CN108897085B - Optical filter and infrared image sensing system comprising same - Google Patents
Optical filter and infrared image sensing system comprising same Download PDFInfo
- Publication number
- CN108897085B CN108897085B CN201810884048.1A CN201810884048A CN108897085B CN 108897085 B CN108897085 B CN 108897085B CN 201810884048 A CN201810884048 A CN 201810884048A CN 108897085 B CN108897085 B CN 108897085B
- Authority
- CN
- China
- Prior art keywords
- refractive index
- material layer
- index material
- layer
- film layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3482—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising silicon, hydrogenated silicon or a silicide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/20—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
- H04N23/21—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from near infrared [NIR] radiation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/213—SiO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/214—Al2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/734—Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
- C03C2218/155—Deposition methods from the vapour phase by sputtering by reactive sputtering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/288—Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Filters (AREA)
- Laminated Bodies (AREA)
Abstract
Description
技术领域Technical Field
本发明属于光学传感技术领域,尤其涉及一种滤光片和包含该滤光片 的外红图像传感系统。The present invention belongs to the field of optical sensing technology, and in particular relates to a filter and an infrared image sensing system including the filter.
背景技术Background technique
随着科技的发展,在智能手机、车载激光雷达、安防门禁、智能家居、 虚拟现实/增强现实/混合现实、3D体感游戏、3D摄像与显示等终端中逐步 嵌入了人脸设备、手势识别等功能。With the development of technology, facial recognition, gesture recognition and other functions have been gradually embedded in terminals such as smartphones, vehicle-mounted laser radar, security access control, smart homes, virtual reality/augmented reality/mixed reality, 3D somatosensory games, 3D cameras and displays.
在人脸识别、手势识别时需要用到近红外窄带滤光片,其能起到增透 通带中近红外光线,截止环境中可见光的作用。通常近红外窄带滤光片包 括两个膜系,分别为IR带通膜系和长波通AR膜系。然而现有技术中的滤光片对近红外光线的增透效果以及截止可见光的效果较差,同时存在膜系 膜层厚度较厚并且膜层附着力较差的问题,从而导致将滤光片组装到人脸 识别、手势识别等装置后,成像效果较差、识别精度不高。Near-infrared narrow-band filters are required for face recognition and gesture recognition, which can play the role of enhancing the transmittance of near-infrared light in the passband and cutting off visible light in the environment. Usually, near-infrared narrow-band filters include two film systems, namely IR bandpass film system and long-wave pass AR film system. However, the filter in the prior art has poor transmittance enhancement effect on near-infrared light and poor visible light cutting effect. At the same time, there are problems such as thick film layer thickness and poor film layer adhesion, which leads to poor imaging effect and low recognition accuracy after the filter is assembled into face recognition, gesture recognition and other devices.
发明内容Summary of the invention
本发明的目的在于提供一种滤光片及包含该滤光片的红外图像传感系 统,解决现有滤光片近红外光增透效果差、膜层附着力差的问题。The object of the present invention is to provide a filter and an infrared image sensing system comprising the filter, so as to solve the problems of poor near-infrared light transmittance enhancement effect and poor film adhesion of the existing filter.
为实现上述目的,本发明提供一种滤光片,包括玻璃基板和镀制在所 述玻璃基板相对两个表面上的IR膜层和AR膜层,To achieve the above object, the present invention provides a filter, comprising a glass substrate and an IR film layer and an AR film layer coated on two opposite surfaces of the glass substrate.
所述IR膜层包括第一折射率材料层、第二折射率材料层和第三折射率材料 层;The IR film layer comprises a first refractive index material layer, a second refractive index material layer and a third refractive index material layer;
所述第三折射率材料层的折射率大于所述第一折射率材料层折射率, 所述第二折射率材料层的折射率大于所述第三折射率材料层的折射率。The refractive index of the third refractive index material layer is greater than the refractive index of the first refractive index material layer, and the refractive index of the second refractive index material layer is greater than the refractive index of the third refractive index material layer.
根据本发明的一个方面,所述AR膜层包括第一折射率材料层和第二折 射率材料层或者包括第一折射率材料层、第二折射率材料层和第三折射率 材料层。According to one aspect of the present invention, the AR film layer includes a first refractive index material layer and a second refractive index material layer or includes a first refractive index material layer, a second refractive index material layer and a third refractive index material layer.
根据本发明的一个方面,沿远离所述玻璃基板的方向,所述IR膜层的 最外层和所述AR膜层的最外层为第一折射率材料层。According to one aspect of the present invention, in a direction away from the glass substrate, the outermost layer of the IR film layer and the outermost layer of the AR film layer are layers of a first refractive index material.
根据本发明的一个方面,沿远离所述玻璃基板的方向,所述IR膜层的 结构依次为M、(LH)*n、L,其中M表示第三折射率材料层、L表示第一折 射率材料层、H表示第二折射率材料层,(LH)*n表示第一折射率材料层和第二折射率材料层交替设置n次,n为大于等于1的整数。According to one aspect of the present invention, along the direction away from the glass substrate, the structure of the IR film layer is M, (LH)*n, L in sequence, wherein M represents the third refractive index material layer, L represents the first refractive index material layer, H represents the second refractive index material layer, (LH)*n represents that the first refractive index material layer and the second refractive index material layer are alternately arranged n times, and n is an integer greater than or equal to 1.
根据本发明的一个方面,沿着远离所述玻璃基板的方向,所述IR膜层 的结构依次为(LH)*s、L、M、(LH)*p、L,其中M表示第三折射率材料层、 L表示第一折射率材料层、H表示第二折射率材料层,(LH)*s表示第一 折射率材料层和第二折射率材料层交替设置s次,s为大于等于0的整数, (LH)*p表示第一折射率材料层和第二折射率材料层交替设置p次,p为大于等于1的整数。According to one aspect of the present invention, along the direction away from the glass substrate, the structure of the IR film layer is (LH)*s, L, M, (LH)*p, L in sequence, wherein M represents the third refractive index material layer, L represents the first refractive index material layer, H represents the second refractive index material layer, (LH)*s represents that the first refractive index material layer and the second refractive index material layer are alternately arranged s times, s is an integer greater than or equal to 0, (LH)*p represents that the first refractive index material layer and the second refractive index material layer are alternately arranged p times, p is an integer greater than or equal to 1.
根据本发明的一个方面,沿着远离所述玻璃基板的方向,所述AR膜层 的结构依次为(LH)*q、L,其中,L表示第一折射率材料层、H表示第二 折射率材料层,(LH)*q表示第一折射率材料层和第二折射率材料层交替 设置q次,q为大于等于1的整数。According to one aspect of the present invention, along the direction away from the glass substrate, the structure of the AR film layer is (LH)*q, L in sequence, wherein L represents the first refractive index material layer, H represents the second refractive index material layer, and (LH)*q represents that the first refractive index material layer and the second refractive index material layer are alternately arranged q times, and q is an integer greater than or equal to 1.
根据本发明的一个方面,沿着远离所述玻璃基板的方向,所述AR膜层 的结构依次为M、(LH)*k、L,其中M表示第三折射率材料层、L表示第一 折射率材料层、H表示第二折射率材料层,(LH)*k表示第一折射率材料层和第二折射率材料层交替设置k次,k为大于等于1的整数。According to one aspect of the present invention, along the direction away from the glass substrate, the structure of the AR film layer is M, (LH)*k, L in sequence, wherein M represents the third refractive index material layer, L represents the first refractive index material layer, H represents the second refractive index material layer, (LH)*k represents that the first refractive index material layer and the second refractive index material layer are alternately arranged k times, and k is an integer greater than or equal to 1.
根据本发明的一个方面,沿着远离所述玻璃基板的方向,所述AR膜层 的结构依次为(LH)*i、L、M、(LH)*f、L,其中M表示第三折射率材料层、 L表示第一折射率材料层、H表示第二折射率材料层,(LH)*i表示第一 折射率材料层和第二折射率材料层交替设置i次,i为大于等于0的整数, (LH)*f表示第一折射率材料层和第二折射率材料层交替设置f次,f为大于等于1的整数。According to one aspect of the present invention, along the direction away from the glass substrate, the structure of the AR film layer is (LH)*i, L, M, (LH)*f, L in sequence, wherein M represents the third refractive index material layer, L represents the first refractive index material layer, H represents the second refractive index material layer, (LH)*i represents that the first refractive index material layer and the second refractive index material layer are alternately arranged i times, i is an integer greater than or equal to 0, (LH)*f represents that the first refractive index material layer and the second refractive index material layer are alternately arranged f times, f is an integer greater than or equal to 1.
根据本发明的一个方面,所述第二折射率材料层物理厚度与所述第一 折射率材料层物理厚度满足关系式:0.05≤DL/DH≤20,所述第三折射率材料 层物理厚度与所述第二折射率材料层物理厚度满足关系式:0.02≤DM/DH≤ 50。According to one aspect of the present invention, the physical thickness of the second refractive index material layer and the physical thickness of the first refractive index material layer satisfy the relationship: 0.05≤D L /D H ≤20, and the physical thickness of the third refractive index material layer and the physical thickness of the second refractive index material layer satisfy the relationship: 0.02≤D M /D H ≤50.
根据本发明的一个方面,所述IR膜层的第二折射率材料层为氢化硅层, 在800-1200nm波长范围内的折射率大于3.5,消光系数小于0.002;According to one aspect of the present invention, the second refractive index material layer of the IR film layer is a hydrogenated silicon layer, the refractive index in the wavelength range of 800-1200nm is greater than 3.5, and the extinction coefficient is less than 0.002;
所述第二折射率材料层在850nm处折射率大于3.6,在940nm处折射 率大于3.55。The refractive index of the second refractive index material layer is greater than 3.6 at 850 nm and greater than 3.55 at 940 nm.
根据本发明的一个方面,所述氢化硅层为溅射反应镀制材料层,溅射 温度范围为80-300摄氏度、氢气流量为10-50sccm、溅射速率为 0.1nm/s-1nm/s。According to one aspect of the present invention, the silicon hydrogenation layer is a sputtering reaction coating material layer, the sputtering temperature range is 80-300 degrees Celsius, the hydrogen flow rate is 10-50sccm, and the sputtering rate is 0.1nm/s-1nm/s.
根据本发明的一个方面,在800-1200nm波长范围内,所述中折射率材 料层的折射率小于4,所述低折射率材料层的折射率小于3。According to one aspect of the present invention, within the wavelength range of 800-1200nm, the refractive index of the medium refractive index material layer is less than 4, and the refractive index of the low refractive index material layer is less than 3.
根据本发明的一个方面,所述IR膜层在800-1200nm波长范围内具有 一个通带波段、两个截止波段和两个过渡波段,所述两个过渡波段分别位 于所述通带波段的两侧,所述两个截止波段分别两个过渡波段的外侧;According to one aspect of the present invention, the IR film layer has a passband, two cutoff bands and two transition bands in the wavelength range of 800-1200nm, the two transition bands are respectively located on both sides of the passband, and the two cutoff bands are respectively outside the two transition bands;
所述通带波段宽度小于400nm,透过率大于90%;The passband width is less than 400nm and the transmittance is greater than 90%;
所述过渡波段的透过率为0.1%-90%;The transmittance of the transition band is 0.1%-90%;
所述截止波段的透过率小于0.1%。The transmittance of the cut-off band is less than 0.1%.
根据本发明的一个方面,所述AR膜层在350-1200nm波长范围内具有一 个通带波段、一个截止波段和一个过渡波段,沿着从350nm至1200nm的方 向,所述截止波段、所述过渡波段和所述通带波段顺序排布;According to one aspect of the present invention, the AR film layer has a passband, a cutoff band and a transition band in the wavelength range of 350-1200nm, and along the direction from 350nm to 1200nm, the cutoff band, the transition band and the passband band are arranged in sequence;
所述通带波段的透过率大于90%;The transmittance of the passband is greater than 90%;
所述过渡波段的透过率为0.1%-90%;The transmittance of the transition band is 0.1%-90%;
所述截止波段的透过率小于0.1%.。The transmittance of the cut-off band is less than 0.1%.
根据本发明的一个方面,所述滤光片的半高全宽值小于120nm,所述IR 膜层和所述AR膜层的总厚度小于9.8微米。According to one aspect of the present invention, the full width at half maximum of the filter is less than 120 nm, and the total thickness of the IR film layer and the AR film layer is less than 9.8 microns.
根据本发明的一个方面,在入射角度从0°改变至30°时,所述滤光片 通带的中心波长偏移量小于20nm。According to one aspect of the present invention, when the incident angle changes from 0° to 30°, the center wavelength shift of the filter passband is less than 20nm.
为实现上述目的,本发明提供一种包含上述滤光片的外红外图像传感系统, 包括光源单元和接收单元,To achieve the above object, the present invention provides an external infrared image sensing system including the above filter, comprising a light source unit and a receiving unit.
所述光源单元包括IR发射光源和第一镜头组件;The light source unit includes an IR emitting light source and a first lens assembly;
所述接收单元包括第二镜头组件、滤光片和红外图像传感器。The receiving unit includes a second lens assembly, a filter and an infrared image sensor.
根据本发明的一个方案,按照上述方式设置IR膜层和AR膜层,在有效 保证近红外光线高透过率的同时,能够将滤光片通带中心波长随角度的漂移量 控制在20nm以下。此外,由于IR膜层和AR膜层中设置了第三折射率材料层 M,并按照上述布置形式排布,使得本发明滤光片的总膜层厚度有效减小,同时能够改善膜层的附着力。According to one solution of the present invention, the IR film layer and the AR film layer are arranged in the above manner, and while effectively ensuring the high transmittance of near-infrared light, the drift of the center wavelength of the filter passband with angle can be controlled to be less than 20nm. In addition, since the third refractive index material layer M is provided in the IR film layer and the AR film layer, and arranged in the above arrangement form, the total film thickness of the filter of the present invention is effectively reduced, and the adhesion of the film layer can be improved.
根据本发明的一个方案,本发明提供一种包含本发明滤光片的红外图像传 感系统,由于设有本发明的滤光片,在拍摄时可以增透近红外光、截止其他波段的光,从而能够提高最终人脸识别、手势识别的精度。According to one embodiment of the present invention, the present invention provides an infrared image sensing system including the optical filter of the present invention. Since the optical filter of the present invention is provided, the near-infrared light can be transmitted and the light of other bands can be cut off during shooting, thereby improving the accuracy of final face recognition and gesture recognition.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是示意表示根据本发明一种实施方式的IR膜层的结构示图;FIG1 is a diagram schematically showing the structure of an IR film layer according to an embodiment of the present invention;
图2是示意性表示根据发明一种实施方式的AR膜层的结构示图;FIG2 is a diagram schematically showing the structure of an AR film layer according to an embodiment of the present invention;
图3是示意性表示实施例1中IR膜层的光线波长透过率曲线图;FIG3 is a diagram schematically showing the light wavelength transmittance curve of the IR film layer in Example 1;
图4是示意性表示实施例1中AR膜层的光线波长透过率曲线图;FIG4 is a diagram schematically showing a light wavelength transmittance curve of the AR film layer in Example 1;
图5是示意性表示实施例2中IR膜层的光线波长透过率曲线图;FIG5 is a diagram schematically showing the light wavelength transmittance curve of the IR film layer in Example 2;
图6是示意性表示实施例2中AR膜层的光线波长透过率曲线图;FIG6 is a diagram schematically showing the light wavelength transmittance curve of the AR film layer in Example 2;
图7是示意性表示实施例3中IR膜层的光线波长透过率曲线图;FIG7 is a diagram schematically showing the light wavelength transmittance curve of the IR film layer in Example 3;
图8是示意性表示实施例3中AR膜层的光线波长透过率曲线图;FIG8 is a diagram schematically showing the light wavelength transmittance curve of the AR film layer in Example 3;
图9是示意性表示包含本发明滤光片的红外图像传感系统的结构示图。FIG. 9 is a diagram schematically showing the structure of an infrared image sensing system including the filter of the present invention.
附图中各标号所代表的含义如下:The meanings of the symbols in the accompanying drawings are as follows:
1、玻璃基板。2、IR膜层。3、AR膜层。L、低折射率材料层。M、中折射 率材料层。H高折射率材料层。4、光源单元。41、IR光源。42、第一镜头组件。5、接收单元。51、第二镜筒组件。52、滤光片。53、红外图像 传感器。6、人脸/手。1. Glass substrate. 2. IR film layer. 3. AR film layer. L. Low refractive index material layer. M. Medium refractive index material layer. H. High refractive index material layer. 4. Light source unit. 41. IR light source. 42. First lens assembly. 5. Receiving unit. 51. Second lens barrel assembly. 52. Filter. 53. Infrared image sensor. 6. Face/hand.
具体实施方式Detailed ways
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实 施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅 仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性 劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments are briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without creative work.
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、 “前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所 表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便 于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。When describing the embodiments of the present invention, the orientation or positional relationship expressed by the terms "longitudinal", "lateral", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside" and "outside" are based on the orientation or positional relationship shown in the relevant drawings. They are only for the convenience of describing the present invention and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operate in a specific orientation. Therefore, the above terms should not be understood as limiting the present invention.
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此 一一赘述,但本发明的实施方式并不因此限定于以下实施方式。The present invention is described in detail below in conjunction with the accompanying drawings and specific embodiments. The embodiments cannot be described one by one here, but the embodiments of the present invention are not limited to the following embodiments.
图1是示意表示根据本发明一种实施方式的IR膜层的结构示图。图2是 示意性表示根据发明一种实施方式的AR膜层的结构示图。结合图1和图2所 示,本发明的滤光片包括玻璃基板1、IR膜层2和AR膜层3。本发明的玻璃基板1可以采用D263T或者AF32,IR膜层2为红外截止膜层,AR膜层3为减 反膜,即增透膜,可以对特定范围内的波长起到增透效果。IR膜层2和AR膜 层3分别镀制在玻璃基板1相对的两个表面上,在本实施方式中,IR膜层2 镀制在玻璃基板1的上表面,AR膜层3镀制在玻璃基板1的下表面。FIG. 1 is a schematic diagram showing the structure of an IR film layer according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing the structure of an AR film layer according to an embodiment of the present invention. As shown in FIG. 1 and FIG. 2, the optical filter of the present invention comprises a glass substrate 1, an IR film layer 2 and an AR film layer 3. The glass substrate 1 of the present invention can be D263T or AF32, the IR film layer 2 is an infrared cut-off film layer, and the AR film layer 3 is an anti-reflection film, i.e., an anti-reflection film, which can have an anti-reflection effect on wavelengths within a specific range. The IR film layer 2 and the AR film layer 3 are respectively coated on two opposite surfaces of the glass substrate 1. In this embodiment, the IR film layer 2 is coated on the upper surface of the glass substrate 1, and the AR film layer 3 is coated on the lower surface of the glass substrate 1.
如图1所示,在本实施方式中,本发明的滤光片IR膜层2包括第一折射 率材料层L、第三折射率材料层M和第二折射率材料层H。在本实施方式中, IR膜层2共包括四层材料层,沿着远离玻璃基板1的方向,分别为第三折射率材料层M、第一折射率材料层L、第二折射率材料层H和第一折射率材料层 L。此结构可以表示为M、(LH)、L,即在本实施方式中,IR膜层2包括三层结 构,分别是镀制在玻璃基板1上表面的第三折射率材料层M、最外层的第一折射率材料层L以及位于第三折射率材料层M和最外层的第一折射率材料层L 之间的中间材料层,在本实施方式中,中间材料层依次包括第一折射率材料层 L和第二折射率材料层H。本发明的IR膜层2的中间材料层,可以包括多个第 一折射率材料层L和第二折射率材料层H交替设置,即本发明的IR膜层2的 结构可以表示为M、(LH)*n、L,即沿着远离玻璃基板1的方向,IR膜层2 依次包括第三折射率材料层M、中间材料层和第一折射率材料层L,中间材料层为第一折射率材料层L和第二折射率材料层H交替设置n次构成,n为大 于等于1的整数。As shown in FIG1 , in this embodiment, the IR film layer 2 of the optical filter of the present invention includes a first refractive index material layer L, a third refractive index material layer M, and a second refractive index material layer H. In this embodiment, the IR film layer 2 includes four material layers in total, which are the third refractive index material layer M, the first refractive index material layer L, the second refractive index material layer H, and the first refractive index material layer L along the direction away from the glass substrate 1. This structure can be expressed as M, (LH), L, that is, in this embodiment, the IR film layer 2 includes a three-layer structure, which are the third refractive index material layer M coated on the upper surface of the glass substrate 1, the outermost first refractive index material layer L, and the intermediate material layer between the third refractive index material layer M and the outermost first refractive index material layer L. In this embodiment, the intermediate material layer includes the first refractive index material layer L and the second refractive index material layer H in sequence. The intermediate material layer of the IR film layer 2 of the present invention may include a plurality of first refractive index material layers L and second refractive index material layers H alternately arranged, that is, the structure of the IR film layer 2 of the present invention can be expressed as M, (LH)*n, L, that is, along the direction away from the glass substrate 1, the IR film layer 2 sequentially includes a third refractive index material layer M, an intermediate material layer and a first refractive index material layer L, and the intermediate material layer is composed of the first refractive index material layer L and the second refractive index material layer H alternately arranged n times, and n is an integer greater than or equal to 1.
此外,本发明的IR膜层2除了上述实施方式的结构形式之外,还可以有 其他实施方式,在根据本发明IR膜层2的第二种实施方式中,IR膜层2结构 为(LH)*s、L、M、(LH)*p、L,即沿着远离玻璃基板1的方向,IR膜层2 共包括五层结构,第一层结构由第一折射率材料层L和第二折射率材料层 H交替设置s次构成,s为大于等于0的整数。第二层结构为第一折射率材 料层L,第三层为第三折射率材料层M,第四层结构由第一折射率材料层L 和第二折射率材料层H交替设置p次构成,p为大于等于1的整数,第五 层结构即最外层为第一折射率材料层L。In addition, the IR film layer 2 of the present invention may have other embodiments in addition to the structural form of the above-mentioned embodiment. In the second embodiment of the IR film layer 2 of the present invention, the structure of the IR film layer 2 is (LH)*s, L, M, (LH)*p, L, that is, along the direction away from the glass substrate 1, the IR film layer 2 includes a total of five layers, the first layer structure is composed of the first refractive index material layer L and the second refractive index material layer H alternately arranged s times, s is an integer greater than or equal to 0. The second layer structure is the first refractive index material layer L, the third layer is the third refractive index material layer M, the fourth layer structure is composed of the first refractive index material layer L and the second refractive index material layer H alternately arranged p times, p is an integer greater than or equal to 1, and the fifth layer structure, i.e., the outermost layer, is the first refractive index material layer L.
本发明的IR膜层2包括第三折射率材料层M、第一折射率材料层L和 第二折射率材料层H,并按照上述实施方式进行设置,可由有效改善膜层 的附着力,改善近红外光透过率曲线特性。The IR film layer 2 of the present invention includes a third refractive index material layer M, a first refractive index material layer L and a second refractive index material layer H, and is arranged according to the above embodiment, which can effectively improve the adhesion of the film layer and improve the near-infrared light transmittance curve characteristics.
如图2所示,本发明的AR膜层3镀制在玻璃基板1的下表面,在本实施 方式中,AR膜层3包括低折射率材料层L和高折射率材料层H,具体来说,沿 着远离玻璃基板1的方向,AR膜层3依次包括第一折射率材料层L、第二折射 率材料层H和第一折射率材料层L。在本实施方式中,AR膜层3结构可以表示为(LH)、L,即沿着远离玻璃基板1的方向,AR膜层3共包括两层结构,依 次为由第一折射率材料层L和第二折射率材料层H交替镀制而成的第一结构层和最外层的第一折射率材料层L。此外,本发明AR膜层3中的第一结 构层中第一折射率材料层L和第二折射率材料层H交替也可以为多次,即 AR膜层3结构可以表示为(LH)*q、L,(LH)*q表示第一折射率材料层 L和第二折射率材料层H交替设置q次,q可取大于等于1的整数。As shown in FIG2 , the AR film layer 3 of the present invention is plated on the lower surface of the glass substrate 1. In the present embodiment, the AR film layer 3 includes a low refractive index material layer L and a high refractive index material layer H. Specifically, along the direction away from the glass substrate 1, the AR film layer 3 includes a first refractive index material layer L, a second refractive index material layer H and a first refractive index material layer L in sequence. In the present embodiment, the structure of the AR film layer 3 can be expressed as (LH), L, that is, along the direction away from the glass substrate 1, the AR film layer 3 includes a total of two layers of structure, which are a first structural layer formed by alternately plating the first refractive index material layer L and the second refractive index material layer H and the outermost first refractive index material layer L. In addition, the first refractive index material layer L and the second refractive index material layer H in the first structural layer of the AR film layer 3 of the present invention can also be alternated multiple times, that is, the structure of the AR film layer 3 can be expressed as (LH)*q, L, (LH)*q means that the first refractive index material layer L and the second refractive index material layer H are alternately arranged q times, and q can be an integer greater than or equal to 1.
根据本发明AR膜层3的第二种实施方式,AR膜层3的结构为M、(LH)*k、 L,即沿着远离玻璃基板1的方向,AR膜层3依次包括第三折射率材料层M、 中间材料层和第一折射率材料层L,中间材料层为第一折射率材料层L和第 二折射率材料层H交替设置k次构成,k为大于等于1的整数。According to a second embodiment of the AR film layer 3 of the present invention, the structure of the AR film layer 3 is M, (LH)*k, L, that is, along the direction away from the glass substrate 1, the AR film layer 3 sequentially includes a third refractive index material layer M, an intermediate material layer and a first refractive index material layer L, and the intermediate material layer is composed of the first refractive index material layer L and the second refractive index material layer H alternately arranged k times, and k is an integer greater than or equal to 1.
此外,本发明的AR膜层3包括第一折射率材料、第二折射率材料和第 三折射率材料层时,AR膜层3的结构还可以为(LH)*i、L、M、(LH)*f、L, 即沿着远离玻璃基板1的方向,AR膜层3共包括五层结构,第一层结构由 第一折射率材料层L和第二折射率材料层H交替设置i次构成,i为大于 等于0的整数。第二层结构为第一折射率材料层L,第三层为第三折射率材料层M,第四层结构由第一折射率材料层L和第二折射率材料层H交替 设置f次构成,f为大于等于1的整数,第五层结构即最外层为第一折射 率材料层L。In addition, when the AR film layer 3 of the present invention includes a first refractive index material, a second refractive index material and a third refractive index material layer, the structure of the AR film layer 3 can also be (LH)*i, L, M, (LH)*f, L, that is, along the direction away from the glass substrate 1, the AR film layer 3 includes a total of five layers, the first layer structure is composed of the first refractive index material layer L and the second refractive index material layer H alternately arranged i times, i is an integer greater than or equal to 0. The second layer structure is the first refractive index material layer L, the third layer is the third refractive index material layer M, the fourth layer structure is composed of the first refractive index material layer L and the second refractive index material layer H alternately arranged f times, f is an integer greater than or equal to 1, and the fifth layer structure, i.e., the outermost layer, is the first refractive index material layer L.
本发明的滤光片上所包括的IR膜层2和AR膜层3可以选自上述实施 方式中的任一种,也就是说,本发明的IR膜层2有两种实施方式,AR膜 层3有三种实施方式,在制作本发明的滤光片时,IR膜层2和AR膜层3 的实施方式可以自由组合。应该注意的是,无论采用何种实施方式,IR膜 层2最外层和AR膜层3的最外层均为低折射率材料层。The IR film layer 2 and the AR film layer 3 included in the optical filter of the present invention can be selected from any one of the above-mentioned embodiments, that is, the IR film layer 2 of the present invention has two embodiments, and the AR film layer 3 has three embodiments. When manufacturing the optical filter of the present invention, the embodiments of the IR film layer 2 and the AR film layer 3 can be freely combined. It should be noted that no matter which embodiment is adopted, the outermost layer of the IR film layer 2 and the outermost layer of the AR film layer 3 are both low refractive index material layers.
本发明的滤光片,IR膜层2中所涉及的高折射率材料层H为氢化硅层, 氢化硅层在镀制时采用溅射反应的方式镀制,镀制时控制温度在80℃-300℃ 范围内,控制氢气流量为10-50sccm,控制溅射速度为0.1nm/s-1nm/s,从而 使得本发明第二折射率材料层H在800-1200nm范围内的折射率大于3,消光 系数小于0.002,在850nm处折射率大于3.6,在960nm处的折射率大于3.55, 进而有利于调节本发明滤光片通带中心波长的偏移量。本发明AR膜层3中涉 及的第二折射率材料层H可以选用氢化硅材料层,也可以使用其他材料来实现, 即保证第二折射率材料层的折射率大于第三折射率材料层和第一折射率材料 的折射率即可。In the optical filter of the present invention, the high refractive index material layer H involved in the IR film layer 2 is a hydrogenated silicon layer. The hydrogenated silicon layer is plated by sputtering reaction during plating. During plating, the temperature is controlled within the range of 80°C-300°C, the hydrogen flow rate is controlled to be 10-50sccm, and the sputtering speed is controlled to be 0.1nm/s-1nm/s, so that the refractive index of the second refractive index material layer H of the present invention in the range of 800-1200nm is greater than 3, the extinction coefficient is less than 0.002, the refractive index at 850nm is greater than 3.6, and the refractive index at 960nm is greater than 3.55, which is conducive to adjusting the offset of the passband center wavelength of the optical filter of the present invention. The second refractive index material layer H involved in the AR film layer 3 of the present invention can be selected from hydrogenated silicon material layer, and can also be realized by other materials, that is, the refractive index of the second refractive index material layer is greater than the refractive index of the third refractive index material layer and the first refractive index material layer.
IR膜层2和AR膜层3中所涉及的第三折射率材料层M所用的材料可以选 自Sb2S3、Nb2O5、Ta2O5、TiO2、Al2O3、ZrO2、Pr6O11、La2O3、Si2N、SiN、Si2N3、 Si3N4中的一种或多种,IR膜层2和AR膜层3中所涉及的第一折射率材料层L 所用的材料可以选自SiO2、Nb2O5、Ta2O5、TiO2、Al2O3、ZrO2、Pr6O11、La2O3、 Si2N、SiN、Si2N3、Si3N4中的一种或多种。在800-1200nm波长范围内,第 三折射率材料层M的折射率范围小于4,第一折射率材料层L的折射率小 于3。需要保证第三折射率材料层M的折射率大于第一折射率材料层L的 折射率,即当第一折射率材料层L选用上述材料中的一种后,第三折射率 材料层M的材料选用,应满足第三折射率材料层选用的材料的折射率大于第一折射率材料层L选用的材料的折射率。第三折射率材料层M和第一折 射率材料层L在镀制时可以采用溅射反应设备进行镀制,也可以利用真空 蒸发设备镀制。The material used for the third refractive index material layer M involved in the IR film layer 2 and the AR film layer 3 can be selected from one or more of Sb 2 S 3 , Nb 2 O 5 , Ta 2 O 5 , TiO 2 , Al 2 O 3 , ZrO 2 , Pr 6 O 11 , La 2 O 3 , Si 2 N, SiN, Si 2 N 3 , and Si 3 N 4 ; the material used for the first refractive index material layer L involved in the IR film layer 2 and the AR film layer 3 can be selected from one or more of SiO 2 , Nb 2 O 5 , Ta 2 O 5 , TiO 2 , Al 2 O 3 , ZrO 2 , Pr 6 O 11 , La 2 O 3 , Si 2 N, SiN, Si 2 N 3 , and Si 3 N 4 . In the wavelength range of 800-1200nm, the refractive index range of the third refractive index material layer M is less than 4, and the refractive index range of the first refractive index material layer L is less than 3. It is necessary to ensure that the refractive index of the third refractive index material layer M is greater than the refractive index of the first refractive index material layer L, that is, when the first refractive index material layer L uses one of the above materials, the material selection of the third refractive index material layer M should satisfy that the refractive index of the material selected for the third refractive index material layer is greater than the refractive index of the material selected for the first refractive index material layer L. The third refractive index material layer M and the first refractive index material layer L can be plated using a sputtering reaction device or a vacuum evaporation device.
以下通过具体的实施例对本发明的滤光片进行详细说明。The optical filter of the present invention is described in detail below through specific embodiments.
实施例1:Embodiment 1:
在本实施方式中,沿着远离玻璃基板1的方向,滤光片的IR膜层2的结 构为M、(LH)*n、L,其中第二折射率材料层H、第三折射率材料层M和第一 折射率材料层L的光学厚度分别为参考波长的四分之一,第二折射率材料层H 的物理厚度与第一折射率材料层L的物理厚度之间满足关系式:0.05≤DL/DH≤20,第三折射率材料层M物理厚度与第二折射率材料H层物理厚度满足 关系式:0.02≤DM/DH≤50。n=11,IR膜层2的总厚度为3.41μm。沿着远离玻璃基板1的方向,AR膜层3的结构为(LH)*q、L,q=12。第二折射率 材料层H的物理厚度与低折射率材料层L的物理厚度之间满足关系式:0.05 ≤DL/DH≤20,第三折射率材料层M物理厚度与第二折射率材料H层物理厚 度满足关系式:0.02≤DM/DH≤50。In this embodiment, along the direction away from the glass substrate 1, the structure of the IR film layer 2 of the filter is M, (LH)*n, L, wherein the optical thicknesses of the second refractive index material layer H, the third refractive index material layer M and the first refractive index material layer L are respectively one-fourth of the reference wavelength, the physical thickness of the second refractive index material layer H and the physical thickness of the first refractive index material layer L satisfy the relationship: 0.05≤D L /D H ≤20, and the physical thickness of the third refractive index material layer M and the physical thickness of the second refractive index material H layer satisfy the relationship: 0.02≤D M /D H ≤50. n=11, and the total thickness of the IR film layer 2 is 3.41 μm. Along the direction away from the glass substrate 1, the structure of the AR film layer 3 is (LH)*q, L, q=12. The physical thickness of the second refractive index material layer H and the physical thickness of the low refractive index material layer L satisfy the relationship: 0.05≤D L /D H ≤20, and the physical thickness of the third refractive index material layer M and the physical thickness of the second refractive index material layer H satisfy the relationship: 0.02≤D M /D H ≤50.
也就是说,在本实施方式中,IR膜层2共包括24层材料层,AR膜层3共 包括25层材料层。在本实施方式中,选用氢化硅材料层作为第二折射率材料 层H,选用氧化铝作为第三折射率材料层M,选用二氧化硅作为第一折射率材料层L。利用公式OTi=OT(1+Acos(2×pi×f×i)sin(2×pi×f×i)),代入 方程获得膜层参数如下表:That is, in this embodiment, the IR film layer 2 includes 24 material layers, and the AR film layer 3 includes 25 material layers. In this embodiment, hydrogenated silicon material layer is selected as the second refractive index material layer H, aluminum oxide is selected as the third refractive index material layer M, and silicon dioxide is selected as the first refractive index material layer L. Using the formula OT i =OT(1+Acos(2×pi×f×i)sin(2×pi×f×i)), substitute into the equation The film parameters are as follows:
其中,OTi表示第i层膜层的光学厚度,OT0表示四分之一设计波长大小 的光学厚度,pi表示圆周率,f表示调制因子,大小介于0到1之间。Wherein, OT i represents the optical thickness of the i-th film layer, OT 0 represents the optical thickness of one quarter of the design wavelength, pi represents the circumference, and f represents the modulation factor, which is between 0 and 1.
表1示出了IR膜层2的各材料层的参数:Table 1 shows the parameters of each material layer of the IR film layer 2:
表1Table 1
表2示出了AR膜层3的各材料层的参数:Table 2 shows the parameters of each material layer of the AR film layer 3:
表2Table 2
如图3所示,参照实施例1中各条件参数设置本发明的滤光片,在 800-1200nm波长范围内,本发明的IR膜层2具有一个通带波段、两个截止波 段和两个过渡波段,即沿着从800nm-1200nm的方向,IR膜层2依次具有截止 波段、过渡波段、通带波段、过渡波段和截止波段。通带波段是指光线能够 通过的波段,截止波段是指光线不能通过的波段,过渡波段位于截止波段和通 带波段之间。如图所示,通带波段的宽度小于400nm,透过率大于90%,过渡 波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。As shown in Fig. 3, the optical filter of the present invention is set with reference to the parameters of each condition in Example 1. In the wavelength range of 800-1200nm, the IR film layer 2 of the present invention has a passband, two cut-off bands and two transition bands, that is, along the direction from 800nm-1200nm, the IR film layer 2 has a cut-off band, a transition band, a passband, a transition band and a cut-off band in sequence. The passband band refers to the band through which light can pass, the cut-off band refers to the band through which light cannot pass, and the transition band is located between the cut-off band and the passband band. As shown in the figure, the width of the passband band is less than 400nm, the transmittance is greater than 90%, the transmittance of the transition band is 0.1%-90%, and the transmittance of the cut-off band is less than 0.1%.
如图4所示,参照实施例中各条件参数设置本发明滤光片的AR膜层3, 在350-1200nm波长范围,AR膜层3具有一个通带波段、一个截止波段和一 个过渡波段,即沿着从350nm到1200nm的方向,AR膜层3依次具有截止 波段、过渡波段、通带波段。如图4所示,通带波段的光线透过率大于90%, 过渡波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。As shown in Fig. 4, the AR film layer 3 of the optical filter of the present invention is set with reference to the various condition parameters in the embodiment. In the wavelength range of 350-1200nm, the AR film layer 3 has a passband, a cutoff band and a transition band, that is, along the direction from 350nm to 1200nm, the AR film layer 3 has a cutoff band, a transition band and a passband in sequence. As shown in Fig. 4, the light transmittance of the passband is greater than 90%, the transmittance of the transition band is 0.1%-90%, and the transmittance of the cutoff band is less than 0.1%.
按照实施例1的各参数设置本发明的滤光片,能够保证本发明滤光片 的半高全宽值小于120nm,IR膜层2和AR膜层的总厚度小于9.8微米,在入射角度从0°改变至30°时,滤光片通带的中心波长偏移量小于20nm。The optical filter of the present invention is set according to the parameters of Example 1, which can ensure that the half-maximum full width of the optical filter of the present invention is less than 120nm, the total thickness of the IR film layer 2 and the AR film layer is less than 9.8 microns, and when the incident angle changes from 0° to 30°, the center wavelength offset of the filter passband is less than 20nm.
实施例2:Embodiment 2:
在本实施方式中,沿着远离玻璃基板1的方向,滤光片的IR膜层2的结 构为(LH)*s、L、M、(LH)*p、L,其中第二折射率材料层H、第三折射率材料 层M和第一折射率材料层L的光学厚度分别为参考波长的四分之一,第二折射 率材料层H的物理厚度与第一折射率材料层L的物理厚度之间满足关系式: 0.05≤DL/DH≤20,第三折射率材料层M物理厚度与第二折射率材料层H物 理厚度满足关系式:0.02≤DM/DH≤50。s=5,p=6,IR膜层2的总厚度为3.2μm。沿着远离玻璃基板1的方向,AR膜层3的结构为(LH)*q、L,q=12。 第二折射率材料层H的物理厚度与第一折射率材料层L的物理厚度之间满足关 系式:0.05≤DL/DH≤20,第三折射率材料层M物理厚度与第二折射率材料 层H物理厚度满足关系式:0.02≤DM/DH≤50。In this embodiment, along the direction away from the glass substrate 1, the structure of the IR film layer 2 of the filter is (LH)*s, L, M, (LH)*p, L, wherein the optical thicknesses of the second refractive index material layer H, the third refractive index material layer M and the first refractive index material layer L are respectively one-fourth of the reference wavelength, the physical thickness of the second refractive index material layer H and the physical thickness of the first refractive index material layer L satisfy the relationship: 0.05≤D L /D H ≤20, and the physical thickness of the third refractive index material layer M and the physical thickness of the second refractive index material layer H satisfy the relationship: 0.02≤D M /D H ≤50. s=5, p=6, and the total thickness of the IR film layer 2 is 3.2μm. Along the direction away from the glass substrate 1, the structure of the AR film layer 3 is (LH)*q, L, q=12. The physical thickness of the second refractive index material layer H satisfies the relationship of 0.05≤D L /D H ≤20 with the physical thickness of the first refractive index material layer L, and the physical thickness of the third refractive index material layer M satisfies the relationship of 0.02≤D M /D H ≤50 with the physical thickness of the second refractive index material layer H.
也就是说,在本实施方式中,IR膜层2共包括25层材料层,AR膜层3共 包括25层材料层。在本实施方式中,选用氢化硅材料作为IR膜层2中的第二 折射率材料层H、选用氧化铝作为第三折射率材料层M、选用二氧化硅作为第 一折射率材料层L。在AR膜层3中,选用Nb2O5作为第二折射率材料层,选用 二氧化硅作为第一折射率材料层L。利用公式OTi=OT(1+Acos(2×pi×f× i)sin(2×pi×f×i)),代入方程获得膜层参数如下表:That is, in this embodiment, the IR film layer 2 includes 25 material layers, and the AR film layer 3 includes 25 material layers. In this embodiment, hydrogenated silicon material is selected as the second refractive index material layer H in the IR film layer 2, aluminum oxide is selected as the third refractive index material layer M, and silicon dioxide is selected as the first refractive index material layer L. In the AR film layer 3, Nb 2 O 5 is selected as the second refractive index material layer, and silicon dioxide is selected as the first refractive index material layer L. Using the formula OT i =OT(1+Acos(2×pi×f× i)sin(2×pi×f×i)), substitute into the equation The film parameters are as follows:
表3示出了IR膜层2的各材料层的参数:Table 3 shows the parameters of each material layer of the IR film layer 2:
表3table 3
表4表示AR膜层3的各材料层的参数:Table 4 shows the parameters of each material layer of the AR film layer 3:
表4Table 4
如图5所示,参照实施例2中各条件参数设置本发明的滤光片,在 800-1200nm波长范围内,本发明的IR膜层2具有一个通带波段、两个截止波 段和两个过渡波段,即沿着从800nm-1200nm的方向,IR膜层2依次具有截止 波段、过渡波段、通带波段、过渡波段和截止波段。通带波段是指光线能够 通过的波段,截止波段是指光线不能通过的波段,过渡波段位于截止波段和通 带波段之间。如图所示,通带波段的宽度小于400nm,透过率大于90%,过渡 波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。As shown in Fig. 5, the optical filter of the present invention is set with reference to the parameters of each condition in Example 2. In the wavelength range of 800-1200nm, the IR film layer 2 of the present invention has a passband, two cut-off bands and two transition bands, that is, along the direction from 800nm-1200nm, the IR film layer 2 has a cut-off band, a transition band, a passband, a transition band and a cut-off band in sequence. The passband band refers to the band through which light can pass, the cut-off band refers to the band through which light cannot pass, and the transition band is located between the cut-off band and the passband band. As shown in the figure, the width of the passband band is less than 400nm, and the transmittance is greater than 90%, the transmittance of the transition band is 0.1%-90%, and the transmittance of the cut-off band is less than 0.1%.
如图6所示,参照实施例2中各条件参数设置本发明滤光片的AR膜层3, 在350-1200nm波长范围,AR膜层3具有一个通带波段、一个截止波段和一 个过渡波段,即沿着从350nm到1200nm的方向,AR膜层3依次具有截止波段、过渡波段、通带波段。如图6所示,通带波段的光线透过率大于90%, 过渡波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。As shown in FIG6 , the AR film layer 3 of the optical filter of the present invention is set with reference to the various condition parameters in Example 2. In the wavelength range of 350-1200 nm, the AR film layer 3 has a passband, a cutoff band and a transition band, that is, along the direction from 350 nm to 1200 nm, the AR film layer 3 has a cutoff band, a transition band and a passband in sequence. As shown in FIG6 , the light transmittance of the passband is greater than 90%, the transmittance of the transition band is 0.1%-90%, and the transmittance of the cutoff band is less than 0.1%.
按照实施例2的各参数设置本发明的滤光片,同样能够保证本发明滤 光片的半高全宽值小于120nm,IR膜层2和AR膜层的总厚度小于9.8微米,在入射角度从0°改变至30°时,滤光片通带的中心波长偏移量小于20nm。The optical filter of the present invention is set according to the parameters of Example 2, which can also ensure that the half-maximum full width of the optical filter of the present invention is less than 120nm, the total thickness of the IR film layer 2 and the AR film layer is less than 9.8 microns, and when the incident angle changes from 0° to 30°, the center wavelength offset of the filter passband is less than 20nm.
实施例3:Embodiment 3:
在本实施方式中,沿着远离玻璃基板1的方向,滤光片的IR膜层2的结 构为M、(LH)*n、L,其中第二折射率材料层H、第三折射率材料层M和第一 折射率材料层L的光学厚度分别为参考波长的四分之一,第二折射率材料层H 的物理厚度与第一折射率材料层L的物理厚度之间满足关系式:0.05≤DL/DH≤20,第三折射率材料层M物理厚度与第二折射率材料H层物理厚度满足 关系式:0.02≤DM/DH≤50。n=11,IR膜层2的总厚度为4.64μm。沿着远离玻璃基板1的方向,AR膜层3的结构为(LH)*q、L,q=12。第二折射率 材料层H的物理厚度与第一折射率材料层L的物理厚度之间满足关系式:0.05 ≤DL/DH≤20。第三折射率材料层M物理厚度与第二折射率材料层H物理厚 度满足关系式:0.02≤DM/DH≤50。In this embodiment, along the direction away from the glass substrate 1, the structure of the IR film layer 2 of the filter is M, (LH)*n, L, wherein the optical thicknesses of the second refractive index material layer H, the third refractive index material layer M and the first refractive index material layer L are respectively one-quarter of the reference wavelength, the physical thickness of the second refractive index material layer H and the physical thickness of the first refractive index material layer L satisfy the relationship: 0.05≤D L /D H ≤20, and the physical thickness of the third refractive index material layer M and the physical thickness of the second refractive index material H satisfy the relationship: 0.02≤D M /D H ≤50. n=11, and the total thickness of the IR film layer 2 is 4.64μm. Along the direction away from the glass substrate 1, the structure of the AR film layer 3 is (LH)*q, L, q=12. The physical thickness of the second refractive index material layer H and the physical thickness of the first refractive index material layer L satisfy the relationship: 0.05≤D L /D H ≤20. The physical thickness of the third refractive index material layer M and the physical thickness of the second refractive index material layer H satisfy the relationship: 0.02≤D M /D H ≤50.
也就是说,在本实施方式中,IR膜层2共包括24层材料层,AR膜层3共 包括25层材料层。在本实施方式中,IR膜层2中,选用氢化硅作为第二折射 率材料层H、选用Nb2O5作为第三折射率材料层M、选用二氧化硅作为第一折射 率材料层L。在AR膜层3中,选用氢化硅作为第二折射率材料层H,选用二氧 化硅作为第一折射率材料层L。利用公式OTi=OT(1+Acos(2×pi×f× i)sin(2×pi×f×i)),代入方程获得膜层参数如下表:That is, in this embodiment, the IR film layer 2 includes 24 material layers, and the AR film layer 3 includes 25 material layers. In this embodiment, in the IR film layer 2, hydrogenated silicon is selected as the second refractive index material layer H, Nb 2 O 5 is selected as the third refractive index material layer M, and silicon dioxide is selected as the first refractive index material layer L. In the AR film layer 3, hydrogenated silicon is selected as the second refractive index material layer H, and silicon dioxide is selected as the first refractive index material layer L. Using the formula OT i =OT(1+Acos(2×pi×f× i)sin(2×pi×f×i)), substitute into the equation The film parameters are as follows:
表5示出了IR膜层2的各材料层的参数:Table 5 shows the parameters of each material layer of the IR film layer 2:
表5table 5
表6示出了AR膜层3的各材料层的参数:Table 6 shows the parameters of each material layer of the AR film layer 3:
表6Table 6
如图7所示,参照实施例3中各条件参数设置本发明的滤光片,在 800-1200nm波长范围内,本发明的IR膜层2具有一个通带波段、两个截止波 段和两个过渡波段,即沿着从800nm-1200nm的方向,IR膜层2依次具有截止 波段、过渡波段、通带波段、过渡波段和截止波段。通带波段是指光线能够 通过的波段,截止波段是指光线不能通过的波段,过渡波段位于截止波段和通 带波段之间。如图所示,通带波段的宽度小于400nm,透过率大于90%,过渡 波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。As shown in Fig. 7, the optical filter of the present invention is set with reference to the parameters of each condition in Example 3. In the wavelength range of 800-1200nm, the IR film layer 2 of the present invention has a passband, two cut-off bands and two transition bands, that is, along the direction from 800nm-1200nm, the IR film layer 2 has a cut-off band, a transition band, a passband, a transition band and a cut-off band in sequence. The passband band refers to the band through which light can pass, the cut-off band refers to the band through which light cannot pass, and the transition band is located between the cut-off band and the passband band. As shown in the figure, the width of the passband band is less than 400nm, the transmittance is greater than 90%, the transmittance of the transition band is 0.1%-90%, and the transmittance of the cut-off band is less than 0.1%.
如图8所示,参照实施例3中各条件参数设置本发明滤光片的AR膜层3, 在350-1200nm波长范围,AR膜层3具有一个通带波段、一个截止波段和一 个过渡波段,即沿着从350nm到1200nm的方向,AR膜层3依次具有截止波段、过渡波段、通带波段。如图8所示,通带波段的光线透过率大于90%, 过渡波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。As shown in FIG8 , the AR film layer 3 of the optical filter of the present invention is set with reference to the various condition parameters in Example 3. In the wavelength range of 350-1200 nm, the AR film layer 3 has a passband, a cutoff band and a transition band, that is, along the direction from 350 nm to 1200 nm, the AR film layer 3 has a cutoff band, a transition band and a passband in sequence. As shown in FIG8 , the light transmittance of the passband is greater than 90%, the transmittance of the transition band is 0.1%-90%, and the transmittance of the cutoff band is less than 0.1%.
按照实施例3的各参数设置本发明的滤光片,同样能够保证本发明滤 光片的半高全宽值小于120nm,IR膜层2和AR膜层的总厚度小于9.8微米,在入射角度从0°改变至30°时,滤光片通带的中心波长偏移量小于20nm。The optical filter of the present invention is set according to the parameters of Example 3, which can also ensure that the half-maximum full width of the optical filter of the present invention is less than 120nm, the total thickness of the IR film layer 2 and the AR film layer is less than 9.8 microns, and when the incident angle changes from 0° to 30°, the center wavelength offset of the filter passband is less than 20nm.
本发明的滤光片,按照上述方式设置IR膜层2和AR膜层3,在有效保证 近红外光高透过率的同时,能够将滤光片通带中心波长随角度的漂移量控制在 20nm以下。此外,由于IR膜层2和AR膜层3中设置了第三折射率材料层M, 并按照上述布置形式排布,使得本发明滤光片的总膜层厚度有效减小,同时能够改善膜层的附着力。The optical filter of the present invention is provided with the IR film layer 2 and the AR film layer 3 in the above manner, and while effectively ensuring the high transmittance of near-infrared light, the drift of the center wavelength of the filter passband with angle can be controlled to be less than 20nm. In addition, since the third refractive index material layer M is provided in the IR film layer 2 and the AR film layer 3, and arranged in the above arrangement form, the total film thickness of the optical filter of the present invention is effectively reduced, and the adhesion of the film layer can be improved.
本发明还提供一种包含本发明滤光片的红外图像传感系统。图9是示意性 表示包含本发明滤光片的红外传感系统的结构示图。如图9所示,本发明的红 外图像传感系统包括光源单元4和接收单元5。在本实施方式中,光源单元4 包括IR发射光源41和第一镜头组件42。接收单元5包括第二镜头组件51、本发明的滤光片和红外图像传感器53。在本实施方式中,IR光源41可以为 VCSEL(垂直腔面发射激光器)、LD或LED,第一镜头组件42包括近红外光准 直镜头和光学衍射元件。第二镜头组件51可以采用普通光学镜头。本发明的 红外图像传感系统的工作流程如下:The present invention also provides an infrared image sensing system including the optical filter of the present invention. FIG. 9 is a schematic diagram showing the structure of the infrared sensing system including the optical filter of the present invention. As shown in FIG. 9 , the infrared image sensing system of the present invention includes a light source unit 4 and a receiving unit 5. In the present embodiment, the light source unit 4 includes an IR emitting light source 41 and a first lens assembly 42. The receiving unit 5 includes a second lens assembly 51, the optical filter of the present invention and an infrared image sensor 53. In the present embodiment, the IR light source 41 can be a VCSEL (vertical cavity surface emitting laser), LD or LED, and the first lens assembly 42 includes a near-infrared light collimating lens and an optical diffraction element. The second lens assembly 51 can use an ordinary optical lens. The working process of the infrared image sensing system of the present invention is as follows:
打开IR光源41,经第一镜头组件42准直后向人脸/手6投射光线,第二 镜头组件51拍摄图像,由红外图像传感器53经过算法计算生成3D图像,进 行人脸识别或手势识别。由于本发明滤光片52的存在,在拍摄时可以增透近 红外光、截止其他波段的光,从而能够提高最终人脸识别、手势识别的精度。The IR light source 41 is turned on, and after being collimated by the first lens assembly 42, the light is projected toward the face/hand 6. The second lens assembly 51 captures the image, and the infrared image sensor 53 generates a 3D image through algorithm calculation to perform face recognition or gesture recognition. Due to the presence of the filter 52 of the present invention, the near infrared light can be enhanced and the light of other wavelengths can be cut off during shooting, thereby improving the accuracy of the final face recognition and gesture recognition.
以上所述仅为本发明的一个方案而已,并不用于限制本发明,对于本 领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神 和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的 保护范围之内。The above is only one solution of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent substitution, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810884048.1A CN108897085B (en) | 2018-08-06 | 2018-08-06 | Optical filter and infrared image sensing system comprising same |
| US16/767,423 US11828961B2 (en) | 2018-08-06 | 2019-03-12 | Optical filter and infrared image sensing system including the same |
| PCT/CN2019/077849 WO2020029579A1 (en) | 2018-08-06 | 2019-03-12 | Optical filter and infrared image sensing system comprising same |
| JP2020537281A JP6979730B2 (en) | 2018-08-06 | 2019-03-12 | Optical filter and infrared image sensing system including the optical filter |
| EP19848617.7A EP3671294A4 (en) | 2018-08-06 | 2019-03-12 | OPTICAL FILTER AND INFRARED IMAGE CAPTURE SYSTEM WITH IT |
| KR1020207015408A KR20210038408A (en) | 2018-08-06 | 2019-03-12 | Optical filter and infrared image sensing system including this optical filter |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810884048.1A CN108897085B (en) | 2018-08-06 | 2018-08-06 | Optical filter and infrared image sensing system comprising same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108897085A CN108897085A (en) | 2018-11-27 |
| CN108897085B true CN108897085B (en) | 2024-07-16 |
Family
ID=64353520
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810884048.1A Active CN108897085B (en) | 2018-08-06 | 2018-08-06 | Optical filter and infrared image sensing system comprising same |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US11828961B2 (en) |
| EP (1) | EP3671294A4 (en) |
| JP (1) | JP6979730B2 (en) |
| KR (1) | KR20210038408A (en) |
| CN (1) | CN108897085B (en) |
| WO (1) | WO2020029579A1 (en) |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108897085B (en) | 2018-08-06 | 2024-07-16 | 信阳舜宇光学有限公司 | Optical filter and infrared image sensing system comprising same |
| PT3654071T (en) | 2018-11-19 | 2024-10-21 | Essilor Int | Optical lens having an interferential coating and a multilayer system for improving abrasion-resistance |
| KR102770673B1 (en) | 2018-11-19 | 2025-02-24 | 에씰로 앙터나시오날 | Optical lenses with improved interference coatings and multilayer systems to improve wear resistance |
| KR102742005B1 (en) * | 2018-11-19 | 2024-12-16 | 에씰로 앙터나시오날 | Optical lenses with mirror coating and multilayer system to improve wear resistance |
| EP3654072B1 (en) | 2018-11-19 | 2024-09-04 | Essilor International | Optical lens having a filtering interferential coating and a multilayer system for improving abrasion-resistance |
| US11650361B2 (en) * | 2018-12-27 | 2023-05-16 | Viavi Solutions Inc. | Optical filter |
| CN109655954B (en) * | 2019-03-05 | 2024-04-16 | 浙江水晶光电科技股份有限公司 | Optical filter, preparation method thereof, fingerprint identification module and electronic equipment |
| EP3950630A4 (en) * | 2019-03-29 | 2022-12-21 | Sekisui Chemical Co., Ltd. | Laminated glass and vehicle system |
| US11314004B2 (en) | 2019-04-08 | 2022-04-26 | Visera Technologies Company Limited | Optical filters and methods for forming the same |
| CN110177191B (en) * | 2019-05-10 | 2024-02-06 | 惠州市航泰光电有限公司 | Cover plate for 3D camera face recognition module and production method thereof |
| CN110082849A (en) * | 2019-06-05 | 2019-08-02 | 信阳舜宇光学有限公司 | Near-infrared narrow band filter and production method |
| CN110109210B (en) | 2019-06-05 | 2024-06-18 | 信阳舜宇光学有限公司 | Optical Filters |
| CN110058342A (en) * | 2019-06-05 | 2019-07-26 | 信阳舜宇光学有限公司 | Near-infrared bandpass filter and preparation method thereof and optical sensor system |
| CN110426768A (en) * | 2019-07-15 | 2019-11-08 | 杭州美迪凯光电科技股份有限公司 | A kind of infrared double wave peak coated filter and coating process |
| JP7323787B2 (en) * | 2019-07-31 | 2023-08-09 | 日亜化学工業株式会社 | Lighting device and lighting device with infrared camera |
| CN112444898B (en) * | 2019-08-30 | 2023-06-16 | 福州高意光学有限公司 | Optical filter for wide-angle application |
| CN112462461B (en) * | 2019-09-09 | 2025-02-14 | 晶瑞光电股份有限公司 | Infrared bandpass filter structure and infrared bandpass filter using the same |
| CN110550868B (en) * | 2019-09-11 | 2021-12-10 | 江西科技学院 | Unidirectional light-transmitting glass and preparation method thereof |
| CN112835198A (en) * | 2021-03-04 | 2021-05-25 | 浙江水晶光电科技股份有限公司 | Optical module for head-up display and optical system thereof, vehicle |
| CN113075758B (en) * | 2021-04-19 | 2022-09-23 | 广州市佳禾光电科技有限公司 | Infrared band-pass filter and sensor system |
| CN115236782A (en) * | 2021-04-22 | 2022-10-25 | 三星电子株式会社 | Spectral filters and image sensors and electronics including spectral filters |
| CN113900171B (en) * | 2021-08-05 | 2024-10-18 | 浙江晶驰光电科技有限公司 | Near-infrared dual-band bandpass filter and preparation method thereof |
| CN114296248B (en) * | 2021-12-09 | 2023-07-14 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Spectroscopic film, selective spectroscope, optical device and spectroscopic method |
| CN114545543B (en) * | 2022-02-11 | 2024-12-27 | 湖南麓星光电科技有限公司 | An infrared filter and its preparation method and its application in marine gas remote sensing detector |
| CN115394922A (en) * | 2022-06-28 | 2022-11-25 | 香港理工大学深圳研究院 | Visible light transparent solar cell with high photon utilization efficiency and preparation method thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107209305A (en) * | 2015-01-23 | 2017-09-26 | 美题隆公司 | Near-Infrared Optical Interference Filters with Improved Transmittance |
| CN208421291U (en) * | 2018-08-06 | 2019-01-22 | 信阳舜宇光学有限公司 | Optical filter and infrared image sensing system comprising the optical filter |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH077124B2 (en) | 1986-10-31 | 1995-01-30 | キヤノン株式会社 | Anti-reflection film |
| JP3898357B2 (en) * | 1998-09-28 | 2007-03-28 | 日東電工株式会社 | Filter for plasma display panel |
| JP2006251380A (en) * | 2005-03-10 | 2006-09-21 | Mitsumi Electric Co Ltd | The camera module |
| US20070030569A1 (en) * | 2005-08-04 | 2007-02-08 | Guardian Industries Corp. | Broad band antireflection coating and method of making same |
| WO2011033984A1 (en) * | 2009-09-15 | 2011-03-24 | 株式会社大真空 | Optical filter |
| US9796619B2 (en) * | 2010-09-03 | 2017-10-24 | Guardian Glass, LLC | Temperable three layer antirefrlective coating, coated article including temperable three layer antirefrlective coating, and/or method of making the same |
| US8693097B2 (en) * | 2010-09-03 | 2014-04-08 | Guardian Industries Corp. | Temperable three layer antireflective coating, coated article including temperable three layer antireflective coating, and/or method of making the same |
| US8668990B2 (en) * | 2011-01-27 | 2014-03-11 | Guardian Industries Corp. | Heat treatable four layer anti-reflection coating |
| CA2838581A1 (en) * | 2011-06-06 | 2012-12-13 | Asahi Glass Company, Limited | Optical filter, solid-state imaging element, imaging device lens and imaging device |
| TWI756606B (en) * | 2012-07-16 | 2022-03-01 | 美商唯亞威方案公司 | Optical filter and sensor system |
| WO2014104370A1 (en) * | 2012-12-28 | 2014-07-03 | 旭硝子株式会社 | Near-infrared cut-off filter |
| CN203287553U (en) | 2013-05-31 | 2013-11-13 | 温岭市现代晶体有限公司 | Infrared cutoff filter |
| US9977160B1 (en) * | 2014-10-21 | 2018-05-22 | Gooch And Housego Plc | Optical assembly for protection of optical devices |
| CN110596806A (en) | 2014-12-19 | 2019-12-20 | Agc株式会社 | Optical filter and device using the same |
| JP6920994B2 (en) * | 2015-02-18 | 2021-08-18 | マテリオン コーポレイション | Near-infrared optical interference filter with improved transmittance |
| CN107636495A (en) * | 2015-03-13 | 2018-01-26 | 卢普+胡布拉赫光学有限公司 | Optical articles comprising antireflective coatings for low light conditions in the visible region |
| CN107850713B (en) | 2015-07-31 | 2020-05-12 | Agc株式会社 | Optical filter and near infrared ray cut filter |
| CN205720755U (en) * | 2016-04-27 | 2016-11-23 | 深圳力合光电传感股份有限公司 | Edge filter |
| CN105911625A (en) * | 2016-05-09 | 2016-08-31 | 浙江水晶光电科技股份有限公司 | Mixing absorption type infrared cut-off filter and preparation method thereof |
| WO2018043500A1 (en) * | 2016-08-31 | 2018-03-08 | 株式会社大真空 | Optical filter |
| US10168459B2 (en) | 2016-11-30 | 2019-01-01 | Viavi Solutions Inc. | Silicon-germanium based optical filter |
| CN106772746B (en) * | 2016-12-26 | 2023-05-05 | 信阳舜宇光学有限公司 | Infrared cut-off filter and preparation method thereof |
| CN206638842U (en) * | 2017-03-29 | 2017-11-14 | 杭州美迪凯光电科技有限公司 | Mobile phone founds part with smalt high definition filter set |
| CN110737040B (en) * | 2018-07-18 | 2022-03-01 | 福州高意光学有限公司 | 3D recognition filter |
| CN108897085B (en) | 2018-08-06 | 2024-07-16 | 信阳舜宇光学有限公司 | Optical filter and infrared image sensing system comprising same |
| US11650361B2 (en) * | 2018-12-27 | 2023-05-16 | Viavi Solutions Inc. | Optical filter |
| US11314004B2 (en) * | 2019-04-08 | 2022-04-26 | Visera Technologies Company Limited | Optical filters and methods for forming the same |
| TWI752677B (en) * | 2020-11-12 | 2022-01-11 | 晶瑞光電股份有限公司 | IR Cut Filter Structure |
-
2018
- 2018-08-06 CN CN201810884048.1A patent/CN108897085B/en active Active
-
2019
- 2019-03-12 EP EP19848617.7A patent/EP3671294A4/en not_active Withdrawn
- 2019-03-12 US US16/767,423 patent/US11828961B2/en active Active
- 2019-03-12 WO PCT/CN2019/077849 patent/WO2020029579A1/en not_active Ceased
- 2019-03-12 JP JP2020537281A patent/JP6979730B2/en active Active
- 2019-03-12 KR KR1020207015408A patent/KR20210038408A/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107209305A (en) * | 2015-01-23 | 2017-09-26 | 美题隆公司 | Near-Infrared Optical Interference Filters with Improved Transmittance |
| CN208421291U (en) * | 2018-08-06 | 2019-01-22 | 信阳舜宇光学有限公司 | Optical filter and infrared image sensing system comprising the optical filter |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20210038408A (en) | 2021-04-07 |
| US11828961B2 (en) | 2023-11-28 |
| EP3671294A4 (en) | 2021-10-06 |
| WO2020029579A1 (en) | 2020-02-13 |
| JP2020534585A (en) | 2020-11-26 |
| US20200393601A1 (en) | 2020-12-17 |
| CN108897085A (en) | 2018-11-27 |
| JP6979730B2 (en) | 2021-12-15 |
| EP3671294A1 (en) | 2020-06-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108897085B (en) | Optical filter and infrared image sensing system comprising same | |
| CN108761614B (en) | Filter and infrared image sensing system including the filter | |
| CN102985856B (en) | Cutoff filter | |
| CN103217730B (en) | Narrow-band negative filter plate membrane system with gradually-changing optical thicknesses | |
| CN208596240U (en) | A kind of near-infrared narrow-band filter and infrared imaging system | |
| CN104204873B (en) | Near infrared ray cut-off filter | |
| CN105388625B (en) | A kind of wearing display beam splitter and preparation method thereof | |
| CN102809772B (en) | Infrared cut-off filter with blue glass | |
| CN103261927B (en) | Optical filter module and optical filter system | |
| JP2022541974A (en) | NEAR INFRARED NARROW-BAND OPTICAL FILTER AND MANUFACTURING METHOD | |
| CN109061785B (en) | AR film layer for near infrared narrowband filter and filter | |
| WO2020103206A1 (en) | Polarization-independent filter | |
| WO2021036387A1 (en) | Optical filter applied in wide angle | |
| CN108693584B (en) | Optical filter and solid-state imaging device using the same | |
| CN101430389A (en) | Membrane stack structure of blue light splitting piece | |
| CN208421291U (en) | Optical filter and infrared image sensing system comprising the optical filter | |
| CN208421292U (en) | Optical filter and infrared image sensing system comprising the optical filter | |
| CN203786316U (en) | Attenuation band-pass optical filter | |
| JP6174379B2 (en) | Visible light transmission filter | |
| CN208421290U (en) | AR film layer and optical filter for near-infrared narrow band filter | |
| CN1749782A (en) | Coated glass lens | |
| CN103885108A (en) | Attenuation band-pass filter and manufacturing method of attenuation band-pass filter | |
| TW201344254A (en) | Infrared filter and lens module | |
| CN117849924A (en) | Bokeh filter film, imaging optical lens, imaging device and electronic device | |
| CN111257981B (en) | Optical filter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |