[go: up one dir, main page]

CN108932381B - Antenna array fault diagnosis method considering array errors - Google Patents

Antenna array fault diagnosis method considering array errors Download PDF

Info

Publication number
CN108932381B
CN108932381B CN201810677164.6A CN201810677164A CN108932381B CN 108932381 B CN108932381 B CN 108932381B CN 201810677164 A CN201810677164 A CN 201810677164A CN 108932381 B CN108932381 B CN 108932381B
Authority
CN
China
Prior art keywords
array
ideal
antenna
antenna array
aperture function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810677164.6A
Other languages
Chinese (zh)
Other versions
CN108932381A (en
Inventor
张瑛
王文静
张玚
汪婷静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810677164.6A priority Critical patent/CN108932381B/en
Publication of CN108932381A publication Critical patent/CN108932381A/en
Application granted granted Critical
Publication of CN108932381B publication Critical patent/CN108932381B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种考虑阵列误差的天线阵列故障诊断方法,涉及天线阵列信号处理范畴,具体地说,是一种考虑阵列误差的天线阵列故障诊断方法。本发明是考虑阵列误差时的天线阵故障诊断算法。在高斯噪声的环境下,基于信号源频率偏移误差和阵元位置误差模型,利用待诊断阵列的理想口径函数及待诊断阵列的远场辐射测量数据,通过求解线性逆问题对天线阵口径函数进行估计,然后根据重构的天线阵口径函数,从而确定故障阵元的数量、位置。与现有天线阵故障诊断算法对比,本发明的方法在天线阵存在误差时具有更高的天线口径函数重建精度和故障阵元诊断正确率。

Figure 201810677164

The invention discloses an antenna array fault diagnosis method considering the array error, which relates to the field of antenna array signal processing, in particular, an antenna array fault diagnosis method considering the array error. The present invention is an antenna array fault diagnosis algorithm considering the array error. In the environment of Gaussian noise, based on the signal source frequency offset error and the array element position error model, using the ideal aperture function of the array to be diagnosed and the far-field radiation measurement data of the array to be diagnosed, by solving the linear inverse problem, the aperture function of the antenna array is calculated. Estimate, and then determine the number and location of faulty array elements according to the reconstructed antenna array aperture function. Compared with the existing antenna array fault diagnosis algorithm, the method of the present invention has higher antenna aperture function reconstruction accuracy and faulty array element diagnosis accuracy when the antenna array has errors.

Figure 201810677164

Description

一种考虑阵列误差的天线阵列故障诊断方法An Antenna Array Fault Diagnosis Method Considering Array Errors

技术领域technical field

本发明涉及天线阵列信号处理范畴,具体地说,是一种考虑阵列误差的天线阵列故障诊断方法。The present invention relates to the field of antenna array signal processing, in particular, to an antenna array fault diagnosis method considering array errors.

背景技术Background technique

近年来,天线阵已广泛应用于雷达、声纳和导航等领域。由于大型天线阵可以提供更高的阵列增益和更好的角度分辨率,因此大型阵列的应用越来越广泛。但随着阵列规模的增加,阵列出现故障的概率也增加了。出现故障的阵元将影响天线阵的性能,包括降低阵列增益、使主瓣宽度增加、旁瓣电平提高等等。这些影响对天线阵来说都是不利的。因此,对天线阵进行故障诊断,即准确地找到出故障的阵元,是非常重要的研究课题。In recent years, antenna arrays have been widely used in radar, sonar, and navigation. Since large antenna arrays can provide higher array gain and better angular resolution, the application of large arrays is becoming more and more widespread. But as array size increases, so does the probability of array failure. A faulty array element will affect the performance of the antenna array, including reducing the array gain, increasing the main lobe width, increasing the side lobe level, and so on. These effects are all detrimental to the antenna array. Therefore, it is a very important research topic to diagnose the fault of the antenna array, that is, to find the faulty array element accurately.

现有的阵列故障诊断方法大概可以分为三类:近场测量法、参数建模法和源重建法。近场测量法可以利用傅里叶变换,通过无相移的近场测量数据来推导天线阵的远场辐射方向图进而对故障阵元进行定位。参数建模法则是在天线阵的参数与其辐射方向图之间建立了一个参数化模型,通过训练来估计模型参数,从而对故障阵元进行准确定位。由于参数模型会随着阵列尺寸的增加而变得复杂,因此该方法通常适用于小型阵列诊断。源重建法包括等价源重建法和激励源重建法。等价源重建法仅适用于平面阵。激励源重建法则是通过求解一个线性逆问题实现对阵列激励的重建,这样就可以直接得到故障阵元的位置信息。Existing array fault diagnosis methods can be roughly divided into three categories: near-field measurement methods, parametric modeling methods, and source reconstruction methods. The near-field measurement method can use the Fourier transform to deduce the far-field radiation pattern of the antenna array through the near-field measurement data without phase shift, and then locate the faulty array element. The parametric modeling rule is to establish a parametric model between the parameters of the antenna array and its radiation pattern, and to estimate the model parameters through training, so as to accurately locate the faulty array element. Since the parametric model becomes complex with increasing array size, this method is generally suitable for small array diagnostics. Source reconstruction methods include equivalent source reconstruction methods and incentive source reconstruction methods. The equivalent source reconstruction method is only applicable to planar arrays. The excitation source reconstruction method is to realize the reconstruction of the array excitation by solving a linear inverse problem, so that the position information of the faulty array element can be directly obtained.

以上所述的阵列故障诊断算法都是在阵列参数精确已知的前提下,而实际中的阵列由于受到硬件精度、安装工艺等的影响,总是存在误差的。当阵列存在误差时,现有的阵列故障诊断算法的性能会明显下降,因此,有必要设计一种考虑阵列误差时的天线阵故障诊断算法。The above-mentioned array fault diagnosis algorithms are based on the premise that the array parameters are accurately known, but the actual array always has errors due to the influence of hardware precision, installation process, etc. When there is an error in the array, the performance of the existing array fault diagnosis algorithm will obviously decrease. Therefore, it is necessary to design an antenna array fault diagnosis algorithm considering the array error.

发明内容SUMMARY OF THE INVENTION

本发明提出了一种考虑阵列误差时的天线阵故障诊断算法。所考虑的误差包括信号源频率偏移误差和阵元位置误差。其目的是在信号源频率偏移误差和阵元位置误差时,根据采样到的阵列远场辐射数据,对阵列口径函数进行重建,从而确定失效阵元的数量和位置。与传统的阵列故障诊断算法比较,该算法在阵列存在误差时具有更高的阵列口径函数重建精度及更高的故障阵元诊断正确率。The invention proposes an antenna array fault diagnosis algorithm considering the array error. The errors considered include signal source frequency offset error and array element position error. Its purpose is to reconstruct the array aperture function according to the sampled array far-field radiation data when the signal source frequency offset error and the array element position error occur, so as to determine the number and position of the failed array elements. Compared with the traditional array fault diagnosis algorithm, the algorithm has a higher reconstruction accuracy of the array aperture function and a higher correct rate of fault array element diagnosis when the array has errors.

本发明的解决方案是:在高斯噪声的环境下,基于信号源频率偏移误差和阵元位置误差模型,利用待诊断阵列的理想口径函数及待诊断阵列的远场辐射测量数据,通过求解线性逆问题对天线阵口径函数进行估计,然后根据重构的天线阵口径函数,从而确定故障阵元的数量、位置。The solution of the present invention is: in the environment of Gaussian noise, based on the frequency offset error of the signal source and the position error model of the array element, using the ideal aperture function of the array to be diagnosed and the far-field radiation measurement data of the array to be diagnosed, by solving the linear The inverse problem estimates the aperture function of the antenna array, and then determines the number and location of the faulty array elements according to the reconstructed aperture function of the antenna array.

本发明一种考虑阵列误差的天线阵列故障诊断方法,该方法包括:The present invention is an antenna array fault diagnosis method considering the array error, the method comprising:

步骤1:在天线阵远场辐射区域获得M个不同角度,测量待诊断阵列所辐射的电磁场在各个场点的电压;第m个场点的电压表示为:Step 1: Obtain M different angles in the far-field radiation area of the antenna array, and measure the voltage of the electromagnetic field radiated by the array to be diagnosed at each field point; the voltage of the mth field point is expressed as:

Figure BDA0001709630270000021
Figure BDA0001709630270000021

其中,θm为第m个远场辐射角度,N为阵元数,xn为第n个阵元的激励电压,f为天线阵工作频率,dn为第n个阵元的位置,c为光速,nm表示观测噪声;where θm is the mth far-field radiation angle, N is the number of array elements, xn is the excitation voltage of the nth array element, f is the operating frequency of the antenna array, dn is the position of the nth array element, c is the speed of light, and n m represents the observation noise;

步骤2:将步骤1的天线阵远场辐射模型表示为矩阵形式:Step 2: Express the far-field radiation model of the antenna array in Step 1 as a matrix:

y=Ax+ny=Ax+n

其中,y=[y(θ1) y(θ2) … y(θM)]T∈CM表示观测向量,A∈CM×N是阵列流形矩阵,其第(m,n)个元素为

Figure BDA0001709630270000022
x=[x1 x2 … xN]T∈CN是阵列口径函数向量,n=[n1n2 … nM]T∈CM为观测噪声向量,其中nm是服从均值为0,方差为σ2的高斯变量;Among them, y=[y(θ 1 ) y(θ 2 ) … y(θ M )] T ∈C M represents the observation vector, A∈C M×N is the array manifold matrix, the (m,n)th element is
Figure BDA0001709630270000022
x=[x 1 x 2 … x N ] T ∈C N is the array aperture function vector, n=[n 1 n 2 … n M ] T ∈ C M is the observation noise vector, where n m is the mean value of 0, Gaussian variable with variance σ2 ;

步骤3:由于天线阵的所有阵元共享一个信号源,因此每个阵元的频率相同,即阵列的频率偏移误差在每个阵元上都一样;设阵列的频率偏移误差为Δf,将

Figure BDA0001709630270000023
利用一阶泰勒级数展开近似,得到Step 3: Since all elements of the antenna array share a signal source, the frequency of each array element is the same, that is, the frequency offset error of the array is the same on each array element; let the frequency offset error of the array be Δf, Will
Figure BDA0001709630270000023
Using the first-order Taylor series expansion approximation, we get

Figure BDA0001709630270000024
Figure BDA0001709630270000024

步骤4:对于阵元位置误差,由于阵元是分别独立安装的,因此其位置误差在每个阵元上是不相等的;设第n个阵元的阵元位置误差Δdn,将

Figure BDA0001709630270000025
利用一阶泰勒级数展开近似,有Step 4: For the position error of the array element, since the array elements are installed independently, the position error of each array element is not equal; set the position error Δd n of the nth array element, and set
Figure BDA0001709630270000025
Using the first-order Taylor series expansion approximation, we have

Figure BDA0001709630270000026
Figure BDA0001709630270000026

步骤5:将步骤3和步骤4中的am,n代入到步骤2中的矩阵形式,有:Step 5: Substitute a m,n in steps 3 and 4 into the matrix form in step 2, there are:

y=Ax+A'(f)Δfx+ny=Ax+A'(f)Δfx+n

and

y=Ax+A'(d)diag{Δd}x+ny=Ax+A'(d)diag{Δd}x+n

其中,A'(f)的第(m,n)个元素为

Figure BDA0001709630270000031
A'(d)的第(m,n)个元素为
Figure BDA0001709630270000032
diag{Δd}∈RN×N表示以Δd1,Δd2,...,ΔdN为对角元素的对角阵;Among them, the (m,n)th element of A'(f) is
Figure BDA0001709630270000031
The (m,n)th element of A'(d) is
Figure BDA0001709630270000032
diag{Δd}∈R N×N represents a diagonal matrix with Δd 1 , Δd 2 ,...,Δd N as the diagonal elements;

步骤6:令B(f)=[A,A'(f)],s(f)=[xT,ΔfxT]T,B(d)=[A,A'(d)],s(d)=[xT,(diag{Δd}x)T]T,将步骤5中的公式重新写为:Step 6: Let B(f)=[A,A'(f)], s(f)=[x T ,Δfx T ] T , B(d)=[A,A'(d)], s( d)=[x T ,(diag{Δd}x) T ] T , rewrite the formula in step 5 as:

y=B(f)s(f)+ny=B(f)s(f)+n

and

y=B(d)s(d)+ny=B(d)s(d)+n

步骤7:当大部分阵元出现故障时,天线口径函数向量s(f)和s(d)是稀疏的,既向量的大多数元素的值为零;然而只有小部分阵元出现故障时,s(f)和s(d)不是稀疏的,需要对其进行稀疏化;设待测天线阵在无故障时,使用相同口径函数即xideal时的远场辐射测量数据为yideal;现在用yideal和步骤6中的y进行相减,得到Step 7: When most of the array elements fail, the antenna aperture function vectors s(f) and s(d) are sparse, that is, the value of most elements of the vector is zero; however, when only a small number of array elements fail, s(f) and s(d) are not sparse and need to be sparsed; suppose the antenna array to be tested is fault-free, the far-field radiation measurement data when using the same aperture function, that is, x ideal , is y ideal ; now use y ideal and y in step 6 are subtracted to get

yideal-y=B(f)(sideal(f)-s(f))+ny ideal -y=B(f)(s ideal (f)-s(f))+n

and

yideal-y=B(d)(sideal(d)-s(d))+ny ideal -y=B(d)(s ideal (d)-s(d))+n

其中,

Figure BDA0001709630270000033
显然,当只有小部分阵元出现故障时,(sideal(f)-s(f))和(sideal(d)-s(d))稀疏;in,
Figure BDA0001709630270000033
Obviously, when only a small part of the array elements fail, (s ideal (f)-s(f)) and (s ideal (d)-s(d)) are sparse;

步骤8:重建的阵列口径函数的值不应该超过理想的口径函数的值,即x≤xideal,设已知频率漂移的范围为Δfmin≤Δf≤Δfmax,阵元位置误差的范围为Δdmin≤Δd≤Δdmax,将上述线性约束加入到步骤7中(sideal(f)-s(f))和(sideal(d)-s(d))的求解优化问题中;Step 8: The value of the reconstructed array aperture function should not exceed the value of the ideal aperture function, that is, x≤x ideal , set the range of the known frequency drift as Δf min ≤Δf≤Δf max , and the range of the array element position error as Δd min ≤Δd≤Δd max , the above-mentioned linear constraints are added to the solution optimization problems of (s ideal (f)-s(f)) and (s ideal (d)-s(d)) in step 7;

步骤9:利用基寻踪方法,将步骤7中的(sideal(f)-s(f))和(sideal(d)-s(d))的求解问题建模为以下优化问题:Step 9: Using the basis pursuit method, the solution problems of (s ideal (f)-s(f)) and (s ideal (d)-s(d)) in step 7 are modeled as the following optimization problems:

Figure BDA0001709630270000034
Figure BDA0001709630270000034

Figure BDA0001709630270000041
Figure BDA0001709630270000041

Figure BDA0001709630270000042
Figure BDA0001709630270000042

and

Figure BDA0001709630270000043
Figure BDA0001709630270000043

Figure BDA0001709630270000044
Figure BDA0001709630270000044

Figure BDA0001709630270000045
Figure BDA0001709630270000045

采用凸优化工具求解上述问题得到阵列天线的故障诊断结果。Using convex optimization tools to solve the above problems, the fault diagnosis results of the array antenna are obtained.

本发明是考虑阵列误差时的天线阵故障诊断算法。在高斯噪声的环境下,基于信号源频率偏移误差和阵元位置误差模型,利用待诊断阵列的理想口径函数及待诊断阵列的远场辐射测量数据,通过求解线性逆问题对天线阵口径函数进行估计,然后根据重构的天线阵口径函数,从而确定故障阵元的数量、位置。与现有天线阵故障诊断算法对比,本发明的方法在天线阵存在误差时具有更高的天线口径函数重建精度和故障阵元诊断正确率。The present invention is an antenna array fault diagnosis algorithm when the array error is considered. In the environment of Gaussian noise, based on the signal source frequency offset error and the array element position error model, using the ideal aperture function of the array to be diagnosed and the far-field radiation measurement data of the array to be diagnosed, by solving the linear inverse problem, the aperture function of the antenna array is calculated. Estimate, and then determine the number and location of faulty array elements according to the reconstructed antenna array aperture function. Compared with the existing antenna array fault diagnosis algorithm, the method of the present invention has higher antenna aperture function reconstruction accuracy and faulty array element diagnosis accuracy when the antenna array has errors.

附图说明Description of drawings

图1、本算法的流程图;Figure 1, the flow chart of this algorithm;

图2、阵列的真实口径函数;Figure 2. The true aperture function of the array;

图3、本发明算法对阵列口径函数的估计结果;Fig. 3, the estimation result of the algorithm of the present invention to the array aperture function;

图4、现有算法对阵列口径函数的估计结果;Figure 4. The estimation result of the array aperture function by the existing algorithm;

图5、本发明算法和现有算法对阵列口径函数估计的均方根误差曲线;Fig. 5, the root mean square error curve of the algorithm of the present invention and the existing algorithm to the array aperture function estimation;

图6、本发明算法和现有算法对故障阵元的诊断正确率曲线。Fig. 6 is the correct rate curve of the diagnosis of the faulty array element by the algorithm of the present invention and the existing algorithm.

具体实施方式Detailed ways

本实施方案所考虑的待诊断阵列为平面阵列,该阵列一共有5x5=25个阵元,相邻阵元之间的间隔为半波长。阵列的工作频率为2.4GHz。本实施方案随机选择阵列中的3个阵元作为故障阵元。阵列的口径函数为高斯函数:

Figure BDA0001709630270000046
其中,
Figure BDA0001709630270000047
表示第(m,n)个阵元的位置坐标。经过本文所提算法估计出阵列口径函数后,与0.5xm,n进行比较,当估计出的第(m,n)个阵元的激励系数小于0.5xm,n时,则认为该阵元出现故障。The to-be-diagnosed array considered in this embodiment is a planar array, the array has a total of 5×5=25 array elements, and the interval between adjacent array elements is half a wavelength. The operating frequency of the array is 2.4GHz. This embodiment randomly selects 3 array elements in the array as faulty array elements. The aperture function of the array is a Gaussian function:
Figure BDA0001709630270000046
in,
Figure BDA0001709630270000047
Indicates the position coordinates of the (m,n)th array element. After the array aperture function is estimated by the algorithm proposed in this paper, it is compared with 0.5x m,n . When the estimated excitation coefficient of the (m,n)th array element is less than 0.5x m,n , the array element is considered to be error occured.

步骤1:给定阵列口径函数x,用Matlab生成远场区域内,沿水平方向0°到180°、俯仰方向-90°到90°,5°均匀间隔的远场辐射仿真数据yidealStep 1: Given the array aperture function x, use Matlab to generate the far-field radiation simulation data y ideal of 0° to 180° in the horizontal direction, -90° to 90° in the pitch direction, and 5° evenly spaced in the far-field area;

步骤2:根据阵列参数和远场辐射模型,生成不考虑阵列误差时的阵列流形A;Step 2: According to the array parameters and the far-field radiation model, generate the array manifold A without considering the array error;

步骤3:根据阵列参数和远场辐射模型,计算B(f)=[A,A'(f)]和B(d)=[A,A'(d)];Step 3: Calculate B(f)=[A,A'(f)] and B(d)=[A,A'(d)] according to the array parameters and the far-field radiation model;

步骤4:生成故障阵元标识向量l,其中第n个元素

Figure BDA0001709630270000051
rand是一个[0,1]的随机数,Pfailing是预设的阵元失效率;Step 4: Generate the fault array element identification vector l, where the nth element
Figure BDA0001709630270000051
rand is a random number in [0,1], P failing is the preset element failure rate;

步骤5:给定阵列口径函数x·l,其中·表示向量各元素对应相乘,用Matlab生成远场区域内,沿水平方向0°到180°、俯仰方向-90°到90°,5°均匀间隔的远场辐射仿真数据y;Step 5: Given the array aperture function x·l, where · represents the corresponding multiplication of each element of the vector, use Matlab to generate the far-field area, 0° to 180° in the horizontal direction, -90° to 90° in the pitch direction, 5° Evenly spaced far-field radiation simulation data y;

步骤6:基于y、yideal、A、B(f)=[A,A'(f)]和B(d)=[A,A'(d)],利用CVX工具箱求解s(f)和s(d);Step 6: Based on y, y ideal , A, B(f)=[A,A'(f)] and B(d)=[A,A'(d)], use CVX toolbox to solve s(f) and s(d);

步骤7:将s(f)和s(d)的前一半元素分别与0.5x进行比较,如果前者更小,则认为该元素对应的阵元有故障。Step 7: Compare the first half elements of s(f) and s(d) with 0.5x respectively. If the former is smaller, the array element corresponding to this element is considered to be faulty.

将本发明提出的考虑阵列误差时的天线阵故障诊断算法应用于平面阵阵列,该阵列一共有5x5=25个阵元,相邻阵元之间的间隔为半波长。阵列的工作频率为2.4GHz。本实施方案随机选择阵列中的3个阵元作为故障阵元。阵列的口径函数为高斯函数:

Figure BDA0001709630270000052
其中,
Figure BDA0001709630270000053
表示第(m,n)个阵元的位置坐标。在远场区域内,分别沿水平方向0°到180°、俯仰方向-90°到90°,间隔5°均匀测量。经过本文所提算法估计出阵列口径函数后,与0.5xm,n进行比较,当估计出的第(m,n)个阵元的激励系数小于0.5xm,n时,则认为该阵元出现故障。由图5和图6可见,本发明提出的考虑阵列误差时的天线阵故障诊断算法能够较精确地对阵列口径函数进行估计,并且对故障阵元的正确诊断率也优于现有其它算法。The antenna array fault diagnosis algorithm when considering the array error proposed by the present invention is applied to a planar array array. The array has 5×5=25 array elements in total, and the interval between adjacent array elements is half wavelength. The operating frequency of the array is 2.4GHz. This embodiment randomly selects 3 array elements in the array as faulty array elements. The aperture function of the array is a Gaussian function:
Figure BDA0001709630270000052
in,
Figure BDA0001709630270000053
Indicates the position coordinates of the (m,n)th array element. In the far-field area, the measurements are uniformly measured along the horizontal direction from 0° to 180° and the pitch direction from -90° to 90°, with an interval of 5°. After the array aperture function is estimated by the algorithm proposed in this paper, it is compared with 0.5x m,n . When the estimated excitation coefficient of the (m,n)th array element is less than 0.5x m,n , the array element is considered to be error occured. It can be seen from Fig. 5 and Fig. 6 that the antenna array fault diagnosis algorithm proposed by the present invention considering the array error can more accurately estimate the array aperture function, and the correct diagnosis rate of the faulty array element is also better than other existing algorithms.

Claims (1)

1.一种考虑阵列误差的天线阵列故障诊断方法,该方法包括:1. A fault diagnosis method for an antenna array considering array errors, the method comprising: 步骤1:在天线阵远场辐射区域获得M个不同角度,测量待诊断阵列所辐射的电磁场在各个场点的电压;第m个场点的电压表示为:Step 1: Obtain M different angles in the far-field radiation area of the antenna array, and measure the voltage of the electromagnetic field radiated by the array to be diagnosed at each field point; the voltage of the mth field point is expressed as:
Figure FDA0003718076810000011
Figure FDA0003718076810000011
其中,θm为第m个远场辐射角度,N为阵元数,xn为第n个阵元的激励电压,f为天线阵工作频率,dn为第n个阵元的位置,c为光速,nm表示观测噪声;where θm is the mth far-field radiation angle, N is the number of array elements, xn is the excitation voltage of the nth array element, f is the operating frequency of the antenna array, dn is the position of the nth array element, c is the speed of light, and n m represents the observation noise; 步骤2:将步骤1的天线阵远场辐射模型表示为矩阵形式:Step 2: Express the far-field radiation model of the antenna array in Step 1 as a matrix: y=Ax+ny=Ax+n 其中,y=[y(θ1) y(θ2)...y(θM)]T∈CM表示观测向量,A∈CM×N是阵列流形矩阵,其第(m,n)个元素为
Figure FDA0003718076810000012
x=[x1 x2...xN]T∈CN是阵列口径函数向量,n=[n1n2...nM]T∈CM为观测噪声向量,其中nm是服从均值为0,方差为σ2的高斯变量;
Among them, y=[y(θ 1 ) y(θ 2 )...y(θ M )] T ∈C M represents the observation vector, A∈C M×N is the array manifold matrix, and its (m,nth) ) elements are
Figure FDA0003718076810000012
x=[x 1 x 2 ...x N ] T ∈C N is the array aperture function vector, n=[n 1 n 2 ...n M ] T ∈ C M is the observation noise vector, where n m is the observance A Gaussian variable with mean 0 and variance σ 2 ;
步骤3:由于天线阵的所有阵元共享一个信号源,因此每个阵元的频率相同,即阵列的频率偏移误差在每个阵元上都一样;设阵列的频率偏移误差为Δf,将
Figure FDA0003718076810000013
利用一阶泰勒级数展开近似,得到
Step 3: Since all elements of the antenna array share a signal source, the frequency of each array element is the same, that is, the frequency offset error of the array is the same on each array element; let the frequency offset error of the array be Δf, Will
Figure FDA0003718076810000013
Using the first-order Taylor series expansion approximation, we get
Figure FDA0003718076810000014
Figure FDA0003718076810000014
步骤4:对于阵元位置误差,由于阵元是分别独立安装的,因此其位置误差在每个阵元上是不相等的;设第n个阵元的阵元位置误差Δdn,将
Figure FDA0003718076810000015
利用一阶泰勒级数展开近似,有
Step 4: For the position error of the array element, since the array elements are installed independently, the position error of each array element is not equal; set the position error Δd n of the nth array element, and set
Figure FDA0003718076810000015
Using the first-order Taylor series expansion approximation, we have
Figure FDA0003718076810000016
Figure FDA0003718076810000016
步骤5:将步骤3和步骤4中的am,n代入到步骤2中的矩阵形式,有:Step 5: Substitute a m,n in steps 3 and 4 into the matrix form in step 2, there are: y=Ax+A'(f)Δfx+ny=Ax+A'(f)Δfx+n and y=Ax+A'(d)diag{Δd}x+ny=Ax+A'(d)diag{Δd}x+n 其中,A'(f)的第(m,n)个元素为
Figure FDA0003718076810000021
A'(d)的第(m,n)个元素为
Figure FDA0003718076810000022
diag{Δd}∈RN×N表示以Δd1,Δd2,...,ΔdN为对角元素的对角阵;
Among them, the (m,n)th element of A'(f) is
Figure FDA0003718076810000021
The (m,n)th element of A'(d) is
Figure FDA0003718076810000022
diag{Δd}∈R N×N represents a diagonal matrix with Δd 1 , Δd 2 ,...,Δd N as the diagonal elements;
步骤6:令B(f)=[A,A'(f)],s(f)=[xT,ΔfxT]T,B(d)=[A,A'(d)],s(d)=[xT,(diag{Δd}x)T]T,将步骤5中的公式重新写为:Step 6: Let B(f)=[A,A'(f)], s(f)=[x T ,Δfx T ] T , B(d)=[A,A'(d)], s( d)=[x T ,(diag{Δd}x) T ] T , rewrite the formula in step 5 as: y=B(f)s(f)+ny=B(f)s(f)+n and y=B(d)s(d)+ny=B(d)s(d)+n 步骤7:当大部分阵元出现故障时,天线口径函数向量s(f)和s(d)是稀疏的,既向量的大多数元素的值为零;然而只有小部分阵元出现故障时,s(f)和s(d)不是稀疏的,需要对其进行稀疏化;设待测天线阵在无故障时,使用相同口径函数即xideal时的远场辐射测量数据为yideal;现在用yideal和步骤6中的y进行相减,得到Step 7: When most of the array elements fail, the antenna aperture function vectors s(f) and s(d) are sparse, that is, the value of most elements of the vector is zero; however, when only a small number of array elements fail, s(f) and s(d) are not sparse and need to be sparsed; suppose the antenna array to be tested is fault-free, the far-field radiation measurement data when using the same aperture function, that is, x ideal , is y ideal ; now use y ideal and y in step 6 are subtracted to get yideal-y=B(f)(sideal(f)-s(f))+ny ideal -y=B(f)(s ideal (f)-s(f))+n and yideal-y=B(d)(sideal(d)-s(d))+ny ideal -y=B(d)(s ideal (d)-s(d))+n 其中,
Figure FDA0003718076810000023
显然,当只有小部分阵元出现故障时,(sideal(f)-s(f))和(sideal(d)-s(d))稀疏;
in,
Figure FDA0003718076810000023
Obviously, when only a small part of the array elements fail, (s ideal (f)-s(f)) and (s ideal (d)-s(d)) are sparse;
步骤8:重建的阵列口径函数的值不应该超过理想的口径函数的值,即x≤xideal,设已知频率漂移的范围为Δfmin≤Δf≤Δfmax,阵元位置误差的范围为Δdmin≤Δd≤Δdmax,将上述线性约束加入到步骤7中(sideal(f)-s(f))和(sideal(d)-s(d))的求解优化问题中;Step 8: The value of the reconstructed array aperture function should not exceed the value of the ideal aperture function, that is, x≤x ideal , set the range of the known frequency drift as Δf min ≤Δf≤Δf max , and the range of the array element position error as Δd min ≤Δd≤Δd max , the above-mentioned linear constraints are added to the solution optimization problems of (s ideal (f)-s(f)) and (s ideal (d)-s(d)) in step 7; 步骤9:利用基寻踪方法,将步骤7中的(sideal(f)-s(f))和(sideal(d)-s(d))的求解问题建模为以下优化问题:Step 9: Using the basis pursuit method, the solution problems of (s ideal (f)-s(f)) and (s ideal (d)-s(d)) in step 7 are modeled as the following optimization problems:
Figure FDA0003718076810000031
Figure FDA0003718076810000031
Figure FDA0003718076810000032
Figure FDA0003718076810000032
Figure FDA0003718076810000033
Figure FDA0003718076810000033
and
Figure FDA0003718076810000034
Figure FDA0003718076810000034
Figure FDA0003718076810000035
Figure FDA0003718076810000035
Figure FDA0003718076810000036
Figure FDA0003718076810000036
采用凸优化工具求解上述问题得到阵列天线的故障诊断结果。Using convex optimization tools to solve the above problems, the fault diagnosis results of the array antenna are obtained.
CN201810677164.6A 2018-06-27 2018-06-27 Antenna array fault diagnosis method considering array errors Expired - Fee Related CN108932381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810677164.6A CN108932381B (en) 2018-06-27 2018-06-27 Antenna array fault diagnosis method considering array errors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810677164.6A CN108932381B (en) 2018-06-27 2018-06-27 Antenna array fault diagnosis method considering array errors

Publications (2)

Publication Number Publication Date
CN108932381A CN108932381A (en) 2018-12-04
CN108932381B true CN108932381B (en) 2022-10-11

Family

ID=64446387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810677164.6A Expired - Fee Related CN108932381B (en) 2018-06-27 2018-06-27 Antenna array fault diagnosis method considering array errors

Country Status (1)

Country Link
CN (1) CN108932381B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188537B (en) * 2019-07-05 2021-09-28 中国信息通信研究院 Near-field wireless channel simulation measurement method and system based on forward optimization
CN111505394A (en) * 2020-03-30 2020-08-07 北京邮电大学 Antenna spherical surface near field measurement method based on probe antenna position error correction
CN111523568B (en) * 2020-04-03 2022-05-03 电子科技大学 An Antenna Array Fault Diagnosis Method Based on Deep Neural Network and Radiation Data Compensation
CN112597703B (en) * 2020-12-22 2022-08-23 浙江大学 Variable-size array structure performance prediction method based on double-branch deep neural network
CN112595902B (en) * 2020-12-24 2022-07-15 中国科学技术大学 Method and device for fault diagnosis of array antenna system
CN114239259B (en) * 2021-12-10 2024-06-28 厦门大学 Ring array diagnosis method based on phase-mode space parameter estimation
CN115017936B (en) * 2022-04-26 2025-02-11 电子科技大学长三角研究院(湖州) A phased array radar element fault diagnosis method based on dual-stream DCNN
CN115561530B (en) * 2022-11-10 2025-05-23 电子科技大学 Antenna array fault diagnosis method based on data tolerance analysis extension

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107015066A (en) * 2017-03-27 2017-08-04 电子科技大学 A kind of aerial array method for diagnosing faults based on management loading
CN107230842A (en) * 2016-03-24 2017-10-03 罗克韦尔柯林斯公司 The system and method calibrated for array antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196607B2 (en) * 2011-06-10 2013-05-15 株式会社システム・ジェイディー Fault diagnosis method and diagnostic object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230842A (en) * 2016-03-24 2017-10-03 罗克韦尔柯林斯公司 The system and method calibrated for array antenna
CN107015066A (en) * 2017-03-27 2017-08-04 电子科技大学 A kind of aerial array method for diagnosing faults based on management loading

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Failed Sensor Localization Using Amplitude-only Near Field Data;Ying Zhang 等;《IEEE Antennas and Wireless Propagation Letters》;20180531;第17卷(第5期);第886-889页 *
共形阵的优化设计及故障诊断算法研究;龙政斌;《中国优秀硕士学位论文全文数据库(硕士) 信息科技辑》;20180215(第02期);第I136-112页 *

Also Published As

Publication number Publication date
CN108932381A (en) 2018-12-04

Similar Documents

Publication Publication Date Title
CN108932381B (en) Antenna array fault diagnosis method considering array errors
CN107015066B (en) A Fault Diagnosis Method for Antenna Arrays Based on Sparse Bayesian Learning
CN109581281B (en) Moving target positioning method based on arrival time difference and arrival frequency difference
US11774574B2 (en) Methods and system for determining an angle of a detection
CN118707530B (en) A method and system for distinguishing surface and underwater targets based on horizontal array active sonar
Sun et al. Array geometry calibration for underwater compact arrays
CN111142062B (en) Grid-free target direction-of-arrival estimation method utilizing Toeplitz characteristic
CN111812581B (en) Spherical array sound source direction-of-arrival estimation method based on atomic norms
CN115436874B (en) Three-dimensional passive positioning method
CN109298382A (en) A Method for Estimating Direction of Arrival Angle of Non-Uniform Linear Array Based on Expectation Maximum Algorithm
CN111398433B (en) Acoustic emission source positioning method and system based on linear weighted least square method
CN119756344A (en) Robust factor graph optimization integrated navigation method based on adaptive MCMC
CN103778288B (en) Ant colony optimization-based near field sound source localization method under non-uniform array noise condition
CN114692678A (en) A pure azimuth target motion analysis method and system for water surface track planning
CN114089430A (en) A joint inversion method of multi-source data for underground target detection
CN110109052B (en) Target direction finding and array element position estimation method under array element position error condition
CN101477194B (en) A method for locating the source of rotor rubbing acoustic emission
CN108828509B (en) Multi-platform multi-radiation source bearing relation judgment method
CN117471397A (en) Circular array two-dimensional DOA estimation method based on graph signal processing
CN116643281A (en) Target track estimation method, device and equipment based on passive omnidirectional sonar buoy
CN117214901A (en) Target azimuth estimation method based on sparse Bayesian learning
CN115902788A (en) Determining reliability of direction of arrival (DOA) of signals received by a radar system from a source and device for determining reliability
CN108564171A (en) A kind of neural network sound source angle method of estimation based on quick global K mean cluster
CN115130362A (en) Array element position calibration method and system based on channel matching
Zainea et al. A multiple choice OMP algorithm for DOA estimation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221011

CF01 Termination of patent right due to non-payment of annual fee