[go: up one dir, main page]

CN108957253B - An early warning method for insulator pollution flashover caused by irregular high dust - Google Patents

An early warning method for insulator pollution flashover caused by irregular high dust Download PDF

Info

Publication number
CN108957253B
CN108957253B CN201810526474.8A CN201810526474A CN108957253B CN 108957253 B CN108957253 B CN 108957253B CN 201810526474 A CN201810526474 A CN 201810526474A CN 108957253 B CN108957253 B CN 108957253B
Authority
CN
China
Prior art keywords
dusthistorytable
field
value
calculate
record
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810526474.8A
Other languages
Chinese (zh)
Other versions
CN108957253A (en
Inventor
孙宏彬
潘欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Training Center of State Grid Jilin Electric Power Co Ltd
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Training Center of State Grid Jilin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS, Training Center of State Grid Jilin Electric Power Co Ltd filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201810526474.8A priority Critical patent/CN108957253B/en
Publication of CN108957253A publication Critical patent/CN108957253A/en
Application granted granted Critical
Publication of CN108957253B publication Critical patent/CN108957253B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Insulators (AREA)

Abstract

The invention discloses an early warning method for insulator pollution flashover caused by irregular high dust. The method and the device can adapt to the production period of an irregular high-dust production enterprise and the rule of dust generation, carry out early warning on the pollution flashover condition of the insulator in the high-dust environment around the irregular high-dust production enterprise, effectively prevent the pollution flashover condition of the peripheral insulator and provide effective guarantee for the safety of a power grid.

Description

一种非规律性高粉尘导致绝缘子污闪的预警方法An early warning method for insulator pollution flashover caused by irregular high dust

技术领域technical field

本发明公开一种非规律性高粉尘导致绝缘子污闪的预警方法,属于电力设备污染预测技术领域。The invention discloses an early warning method for insulator pollution flashover caused by irregular high dust, and belongs to the technical field of power equipment pollution prediction.

背景技术Background technique

在电力系统中,绝缘子是将电位不同的导电体在机械上相互连接的重要部件,其性能的优劣对整个输电系统的安全运行起着非常关键的作用。接触网绝缘子承受着雨雪雾等恶劣天气及周边厂矿企业工业粉尘的实时考验,这些污物最终将引起大量的电网闪络所造成的事故,因此十分有必要对绝缘子的污闪情况进行检测,清理绝缘子防止发生事故。In power systems, insulators are important components that mechanically connect conductors with different potentials to each other, and their performance plays a critical role in the safe operation of the entire power transmission system. The catenary insulators are subjected to the real-time test of severe weather such as rain, snow and fog and the industrial dust of surrounding factories and mines. These pollutants will eventually cause a large number of accidents caused by power grid flashovers. Therefore, it is very necessary to detect the pollution flashover of insulators. Clean insulators to prevent accidents.

为了预防绝缘子污闪,当前技术主要采用方式包括:一、制定绝缘子检查计划并指派专人进行定期巡检和清扫,该方式的缺点是与清扫计划可能与实际情况具有较大误差,如果计划频度过高那么将耗费大量人力和经费资源,如果频度过低那么可能会导致清扫不及时;二、基于x射线的测量装置检测绝缘子上的盐密度和灰尘密度,该方式需要在线路上安装相关仪器的造价很高,较难大范围推广;三、方式是通过神经网、支持向量机、决策树等智能算法建立一个预测模型,通过找到污染物沉积的速度规律对绝缘子污闪等级进行预测并进行预警,该方式能够在一定程度上对预测绝缘子出现的污闪问题并及时通知工人进行清扫。In order to prevent pollution flashover of insulators, the main methods of current technology include: 1. Formulate an insulator inspection plan and assign special personnel to conduct regular inspection and cleaning. The disadvantage of this method is that the cleaning plan may have a large error with the actual situation. If the planned frequency If the frequency is too high, it will consume a lot of manpower and financial resources. If the frequency is too low, it may lead to untimely cleaning. Second, the X-ray-based measuring device detects the salt density and dust density on the insulator. This method requires the installation of relevant instruments on the line. The cost of insulators is very high, and it is difficult to popularize them on a large scale. Third, the method is to establish a prediction model through intelligent algorithms such as neural networks, support vector machines, decision trees, etc., and to predict the pollution flashover level of insulators by finding the speed rule of pollutant deposition. Early warning, this method can predict the pollution flashover problem of the insulator to a certain extent and notify the workers to clean it in time.

对绝缘子的污闪情况预警可以及时提醒电网企业进行清扫防止事故发生,是解决绝缘子污闪问题的良好解决方案。然而,并不是所有的粉尘污染都是规律和线性的,如:粮食生产企业受到季节、时段的影响较大,同时粮食生产周期、公路运输效率等多方面影响,以均匀线性的方式从历史数据中构建的智能模型会倾向于使用较大时间段粉尘量的均值进行预测,易于遗漏关键粉尘快速积累时段,从而导致预警失败,使得电力企业忽视遗漏绝缘子最可能出现污闪的时段,进而引起事故。The early warning of the pollution flashover of insulators can timely remind power grid companies to clean and prevent accidents, and it is a good solution to solve the pollution flashover problem of insulators. However, not all dust pollution is regular and linear. For example, grain production enterprises are greatly affected by seasons and time periods, and at the same time, grain production cycle, road transportation efficiency and other aspects are affected. The intelligent model built in 2000 tends to use the average value of dust volume in a larger period of time for prediction, which is easy to miss key periods of rapid dust accumulation, resulting in failure of early warning, so that power companies ignore the most likely period of pollution flashover of insulators and cause accidents. .

因此,对于非规律性高粉尘生产企业周边的粉尘情况需要制定专门的预测方法,将生产环节粉尘积累速度、生产粉尘变化规律以时段形式纳入到预测环节,进行较为精确的非规律性高粉尘导致绝缘子污闪预警。Therefore, it is necessary to formulate a special prediction method for the dust situation around the irregular high-dust production enterprises, and incorporate the dust accumulation speed and production dust change law into the prediction link in the form of time periods in the production process. Insulator pollution flashover warning.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,本发明提供一种非规律性高粉尘导致绝缘子污闪的预警方法,通过该方法建立降尘量积累速度算子,可以基于时间周期建立粉尘积累速度与降雨量、风速和湿度之间的关系,并进一步建立污闪决策模型,利用该模型可进行绝缘子污闪预警。In view of the problems existing in the prior art, the present invention provides an early warning method for insulator pollution flashover caused by irregular high dust. Through this method, a dust accumulation rate operator can be established, and the dust accumulation rate, rainfall and wind speed can be established based on a time period. The relationship between pollution flashover and humidity, and further establish a pollution flashover decision model, which can be used for insulator pollution flashover warning.

本发明所述的一种非规律性高粉尘导致绝缘子污闪的预警方法,包括以下步骤:An early warning method for insulator pollution flashover caused by irregular high dust according to the present invention includes the following steps:

1、一种非规律性高粉尘导致绝缘子污闪的预警方法,包括以下步骤:1. An early warning method for insulator pollution flashover caused by irregular high dust, including the following steps:

S1,收集非规律性高粉尘生产企业周边的绝缘子每一天降雨量、降尘量、风速、湿度和污秽等级信息,构建绝缘子历史信息表DustHistoryTable;统计DustHistoryTable的所有数据条目,获得降雨量均值AvgF003,降尘量均值Avg F004,风速均值AvgF005,湿度均值AvgF006:S1, collect the daily rainfall, dustfall, wind speed, humidity and pollution level information of the insulators around the irregular high-dust production enterprises, and build the insulator history information table DustHistoryTable; count all the data entries in the DustHistoryTable to obtain the average rainfall AvgF003, dust reduction Volume mean Avg F004, wind speed mean AvgF005, humidity mean AvgF006:

S101,构建DustHistoryTable,该表包含以下字段:S101, build a DustHistoryTable, the table contains the following fields:

F001:周,表中一条记录对应一年中的第几周;F001: Week, a record in the table corresponds to the week of the year;

F002:日期,表示该条记录对应的是一周中的第几天;F002: Date, indicating that the record corresponds to the day of the week;

F003:降雨量,对应日期的降雨量;F003: rainfall, the rainfall of the corresponding date;

F004:降尘量,对应日期的降尘量;F004: Dust fall amount, the dust fall amount of the corresponding date;

F005:风速,对应日期的风速;F005: wind speed, the wind speed of the corresponding date;

F006:湿度,对应日期的湿度;F006: Humidity, the humidity of the corresponding date;

D001:绝缘子污秽等级,等级分为1到5共五个等级,1为最低级,5为最高级;对于一个绝缘子,每一天收集数据并构建DustHistoryTable的一条记录,并按照时间顺序存储到DustHistoryTable中;D001: Insulator pollution level, the level is divided into five levels from 1 to 5, 1 is the lowest level and 5 is the highest level; for an insulator, data is collected every day and a record of DustHistoryTable is constructed and stored in DustHistoryTable in chronological order. ;

S102,计算统计DustHistoryTable中的所有条目数据,计算F003字段的均值,获得降雨量均值AvgF003,降雨量标准差StdF003;S102, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F003 field, and obtain the mean value of rainfall AvgF003 and the standard deviation of rainfall StdF003;

S103,计算统计DustHistoryTable中的所有条目数据,计算F004字段的均值,获得降尘量均值AvgF004,降尘量标准差StdF004;S103, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F004 field, and obtain the mean value of the dustfall amount AvgF004 and the standard deviation of the dustfall amount StdF004;

S104,计算统计DustHistoryTable中的所有条目数据,计算F005字段的均值,获得风速均值AvgF005,风速标准差StdF005;S104, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F005 field, and obtain the mean value of wind speed AvgF005 and the standard deviation of wind speed StdF005;

S105,计算统计DustHistoryTable中的所有条目数据,计算F006字段的均值,获得湿度均值AvgF006,湿度标准差StdF006;S105, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F006 field, and obtain the humidity mean value AvgF006 and the humidity standard deviation StdF006;

S2,构建非规律性降尘量积累速度算子SpeedOpterator,指定该算子的日期距离参数 DayDistance,DayDistance的值的范围为[7,14],默认值为7;S2, construct an irregular dustfall accumulation speed operator SpeedOpterator, specify the date distance parameter DayDistance of the operator, the value range of DayDistance is [7, 14], and the default value is 7;

S201,指定要处理记录在DustHistoryTable中的位置MPos;S201, specify the location MPos recorded in the DustHistoryTable to be processed;

S202,读取DustHistoryTable的第MPos条记录,获取其F004字段的值,存储到变量TempF004中;S202, read the MPos record of DustHistoryTable, obtain the value of its F004 field, and store it in the variable TempF004;

S203,设定日期距离计数器DayDistanceCounter=0,设定降尘量积累指数DustIndex=0;S203, set the date distance counter DayDistanceCounter=0, and set the dustfall accumulation index DustIndex=0;

S204,读取DustHistoryTable中位置为MPos-DayDistanceCounter的记录,获取其F004 字段的值,存储到变量CurrentF004中;S204, read the record whose position is MPos-DayDistanceCounter in the DustHistoryTable, obtain the value of its F004 field, and store it in the variable CurrentF004;

S205,根据公式计算DustIndex的值,对应公式如下:S205, calculate the value of DustIndex according to the formula, and the corresponding formula is as follows:

Figure GDA0002487855100000031
Figure GDA0002487855100000031

S206,DayDistanceCounter=DayDistanceCounter+1;S206, DayDistanceCounter=DayDistanceCounter+1;

S207,如果DayDistanceCounter>=DayDistance那么转到S208,否则转到S204;S207, if DayDistanceCounter>=DayDistance, then go to S208, otherwise go to S204;

S208,统计DustHistoryTable表中MPos-DayDistance至MPos记录的内容,计算字段F003 的均值,获得时间段降雨量均值MPosAvgF003;S208: Count the contents recorded in the DustHistoryTable from MPos-DayDistance to MPos, calculate the average value of the field F003, and obtain the average rainfall value MPosAvgF003 in the time period;

S209,统计DustHistoryTable表中MPos-DayDistance至MPos记录的内容,计算字段F005 的均值,获得时间段风速均值MPosAvgF005;S209, count the contents recorded in the DustHistoryTable from MPos-DayDistance to MPos, calculate the average value of the field F005, and obtain the average wind speed value MPosAvgF005 of the time period;

S210,统计DustHistoryTable表中MPos-DayDistance至MPos记录的内容,计算字段F006 的均值,获得时间段湿度均值MPosAvgF006;S210, count the contents recorded from MPos-DayDistance to MPos in the DustHistoryTable, calculate the average value of the field F006, and obtain the average humidity value MPosAvgF006 of the time period;

S211,计算降雨量的降尘量积累指数F003Index,计算公式为:S211, calculate the dust accumulation index F003Index of rainfall, and the calculation formula is:

Figure GDA0002487855100000032
Figure GDA0002487855100000032

S212,计算风速的降尘量积累指数F005Index,计算公式为:S212, calculate the dust accumulation index F005Index of the wind speed, and the calculation formula is:

Figure GDA0002487855100000033
Figure GDA0002487855100000033

S213,计算湿度的降尘量积累指数F006Index,计算公式为:S213, calculate the dust accumulation index F006Index of humidity, and the calculation formula is:

Figure GDA0002487855100000034
Figure GDA0002487855100000034

S214,输出DustIndex,F003Index,F005Index,F006Index;S214, output DustIndex, F003Index, F005Index, F006Index;

S3,构建绝缘子污闪决策表DustDecsionTable:S3, build an insulator pollution flashover decision table DustDecsionTable:

S301,建立DustDecsionTable表,DustDecsionTable的字段结构如下;S301, create a DustDecsionTable table, and the field structure of the DustDecsionTable is as follows;

IF01,输入字段1;IF01, input field 1;

IF02,输入字段2;IF02, input field 2;

IF03,输入字段3;IF03, input field 3;

IF04,输入字段4;IF04, input field 4;

IF05,输入字段5;IF05, input field 5;

IF06,输入字段6;IF06, input field 6;

DF01,输出字段DF01;DF01, output field DF01;

S4,建立绝缘子污闪决策表记录产生器DecsionCreater:S4, establish the insulator pollution flashover decision table record generator DecsionCreater:

S401,指定要处理记录在DustHistoryTable中的位置MPos;S401, specify the position MPos recorded in the DustHistoryTable to be processed;

S402,对于DustHistoryTable,取出每一条记录放入CurrentRecord中,CurrentRecord的字段结构与DustHistoryTable字段结构相同;S402, for DustHistoryTable, take out each record and put it into CurrentRecord. The field structure of CurrentRecord is the same as that of DustHistoryTable;

S403,建立DustDecsionTable表一条记录DecsionRecord,DecsionRecord中的字段结构与DustDecsionTable的字段结构相同;S403, create a record DecsionRecord in the DustDecsionTable table, and the field structure in the DecsionRecord is the same as that of the DustDecsionTable;

S404,DecsionRecord中所有字段的值设置为0;S404, the values of all fields in the DecisionRecord are set to 0;

S405,设定DecsionRecord的IF01字段的值,计算公式为:S405, set the value of the IF01 field of the DecsionRecord, and the calculation formula is:

Figure GDA0002487855100000041
Figure GDA0002487855100000041

S406,设定DecsionRecord的IF02字段的值,计算公式为:S406, set the value of the IF02 field of the DecsionRecord, and the calculation formula is:

Figure GDA0002487855100000042
Figure GDA0002487855100000042

S407,通过SpeedOpterator计算DustHistoryTable的第MPos条记录,获得DustIndex, F003Index,F005Index,F006Index的值;S407, calculate the MPos record of DustHistoryTable through SpeedOpterator, and obtain the values of DustIndex, F003Index, F005Index, and F006Index;

S408,DecsionRecord的IF03字段的值=DustIndex,DecsionRecord的IF04字段的值=F003Index,DecsionRecord的IF05字段的值=F005Index,DecsionRecord的IF06字段的值=F006Index;S408, the value of the IF03 field of the DecsionRecord=DustIndex, the value of the IF04 field of the DecsionRecord=F003Index, the value of the IF05 field of the DecsionRecord=F005Index, the value of the IF06 field of the DecsionRecord=F006Index;

S409,暂存变量TempDec=0;S409, the temporary storage variable TempDec=0;

S410,DustHistoryTable总记录条目数<(MPos+DayDistance)则转到S412,否则转到 S411;S410, if the total number of entries in DustHistoryTable<(MPos+DayDistance), go to S412, otherwise go to S411;

S411,读取DustHistoryTable的MPos至MPos+DayDistance所有条目的记录,获取其D001 字段的最大值存储到暂存变量TempDec中;S411, read the records of all entries from MPos to MPos+DayDistance of DustHistoryTable, obtain the maximum value of its D001 field and store it in the temporary storage variable TempDec;

S412,DecsionRecord的DF01字段的值=TempDec;S412, the value of the DF01 field of the DecsionRecord=TempDec;

S413,将DecsionRecord追加到DustDecsionTable的末尾;S413, append DecsionRecord to the end of DustDecsionTable;

S5,对于DustHistoryTable表中的每一条记录,调用绝缘子污闪决策表记录产生器 DecsionCreater来生成DustDecsionTable表的内容;通过支持向量机算法学习DustDecsionTable的所用内容,获得污闪决策模型Model:S5, for each record in the DustHistoryTable table, call the insulator pollution flashover decision table record generator DecsionCreater to generate the content of the DustDecsionTable table; learn the contents of the DustDecsionTable through the support vector machine algorithm, and obtain the pollution flashover decision model Model:

S501,DustHistoryTable表中的每一条记录,调用绝缘子污闪决策表记录产生器DecsionCreater来生成DustDecsionTable表的内容;S501, for each record in the DustHistoryTable, call the insulator pollution flashover decision table record generator DecsionCreater to generate the content of the DustDecsionTable table;

S502,通过支持向量机算法学习DustDecsionTable的所用内容,获得支持向量机模型 Model;S502, learn the content of DustDecsionTable through the support vector machine algorithm, and obtain the support vector machine model Model;

DustDecsionTable的字段IF01,IF02,IF03,IF04,IF05,IF06作为支持向量机的输入,DF01 作为支持向量机的输出,通过支持向量机算法学习DustDecsionTable的所有内容,获得支持向量机模型Model;The fields IF01, IF02, IF03, IF04, IF05, and IF06 of DustDecsionTable are used as the input of SVM, and DF01 is used as the output of SVM, and all the contents of DustDecsionTable are learned through SVM algorithm, and the SVM model Model is obtained;

S6,每一天在绝缘子附近收集降雨量、降尘量、风速和湿度,将内容插入到DustHistoryTable的末尾,通过DecsionCreater处理数据,利用Model对污闪情况进行预警:S6, collect rainfall, dustfall, wind speed and humidity near the insulator every day, insert the content at the end of DustHistoryTable, process the data through DecsionCreater, and use Model to warn of pollution flashover:

S601,建立DustHistoryTable表的一条记录MyRecord,对于MyRecord其字段指定为如下值:S601, a record MyRecord of the DustHistoryTable table is created, and the fields of MyRecord are specified as the following values:

F001=当前为第几周;F001 = the current week;

F002=当前为一周中的第几天;F002 = the current day of the week;

F003=当前降雨量;F003 = current rainfall;

F004=当前降尘量;F004=Current dust reduction amount;

F005=当前的风速;F005=current wind speed;

F006=当前的湿度;F006 = current humidity;

D001=0;D001 = 0;

S602,将MyRecord追加到DustHistoryTable表的末尾;S602, append MyRecord to the end of the DustHistoryTable;

S603,利用DecsionCreater处理DustHistoryTable表的最末尾数据;S603, use DecsionCreater to process the last data of DustHistoryTable;

S604,对于DustDecsionTable,利用Model对其最后一条记录进行预测,其中最后一条记录的IF01,IF02,IF03,IF04,IF05,IF06作为模型的输入;S604, for DustDecsionTable, use Model to predict its last record, wherein IF01, IF02, IF03, IF04, IF05, and IF06 of the last record are used as the input of the model;

S605,result=Model的输出;S605, result=output of Model;

S606,如果result大于等于4,则转到S607,否则转到S608;S606, if the result is greater than or equal to 4, go to S607, otherwise go to S608;

S607,可能出现污闪,进行污闪预警;转到S609;S607, pollution flashover may occur, carry out pollution flashover warning; go to S609;

S608,不能出现污闪,不进行预警;S608, no pollution flashover occurs, and no warning is given;

S609,预测过程结束。S609, the prediction process ends.

本发明的有益效果是:提供一种非规律性高粉尘导致绝缘子污闪的预警方法,通过该方法建立降尘量积累速度算子,可以基于时间周期建立粉尘积累速度与降雨量、风速和湿度之间的关系,并进一步建立污闪决策模型,利用该模型可进行绝缘子污闪预警。通过本发明专利,可以适应非规律性高粉尘生产企业的生产周期和产生粉尘的规律,对非规律性高粉尘生产企业周边的高粉尘环境中的绝缘子的污闪情况进行预警,有效防止周边绝缘子污闪情况的发生,可以为电网安全提供有效保障。The beneficial effects of the invention are as follows: an early warning method for insulator pollution flashover caused by irregular high dust is provided, and the dust accumulation rate operator can be established by this method, and the relationship between the dust accumulation rate and the rainfall, wind speed and humidity can be established based on the time period. The relationship between the two, and further establish a pollution flashover decision-making model, which can be used for insulator pollution flashover warning. Through the patent of the present invention, it can adapt to the production cycle of irregular high-dust production enterprises and the rules of dust generation, and give early warning to the pollution flashover of insulators in high-dust environments around irregular high-dust production enterprises, effectively preventing surrounding insulators. The occurrence of pollution flashover can provide an effective guarantee for the security of the power grid.

附图说明Description of drawings

图1为实施例1该地区2016年的历史信息表的F001字段数据图;Fig. 1 is the F001 field data diagram of the historical information table of this region in Example 1 in 2016;

图2为实施例1该地区2016年的历史信息表的F002字段数据图;Fig. 2 is the F002 field data diagram of the historical information table of this region in Example 1 in 2016;

图3为实施例1该地区2016年的历史信息表的F003字段数据图:Fig. 3 is the F003 field data diagram of the historical information table of embodiment 1 this area in 2016:

图4为实施例1该地区2016年的历史信息表的F004字段数据图:Fig. 4 is the F004 field data diagram of the historical information table of the region in Example 1 in 2016:

图5为实施例1该地区2016年的历史信息表的F005字段数据图;Fig. 5 is the F005 field data diagram of the historical information table of this region in Example 1 in 2016;

图6为实施例1该地区2016年的历史信息表的F006字段数据图;Fig. 6 is the F006 field data diagram of the historical information table of this region in Example 1 in 2016;

图7为实施例1该地区2016年的历史信息表的D001字段数据图;Fig. 7 is the D001 field data diagram of the historical information table of this region in Example 1 in 2016;

图8为实施例1本发明计算的该地区2016年的绝缘子污闪决策表的IF01字段数据图;Fig. 8 is the IF01 field data diagram of the insulator pollution flashover decision table in the region in 2016 calculated by the present invention in Example 1;

图9为实施例1本发明计算的该地区2016年的绝缘子污闪决策表的IF02字段数据图;Fig. 9 is the IF02 field data diagram of the insulator pollution flashover decision table in the region in 2016 calculated by the present invention in Example 1;

图10为实施例1本发明计算的该地区2016年的绝缘子污闪决策表的IF03字段数据图:Fig. 10 is the IF03 field data diagram of the insulator pollution flashover decision table in the region in 2016 calculated by the present invention in Example 1:

图11为实施例1本发明计算的该地区2016年的绝缘子污闪决策表的IF04字段数据图:Figure 11 is the IF04 field data diagram of the insulator pollution flashover decision table in the region in 2016 calculated by the present invention in Example 1:

图12为实施例1本发明计算的该地区2016年的绝缘子污闪决策表的IF05字段数据图;Figure 12 is the IF05 field data diagram of the insulator pollution flashover decision table in the region in 2016 calculated by the present invention in Example 1;

图13为实施例1本发明计算的该地区2016年的绝缘子污闪决策表的IF06字段数据图;Figure 13 is the IF06 field data diagram of the insulator pollution flashover decision table in the region in 2016 calculated by the present invention in Example 1;

图14为实施例1本发明计算的该地区2016年的绝缘子污闪决策表的DF01字段数据图;Figure 14 is the DF01 field data diagram of the insulator pollution flashover decision table in the region in 2016 calculated by the present invention in Example 1;

图15为2017年全年经过人工检测,确实可能出现污闪的情况图;Figure 15 shows the situation where pollution flashover may indeed occur after manual inspection in the whole year of 2017;

图16为本发明方法污闪的预测结果图;Fig. 16 is the prediction result diagram of the pollution flashover of the method of the present invention;

图17本发明方法预测为可能出现污闪的情况图。FIG. 17 is a diagram of a situation where the method of the present invention predicts that pollution flashover may occur.

具体实施方式Detailed ways

通过以下实施例描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅仅是举例说明,本发明的保护范围是由所附权利要求书限定的,本领域的技术人员在不背离本发明 的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,这些变更和修改均落入本发明的保护范围。The specific embodiments of the present invention are described by the following examples, but those skilled in the art should understand that this is only an illustration, the protection scope of the present invention is defined by the appended claims, and those skilled in the art should not On the premise of departing from the principle and essence of the present invention, various changes or modifications can be made to these embodiments, and these changes and modifications all fall within the protection scope of the present invention.

实施例1Example 1

以某个地区的一个绝缘子为例:Take an insulator in a certain area as an example:

1、第一步引入该地区2016年的全年数据,构建DustHistoryTable,对于DustHistoryTable中的各个字段其值如下图所示:图1为该地区2016年的全年数据周数图;图2为该地区2016年的全年数据日期图;图3为该地区2016年的全年数据降雨量;图4为该地区2016年的全年数据降尘量;图5为该地区2016年的全年数据风速;图6为该地区2016年的全年数据湿度;图7为该地区2016年的全年绝缘子污秽等级数据;计算获得AvgF003=5.7;Avg F004=2.83;AvgF005=2.44;AvgF006=6.08;1. The first step is to introduce the annual data of the region in 2016 and build a DustHistoryTable. The values of each field in the DustHistoryTable are shown in the following figure: Figure 1 is the weekly data map of the region in 2016; Figure 2 is the The date map of the region's annual data in 2016; Figure 3 is the region's annual data rainfall in 2016; Figure 4 is the region's 2016 annual data dustfall; Figure 5 is the region's 2016 annual data wind speed ; Figure 6 is the annual data humidity in the region in 2016; Figure 7 is the annual insulator pollution level data in the region in 2016; AvgF003=5.7; Avg F004=2.83; AvgF005=2.44; AvgF006=6.08;

2、第二步指定DayDistance=7,构建非规律性降尘量积累速度算子SpeedOpterator;2. In the second step, specify DayDistance=7, and construct the SpeedOpterator for the accumulation speed of irregular dustfall;

在第三步构建绝缘子污闪决策表DustDecsionTable;In the third step, build the DustDecsionTable of the insulator pollution flashover decision table;

在第4步建立绝缘子污闪决策表记录产生器DecsionCreater;In step 4, establish the insulator pollution flashover decision table record generator DecsionCreater;

3、第五步生成DustDecsionTable的内容,对于DustHistoryTable其内容如下:图8为本发明计算的该地区2016年的全年数据周数图;图9为本发明计算的该地区2016年的全年数据日期图;图10为本发明计算的该地区2016年的全年数据降雨量;图11为本发明计算的该地区2016年的全年数据降尘量;图12为本发明计算的该地区2016年的全年数据风速;图13为本发明计算的该地区2016年的全年数据湿度;图14为本发明计算的该地区2016年的全年绝缘子污秽等级数据;在DustHistoryTable内容基础上获得污闪决策模型Model;3. The fifth step is to generate the content of the DustDecsionTable. The content of the DustHistoryTable is as follows: Figure 8 is the weekly data chart of the region in 2016 calculated by the present invention; Figure 9 is the annual data of the region in 2016 calculated by the present invention. Date chart; Figure 10 is the annual data rainfall in the region in 2016 calculated by the present invention; Figure 11 is the annual data dustfall in the region in 2016 calculated by the present invention; Figure 12 is the region in 2016 calculated by the present invention. Figure 13 is the annual data humidity of the region in 2016 calculated by the present invention; Figure 14 is the annual insulator pollution level data in the region in 2016 calculated by the present invention; based on the content of DustHistoryTable, the pollution flashover is obtained Decision model Model;

4、第六步,选取该绝缘子的2017年全年数据,进行预测;4. In the sixth step, select the 2017 annual data of the insulator for prediction;

2017年全年经过人工检测,确实可能出现污闪的情况如图15所示(在该图表中1为需要进行污闪预警,0为不需要进行污闪预警)。After manual inspection in 2017, it is shown in Figure 15 that pollution flashover may indeed occur (in this chart, 1 means that a pollution flashover warning is required, and 0 means that no pollution flashover warning is required).

对于本发明污闪的预测结果如图16所示;存在污闪,但是本发明描述的方法未能预测出来的次数为0次;不存在污闪,但是本发明方法预测为可能出现污闪的情况如图17所示:对于全年数据仅出现9次。从上面的实验可以看出,本发明方法可以较为成功的预测绝缘子的污闪情况;漏报次数为0次。The prediction result of the pollution flashover of the present invention is shown in Figure 16; the pollution flashover exists, but the number of times that the method described in the present invention fails to predict is 0; the pollution flashover does not exist, but the method of the present invention predicts that the pollution flashover may occur The situation is shown in Figure 17: only 9 times for the full year data. It can be seen from the above experiments that the method of the present invention can successfully predict the pollution flashover of the insulator; the number of missed reports is 0.

实施例2Example 2

本发明计算方法与传统方法的对比:The comparison between the calculation method of the present invention and the traditional method:

在某粮食生产企业的周边收集20个绝缘子2017年全年的数据,对绝缘子污闪进行预警,并与传统的基于历史数据的神经网、决策树算法进行对比,对比结果如下:The data of 20 insulators in 2017 were collected around a grain production enterprise to give early warning to insulator pollution flashover, and compared with traditional neural network and decision tree algorithms based on historical data. The comparison results are as follows:

Figure GDA0002487855100000081
Figure GDA0002487855100000081

结论:可以看出由于粮食生产企业具有一定的非规律性,所以基于历史数据的神经网和决策树方法均存在较大的漏报可能,而本发明的方法漏报次数为0次,可以较好的防止污闪事件的发生。Conclusion: It can be seen that due to the irregularity of grain production enterprises, the neural network and decision tree methods based on historical data have a greater possibility of underreporting, and the method of the present invention has 0 missed reports, which can be compared Good to prevent pollution flashover from happening.

在某粮食生产企业的某一个绝缘子进行污闪预警,经人工长期监测确定的3次可能出现的情况。对本专利方法和传统的基于历史数据的神经网、决策树算法进行对比Pollution flashover warning is carried out on a certain insulator of a grain production enterprise, and three possible situations are determined by manual long-term monitoring. Compare this patented method with traditional neural network and decision tree algorithms based on historical data

Figure GDA0002487855100000082
Figure GDA0002487855100000082

结论:可以看出本发明可以比传统方法和人工方法更早的确定污闪风险。Conclusion: It can be seen that the present invention can determine the pollution flashover risk earlier than the traditional method and the manual method.

Claims (1)

1.一种非规律性高粉尘导致绝缘子污闪的预警方法,包括以下步骤:1. An early warning method for insulator pollution flashover caused by irregular high dust, comprising the following steps: S1,收集非规律性高粉尘生产企业周边的绝缘子每一天降雨量、降尘量、风速、湿度和污秽等级信息,构建绝缘子历史信息表DustHistoryTable;统计DustHistoryTable的所有数据条目,获得降雨量均值AvgF003,降尘量均值Avg F004,风速均值AvgF005,湿度均值AvgF006:S1, collect the daily rainfall, dustfall, wind speed, humidity and pollution level information of the insulators around the irregular high-dust production enterprises, and build the insulator history information table DustHistoryTable; count all the data entries in the DustHistoryTable to obtain the average rainfall AvgF003, dust reduction Volume mean Avg F004, wind speed mean AvgF005, humidity mean AvgF006: S101,构建DustHistoryTable,该表包含以下字段:S101, build a DustHistoryTable, the table contains the following fields: F001:周,表中一条记录对应一年中的第几周;F001: Week, a record in the table corresponds to the week of the year; F002:日期,表示该条记录对应的是一周中的第几天;F002: Date, indicating that the record corresponds to the day of the week; F003:降雨量,对应日期的降雨量;F003: rainfall, the rainfall of the corresponding date; F004:降尘量,对应日期的降尘量;F004: Dust fall amount, the dust fall amount of the corresponding date; F005:风速,对应日期的风速;F005: wind speed, the wind speed of the corresponding date; F006:湿度,对应日期的湿度;F006: Humidity, the humidity of the corresponding date; D001:绝缘子污秽等级,等级分为1到5共五个等级,1为最低级,5为最高级;对于一个绝缘子,每一天收集数据并构建DustHistoryTable的一条记录,并按照时间顺序存储到DustHistoryTable中;D001: Insulator pollution level, the level is divided into five levels from 1 to 5, 1 is the lowest level and 5 is the highest level; for an insulator, data is collected every day and a record of DustHistoryTable is constructed and stored in DustHistoryTable in chronological order. ; S102,计算统计DustHistoryTable中的所有条目数据,计算F003字段的均值,获得降雨量均值AvgF003,降雨量标准差StdF003;S102, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F003 field, and obtain the mean value of rainfall AvgF003 and the standard deviation of rainfall StdF003; S103,计算统计DustHistoryTable中的所有条目数据,计算F004字段的均值,获得降尘量均值AvgF004,降尘量标准差StdF004;S103, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F004 field, and obtain the mean value of the dustfall amount AvgF004 and the standard deviation of the dustfall amount StdF004; S104,计算统计DustHistoryTable中的所有条目数据,计算F005字段的均值,获得风速均值AvgF005,风速标准差StdF005;S104, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F005 field, and obtain the mean value of wind speed AvgF005 and the standard deviation of wind speed StdF005; S105,计算统计DustHistoryTable中的所有条目数据,计算F006字段的均值,获得湿度均值AvgF006,湿度标准差StdF006;S105, calculate and count all entry data in the DustHistoryTable, calculate the mean value of the F006 field, and obtain the humidity mean value AvgF006 and the humidity standard deviation StdF006; S2,构建非规律性降尘量积累速度算子SpeedOpterator,指定该算子的日期距离参数DayDistance,DayDistance的值的范围为[7,14],默认值为7;S2, construct an irregular dustfall accumulation speed operator SpeedOpterator, specify the date distance parameter DayDistance of the operator, the value range of DayDistance is [7, 14], and the default value is 7; S201,指定要处理记录在DustHistoryTable中的位置MPos;S201, specify the location MPos recorded in the DustHistoryTable to be processed; S202,读取DustHistoryTable的第MPos条记录,获取其F004字段的值,存储到变量TempF004中;S202, read the MPos record of DustHistoryTable, obtain the value of its F004 field, and store it in the variable TempF004; S203,设定日期距离计数器DayDistanceCounter=0,设定降尘量积累指数DustIndex=0;S203, set the date distance counter DayDistanceCounter=0, and set the dustfall accumulation index DustIndex=0; S204,读取DustHistoryTable中位置为MPos-DayDistanceCounter的记录,获取其F004字段的值,存储到变量CurrentF004中;S204, read the record whose location is MPos-DayDistanceCounter in DustHistoryTable, obtain the value of its F004 field, and store it in the variable CurrentF004; S205,根据公式计算DustIndex的值,对应公式如下:S205, calculate the value of DustIndex according to the formula, and the corresponding formula is as follows:
Figure FDA0002487855090000021
Figure FDA0002487855090000021
S206,DayDistanceCounter=DayDistanceCounter+1;S206, DayDistanceCounter=DayDistanceCounter+1; S207,如果DayDistanceCounter>=DayDistance那么转到S208,否则转到S204;S207, if DayDistanceCounter>=DayDistance, then go to S208, otherwise go to S204; S208,统计DustHistoryTable表中MPos-DayDistance至MPos记录的内容,计算字段F003的均值,获得时间段降雨量均值MPosAvgF003;S208, count the contents recorded in the DustHistoryTable from MPos-DayDistance to MPos, calculate the average value of the field F003, and obtain the average rainfall value MPosAvgF003 in the time period; S209,统计DustHistoryTable表中MPos-DayDistance至MPos记录的内容,计算字段F005的均值,获得时间段风速均值MPosAvgF005;S209, count the contents recorded in the DustHistoryTable from MPos-DayDistance to MPos, calculate the average value of the field F005, and obtain the average wind speed value MPosAvgF005 of the time period; S210,统计DustHistoryTable表中MPos-DayDistance至MPos记录的内容,计算字段F006的均值,获得时间段湿度均值MPosAvgF006;S210, count the contents recorded in the DustHistoryTable from MPos-DayDistance to MPos, calculate the average value of the field F006, and obtain the average humidity value MPosAvgF006 of the time period; S211,计算降雨量的降尘量积累指数F003Index,计算公式为:S211, calculate the dust accumulation index F003Index of rainfall, and the calculation formula is:
Figure FDA0002487855090000022
Figure FDA0002487855090000022
S212,计算风速的降尘量积累指数F005Index,计算公式为:S212, calculate the dust accumulation index F005Index of the wind speed, and the calculation formula is:
Figure FDA0002487855090000023
Figure FDA0002487855090000023
S213,计算湿度的降尘量积累指数F006Index,计算公式为:S213, calculate the dust accumulation index F006Index of humidity, and the calculation formula is:
Figure FDA0002487855090000024
Figure FDA0002487855090000024
S214,输出DustIndex,F003Index,F005Index,F006Index;S214, output DustIndex, F003Index, F005Index, F006Index; S3,构建绝缘子污闪决策表DustDecsionTable:S3, build an insulator pollution flashover decision table DustDecsionTable: S301,建立DustDecsionTable表,DustDecsionTable的字段结构如下;S301, create a DustDecsionTable table, and the field structure of the DustDecsionTable is as follows; IF01,输入字段1;IF01, input field 1; IF02,输入字段2;IF02, input field 2; IF03,输入字段3;IF03, input field 3; IF04,输入字段4;IF04, input field 4; IF05,输入字段5;IF05, input field 5; IF06,输入字段6;IF06, input field 6; DF01,输出字段DF01;DF01, output field DF01; S4,建立绝缘子污闪决策表记录产生器DecsionCreater:S4, establish the insulator pollution flashover decision table record generator DecsionCreater: S401,指定要处理记录在DustHistoryTable中的位置MPos;S401, specify the position MPos recorded in the DustHistoryTable to be processed; S402,对于DustHistoryTable,取出每一条记录放入CurrentRecord中,CurrentRecord的字段结构与DustHistoryTable字段结构相同;S402, for DustHistoryTable, take out each record and put it into CurrentRecord. The field structure of CurrentRecord is the same as that of DustHistoryTable; S403,建立DustDecsionTable表一条记录DecsionRecord,DecsionRecord中的字段结构与DustDecsionTable的字段结构相同;S403, create a record DecsionRecord in the DustDecsionTable table, and the field structure in the DecsionRecord is the same as that of the DustDecsionTable; S404,DecsionRecord中所有字段的值设置为0;S404, the values of all fields in the DecisionRecord are set to 0; S405,设定DecsionRecord的IF01字段的值,计算公式为:S405, set the value of the IF01 field of the DecsionRecord, and the calculation formula is:
Figure FDA0002487855090000031
Figure FDA0002487855090000031
S406,设定DecsionRecord的IF02字段的值,计算公式为:S406, set the value of the IF02 field of the DecsionRecord, and the calculation formula is:
Figure FDA0002487855090000032
Figure FDA0002487855090000032
S407,通过SpeedOpterator计算DustHistoryTable的第MPos条记录,获得DustIndex,F003Index,F005Index,F006Index的值;S407, calculate the MPos record of DustHistoryTable through SpeedOpterator, and obtain the values of DustIndex, F003Index, F005Index, and F006Index; S408,DecsionRecord的IF03字段的值=DustIndex,DecsionRecord的IF04字段的值=F003Index,DecsionRecord的IF05字段的值=F005Index,DecsionRecord的IF06字段的值=F006Index;S408, the value of the IF03 field of the DecsionRecord=DustIndex, the value of the IF04 field of the DecsionRecord=F003Index, the value of the IF05 field of the DecsionRecord=F005Index, the value of the IF06 field of the DecsionRecord=F006Index; S409,暂存变量TempDec=0;S409, the temporary storage variable TempDec=0; S410,DustHistoryTable总记录条目数<(MPos+DayDistance)则转到S412,否则转到S411;S410, if the total number of DustHistoryTable record entries < (MPos+DayDistance), go to S412, otherwise go to S411; S411,读取DustHistoryTable的MPos至MPos+DayDistance所有条目的记录,获取其D001字段的最大值存储到暂存变量TempDec中;S411, read the records of all entries from MPos to MPos+DayDistance of DustHistoryTable, obtain the maximum value of its D001 field and store it in the temporary storage variable TempDec; S412,DecsionRecord的DF01字段的值=TempDec;S412, the value of the DF01 field of the DecsionRecord=TempDec; S413,将DecsionRecord追加到DustDecsionTable的末尾;S413, append DecsionRecord to the end of DustDecsionTable; S5,对于DustHistoryTable表中的每一条记录,调用绝缘子污闪决策表记录产生器DecsionCreater来生成DustDecsionTable表的内容;通过支持向量机算法学习DustDecsionTable的所用内容,获得污闪决策模型Model:S5, for each record in the DustHistoryTable table, call the insulator pollution flashover decision table record generator DecsionCreater to generate the content of the DustDecsionTable table; use the support vector machine algorithm to learn the content of the DustDecsionTable to obtain the pollution flashover decision model Model: S501,DustHistoryTable表中的每一条记录,调用绝缘子污闪决策表记录产生器DecsionCreater来生成DustDecsionTable表的内容;S501, for each record in the DustHistoryTable, call the insulator pollution flashover decision table record generator DecsionCreater to generate the content of the DustDecsionTable table; S502,通过支持向量机算法学习DustDecsionTable的所用内容,获得支持向量机模型Model;S502, learn the content of DustDecsionTable through the support vector machine algorithm, and obtain the support vector machine model Model; DustDecsionTable的字段IF01,IF02,IF03,IF04,IF05,IF06作为支持向量机的输入,DF01作为支持向量机的输出,通过支持向量机算法学习DustDecsionTable的所有内容,获得支持向量机模型Model;The fields IF01, IF02, IF03, IF04, IF05, and IF06 of DustDecsionTable are used as the input of SVM, and DF01 is used as the output of SVM. All the contents of DustDecsionTable are learned through SVM algorithm, and the SVM model Model is obtained; S6,每一天在绝缘子附近收集降雨量、降尘量、风速和湿度,将内容插入到DustHistoryTable的末尾,通过DecsionCreater处理数据,利用Model对污闪情况进行预警:S6, collect rainfall, dustfall, wind speed and humidity near the insulator every day, insert the content at the end of DustHistoryTable, process the data through DecsionCreater, and use Model to warn of pollution flashover: S601,建立DustHistoryTable表的一条记录MyRecord,对于MyRecord其字段指定为如下值:S601, a record MyRecord of the DustHistoryTable table is created, and the fields of MyRecord are specified as the following values: F001=当前为第几周;F001 = the current week; F002=当前为一周中的第几天;F002 = the current day of the week; F003=当前降雨量;F003 = current rainfall; F004=当前降尘量;F004=Current dust reduction amount; F005=当前的风速;F005=current wind speed; F006=当前的湿度;F006 = current humidity; D001=0;D001 = 0; S602,将MyRecord追加到DustHistoryTable表的末尾;S602, append MyRecord to the end of the DustHistoryTable; S603,利用DecsionCreater处理DustHistoryTable表的最末尾数据;S603, use DecsionCreater to process the last data of DustHistoryTable; S604,对于DustDecsionTable,利用Model对其最后一条记录进行预测,其中最后一条记录的IF01,IF02,IF03,IF04,IF05,IF06作为模型的输入;S604, for DustDecsionTable, use Model to predict its last record, wherein IF01, IF02, IF03, IF04, IF05, and IF06 of the last record are used as the input of the model; S605,result=Model的输出;S605, result=output of Model; S606,如果result大于等于4,则转到S607,否则转到S608;S606, if the result is greater than or equal to 4, go to S607, otherwise go to S608; S607,可能出现污闪,进行污闪预警;转到S609;S607, pollution flashover may occur, carry out pollution flashover warning; go to S609; S608,不能出现污闪,不进行预警;S608, no pollution flashover occurs, and no warning is given; S609,预测过程结束。S609, the prediction process ends.
CN201810526474.8A 2018-05-29 2018-05-29 An early warning method for insulator pollution flashover caused by irregular high dust Active CN108957253B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810526474.8A CN108957253B (en) 2018-05-29 2018-05-29 An early warning method for insulator pollution flashover caused by irregular high dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810526474.8A CN108957253B (en) 2018-05-29 2018-05-29 An early warning method for insulator pollution flashover caused by irregular high dust

Publications (2)

Publication Number Publication Date
CN108957253A CN108957253A (en) 2018-12-07
CN108957253B true CN108957253B (en) 2020-08-21

Family

ID=64492060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810526474.8A Active CN108957253B (en) 2018-05-29 2018-05-29 An early warning method for insulator pollution flashover caused by irregular high dust

Country Status (1)

Country Link
CN (1) CN108957253B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765149B (en) * 2018-12-27 2021-12-03 北京英视睿达科技有限公司 Method and device for determining dust reduction amount based on total suspended particulate matters

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896347A (en) * 1974-05-30 1975-07-22 Envirotech Corp Corona wind generating device
CN102521675A (en) * 2011-12-02 2012-06-27 吴福平 Statistics and measurement method for dynamic quality control early warning coefficient and application thereof
CN103473445A (en) * 2013-08-28 2013-12-25 南京南瑞集团公司 Method for evaluating pollution flashover fault probabilities of power transmission lines in online manner
CN104616060A (en) * 2014-12-23 2015-05-13 南京工程学院 Method for predicating contamination severity of insulator based on BP neural network and fuzzy logic
CN104809511A (en) * 2014-01-28 2015-07-29 国际商业机器公司 Insulator pollution prediction method and device
CN204903698U (en) * 2015-04-29 2015-12-23 国家电网公司 Insulator pollution flashover early warning device based on meteorological phenomena and neural network
CN105510525A (en) * 2015-07-23 2016-04-20 深圳供电局有限公司 Power transmission line pollution monitoring device and method
CN105571644A (en) * 2016-01-19 2016-05-11 西安工程大学 Metal dust pollution on-line monitoring device for insulator, and monitoring method thereof
CN106295207A (en) * 2016-08-17 2017-01-04 国网电力科学研究院武汉南瑞有限责任公司 Insulator dirty degree appraisal procedure based on meteorological data statistics
CN106682774A (en) * 2016-12-23 2017-05-17 中国铁路总公司 Contact net insulator pollution flashover prediction method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133922A1 (en) * 2007-04-24 2008-11-06 University Of South Florida Electric power distribution interruption risk assessment calculator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896347A (en) * 1974-05-30 1975-07-22 Envirotech Corp Corona wind generating device
CN102521675A (en) * 2011-12-02 2012-06-27 吴福平 Statistics and measurement method for dynamic quality control early warning coefficient and application thereof
CN103473445A (en) * 2013-08-28 2013-12-25 南京南瑞集团公司 Method for evaluating pollution flashover fault probabilities of power transmission lines in online manner
CN104809511A (en) * 2014-01-28 2015-07-29 国际商业机器公司 Insulator pollution prediction method and device
CN104616060A (en) * 2014-12-23 2015-05-13 南京工程学院 Method for predicating contamination severity of insulator based on BP neural network and fuzzy logic
CN204903698U (en) * 2015-04-29 2015-12-23 国家电网公司 Insulator pollution flashover early warning device based on meteorological phenomena and neural network
CN105510525A (en) * 2015-07-23 2016-04-20 深圳供电局有限公司 Power transmission line pollution monitoring device and method
CN105571644A (en) * 2016-01-19 2016-05-11 西安工程大学 Metal dust pollution on-line monitoring device for insulator, and monitoring method thereof
CN106295207A (en) * 2016-08-17 2017-01-04 国网电力科学研究院武汉南瑞有限责任公司 Insulator dirty degree appraisal procedure based on meteorological data statistics
CN106682774A (en) * 2016-12-23 2017-05-17 中国铁路总公司 Contact net insulator pollution flashover prediction method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Study on the DC Flashover Performance of Various Types of Insulators With Fan-Shaped Nonuniform Pollution;Zhijin Zhang 等;《IEEE Transactions on Power Delivery》;20150831;第30卷(第4期);第1871页-1879页 *
基于BP神经网络和气象统计的绝缘子污闪预警研究;杜双育 等;《陕西电力》;20121120(第11期);第8页-11页 *
基于改进的Hough变换的绝缘子检测方法;柯洪昌;《科技创新与应用》;20171108(第31期);第6页-9页 *

Also Published As

Publication number Publication date
CN108957253A (en) 2018-12-07

Similar Documents

Publication Publication Date Title
CN104809511B (en) Insulator pollution prediction method and apparatus
CN110807550B (en) Distribution transformer overload recognition and early warning method based on neural network and terminal equipment
CN106447227A (en) Urban power grid abnormal state analyzing method and system
CN107453485B (en) A kind of scheduling operation information inspection method and system
CN106600447B (en) Big data cloud analysis method for transformer substation inspection robot centralized monitoring system
CN107870275A (en) Arrester evaluation of running status method based on big data
CN118539432B (en) A method and device for optimizing power grid based on power grid structure diagram
CN114243702B (en) A method, system, and storage medium for predicting operating parameters of an AVC system in a power grid
CN106741015A (en) A kind of subway signal equipment state based on big data repaiies analysis method
CN109472369A (en) The monitoring method and device of power equipment
CN118504803A (en) High-voltage transmission line inspection method and system
CN116736134B (en) A real-time energy storage battery data monitoring method and device
CN116124390A (en) A bridge health monitoring and early warning method and system
CN116522746A (en) Power distribution hosting method for high-energy-consumption enterprises
CN108957253B (en) An early warning method for insulator pollution flashover caused by irregular high dust
CN110738415A (en) Analysis method of electricity stealing users based on electricity collection system and outlier algorithm
CN119784153A (en) A GIS-based intelligent monitoring and early warning method and system for power grid meteorological disasters
CN117691645A (en) Energy storage system for intelligent micro-grid
CN105652157B (en) Method for analyzing health state of power distribution network based on traveling wave electric quantity
CN115798155A (en) A natural gas measurement and analysis system
CN117913386B (en) Maintenance method and system for lithium battery of energy storage power station
CN113378102A (en) Data missing preprocessing method, medium and application for short-term load prediction
CN111027827A (en) Method and device for analyzing operation risk of bottom-preserving communication network and computer equipment
CN114969068B (en) Urban pressure pipe network real-time flow monitoring data analysis method and system
CN118469189B (en) A method for operating safety management of an alkaline water electrolysis hydrogen production system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200723

Address after: Chaoyang District City, Jilin province Changchun wide road 130000 No. 395

Applicant after: CHANGCHUN INSTITUTE OF TECHNOLOGY

Applicant after: TRAINING CENTER OF STATE GRID JILIN ELECTRIC POWER Co.,Ltd.

Address before: Chaoyang District City, Jilin province Changchun wide road 130021 No. 395

Applicant before: CHANGCHUN INSTITUTE OF TECHNOLOGY

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant