CN108962751A - Preparation method of GaN HEMT device - Google Patents
Preparation method of GaN HEMT device Download PDFInfo
- Publication number
- CN108962751A CN108962751A CN201810766959.4A CN201810766959A CN108962751A CN 108962751 A CN108962751 A CN 108962751A CN 201810766959 A CN201810766959 A CN 201810766959A CN 108962751 A CN108962751 A CN 108962751A
- Authority
- CN
- China
- Prior art keywords
- layer
- device body
- gate recess
- gan
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 5
- 238000000137 annealing Methods 0.000 claims abstract description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract 4
- 238000000034 method Methods 0.000 claims description 30
- 238000005530 etching Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims description 2
- 229910015844 BCl3 Inorganic materials 0.000 claims 1
- 238000004381 surface treatment Methods 0.000 abstract description 12
- 229910002601 GaN Inorganic materials 0.000 description 38
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- KPACBFJTZSMBKD-OAQYLSRUSA-N 2-[2-[(4-carbamimidoylphenyl)carbamoyl]-6-methoxypyridin-3-yl]-5-[[(2s)-1-hydroxy-3,3-dimethylbutan-2-yl]carbamoyl]benzoic acid Chemical group C=1C=C(C(N)=N)C=CC=1NC(=O)C1=NC(OC)=CC=C1C1=CC=C(C(=O)N[C@H](CO)C(C)(C)C)C=C1C(O)=O KPACBFJTZSMBKD-OAQYLSRUSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本发明的实施例涉及半导体领域,特别涉及一种GaN HEMT器件的制备方法。Embodiments of the present invention relate to the field of semiconductors, in particular to a method for preparing a GaN HEMT device.
背景技术Background technique
高电子迁移率晶体管(HEMT)在高功率和高频率应用中具有重要意义。特别地,铝镓氮(AlGaN)/氮化镓(GaN)HEMT器件在工作带宽、输出功率、工作效率以及抗辐射能力等方面具有突出优势,应用前景广阔。High electron mobility transistors (HEMTs) are of great importance in high power and high frequency applications. In particular, aluminum gallium nitride (AlGaN)/gallium nitride (GaN) HEMT devices have outstanding advantages in terms of operating bandwidth, output power, operating efficiency, and radiation resistance, and have broad application prospects.
然而,现有的AlGaN/GaN HEMT器件面临表面漏电较大的问题。具体地,栅反向表面漏电流会导致击穿电压降低、跨导降低,使得器件的输出功率降低,并在小信号特性上表现为截止频率和最大振荡频率降低。同时,由于栅反向表面漏电流的增加,会造成器件自身直流功耗的增加,从而导致大功率损耗以及效率降低。However, existing AlGaN/GaN HEMT devices face the problem of large surface leakage. Specifically, the reverse surface leakage current of the gate will lead to a decrease in the breakdown voltage and transconductance, which will reduce the output power of the device, and the cut-off frequency and maximum oscillation frequency will be reduced in terms of small signal characteristics. At the same time, due to the increase of leakage current on the opposite surface of the gate, the DC power consumption of the device itself will increase, resulting in high power loss and reduced efficiency.
因此,有必要改善GaN HEMT器件的表面漏电以提升器件的整体性能。Therefore, it is necessary to improve the surface leakage of GaN HEMT devices to improve the overall performance of the devices.
发明内容Contents of the invention
本发明的实施例旨在提出一种GaN HEMT器件的制备方法,以减少器件表面漏电。The embodiment of the present invention aims to provide a method for manufacturing a GaN HEMT device, so as to reduce device surface leakage.
根据本发明的一个方面,提出一种GaN HEMT器件的制备方法,包括:提供衬底;在衬底上形成器件本体,所述器件本体按自下而上的顺序依次包括第一GaN层、AlGaN层、第二GaN层和介质层;在器件本体中形成栅极凹进,所述栅极凹进穿过介质层、第二GaN层并延伸至AlGaN层表面;对形成有栅极凹进的器件本体进行一次退火;将经一次退火的器件本体用氮气进行表面处理;在经表面处理的栅极凹进中形成金属栅极;对形成有金属栅极的器件进行二次退火。According to one aspect of the present invention, a method for preparing a GaN HEMT device is proposed, including: providing a substrate; forming a device body on the substrate, and the device body sequentially includes a first GaN layer, an AlGaN layer, a second GaN layer and a dielectric layer; forming a gate recess in the device body, the gate recess passing through the dielectric layer, the second GaN layer and extending to the surface of the AlGaN layer; forming a gate recess The device body is annealed once; the device body that has been annealed once is subjected to surface treatment with nitrogen; the metal grid is formed in the grid recess after surface treatment; and the device with the metal grid is subjected to secondary annealing.
根据一些实施方式,形成栅极凹进之前,在介质层上设置掩膜层,使得栅极凹进穿过掩膜层形成;以及进行一次退火之后、进行表面处理之前,去除所述掩膜层According to some embodiments, before forming the gate recess, a mask layer is provided on the dielectric layer, so that the gate recess is formed through the mask layer; and after one annealing and before surface treatment, the mask layer is removed
根据一些实施方式,进行一次退火的温度为400℃,时间为30~60s。According to some embodiments, the temperature for one annealing is 400° C., and the time is 30˜60 s.
根据一些实施方式,用氮气进行表面处理的时间为30~60s。According to some embodiments, the time for surface treatment with nitrogen is 30-60 s.
根据一些实施方式,进行二次退火的温度为450℃,时间为30~60s。According to some embodiments, the temperature for performing the secondary annealing is 450° C., and the time is 30˜60 s.
根据一些实施方式,形成金属栅极包括通过电子束蒸发在栅极凹进中淀积Ni/Au。According to some embodiments, forming the metal gate includes depositing Ni/Au in the gate recess by electron beam evaporation.
根据一些实施方式,形成栅极凹进包括:光刻所述掩膜层;用SF6气体刻蚀所述介质层;以及用BCl3气体刻蚀所述第二GaN层。According to some embodiments, forming the gate recess includes: photoetching the mask layer; etching the dielectric layer with SF 6 gas; and etching the second GaN layer with BCl 3 gas.
在根据本发明的实施例的GaN HEMT器件的制备方法中,设计了一次退火-氮气表面处理-二次退火的一体化工艺流程,其中,一次退火和二次退火分别在形成金属栅极前后进行。具体地,一次退火有利于减小器件中的栅极泄漏并提供高质量的栅极接触;用氮气进行表面处理可以补充表面Ga-N键,以减少形成栅极凹进时例如刻蚀工艺对器件造成的损伤;二次退火可用于进一步减少器件表面的原子位错等缺陷。通过这样整体化的流程,可以在不增加成本的基础上制作出低表面漏电的GaN HEMT器件,进而提升器件的整体性能。In the preparation method of the GaN HEMT device according to the embodiment of the present invention, an integrated process flow of primary annealing-nitrogen surface treatment-secondary annealing is designed, wherein the primary annealing and secondary annealing are respectively performed before and after forming the metal gate . Specifically, one-time annealing is beneficial to reduce gate leakage in the device and provide high-quality gate contact; surface treatment with nitrogen can supplement the surface Ga-N bond to reduce the impact of the etching process when forming gate recesses. Damage caused by the device; secondary annealing can be used to further reduce defects such as atomic dislocations on the device surface. Through such an integrated process, GaN HEMT devices with low surface leakage can be manufactured without increasing the cost, thereby improving the overall performance of the device.
附图说明Description of drawings
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。Other objects and advantages of the present invention will be apparent from the following description of the present invention with reference to the accompanying drawings, and may help to provide a comprehensive understanding of the present invention.
图1示出了根据本发明的一个示例性实施例的GaN HEMT器件的制备方法的过程的示意图;以及FIG. 1 shows a schematic diagram of the process of a method for manufacturing a GaN HEMT device according to an exemplary embodiment of the present invention; and
图2示出了图1的GaN HEMT器件的制备方法的流程图。FIG. 2 shows a flow chart of the method for fabricating the GaN HEMT device of FIG. 1 .
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。附图中未绘示或描述的实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明的保护范围。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings. It should be noted that, in the drawings or descriptions of the specification, similar or identical parts all use the same figure numbers. Implementations not shown or described in the accompanying drawings are forms known to those of ordinary skill in the art. Additionally, while illustrations of parameters including particular values may be provided herein, it should be understood that the parameters need not be exactly equal to the corresponding values, but rather may approximate the corresponding values within acceptable error margins or design constraints. The directional terms mentioned in the embodiments, such as "upper", "lower", "front", "rear", "left", "right", etc., are only referring to the directions of the drawings. Therefore, the directional terms used are for illustration and not for limiting the protection scope of the present invention.
图1示出了根据本发明的一个示例性实施例的GaN HEMT器件的制备方法的过程的示意图,图2示出了图1的GaN HEMT器件的制备方法的流程图。参照图1-2,GaN HEMT器件的制备方法包括:FIG. 1 shows a schematic diagram of the process of a method for manufacturing a GaN HEMT device according to an exemplary embodiment of the present invention, and FIG. 2 shows a flowchart of the method for manufacturing a GaN HEMT device in FIG. 1 . Referring to Figure 1-2, the fabrication method of GaN HEMT devices includes:
S1,提供衬底1;S1, providing a substrate 1;
S2,在衬底1上形成器件本体2,器件本体2按自下而上的顺序依次包括第一GaN层21、AlGaN层22、第二GaN层23和介质层24;S2, forming a device body 2 on the substrate 1, the device body 2 sequentially includes a first GaN layer 21, an AlGaN layer 22, a second GaN layer 23 and a dielectric layer 24 in order from bottom to top;
S3,在器件本体2中形成栅极凹进3,栅极凹进3穿过介质层24、第二GaN层23并延伸至AlGaN层22表面;S3, forming a gate recess 3 in the device body 2, the gate recess 3 passes through the dielectric layer 24, the second GaN layer 23 and extends to the surface of the AlGaN layer 22;
S4,对形成有栅极凹进3的器件本体2进行一次退火A;S4, performing an annealing A on the device body 2 formed with the gate recess 3;
S5,将经一次退火的器件本体2用氮气N2进行表面处理;S5, surface-treating the once-annealed device body 2 with nitrogen N2;
S6,在经表面处理的栅极凹进3中形成金属栅极5;S6, forming a metal gate 5 in the surface-treated gate recess 3;
S7,对形成有金属栅极5的器件进行二次退火B。S7, performing secondary annealing B on the device formed with the metal gate 5 .
在根据本发明的实施例的GaN HEMT器件的制备方法中,设计了一次退火A-氮气表面处理-二次退火B的一体化工艺流程,其中,一次退火A和二次退火B分别在形成金属栅极5前后进行。具体地,一次退火A有利于减小器件中的栅极泄漏并提供高质量的栅极接触;用氮气进行表面处理可以补充表面Ga-N键,以减少形成栅极凹进3时例如刻蚀工艺对器件造成的损伤;二次退火B可用于进一步减少器件表面的原子位错等缺陷。通过这样整体化的流程,可以在不增加成本的基础上制作出低表面漏电的GaN HEMT器件,进而提升器件的整体性能。In the preparation method of the GaN HEMT device according to the embodiment of the present invention, an integrated process flow of primary annealing A-nitrogen surface treatment-secondary annealing B is designed, wherein the primary annealing A and the secondary annealing B respectively form metal The gate 5 is performed front and back. Specifically, one-time annealing A is beneficial to reduce gate leakage in the device and provide high-quality gate contact; surface treatment with nitrogen can supplement the surface Ga-N bonds to reduce the formation of gate recesses such as etching The damage caused by the process to the device; the secondary annealing B can be used to further reduce defects such as atomic dislocations on the device surface. Through such an integrated process, GaN HEMT devices with low surface leakage can be manufactured without increasing the cost, thereby improving the overall performance of the device.
具体地,衬底1可以选用碳化硅材料,碳化硅例如可以是半绝缘碳化硅,包括4H、3C、6H和15R多型等。在其他一些实施例中,也可以选用例如蓝宝石、氮化铝、氮化镓、硅、氧化锌等其他合适的衬底。如图1的(b)所示,在衬底1上外延生长器件本体2。具体地,在衬底1上形成第一GaN层21,在第一GaN层21上形成AlGaN层22,在AlGaN层22上形成第二GaN层23,在第二GaN层23上形成介质层24。在第一GaN层21和AlGaN层22的界面处由于导带的不连续性,会形成三角形势阱,从而在第一GaN层21一侧聚集很多电子,形成二维电子气(2DEG),以保证GaN HEMT器件的高迁移率。介质层24可以选用氮化硅材料,氮化硅的钝化作用可以减少后续形成栅极凹进3时的蚀刻损伤。介质层24还可选用氮化铝、二氧化硅、ONO结构等。Specifically, the substrate 1 can be made of silicon carbide, and the silicon carbide can be, for example, semi-insulating silicon carbide, including 4H, 3C, 6H, and 15R polytypes. In some other embodiments, other suitable substrates such as sapphire, aluminum nitride, gallium nitride, silicon, zinc oxide, etc. may also be selected. As shown in (b) of FIG. 1 , a device body 2 is epitaxially grown on a substrate 1 . Specifically, a first GaN layer 21 is formed on the substrate 1, an AlGaN layer 22 is formed on the first GaN layer 21, a second GaN layer 23 is formed on the AlGaN layer 22, and a dielectric layer 24 is formed on the second GaN layer 23 . Due to the discontinuity of the conduction band at the interface of the first GaN layer 21 and the AlGaN layer 22, a triangular potential well will be formed, thereby gathering many electrons on one side of the first GaN layer 21 to form a two-dimensional electron gas (2DEG), and Guaranteed high mobility for GaN HEMT devices. The dielectric layer 24 can be made of silicon nitride, and the passivation effect of silicon nitride can reduce etching damage when the gate recess 3 is subsequently formed. The dielectric layer 24 can also be selected from aluminum nitride, silicon dioxide, ONO structure and the like.
进一步地,如图1的(c)所示,在器件本体2中形成栅极凹进3。具体地,可以用SF6气体刻蚀介质层24,暴露出第二GaN层23的表面;之后可以用BCl3气体刻蚀第二GaN层23,暴露出AlGaN层22的表面。由此形成穿过介质层24、第二GaN层23并延伸至AlGaN层22表面的栅极凹进3。刻蚀过程可能对AlGaN层22造成损伤。在一些实施例中,为限定栅极凹进3的开口位置并防止刻蚀对不形成栅极凹进3的区域造成损伤,可以在形成栅极凹进3之前,在介质层24上设置掩膜层4,使得栅极凹进3穿过掩膜层4形成。掩膜层4可以是光刻胶,可通过光刻的方式去掉光刻胶的特定区域以形成栅极凹进3的开口,同时掩膜层4未被去除的部分用于覆盖介质层24的非刻蚀区域。Further, as shown in (c) of FIG. 1 , a gate recess 3 is formed in the device body 2 . Specifically, the dielectric layer 24 can be etched with SF 6 gas to expose the surface of the second GaN layer 23 ; then the second GaN layer 23 can be etched with BCl 3 gas to expose the surface of the AlGaN layer 22 . Thus, the gate recess 3 passing through the dielectric layer 24 , the second GaN layer 23 and extending to the surface of the AlGaN layer 22 is formed. The etching process may cause damage to the AlGaN layer 22 . In some embodiments, in order to limit the opening position of the gate recess 3 and prevent etching from causing damage to the area where the gate recess 3 is not formed, a mask may be provided on the dielectric layer 24 before the gate recess 3 is formed. film layer 4 , so that the gate recess 3 is formed through the mask layer 4 . The mask layer 4 can be a photoresist, and a specific area of the photoresist can be removed by photolithography to form the opening of the gate recess 3, and the unremoved part of the mask layer 4 is used to cover the dielectric layer 24. non-etched area.
继续参照图1的(c),对形成有栅极凹进3的器件本体2进行一次退火A。具体地,一次退火A的温度可以设置为400℃,时间为30~60s。一次退火A有利于减小器件中的栅极泄漏并提供高质量的栅极接触。Continuing to refer to (c) of FIG. 1 , an annealing A is performed on the device body 2 formed with the gate recess 3 . Specifically, the temperature of the primary annealing A can be set to 400° C., and the time is 30˜60 s. One-time annealing A is beneficial to reduce gate leakage in the device and provide high-quality gate contact.
进一步地,如图1的(d)所示,将经一次退火A处理的器件本体2用氮气进行表面处理。在一些实施例中,进行一次退火A之后、进行表面处理之前,可以去除掩膜层4。用氮气进行表面处理包括将器件本体2置于氮气氛围内,此时氮气与AlGaN层22的表面充分接触,有利于形成新的Ga-N键以弥补刻蚀过程造成的表面损伤,进而保证后续的金属栅极可以高质量形成。用氮气进行表面处理的时间可以为30~60s。Further, as shown in (d) of FIG. 1 , the surface treatment of the device body 2 after the primary annealing A treatment is carried out with nitrogen gas. In some embodiments, the mask layer 4 may be removed after annealing A and before surface treatment. Surface treatment with nitrogen includes placing the device body 2 in a nitrogen atmosphere. At this time, the nitrogen is in full contact with the surface of the AlGaN layer 22, which is conducive to the formation of new Ga-N bonds to compensate for the surface damage caused by the etching process, thereby ensuring subsequent The metal gate can be formed with high quality. The time for surface treatment with nitrogen may be 30-60s.
进一步地,如图1的(e)所示,在经表面处理的栅极凹进3中形成金属栅极5。栅极5可以通过电子束蒸发的方式在栅极凹进3中淀积,可采用的金属包括但不限于Ni/Au、Ni/Au/Ti、Ni/Pt/Au/Ni或者Ni/Pt/Au/Pt/Ti等多层金属体系。Further, as shown in (e) of FIG. 1 , a metal gate 5 is formed in the surface-treated gate recess 3 . The gate 5 can be deposited in the gate recess 3 by electron beam evaporation, and the metals that can be used include but are not limited to Ni/Au, Ni/Au/Ti, Ni/Pt/Au/Ni or Ni/Pt/ Multi-layer metal systems such as Au/Pt/Ti.
继续参照图1的(e),对形成有金属栅极5的器件进行二次退火B。具体地,二次退火B的温度可以设置为450℃,时间为30~60s。二次退火B可用于进一步减少器件表面的原子位错等缺陷。Continuing to refer to (e) of FIG. 1 , a secondary annealing B is performed on the device formed with the metal gate 5 . Specifically, the temperature of the secondary annealing B can be set to 450° C., and the time is 30˜60 s. Secondary annealing B can be used to further reduce defects such as atomic dislocations on the device surface.
由此,在本发明的一次退火-氮气表面处理-二次退火的一体化工艺流程中,在金属栅极5形成之前,通过一次退火和表面处理,为金属栅极5的形成提供了良好的栅极凹进3的环境,有利于形成高质量的栅极接触;在金属栅极5形成之后,通过二次退火可进一步减少器件表面的缺陷。因此,在一系列的工艺步骤之后,本发明实施例的制备方法可有利地减小器件的表面漏电。Therefore, in the integrated process flow of primary annealing-nitrogen surface treatment-secondary annealing of the present invention, before the metal gate 5 is formed, the formation of the metal gate 5 is provided with good conditions for the formation of the metal gate 5 through primary annealing and surface treatment. The environment of the gate recess 3 is conducive to the formation of high-quality gate contacts; after the metal gate 5 is formed, the defects on the surface of the device can be further reduced by secondary annealing. Therefore, after a series of process steps, the manufacturing method of the embodiment of the present invention can advantageously reduce the surface leakage of the device.
下面根据具体的实施例进行说明。The following will be described based on specific embodiments.
实施例1Example 1
步骤一:在SiC衬底上依次外延生长第一GaN层、AlGaN层、第二GaN层和SiN介质层,并在SiN介质层上覆盖光刻胶;Step 1: sequentially epitaxially grow the first GaN layer, AlGaN layer, second GaN layer and SiN dielectric layer on the SiC substrate, and cover the photoresist on the SiN dielectric layer;
步骤二:将光刻胶曝光显影,以暴露出SiN介质层,形成栅极凹进的开口;Step 2: exposing and developing the photoresist to expose the SiN dielectric layer to form a recessed gate opening;
步骤三:用SF6气体刻蚀掉SiN介质层,之后用BCl3气体刻蚀掉第二GaN层,以暴露出AlGaN层,形成穿过SiN介质层、第二GaN层并延伸至AlGaN层表面的栅极凹进;Step 3: Etch the SiN dielectric layer with SF 6 gas, and then etch the second GaN layer with BCl 3 gas to expose the AlGaN layer, forming a layer that passes through the SiN dielectric layer, the second GaN layer and extends to the surface of the AlGaN layer The grid is recessed;
步骤四:在高温炉内进行温度为400℃、时间为60s的快速热退火工艺;Step 4: performing a rapid thermal annealing process at a temperature of 400° C. for 60 s in a high-temperature furnace;
步骤五:去除剩余的光刻胶,之后将器件置于氮气氛围内处理60s;Step 5: remove the remaining photoresist, and then place the device in a nitrogen atmosphere for 60s;
步骤六:利用电子束工艺在栅极凹进中淀积Ni/Au金属层,以形成金属栅极;Step 6: Depositing a Ni/Au metal layer in the gate recess by using an electron beam process to form a metal gate;
步骤七:在高温炉内进行温度为450℃、时间为60s的快速热退火工艺。Step 7: performing a rapid thermal annealing process at a temperature of 450° C. for 60 s in a high-temperature furnace.
实施例1制备的GaN HEMT器件表面漏电明显减少,器件性能得以提高。The surface leakage of the GaN HEMT device prepared in Example 1 is significantly reduced, and the performance of the device is improved.
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明的实施方式进行示例性说明,而不能理解为对本发明的一种限制。Although the present invention has been described in conjunction with the accompanying drawings, the embodiments disclosed in the accompanying drawings are intended to illustrate the implementation of the present invention, and should not be construed as a limitation of the present invention.
本领域普通技术人员将理解,在不背离本发明总体构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。It will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined by the claims and their equivalents.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810766959.4A CN108962751A (en) | 2018-07-12 | 2018-07-12 | Preparation method of GaN HEMT device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810766959.4A CN108962751A (en) | 2018-07-12 | 2018-07-12 | Preparation method of GaN HEMT device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108962751A true CN108962751A (en) | 2018-12-07 |
Family
ID=64483049
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810766959.4A Pending CN108962751A (en) | 2018-07-12 | 2018-07-12 | Preparation method of GaN HEMT device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108962751A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115148590A (en) * | 2022-07-05 | 2022-10-04 | 苏州英嘉通半导体有限公司 | Surface treatment method and semiconductor device based on atomic layer etching |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040192043A1 (en) * | 2002-11-22 | 2004-09-30 | Oki Electric Industry Co., Ltd. | Surface treatment method for a compound semiconductor layer and method of fabrication of a semiconductor device |
| CN1989601A (en) * | 2004-07-23 | 2007-06-27 | 克里公司 | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
| CN103117221A (en) * | 2011-11-16 | 2013-05-22 | 中国科学院微电子研究所 | HEMT device and manufacturing method thereof |
| CN107248531A (en) * | 2017-07-07 | 2017-10-13 | 西安电子科技大学 | The preparation method of the threshold voltage controllable type GaN base enhancement device of grid structural parameters is opened based on real-time monitoring |
-
2018
- 2018-07-12 CN CN201810766959.4A patent/CN108962751A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040192043A1 (en) * | 2002-11-22 | 2004-09-30 | Oki Electric Industry Co., Ltd. | Surface treatment method for a compound semiconductor layer and method of fabrication of a semiconductor device |
| CN1989601A (en) * | 2004-07-23 | 2007-06-27 | 克里公司 | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
| CN103117221A (en) * | 2011-11-16 | 2013-05-22 | 中国科学院微电子研究所 | HEMT device and manufacturing method thereof |
| CN107248531A (en) * | 2017-07-07 | 2017-10-13 | 西安电子科技大学 | The preparation method of the threshold voltage controllable type GaN base enhancement device of grid structural parameters is opened based on real-time monitoring |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115148590A (en) * | 2022-07-05 | 2022-10-04 | 苏州英嘉通半导体有限公司 | Surface treatment method and semiconductor device based on atomic layer etching |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI420664B (en) | Enhanced high electron mobility transistor and manufacturing method thereof | |
| CN106298887B (en) | Preparation method of groove gate MOSFET with high threshold voltage and high mobility | |
| CN106033724A (en) | Group III nitride enhanced HEMT and its preparation method | |
| CN103137476A (en) | GaN high voltage HFET with passivation plus gate dielectric multilayer structure | |
| CN108305834A (en) | A kind of preparation method of enhancement type gallium nitride fieldtron | |
| CN108666359A (en) | A device structure and implementation method for improving GaN enhanced channel mobility by using a new barrier layer | |
| CN108133961A (en) | A kind of GaN_HEMT device preparation methods based on aluminum nitride barrier layers | |
| CN108538723A (en) | Nitrogen face polar gallium nitride device based on diamond and its manufacturing method | |
| CN108878511A (en) | Gallium face polarity gallium nitride device manufacturing method based on diamond | |
| CN108365008A (en) | Has the preparation method of p-type two-dimensional material grid enhancement type gallium nitride fieldtron | |
| CN107785435A (en) | A kind of low on-resistance MIS notched gates GaN base transistors and preparation method | |
| CN105304704A (en) | Semiconductor device and its manufacturing method | |
| CN107240549B (en) | A kind of fabrication method of GaN HEMT device | |
| CN107706232A (en) | A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method | |
| CN104465403B (en) | The preparation method of enhanced AlGaN/GaN HEMT devices | |
| CN107302022A (en) | Low injured surface processing high efficiency device and preparation method thereof | |
| CN106601806A (en) | Semiconductor device and manufacture method thereof | |
| CN117133806B (en) | A natural superjunction GaN HEMT device and its preparation method | |
| CN105679679B (en) | A kind of preparation method of GaN base notched gates MISFET | |
| CN108962751A (en) | Preparation method of GaN HEMT device | |
| CN114883406B (en) | Enhanced GaN power device and preparation method thereof | |
| CN103681831B (en) | High electron mobility transistor and method for manufacturing the same | |
| CN106206295A (en) | Preparation method of GaN enhancement device and formed GaN enhancement device | |
| CN111446289B (en) | Structure of GaN device based on graphene capping layer and preparation method thereof | |
| CN114843341A (en) | A kind of enhancement mode GaN power device and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181207 |
|
| RJ01 | Rejection of invention patent application after publication |