequence {person(x)} is almost everywhere on E converges to f(x), then {{f.,}x} converges to f(x) by measure on E.

最优化理论是研究函数在给定一组约束条件下的最小值(或者最大值)的数学问题。最优性条件指的是最优化问题的局部或全局最优解所必须满足的条件。全局最优化问题的最优性条件作为数据计算的理论基础,基本的研究对象之一是优化问题的全局最优解。全局最优性条件是刻画一个可行解是否为全局最优解的基本工具。Optimization theory is a mathematical problem that studies the minimum (or maximum) value of a function under a given set of constraints. The optimality condition refers to the condition that must be satisfied by the local or global optimal solution of the optimization problem. The optimality condition of the global optimization problem is the theoretical basis of the data calculation, and one of the basic research objects is the global optimal solution of the optimization problem. The global optimality condition is a basic tool to characterize whether a feasible solution is a global optimal solution.

在本步骤中,通过上述凸函数性质、勒贝格定理以及优化理论的全局最优性条件,将上述步骤S101中得到的目标节点的坐标表达式,转换成以目标节点的位置参数为自变量,以目标节点的误差参数为因变量的凸差分函数。In this step, the coordinate expression of the target node obtained in the above step S101 is converted into the position parameter of the target node as the independent variable through the above-mentioned convex function properties, Lebesgue's theorem and the global optimality condition of the optimization theory. , a convex difference function with the error parameter of the target node as the dependent variable.

具体为,首先通过凸函数的勒贝格集的分析等价物集合,得到与经典最优化理论有关的全局最优性条件。将非凸优化问题中的不等式约束用全局最优性条件进行替换,进而得到该目标节点的误差参数关于位置参数的凸差分函数。Specifically, firstly, the global optimality conditions related to classical optimization theory are obtained through the analytical equivalence set of the Lebesgue set of convex functions. The inequality constraints in the non-convex optimization problem are replaced with global optimality conditions, and then the convex difference function of the error parameters of the target node with respect to the position parameters is obtained.

S103,根据辅助问题原理以及次梯度型算法,确定凸差分函数的偏导数为零时各位置参数的值。S103 , according to the auxiliary problem principle and the sub-gradient algorithm, determine the value of each position parameter when the partial derivative of the convex difference function is zero.

上述在确定了目标节点的误差参数关于位置参数的凸差分函数后,在本步骤中根据辅助问题原理以及次梯度型算法,确定该凸差分函数的偏导数为零时各位置参数的值。After determining the convex difference function of the error parameter of the target node with respect to the position parameter, in this step, according to the principle of the auxiliary problem and the sub-gradient algorithm, determine the value of each position parameter when the partial derivative of the convex difference function is zero.

以求极小值为例,说明辅助问题原理。假设函数J1(x)可微,函数J2(x)不一定可微,对于原问题J1(x)+J2(x)求解最小值,若能构造出一辅助问题:minG(x)+εJ2(x),且存在x*使得G'(x*)=εJ1'(x*)成立,则原问题可转化为求解辅助问题,x*即为原问题的解,G(x)称为辅助函数。构造辅助函数形式为G(x)=K(x)+<εJ′(x)-K′(x),x>,式中:K(x)为核函数;<,>表示数量积。Taking the minimum value as an example, the principle of the auxiliary problem is explained. Assuming that the function J1(x) is differentiable, and the function J2(x) is not necessarily differentiable, for the original problem J1(x)+J2(x) to find the minimum value, if an auxiliary problem can be constructed: minG(x)+εJ2( x), and there is x* such that G'(x*)=εJ1'(x*) holds, then the original problem can be transformed into an auxiliary problem, x* is the solution of the original problem, and G(x) is called the auxiliary function . The auxiliary function is constructed in the form of G(x)=K(x)+<εJ′(x)-K′(x), x>, where K(x) is the kernel function; <,> represents the quantity product.

次梯度型算法为简单的说为求导,一维次梯度称为次导数,通过求函数在点的每一分量的次导数可以求出函数在该点的次梯度。The sub-gradient algorithm is simply called derivative, and the one-dimensional sub-gradient is called the sub-derivative. By calculating the sub-derivative of each component of the function at the point, the sub-gradient of the function at the point can be obtained.

根据上述辅助问题原理以及次梯度型算法原理,求解S102中目标节点的误差参数关于位置参数的凸差分函数,偏导数为零时各位置参数的值。According to the above-mentioned auxiliary problem principle and the sub-gradient algorithm principle, the convex difference function of the error parameter of the target node with respect to the position parameter in S102 is solved, and the value of each position parameter when the partial derivative is zero.

S104,将各位置参数的值分别带入凸差分函数,并将凸差分函数值最小时位置参数的值确定为目标值;将目标值对应的坐标,确定为目标节点的目标坐标。S104, the value of each position parameter is respectively brought into the convex difference function, and the value of the position parameter when the convex difference function value is the smallest is determined as the target value; the coordinate corresponding to the target value is determined as the target coordinate of the target node.

上述在得到凸差分函数的偏导数为零时各位置参数的值后,将各位置参数的值带回该凸差分函数,并得到每个位置参数的值对应的凸差分函数的值。在所有的凸差分函数值中选出最小的值,将该值确定为该凸差分函数值的目标值。进而可确定该目标值对应目标节点位置的坐标表达式,通过该坐标表达式即可得到该目标节点精确的坐标位置。After obtaining the value of each position parameter when the partial derivative of the convex difference function is zero, the value of each position parameter is brought back to the convex difference function, and the value of the convex difference function corresponding to the value of each position parameter is obtained. The smallest value is selected among all the convex difference function values, and this value is determined as the target value of the convex difference function value. Then, the coordinate expression of the target value corresponding to the position of the target node can be determined, and the precise coordinate position of the target node can be obtained through the coordinate expression.

本发明实施例提供的一种室内定位方法,可以实现得到室内目标位置稳定的全局最优解。具体为,根据预设数量的非共线传感器节点检测的目标节点的信号传播延时和角度,得到目标节点的坐标表达式,该坐标表达式中包括目标节点的位置参数和误差参数。进而根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,即通过将该误差参数转换成凸差分函数,实现在凸差分函数下利用辅助问题原理以及次梯度型算法,确定出凸差分函数的偏导数为零对应的各位置参数的值。通过将偏导数为零对应的各位置参数的值带入该凸差分函数,进而确定出该凸差分函数的值最小时所对应的位置参数的值,即为最小的误差值。最终,将该最小的误差值对应的坐标确定为该目标节点的目标坐标,实现得到室内目标位置稳定的全局最优解。The indoor positioning method provided by the embodiment of the present invention can achieve a stable global optimal solution for the indoor target position. Specifically, according to the signal propagation delay and angle of the target node detected by a preset number of non-collinear sensor nodes, a coordinate expression of the target node is obtained, and the coordinate expression includes a position parameter and an error parameter of the target node. Then, according to the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained, that is, by The error parameter is converted into a convex difference function, and the auxiliary problem principle and sub-gradient algorithm are used under the convex difference function to determine the value of each position parameter corresponding to the zero partial derivative of the convex difference function. By bringing the value of each position parameter corresponding to zero partial derivative into the convex difference function, the value of the position parameter corresponding to the minimum value of the convex difference function is determined, that is, the minimum error value. Finally, the coordinate corresponding to the smallest error value is determined as the target coordinate of the target node, so as to obtain a stable global optimal solution for the indoor target position.

可选地,在本发明实施例的室内定位方法的一种实施例中,在获取目标节点的信号传播延时和角度之前,方法还包括:Optionally, in an embodiment of the indoor positioning method according to the embodiment of the present invention, before acquiring the signal propagation delay and angle of the target node, the method further includes:

步骤一,分别建立预设数量的非共线传感器节点与目标节点的信号传播延时以及角度的方程组。In step 1, a set of equations of signal propagation delay and angle of a preset number of non-collinear sensor nodes and target nodes are respectively established.

本发明实施例为确定室内所要定位的目标节点的坐标表达式的实施方法。本步骤为为每个传感器节点检测的该目标位置的信号传播时延以及角度建立方程组的实施方式。The embodiment of the present invention is an implementation method for determining a coordinate expression of a target node to be located indoors. This step is an embodiment of establishing a system of equations for the signal propagation delay and angle of the target position detected by each sensor node.

在本步骤中,考虑在二维空间使用混合TOA/AOA测量目标节点位置,首先在观测区域任意部署L个非共线传感器节点,该传感器节点的坐标可表示为xi=[xi,yi]T,(xi∈R2),i=1,...,L,其中,xi表示第i个传感器节点的横坐标,yi表示第i个传感器节点的纵坐标。目标节点的坐标可表示为u=[x,y]T,(u∈R2)。In this step, consider using hybrid TOA/AOA to measure the position of target nodes in two-dimensional space, firstly deploy L non-collinear sensor nodes in the observation area, the coordinates of the sensor nodes can be expressed as x i =[x i ,y i ] T , ( xi ∈ R 2 ), i=1,...,L, where x i represents the abscissa of the ith sensor node, and y i represents the ordinate of the ith sensor node. The coordinates of the target node can be expressed as u=[x,y] T , (u∈R 2 ).

假设所有的传感器节点时钟都是理想同步的,所有的传感器节点都能接收到目标节点中的信号,每个传感器节点都可以测量从目标节点传输的信号的TOA和AOA,可令ti表示从目标节点到第i个传感器节点的信号传播延时,θi表示从目标节点到第i个传感器节点的角度,则目标节点与第i个传感器节点可以建立以下方程组:Assuming that all sensor node clocks are ideally synchronized, all sensor nodes can receive the signal from the target node, and each sensor node can measure the TOA and AOA of the signal transmitted from the target node, let t i represent the slave The signal propagation delay from the target node to the ith sensor node, θ i represents the angle from the target node to the ith sensor node, then the target node and the ith sensor node can establish the following equations:

Figure GDA0002438271320000101
Figure GDA0002438271320000101

其中,c表示信号传播速度;||·|表示欧几里得范数,当信号离开目标节点时,第i个传感器节点的本地时间为0;xi表示第i个传感器节点的横坐标;yi表示第i个节点的纵坐标;u表示目标节点的坐标;x表示目标节点的横坐标;y表示目标节点的纵坐标;eti表示从目标节点到第i个传感器节点的信号传播延时误差;eθi表示从目标节点到第i个传感器节点的角度测量误差。Among them, c represents the signal propagation speed; ||·| represents the Euclidean norm, when the signal leaves the target node, the local time of the ith sensor node is 0; x i represents the abscissa of the ith sensor node; y i represents the ordinate of the ith node; u represents the coordinate of the target node; x represents the abscissa of the target node; y represents the ordinate of the target node; e ti represents the signal propagation delay from the target node to the ith sensor node. time error; e θi represents the angle measurement error from the target node to the ith sensor node.

按照上述方式,建立每个传感器节点与该目标节点的方程组。具体过程如上述实时步骤类似,此处不再赘述。In the above-mentioned manner, a system of equations for each sensor node and the target node is established. The specific process is similar to the above-mentioned real-time steps, and will not be repeated here.

根据目标节点的信号传播延时和角度得到目标节点的坐标表达式,包括:According to the signal propagation delay and angle of the target node, the coordinate expression of the target node is obtained, including:

步骤二,求解预设数量的非共线传感器节点的各方程组,得到各传感器节点对应于目标节点的坐标表达式。In step 2, each equation system of a preset number of non-collinear sensor nodes is solved to obtain a coordinate expression of each sensor node corresponding to the target node.

上述得到每个传感器节点与目标节点的方程组后,分别求解各方程组,进而得到每个传感器节点关于该目标节点的坐标表达式。After obtaining the equation sets of each sensor node and the target node above, solve the equation sets respectively, and then obtain the coordinate expression of each sensor node with respect to the target node.

例如,按照上述步骤一建立的第i个传感器节点与目标节点建立的方程组,可得到如下的目标节点的坐标表达式:For example, according to the equation system established by the ith sensor node and the target node established in the above step 1, the following coordinate expressions of the target node can be obtained:

Figure GDA0002438271320000111
Figure GDA0002438271320000111

其中,

Figure GDA0002438271320000112
表示第i个传感器节点与目标节点建立的方程组得到的目标节点的横坐标;
Figure GDA0002438271320000113
表示第i个传感器节点与目标节点建立的方程组得到的目标节点的纵坐标;xi表示第i个传感器节点的横坐标;yi表示第i个传感器节点的纵坐标,θi表示第i个传感器节点与目标节点的角度;exi表示第i个传感器节点的横坐标的误差;eyi表示第i个传感器节点的纵坐标的误差,其和步骤一中的eti、eθi是非线性函数关系。in,
Figure GDA0002438271320000112
represents the abscissa of the target node obtained from the equation system established by the ith sensor node and the target node;
Figure GDA0002438271320000113
Represents the ordinate of the target node obtained from the equation system established by the ith sensor node and the target node; x i represents the abscissa of the ith sensor node; y i represents the ordinate of the ith sensor node, θ i represents the ith sensor node The angle between each sensor node and the target node; e xi represents the error of the abscissa of the ith sensor node; e yi represents the error of the ordinate of the ith sensor node, and e ti and e θi in step 1 are nonlinear Functional relationship.

可见,通过本发明实施例可实现通过传感器节点得到目标节点的坐标表达式,进而通过每个传感器节点与目标节点的方程关系得到目标节点的表达式,实现通过多个传感器节点定位目标节点的,进而保证后期精确的得到目标节点的坐标位置。It can be seen that through the embodiment of the present invention, the coordinate expression of the target node can be obtained through the sensor nodes, and then the expression of the target node can be obtained through the equation relationship between each sensor node and the target node, so as to realize the positioning of the target node through multiple sensor nodes, This ensures that the coordinate position of the target node can be accurately obtained later.

可选地,在本发明实施例的室内定位方法的一种实施例中,根据目标节点的信号传播延时和角度得到目标节点的坐标表达式之后,方法还包括:Optionally, in an embodiment of the indoor positioning method according to the embodiment of the present invention, after obtaining the coordinate expression of the target node according to the signal propagation delay and angle of the target node, the method further includes:

步骤A,将预设数量的非共线传感器节点的各方程组中各横坐标误差参数平方,并将各方程组中的横坐标误差参数的平方相加,得到第一表达式。Step A: Square each abscissa error parameter in each equation group of a preset number of non-collinear sensor nodes, and add the squares of the abscissa error parameter in each equation group to obtain a first expression.

本发明实施例为确定目标节点的坐标表达式中误差参数表达式的实施方法。在本步骤为确定误差表达式中横坐标误差参数对应的第一表达式。The embodiment of the present invention is an implementation method for determining the error parameter expression in the coordinate expression of the target node. In this step, the first expression corresponding to the abscissa error parameter in the error expression is determined.

具体为,将该传感器节点对应目标节点的坐标表达式中横坐标的误差参数平方,得到第一表达式。Specifically, the first expression is obtained by squaring the error parameter of the abscissa in the coordinate expression of the sensor node corresponding to the target node.

例如,该第一表达式可表示为

Figure GDA0002438271320000121
For example, the first expression can be expressed as
Figure GDA0002438271320000121

其中,exi表示第i个传感器节点横坐标误差;xi表示第i个传感器节点的横坐标;di表示第i个传感器节点与目标节点的距离;θi表示第i个传感器节点与目标节点的角度,x表示目标节点未知的横坐标。Among them, e xi represents the abscissa error of the ith sensor node; xi represents the abscissa of the ith sensor node; d i represents the distance between the ith sensor node and the target node; θ i represents the ith sensor node and the target The angle of the node, x represents the unknown abscissa of the target node.

按照上述方式,得到每个传感器节点对应目标节点的第一表达式。According to the above method, the first expression of each sensor node corresponding to the target node is obtained.

步骤B,将预设数量的非共线传感器节点的各方程组中各纵坐标误差参数平方,并将各方程组中的纵坐标误差参数的平方相加,得到第二表达式。Step B: Square each ordinate error parameter in each equation group of a preset number of non-collinear sensor nodes, and add the squares of the ordinate error parameter in each equation group to obtain a second expression.

在本步骤为确定误差表达式中纵坐标误差参数对应的第二表达式。In this step, the second expression corresponding to the ordinate error parameter in the error expression is determined.

具体为,将该传感器节点对应目标节点的坐标表达式中纵坐标的误差参数平方,得到第二表达式。Specifically, the second expression is obtained by squaring the error parameter of the ordinate in the coordinate expression of the sensor node corresponding to the target node.

例如,该第二表达式可表示为

Figure GDA0002438271320000122
For example, the second expression can be expressed as
Figure GDA0002438271320000122

其中,eyi表示第i个传感器节点纵坐标误差;yi表示第i个传感器节点的纵坐标;di表示第i个传感器节点与目标节点的距离;θi表示第i个传感器节点与目标节点的角度;y表示目标节点未知的纵坐标。Among them, e yi represents the ordinate error of the ith sensor node; y i represents the ordinate of the ith sensor node; d i represents the distance between the ith sensor node and the target node; θ i represents the ith sensor node and the target The angle of the node; y represents the unknown ordinate of the target node.

按照上述方式,得到每个传感器节点对应目标节点的第二表达式。According to the above method, the second expression of each sensor node corresponding to the target node is obtained.

步骤C,将第一表达式与第二表达式相加的表达式,确定为目标节点的坐标表达式中包括的误差参数的表达式。In step C, the expression obtained by adding the first expression and the second expression is determined as the expression of the error parameter included in the coordinate expression of the target node.

上述在得到每个传感器节点对应目标节点的第一表达式与第二表达式后,将该第一表达式与第二表达式相加,得到目标节点的坐标表达式中包括的误差参数的表达式。After obtaining the first expression and the second expression of the target node corresponding to each sensor node, the first expression and the second expression are added to obtain the expression of the error parameter included in the coordinate expression of the target node. Mode.

例如,将该传感器节点对应目标节点的第一表达式与第二表达式相加,得到该传感器节点对应目标节点的误差参数的表达式,即为:For example, add the first expression and the second expression of the sensor node corresponding to the target node to obtain the expression of the error parameter of the sensor node corresponding to the target node, which is:

Figure GDA0002438271320000131
Figure GDA0002438271320000131

按照上述方式,得到每个传感器节点的误差参数的表达式,进而将每个传感器节点误差参数的表达式相加,得到本发明实施例中目标节点的坐标表达式中包括的误差参数的表达式。According to the above method, the expression of the error parameter of each sensor node is obtained, and then the expression of the error parameter of each sensor node is added to obtain the expression of the error parameter included in the coordinate expression of the target node in the embodiment of the present invention .

可见,通过本发明实施例可实现确定出所有传感器节点对应目标表达式的误差参数表达式,进而便于后期通过该误差参数表达式得到误差参数的凸差分函数。It can be seen that the embodiment of the present invention can realize the determination of the error parameter expressions corresponding to the target expressions of all sensor nodes, thereby facilitating the later use of the error parameter expressions to obtain the convex difference function of the error parameters.

可选地,在本发明实施例提供的室内定位方法的一种实施例中,在根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数之前,方法还包括:Optionally, in an embodiment of the indoor positioning method provided by the embodiment of the present invention, in accordance with the analytical equivalence of the Lebesgue set of convex functions, and the optimization theory related to convex maximization and inverse convex optimization. Before obtaining the convex difference function of the error parameter of the target node with respect to the position parameter, the method further includes:

将包含误差值的目标节点的坐标表达式中位置参数转置得到的参数位置,确定为目标节点位置参数对应的第一位置。The parameter position obtained by transposing the position parameter in the coordinate expression of the target node including the error value is determined as the first position corresponding to the position parameter of the target node.

本发明实施例为确定目标节点的误差参数关于位置参数的凸差分函数的实施方法。The embodiment of the present invention is an implementation method for determining the convex difference function of the error parameter of the target node with respect to the position parameter.

在本步骤中可将位置参数转置得到的参数位置确定为第一位置,进而保证以下步骤确定的凸差分函数与该目标节点的位置参数有关。In this step, the parameter position obtained by transposing the position parameter can be determined as the first position, thereby ensuring that the convex difference function determined in the following steps is related to the position parameter of the target node.

具体地,可用转置运算,将包含误差值的目标节点的坐标表达式中位置参数转置,得到目标节点位置参数对应的第一位置。Specifically, a transposition operation can be used to transpose the position parameter in the coordinate expression of the target node including the error value to obtain the first position corresponding to the position parameter of the target node.

例如,位置参数对应的位置表示为u=[x,y],则第一位置可表示为

Figure GDA0002438271320000133
For example, the position corresponding to the position parameter is expressed as u=[x,y], then the first position can be expressed as
Figure GDA0002438271320000133

根据凸函数的勒贝格集的解析等价性,以及优化理论的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,包括:According to the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of convex maximization and inverse convex optimization of optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained, including:

将目标节点的坐标表达式包括的误差参数,通过凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,转换为关于位置参数以及第一位置对应的凸差分函数。Convert the error parameter included in the coordinate expression of the target node, the analytical equivalence of the Lebesgue set through the convex function, and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory into position parameters and The convex difference function corresponding to the first position.

上述将目标节点的坐标表达式中包括的误差参数的表达式

Figure GDA0002438271320000132
确定后,所有传感器节点的误差参数的表达式可以被表示为:The above expression of the error parameter included in the coordinate expression of the target node
Figure GDA0002438271320000132
After being determined, the expression of the error parameters of all sensor nodes can be expressed as:

Figure GDA0002438271320000141
Figure GDA0002438271320000141

subject to y=Aξsubject to y=Aξ

Figure GDA0002438271320000142
Figure GDA0002438271320000142

Figure GDA0002438271320000143
Figure GDA0002438271320000143

其中,

Figure GDA0002438271320000144
in,
Figure GDA0002438271320000144

Figure GDA0002438271320000145
Figure GDA0002438271320000145

Figure GDA0002438271320000146
Figure GDA0002438271320000146

上述y=Aζ是一个典型的非凸优化问题,用最小二乘或和凸松弛只能得到近似全局最优解,而得不到一个稳定的全局最优解。为了得到一个稳定的全局最优解,利用勒贝格集的解析等价性,以及优化理论的全局最优性条件,将上述公式y=Aζ变换为本发明实施例的关于位置参数以及第一位置对应的凸差分函数:The above y=Aζ is a typical non-convex optimization problem. Only approximate global optimal solution can be obtained by using least squares or sum convex relaxation, but a stable global optimal solution cannot be obtained. In order to obtain a stable global optimal solution, using the analytical equivalence of the Lebesgue set and the global optimality condition of the optimization theory, the above formula y=Aζ is transformed into the position parameters and the first The convex difference function corresponding to the position:

Figure GDA0002438271320000147
Figure GDA0002438271320000147

其中,

Figure GDA0002438271320000151
u∈{(x,y)|x,y∈Rn}。in,
Figure GDA0002438271320000151
u∈{(x,y)|x, y∈Rn }.

可见,通过本发明实施例通过凸函数的勒贝格集的解析等价性,以及优化理论的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,进而便于后期通过该凸差分函数的凸优化特性,实现得到室内目标位置稳定的全局最优解。It can be seen that through the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of the convex maximization and inverse convex optimization of the optimization theory, the convex difference of the error parameter of the target node with respect to the position parameter is obtained through the embodiment of the present invention function, and then it is convenient to obtain the global optimal solution with stable indoor target position through the convex optimization characteristics of the convex difference function in the later stage.

可选地,在本发明实施例提供的室内定位方法的一种实施例中,根据辅助问题原理以及次梯度型算法,确定凸差分函数的偏导数为零时各位置参数的值,可如图2所示。图2为本发明实施例的一种室内定位方法中凸差分函数处理方法流程图,包括:Optionally, in an embodiment of the indoor positioning method provided by the embodiment of the present invention, the value of each position parameter when the partial derivative of the convex difference function is zero is determined according to the principle of the auxiliary problem and the sub-gradient algorithm, as shown in the figure. 2 shown. 2 is a flowchart of a method for processing a convex difference function in an indoor positioning method according to an embodiment of the present invention, including:

S201,通过辅助问题原理中的预设不等式以及预设恒等式,将凸差分函数变换成能够利用次梯度型算法求解偏导数的目标函数;其中,目标函数为关于凸差分函数中目标节点的位置参数的函数。S201 , transform the convex difference function into an objective function capable of solving partial derivatives by using a sub-gradient type algorithm by using preset inequalities and preset identities in the auxiliary problem principle; wherein, the objective function is a position parameter about the target node in the convex difference function The function.

本发明实施例为确定凸差分函数的偏导数为零时各位置参数的值的实施方法。本步骤为确定将凸差分函数变换成能够利用次梯度型算法求解偏导数的目标函数。The embodiment of the present invention is an implementation method for determining the value of each position parameter when the partial derivative of the convex difference function is zero. This step is to determine the objective function of transforming the convex difference function into an objective function that can use the subgradient algorithm to solve the partial derivative.

辅助问题的原理为:假设函数J1(x)可微,函数J2(x)不一定可微,对于原问题J1(x)+J2(x)求解最小值,若能构造出一辅助问题:minG(x)+εJ2(x),且存在x*使得G'(x*)=εJ1'(x*)成立,则原问题可转化为求解辅助问题,x*即为原问题的解,G(x)称为辅助函数。构造辅助函数形式为G(x)=K(x)+<εJ′(x)-K′(x),x>,式中:K(x)为核函数;<,>表示数量积。The principle of the auxiliary problem is: Assuming that the function J1(x) is differentiable, the function J2(x) is not necessarily differentiable. For the original problem J1(x)+J2(x) to find the minimum value, if an auxiliary problem can be constructed: minG (x)+εJ2(x), and there is x* such that G'(x*)=εJ1'(x*) holds, then the original problem can be transformed into an auxiliary problem, x* is the solution of the original problem, G( x) is called an auxiliary function. The auxiliary function is constructed in the form of G(x)=K(x)+<εJ′(x)-K′(x), x>, where K(x) is the kernel function; <,> represents the quantity product.

具体为,辅助问题原理中有恒等式

Figure GDA0002438271320000152
Specifically, there are identities in the auxiliary problem principle
Figure GDA0002438271320000152

其中,

Figure GDA0002438271320000153
in,
Figure GDA0002438271320000153

此时,可将上述目标节点的误差参数关于位置参数的凸差分函数:At this time, the error parameter of the above target node can be related to the convex difference function of the position parameter:

Figure GDA0002438271320000161
Figure GDA0002438271320000161

转换为能够利用次梯度型算法求解偏导数的目标函数:Converted to an objective function capable of solving partial derivatives using a subgradient-type algorithm:

Figure GDA0002438271320000162
Figure GDA0002438271320000162

其中,假设坐标Θ=[x0,y0]T是上述公式的解,同时

Figure GDA0002438271320000163
在坐标为Θ=[x0,y0]T
Figure GDA0002438271320000164
为常数。Among them, it is assumed that the coordinate Θ=[x 0 , y 0 ] T is the solution of the above formula, and at the same time
Figure GDA0002438271320000163
At coordinates Θ=[x 0 , y 0 ] T ,
Figure GDA0002438271320000164
is a constant.

因此,每一对(ξ,φ)∈IRn×IR,Λ(ξ)=Ξ(t,θ)=φTherefore, for each pair (ξ, φ) ∈ IR n × IR, Λ(ξ) = Ξ(t, θ) = φ

则有不等式:

Figure GDA0002438271320000165
其中,
Figure GDA0002438271320000166
表示点ξ的次微分。Then there are inequalities:
Figure GDA0002438271320000165
in,
Figure GDA0002438271320000166
represents the sub-derivative of the point ξ.

S202,对目标函数求偏导,并确定目标函数的偏导数为零时位置参数的值。S202, a partial derivative is obtained for the objective function, and the value of the position parameter when the partial derivative of the objective function is zero is determined.

上述在得到能够利用次梯度型算法求解偏导数的目标函数后,对该目标函数求偏导,并确定该目标函数的偏导数为零时位置参数的值。After obtaining the objective function that can solve the partial derivative by using the sub-gradient algorithm, the partial derivative of the objective function is obtained, and the value of the position parameter when the partial derivative of the objective function is zero is determined.

具体地,求解如下公式中目标函数的偏导数为零时所对应的位置参数的值:Specifically, solve the value of the position parameter corresponding to when the partial derivative of the objective function is zero in the following formula:

Figure GDA0002438271320000167
Figure GDA0002438271320000167

其中,

Figure GDA0002438271320000168
是函数
Figure GDA0002438271320000169
在点ξ处的次微分,N(ξ;S)是在点ξ对S的正常的锥。in,
Figure GDA0002438271320000168
is a function
Figure GDA0002438271320000169
Subdifferential at point ξ, N(ξ; S) is the normal cone of S at point ξ.

得到上述公式中该目标函数的偏导数为零时位置参数的值后,将各位置参数的值分别带入误差参数关于位置参数的凸差分函数中,将该凸差分函数值最小时所对应的位置参数的值确定为目标值。进而可确定该目标值对应目标节点位置的坐标表达式,通过该坐标表达式即可得到该目标节点精确的坐标位置。After obtaining the value of the position parameter when the partial derivative of the objective function in the above formula is zero, the value of each position parameter is respectively brought into the convex difference function of the error parameter with respect to the position parameter, and the corresponding value of the convex difference function is the smallest. The value of the position parameter is determined as the target value. Then, the coordinate expression of the target value corresponding to the position of the target node can be determined, and the precise coordinate position of the target node can be obtained through the coordinate expression.

可见,通过本发明实施例对目标函数求偏导,并确定目标函数的偏导数为零时位置参数的值,进而通过将偏导数为零时位置参数的值带回凸差分函数,将凸差分函数值最小时对应的表达式坐标确定为该目标节点的坐标,实现得到室内目标位置稳定的全局最优解。It can be seen that the partial derivative of the objective function is obtained by the embodiment of the present invention, and the value of the position parameter when the partial derivative of the objective function is zero is determined, and then the value of the position parameter when the partial derivative is zero is brought back to the convex difference function, the convex difference The coordinate of the expression corresponding to the minimum function value is determined as the coordinate of the target node, so as to achieve a stable global optimal solution for the indoor target position.

为实现上述发明目的,本发明实施例还公开了一种室内定位装置,如图3所示。图3为发明实施例的一种室内定位装置结构示意图,装置包括:To achieve the above purpose of the invention, an embodiment of the present invention further discloses an indoor positioning device, as shown in FIG. 3 . 3 is a schematic structural diagram of an indoor positioning device according to an embodiment of the invention, the device includes:

表达式确定模块301,角度得到目标节点的坐标表达式,其中,坐标表达式包括目标节点的位置参数和误差参数;The expression determination module 301 obtains the coordinate expression of the target node from the angle, wherein the coordinate expression includes the position parameter and the error parameter of the target node;

凸差分函数确定模块302,用于根据凸函数的勒贝格集的解析等价性,以及优化理论的全局最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数;The convex difference function determination module 302 is used to obtain the convex difference function of the error parameter of the target node with respect to the position parameter according to the analytical equivalence of the Lebesgue set of the convex function and the global optimality condition of the optimization theory;

参数值确定模块303,用于根据辅助问题原理以及次梯度型算法,确定凸差分函数的偏导数为零时各位置参数的值;The parameter value determination module 303 is used for determining the value of each position parameter when the partial derivative of the convex difference function is zero according to the principle of the auxiliary problem and the sub-gradient algorithm;

目标坐标确定模块304,用于将各位置参数的值分别带入凸差分函数,并将凸差分函数值最小时位置参数的值确定为目标值;将目标值对应的坐标,确定为目标节点的目标坐标。The target coordinate determination module 304 is used to respectively bring the value of each position parameter into the convex difference function, and determine the value of the position parameter when the convex difference function value is the smallest as the target value; the coordinates corresponding to the target value are determined as the target node. target coordinates.

本发明实施例提供的一种室内定位装置,可以实现得到室内目标位置稳定的全局最优解。具体为,根据预设数量的非共线传感器节点检测的目标节点的信号传播延时和角度,得到目标节点的坐标表达式,该坐标表达式中包括目标节点的位置参数和误差参数。进而根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,即通过将该误差参数转换成凸差分函数,实现在凸差分函数下利用辅助问题原理以及次梯度型算法,确定出凸差分函数的偏导数为零对应的各位置参数的值。通过将偏导数为零对应的各位置参数的值带入该凸差分函数,进而确定出该凸差分函数的值最小时所对应的位置参数的值,即为最小的误差值。最终,将该最小的误差值对应的坐标确定为该目标节点的目标坐标,实现得到室内目标位置稳定的全局最优解。The indoor positioning device provided by the embodiment of the present invention can achieve a stable global optimal solution for the indoor target position. Specifically, according to the signal propagation delay and angle of the target node detected by a preset number of non-collinear sensor nodes, a coordinate expression of the target node is obtained, and the coordinate expression includes a position parameter and an error parameter of the target node. Then, according to the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained, that is, by The error parameter is converted into a convex difference function, and the auxiliary problem principle and sub-gradient algorithm are used under the convex difference function to determine the value of each position parameter corresponding to the zero partial derivative of the convex difference function. By bringing the value of each position parameter corresponding to zero partial derivative into the convex difference function, the value of the position parameter corresponding to the minimum value of the convex difference function is determined, that is, the minimum error value. Finally, the coordinate corresponding to the smallest error value is determined as the target coordinate of the target node, so as to obtain a stable global optimal solution for the indoor target position.

可选地,在本发明实施例的室内定位装置的一种实施例中,装置还包括:Optionally, in an embodiment of the indoor positioning device according to the embodiment of the present invention, the device further includes:

方程组建立模块,用于分别建立预设数量的非共线传感器节点与目标节点的信号传播延时以及角度的方程组;The equation system establishment module is used to establish the equation system of the signal propagation delay and angle of the preset number of non-collinear sensor nodes and the target node respectively;

表达式确定模块,具体用于求解预设数量的非共线传感器节点的各方程组,得到各传感器节点对应于目标节点的坐标表达式。The expression determination module is specifically used to solve each equation system of a preset number of non-collinear sensor nodes, and obtain the coordinate expression of each sensor node corresponding to the target node.

可选地,在本发明实施例的室内定位装置的一种实施例中,装置还包括:Optionally, in an embodiment of the indoor positioning device according to the embodiment of the present invention, the device further includes:

第一表达式确定模块,用于将预设数量的非共线传感器节点的各方程组中各横坐标误差参数平方,并将各方程组中的横坐标误差参数的平方相加,得到第一表达式;The first expression determination module is used to square each abscissa error parameter in each equation group of a preset number of non-collinear sensor nodes, and add the squares of the abscissa error parameters in each equation group to obtain the first expression;

第二表达式确定模块,用于将预设数量的非共线传感器节点的各方程组中各纵坐标误差参数平方,并将各方程组中的纵坐标误差参数的平方相加,得到第二表达式;The second expression determination module is used for squaring each ordinate error parameter in each equation group of a preset number of non-collinear sensor nodes, and adding the squares of the ordinate error parameter in each equation group to obtain the second expression;

第三表达式确定模块,用于将第一表达式与第二表达式相加的表达式,确定为目标节点的坐标表达式中包括的误差参数的表达式。The third expression determination module is configured to determine the expression for adding the first expression and the second expression as the expression of the error parameter included in the coordinate expression of the target node.

可选地,在本发明实施例的室内定位装置的一种实施例中,装置还包括:Optionally, in an embodiment of the indoor positioning device according to the embodiment of the present invention, the device further includes:

第一位置确定模块,用于将包含误差值的目标节点的坐标表达式中位置参数转置得到的参数位置,确定为目标节点位置参数对应的第一位置;The first position determination module is used to determine the parameter position obtained by transposing the position parameter in the coordinate expression of the target node including the error value as the first position corresponding to the position parameter of the target node;

凸差分函数确定模块302,具体用于将目标节点的坐标表达式包括的误差参数,通过凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,转换为关于位置参数以及第一位置对应的凸差分函数。The convex difference function determination module 302 is specifically used to determine the error parameter included in the coordinate expression of the target node, the analytical equivalence of the Lebesgue set of the convex function, and the optimization theory related to convex maximization and inverse convex optimization. The optimality condition is converted into a convex difference function with respect to the position parameters and the corresponding first position.

可选地,在本发明实施例的室内定位装置的一种实施例中,参数值确定模块303,具体用于通过辅助问题原理中的预设不等式以及预设恒等式,将凸差分函数变换成能够利用次梯度型算法求解偏导数的目标函数;其中,目标函数为关于凸差分函数中目标节点的位置参数的函数;对目标函数求偏导,并确定目标函数的偏导数为零时位置参数的值。Optionally, in an embodiment of the indoor positioning device according to the embodiment of the present invention, the parameter value determination module 303 is specifically configured to transform the convex difference function into a value capable of Use subgradient algorithm to solve the objective function of partial derivative; wherein, the objective function is a function of the position parameter of the target node in the convex difference function; find the partial derivative of the objective function, and determine the position parameter when the partial derivative of the objective function is zero value.

为实现上述发明目的,本发明实施例还公开了一种电子设备,如图4所示。图4为本发明实施例的一种电子设备结构示意图,包括处理器401、通信接口402、存储器403和通信总线404,其中,处理器401、通信接口402、存储器403通过通信总线404完成相互间的通信;To achieve the above purpose of the invention, an embodiment of the present invention further discloses an electronic device, as shown in FIG. 4 . 4 is a schematic structural diagram of an electronic device according to an embodiment of the present invention, including a processor 401 , a communication interface 402 , a memory 403 and a communication bus 404 , wherein the processor 401 , the communication interface 402 , and the memory 403 communicate with each other through the communication bus 404 Communication;

存储器403,用于存放计算机程序;a memory 403 for storing computer programs;

处理器401,用于执行存储器403上所存放的程序时,实现如下方法步骤:When the processor 401 is used to execute the program stored in the memory 403, the following method steps are implemented:

获取目标节点的信号传播延时和角度,并根据目标节点的信号传播延时和角度得到目标节点的坐标表达式,其中,坐标表达式包括目标节点的位置参数和误差参数;Obtain the signal propagation delay and angle of the target node, and obtain the coordinate expression of the target node according to the signal propagation delay and angle of the target node, wherein the coordinate expression includes the position parameter and the error parameter of the target node;

根据凸函数的勒贝格集的解析等价性,以及优化理论的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数;According to the analytical equivalence of the Lebesgue set of convex functions, and the optimal conditions of convex maximization and inverse convex optimization of optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained;

根据辅助问题原理以及次梯度型算法,确定凸差分函数的偏导数为零时各位置参数的值;According to the principle of auxiliary problem and sub-gradient algorithm, determine the value of each position parameter when the partial derivative of the convex difference function is zero;

将各位置参数的值分别带入凸差分函数,并将凸差分函数值最小时位置参数的值确定为目标值;将目标值对应的坐标,确定为目标节点的目标坐标。The value of each position parameter is brought into the convex difference function respectively, and the value of the position parameter when the value of the convex difference function is the smallest is determined as the target value; the coordinate corresponding to the target value is determined as the target coordinate of the target node.

上述电子设备提到的通信总线404可以是外设部件互连标准(PeripheralComponent Interconnect,PCI)总线或扩展工业标准结构(Extended Industry StandardArchitecture,EISA)总线等。该通信总线404可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The communication bus 404 mentioned in the above electronic device may be a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like. The communication bus 404 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.

通信接口402用于上述电子设备与其他设备之间的通信。The communication interface 402 is used for communication between the above-mentioned electronic device and other devices.

存储器403可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器401的存储装置。The memory 403 may include random access memory (Random Access Memory, RAM), or may include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk storage. Optionally, the memory may also be at least one storage device located away from the aforementioned processor 401 .

上述的处理器401可以是通用处理器,包括中央处理器(Central ProcessingUnit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(DigitalSignal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor 401 may be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; may also be a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.

本发明实施例提供的一种电子设备,可以实现得到室内目标位置稳定的全局最优解。具体为,根据预设数量的非共线传感器节点检测的目标节点的信号传播延时和角度,得到目标节点的坐标表达式,该坐标表达式中包括目标节点的位置参数和误差参数。进而根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,即通过将该误差参数转换成凸差分函数,实现在凸差分函数下利用辅助问题原理以及次梯度型算法,确定出凸差分函数的偏导数为零对应的各位置参数的值。通过将偏导数为零对应的各位置参数的值带入该凸差分函数,进而确定出该凸差分函数的值最小时所对应的位置参数的值,即为最小的误差值。最终,将该最小的误差值对应的坐标确定为该目标节点的目标坐标,实现得到室内目标位置稳定的全局最优解。An electronic device provided by an embodiment of the present invention can achieve a stable global optimal solution for an indoor target position. Specifically, according to the signal propagation delay and angle of the target node detected by a preset number of non-collinear sensor nodes, a coordinate expression of the target node is obtained, and the coordinate expression includes a position parameter and an error parameter of the target node. Then, according to the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained, that is, by The error parameter is converted into a convex difference function, and the auxiliary problem principle and sub-gradient algorithm are used under the convex difference function to determine the value of each position parameter corresponding to the zero partial derivative of the convex difference function. By bringing the value of each position parameter corresponding to zero partial derivative into the convex difference function, the value of the position parameter corresponding to the minimum value of the convex difference function is determined, that is, the minimum error value. Finally, the coordinate corresponding to the smallest error value is determined as the target coordinate of the target node, so as to obtain a stable global optimal solution for the indoor target position.

为实现上述发明目的,本发明实施例还公开了一种计算机可读存储介质,计算机可读存储介质内存储有计算机程序,计算机程序被处理器执行时,实现如下方法步骤:To achieve the above purpose of the invention, an embodiment of the present invention also discloses a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the following method steps are implemented:

获取目标节点的信号传播延时和角度,并根据目标节点的信号传播延时和角度得到目标节点的坐标表达式,其中,坐标表达式包括目标节点的位置参数和误差参数;Obtain the signal propagation delay and angle of the target node, and obtain the coordinate expression of the target node according to the signal propagation delay and angle of the target node, wherein the coordinate expression includes the position parameter and the error parameter of the target node;

根据凸函数的勒贝格集的解析等价性,以及优化理论的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数;According to the analytical equivalence of the Lebesgue set of convex functions, and the optimal conditions of convex maximization and inverse convex optimization of optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained;

根据辅助问题原理以及次梯度型算法,确定凸差分函数的偏导数为零时各位置参数的值;According to the principle of auxiliary problem and sub-gradient algorithm, determine the value of each position parameter when the partial derivative of the convex difference function is zero;

将各位置参数的值分别带入凸差分函数,并将凸差分函数值最小时位置参数的值确定为目标值;将目标值对应的坐标,确定为目标节点的目标坐标。The value of each position parameter is brought into the convex difference function respectively, and the value of the position parameter when the value of the convex difference function is the smallest is determined as the target value; the coordinate corresponding to the target value is determined as the target coordinate of the target node.

本发明实施例提供的一种计算机可读存储介质,可以实现得到室内目标位置稳定的全局最优解。具体为,根据预设数量的非共线传感器节点检测的目标节点的信号传播延时和角度,得到目标节点的坐标表达式,该坐标表达式中包括目标节点的位置参数和误差参数。进而根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,即通过将该误差参数转换成凸差分函数,实现在凸差分函数下利用辅助问题原理以及次梯度型算法,确定出凸差分函数的偏导数为零对应的各位置参数的值。通过将偏导数为零对应的各位置参数的值带入该凸差分函数,进而确定出该凸差分函数的值最小时所对应的位置参数的值,即为最小的误差值。最终,将该最小的误差值对应的坐标确定为该目标节点的目标坐标,实现得到室内目标位置稳定的全局最优解。A computer-readable storage medium provided by an embodiment of the present invention can achieve a stable global optimal solution for an indoor target position. Specifically, according to the signal propagation delay and angle of the target node detected by a preset number of non-collinear sensor nodes, a coordinate expression of the target node is obtained, and the coordinate expression includes a position parameter and an error parameter of the target node. Then, according to the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained, that is, by The error parameter is converted into a convex difference function, and the auxiliary problem principle and sub-gradient algorithm are used under the convex difference function to determine the value of each position parameter corresponding to the zero partial derivative of the convex difference function. By bringing the value of each position parameter corresponding to zero partial derivative into the convex difference function, the value of the position parameter corresponding to the minimum value of the convex difference function is determined, that is, the minimum error value. Finally, the coordinate corresponding to the smallest error value is determined as the target coordinate of the target node, so as to obtain a stable global optimal solution for the indoor target position.

本发明实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如下方法步骤:Embodiments of the present invention also provide a computer program product containing instructions, which, when running on a computer, cause the computer to execute the following method steps:

获取目标节点的信号传播延时和角度,并根据目标节点的信号传播延时和角度得到目标节点的坐标表达式,其中,坐标表达式包括目标节点的位置参数和误差参数;Obtain the signal propagation delay and angle of the target node, and obtain the coordinate expression of the target node according to the signal propagation delay and angle of the target node, wherein the coordinate expression includes the position parameter and the error parameter of the target node;

根据凸函数的勒贝格集的解析等价性,以及优化理论的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数;According to the analytical equivalence of the Lebesgue set of convex functions, and the optimal conditions of convex maximization and inverse convex optimization of optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained;

根据辅助问题原理以及次梯度型算法,确定凸差分函数的偏导数为零时各位置参数的值;According to the principle of auxiliary problem and sub-gradient algorithm, determine the value of each position parameter when the partial derivative of the convex difference function is zero;

将各位置参数的值分别带入凸差分函数,并将凸差分函数值最小时位置参数的值确定为目标值;将目标值对应的坐标,确定为目标节点的目标坐标。The value of each position parameter is brought into the convex difference function respectively, and the value of the position parameter when the value of the convex difference function is the smallest is determined as the target value; the coordinate corresponding to the target value is determined as the target coordinate of the target node.

本发明实施例提供的一种包含指令的计算机程序产品,可以实现得到室内目标位置稳定的全局最优解。具体为,根据预设数量的非共线传感器节点检测的目标节点的信号传播延时和角度,得到目标节点的坐标表达式,该坐标表达式中包括目标节点的位置参数和误差参数。进而根据凸函数的勒贝格集的解析等价性,以及优化理论有关的凸最大化和逆凸优化的最优性条件,得到目标节点的误差参数关于位置参数的凸差分函数,即通过将该误差参数转换成凸差分函数,实现在凸差分函数下利用辅助问题原理以及次梯度型算法,确定出凸差分函数的偏导数为零对应的各位置参数的值。通过将偏导数为零对应的各位置参数的值带入该凸差分函数,进而确定出该凸差分函数的值最小时所对应的位置参数的值,即为最小的误差值。最终,将该最小的误差值对应的坐标确定为该目标节点的目标坐标,实现得到室内目标位置稳定的全局最优解。A computer program product including instructions provided by an embodiment of the present invention can achieve a stable global optimal solution for an indoor target position. Specifically, according to the signal propagation delay and angle of the target node detected by a preset number of non-collinear sensor nodes, a coordinate expression of the target node is obtained, and the coordinate expression includes a position parameter and an error parameter of the target node. Then, according to the analytical equivalence of the Lebesgue set of convex functions and the optimality conditions of convex maximization and inverse convex optimization related to optimization theory, the convex difference function of the error parameter of the target node with respect to the position parameter is obtained, that is, by The error parameter is converted into a convex difference function, and the auxiliary problem principle and sub-gradient algorithm are used under the convex difference function to determine the value of each position parameter corresponding to the zero partial derivative of the convex difference function. By bringing the value of each position parameter corresponding to zero partial derivative into the convex difference function, the value of the position parameter corresponding to the minimum value of the convex difference function is determined, that is, the minimum error value. Finally, the coordinate corresponding to the smallest error value is determined as the target coordinate of the target node, so as to obtain a stable global optimal solution for the indoor target position.

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article, or device that includes the element.

本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、电子设备及存储介质实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a related manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments. Especially, for the embodiments of the apparatus, electronic equipment and storage medium, since they are basically similar to the method embodiments, the description is relatively simple, and reference may be made to some descriptions of the method embodiments for related parts.

以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention are included in the protection scope of the present invention.

Claims (9)

1. An indoor positioning method, characterized in that the method comprises:
acquiring signal propagation delay and angle of a target node, and obtaining a coordinate expression of the target node according to the signal propagation delay and angle of the target node, wherein the coordinate expression comprises a position parameter and an error parameter of the target node;
determining a parameter position obtained by transposing the position parameter in the coordinate expression of the target node containing the error value as a first position corresponding to the position parameter of the target node;
obtaining a convex difference function of the error parameter of the target node relative to the position parameter according to the analytic equivalence of the Leeberg set of the convex function and the global optimality condition of an optimization theory;
determining the value of each position parameter when the partial derivative of the convex difference function is zero according to an auxiliary problem principle and a sub-gradient algorithm;
respectively bringing the values of the position parameters into the convex difference function, and determining the value of the position parameter when the convex difference function value is minimum as a target value; determining the coordinates corresponding to the target values as target coordinates of the target nodes;
the obtaining a convex difference function of the error parameter of the target node with respect to the position parameter according to the analytic equivalence of the Leeberg set of the convex function and the global optimality condition includes:
and converting the error parameters included in the coordinate expression of the target node into convex difference functions corresponding to the position parameters and the first position through the analytic equivalence of the Leeberg set of the convex function and the optimality conditions of convex maximization and inverse convex optimization related to the optimization theory.
2. The method of claim 1, wherein prior to said obtaining signal propagation delay and angle for the target node, the method further comprises:
respectively establishing an equation set of signal propagation delay and angle of a preset number of non-collinear sensor nodes and the target node;
the obtaining of the coordinate expression of the target node according to the signal propagation delay and the angle of the target node includes:
and solving each equation group of the non-collinear sensor nodes with the preset number to obtain a coordinate expression of each sensor node corresponding to the target node.
3. The method of claim 2, wherein after obtaining the coordinate expression of the target node according to the signal propagation delay and the angle of the target node, the method further comprises:
squaring each abscissa error parameter in each equation set of the non-collinear sensor nodes with the preset number, and adding the squares of the abscissa error parameters in each equation set to obtain a first expression;
squaring the ordinate error parameters in each equation set of the non-collinear sensor nodes with the preset number, and adding the squares of the ordinate error parameters in each equation set to obtain a second expression;
and determining an expression obtained by adding the first expression and the second expression as an expression of an error parameter included in the coordinate expression of the target node.
4. The method of claim 1, wherein determining the value of each position parameter when the partial derivative of the convex difference function is zero according to a secondary problem principle and a sub-gradient type algorithm comprises:
transforming the convex difference function into an objective function capable of solving a partial derivative by using a sub-gradient algorithm through a preset inequality and a preset equality in the auxiliary problem principle; wherein the objective function is a function of a location parameter for the target node in the convex difference function;
and solving the partial derivative of the objective function, and determining the value of the position parameter when the partial derivative of the objective function is zero.
5. An indoor positioning device, the device comprising:
the system comprises an expression determining module, a coordinate calculating module and a coordinate calculating module, wherein the expression determining module is used for acquiring the signal propagation delay and angle of a target node and obtaining a coordinate expression of the target node according to the signal propagation delay and angle of the target node, and the coordinate expression comprises a position parameter and an error parameter of the target node;
the first position determining module is used for determining a parameter position obtained by transposing the position parameter in the coordinate expression of the target node containing the error value as a first position corresponding to the position parameter of the target node;
the convex difference function determining module is used for obtaining a convex difference function of the error parameter of the target node relative to the position parameter according to the analytic equivalence of the Leeberg set of the convex function and the global optimality condition of the optimization theory;
the parameter value determining module is used for determining the value of each position parameter when the partial derivative of the convex difference function is zero according to an auxiliary problem principle and a sub-gradient algorithm;
a target coordinate determination module, configured to bring the values of the respective position parameters into the convex difference function, and determine the value of the position parameter when the convex difference function value is the minimum as a target value; determining the coordinates corresponding to the target values as target coordinates of the target nodes;
the convex difference function determining module is specifically configured to convert an error parameter included in the coordinate expression of the target node into a convex difference function corresponding to the position parameter and the first position through an analytic equivalence of a Leeberg set of the convex function and optimality conditions of convex maximization and inverse convex optimization related to an optimization theory.
6. The apparatus of claim 5, further comprising:
the system comprises an equation set establishing module, a target node establishing module and a data processing module, wherein the equation set establishing module is used for respectively establishing an equation set of signal propagation delay and angle of a preset number of non-collinear sensor nodes and the target node;
the expression determining module is specifically configured to solve each equation group of the preset number of non-collinear sensor nodes to obtain a coordinate expression of each sensor node corresponding to the target node.
7. The apparatus of claim 6, further comprising:
the first expression determining module is used for squaring each abscissa error parameter in each equation set of the non-collinear sensor nodes with the preset number and adding the squares of the abscissa error parameters in each equation set to obtain a first expression;
the second expression determining module is used for squaring the ordinate error parameters in each equation set of the non-collinear sensor nodes with the preset number and adding the squares of the ordinate error parameters in each equation set to obtain a second expression;
and a third expression determining module, configured to determine an expression obtained by adding the first expression to the second expression as an expression of an error parameter included in the coordinate expression of the target node.
8. An electronic device, comprising a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface and the memory complete communication with each other through the communication bus;
the memory is used for storing a computer program;
the processor, when executing the program stored in the memory, implementing the method steps of any of claims 1-4.
9. A computer-readable storage medium, characterized in that a computer program is stored in the computer-readable storage medium, which computer program, when being executed by a processor, carries out the method steps of any one of claims 1 to 4.
CN201711377199.XA 2017-12-19 2017-12-19 Indoor positioning method and device, electronic equipment and storage medium Active CN108871329B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711377199.XA CN108871329B (en) 2017-12-19 2017-12-19 Indoor positioning method and device, electronic equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711377199.XA CN108871329B (en) 2017-12-19 2017-12-19 Indoor positioning method and device, electronic equipment and storage medium

Publications (2)

Publication Number Publication Date
CN108871329A CN108871329A (en) 2018-11-23
CN108871329B true CN108871329B (en) 2020-07-28

Family

ID=64325698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711377199.XA Active CN108871329B (en) 2017-12-19 2017-12-19 Indoor positioning method and device, electronic equipment and storage medium

Country Status (1)

Country Link
CN (1) CN108871329B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686995A (en) * 2013-11-26 2014-03-26 北京邮电大学 A positioning method and device in a non-line-of-sight environment
CN104898089A (en) * 2015-04-03 2015-09-09 西北大学 Device-free localization method based on space migration compressive sensing
CN106556828A (en) * 2016-11-09 2017-04-05 哈尔滨工程大学 A kind of high-precision locating method based on convex optimization
CN107271958A (en) * 2017-08-22 2017-10-20 四川航天系统工程研究所 The approximate convex optimized algorithm of Multi-target position outer approximation based on arrival time

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0305315D0 (en) * 2003-03-07 2003-04-09 Weber Martin Image processing system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686995A (en) * 2013-11-26 2014-03-26 北京邮电大学 A positioning method and device in a non-line-of-sight environment
CN104898089A (en) * 2015-04-03 2015-09-09 西北大学 Device-free localization method based on space migration compressive sensing
CN106556828A (en) * 2016-11-09 2017-04-05 哈尔滨工程大学 A kind of high-precision locating method based on convex optimization
CN107271958A (en) * 2017-08-22 2017-10-20 四川航天系统工程研究所 The approximate convex optimized algorithm of Multi-target position outer approximation based on arrival time

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种多源组合定位系统中信息质量评估方法;尹露等;《导航定位与授时》;20171130;第4卷(第6期);全文 *

Also Published As

Publication number Publication date
CN108871329A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
US9791540B2 (en) Self-organizing hybrid indoor location system
US10051423B1 (en) Time of flight estimation using a convolutional neural network
CN103118333B (en) Similarity based wireless sensor network mobile node positioning method
Zou et al. Standardizing location fingerprints across heterogeneous mobile devices for indoor localization
WO2020207096A1 (en) Method for performing positioning in 5g scenarios, positioning platform and user terminal
CN109085564B (en) A positioning method and device
Ding et al. A novel weighted localization method in wireless sensor networks based on hybrid RSS/AoA measurements
Xu et al. Distributed localization of a RF target in NLOS environments
CN108828570B (en) A ranging method and ranging device based on dynamic estimation of path loss factor
US20130335272A1 (en) Calculating a location
CN108111965A (en) A kind of definite method and apparatus of base station location
CN104101863A (en) Locating system based on intelligent mobile device and locating method
Filonenko et al. Asynchronous ultrasonic trilateration for indoor positioning of mobile phones
Chen et al. Improved two-step weighted least squares algorithm for TDOA-based source localization
CN108966341B (en) A positioning method and positioning device
CN110095753A (en) A kind of localization method and device based on angle of arrival AOA ranging
CN108871329B (en) Indoor positioning method and device, electronic equipment and storage medium
Burgess et al. Node localization in unsynchronized time of arrival sensor networks
Tong et al. Optimum reference node deployment for TOA-based localization
CN108513355B (en) Single base station-based network positioning method, device and equipment
Xu et al. Cramer-Rao lower bound analysis of RSS/TDoA joint localization algorithms based on rigid graph theory
Ma et al. A nonlinear programming based universal optimization model of TDOA passive location
Arias et al. GPS-less location algorithm for wireless sensor networks
Yu et al. An indoor localization of WiFi based on branch-bound algorithm
CN107144843B (en) Parallel Ranging Method Based on Graph Structured Task Scheduling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant