CN109034151A - A kind of localization method for the identification of multiple pointer instruments - Google Patents
A kind of localization method for the identification of multiple pointer instruments Download PDFInfo
- Publication number
- CN109034151A CN109034151A CN201810695727.4A CN201810695727A CN109034151A CN 109034151 A CN109034151 A CN 109034151A CN 201810695727 A CN201810695727 A CN 201810695727A CN 109034151 A CN109034151 A CN 109034151A
- Authority
- CN
- China
- Prior art keywords
- lark
- input image
- feature map
- image
- pointer instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/32—Normalisation of the pattern dimensions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/757—Matching configurations of points or features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/02—Recognising information on displays, dials, clocks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明属于图像处理和模式识别技术领域,更具体地,涉及一种用于多个指针式仪表识别的定位方法。The invention belongs to the technical field of image processing and pattern recognition, and more specifically relates to a positioning method for identifying multiple pointer instruments.
背景技术Background technique
随着工业自动化、图像处理和模式识别技术的发展,对广泛应用于电力、石油、化工等行业的各类指针式仪表,需要进行机器人智能巡检,以代替人工巡检,提高巡检效率,降低人工巡检的危险和巡检成本。With the development of industrial automation, image processing and pattern recognition technology, for various types of pointer instruments widely used in electric power, petroleum, chemical and other industries, robot intelligent inspection is required to replace manual inspection and improve inspection efficiency. Reduce the risk and cost of manual inspections.
对于指针式仪表的定位,现有的方法一般有2种:(1)假定仪表为圆形仪表,通过霍夫算法,进行圆检测,定位待识别图像中指针式仪表的位置;(2)检测指针式仪表的特征点与模板图像的特征点,通过匹配对应的特征点定位指针式仪表的位置。For the positioning of pointer instruments, there are generally two existing methods: (1) assume that the instrument is a circular instrument, and use the Hough algorithm to detect the circle to locate the position of the pointer instrument in the image to be recognized; (2) detect The feature points of the pointer instrument and the feature points of the template image are matched to locate the position of the pointer instrument.
指针式仪表的定位方法(1)要求指针式仪表为圆形仪表,指针式仪表的周围环境中必须没有其他圆形的物体;要求拍摄仪表的相机固定,这在实际应用中会受到限制,且霍夫变换圆形检测方法时间复杂度高,实时性不强,当图像中存在多个指针式仪表时,算法耗时长;此外,还要求指针式仪表的视角偏转幅度不能过大,否则无法检测到。方法(2)要求指针式仪表的周围环境没有其他外部的物体,而且仪表必须在输入图片中占主体位置,否则无法检测到;同时,仪表还必须要有稳定的特征点,否则无法从仪表区域提取出特征点,导致定位失败。The positioning method of the pointer meter (1) requires the pointer meter to be a circular meter, and there must be no other round objects in the surrounding environment of the pointer meter; the camera for shooting the meter is required to be fixed, which will be limited in practical applications, and The Hough transform circular detection method has high time complexity and poor real-time performance. When there are multiple pointer instruments in the image, the algorithm takes a long time; in addition, it is also required that the angle of view deflection of the pointer instruments cannot be too large, otherwise it cannot be detected arrive. Method (2) requires that there are no other external objects in the surrounding environment of the pointer meter, and the meter must occupy the main position in the input image, otherwise it cannot be detected; at the same time, the meter must also have stable feature points, otherwise it cannot be detected from the meter area. Feature points are extracted, resulting in positioning failure.
因此,现有的指针式仪表定位方法存在适应性不好,实时性不强,指针式仪表定位准确率不高的技术问题。Therefore, the existing pointer instrument positioning method has the technical problems of poor adaptability, poor real-time performance, and low positioning accuracy of the pointer instrument.
发明内容Contents of the invention
针对现有技术的以上缺陷或改进需求,本发明提供了一种用于多个指针式仪表识别的定位方法,由此解决现有的指针式仪表定位方法存在适应性不好,实时性不强,指针式仪表定位准确率不高的技术问题。In view of the above defects or improvement needs of the prior art, the present invention provides a positioning method for identifying multiple pointer instruments, thereby solving the problem of poor adaptability and poor real-time performance of the existing pointer instrument positioning methods , the technical problem that the positioning accuracy of the pointer instrument is not high.
为实现上述目的,本发明提供了一种用于多个指针式仪表识别的定位方法,包括:In order to achieve the above purpose, the present invention provides a positioning method for identifying multiple pointer instruments, including:
(1)获取输入图像的LARK特征图和模板图像的LARK特征图,对降维后的输入图像的LARK特征图进行缩放,得到多个尺度下的输入图像的LARK特征图;(1) Obtain the LARK feature map of the input image and the LARK feature map of the template image, scale the LARK feature map of the input image after dimensionality reduction, and obtain the LARK feature map of the input image at multiple scales;
(2)将降维后的模板图像的LARK特征图作为滑动窗口,利用滑动窗口在多个尺度下的输入图像的LARK特征图中滑动,每次滑动后计算滑动窗口与滑动窗口内的输入图像的LARK特征图的余弦相似度,多次滑动后得到每个尺度下的输入图像的LARK特征图的余弦相似度;(2) The LARK feature map of the template image after dimensionality reduction is used as a sliding window, and the sliding window is used to slide the LARK feature map of the input image at multiple scales, and the sliding window and the input image in the sliding window are calculated after each sliding The cosine similarity of the LARK feature map of the input image at each scale is obtained after multiple slidings; the cosine similarity of the LARK feature map of the input image;
(3)将多个余弦相似度变换为多个RM相似度,利用多个RM相似度构成每个尺度下的输入图像的相似图,对每个尺度下的输入图像的相似图进行仪表检测,若相似图中的最大RM相似度大于阈值,则选择相似图中RM相似度最高的前M%在输入图像中对应的区域作为初步的指针式仪表候选区域,然后使用非极大值抑制算法排除掉初步的指针式仪表候选区域中的多余重叠区域,得到最终的指针式仪表候选区域;(3) Multiple cosine similarities are transformed into multiple RM similarities, and multiple RM similarities are used to form a similarity map of the input image under each scale, and instrumentation detection is performed on the similarity map of the input image under each scale, If the maximum RM similarity in the similarity graph is greater than the threshold, select the region corresponding to the top M% of the highest RM similarity in the similarity graph in the input image as the preliminary candidate region of the pointer instrument, and then use the non-maximum value suppression algorithm to exclude Get the final pointer instrument candidate area by removing the redundant overlapping areas in the preliminary pointer instrument candidate area;
(4)提取最终的指针式仪表候选区域图像和模板图像的特征点,进行匹配,得到输入图像中指针式仪表区域的精确定位。(4) Extract the feature points of the final candidate area image of the pointer instrument and the template image, and perform matching to obtain the precise positioning of the pointer instrument area in the input image.
进一步地,步骤(1)包括:Further, step (1) includes:
(1-1)获取输入图像的LARK特征构成输入图像的LARK特征图,获取模板图像的LARK特征构成模板图像的LARK特征图,利用PCA算法降低输入图像的LARK特征图和模板图像的LARK特征图的维度;(1-1) Obtain the LARK feature of the input image to form the LARK feature map of the input image, obtain the LARK feature of the template image to form the LARK feature map of the template image, and use the PCA algorithm to reduce the LARK feature map of the input image and the LARK feature map of the template image dimension;
(1-2)对降维后的输入图像的LARK特征图进行缩放,得到多个尺度下的输入图像的LARK特征图。(1-2) Scale the LARK feature map of the input image after dimensionality reduction to obtain the LARK feature map of the input image at multiple scales.
进一步地,降维后的输入图像的LARK特征图与降维后的模板图像的LARK特征图的维度一致。Further, the dimensions of the LARK feature map of the input image after dimension reduction are consistent with the dimensions of the LARK feature map of the template image after dimension reduction.
进一步地,降维时维度降低1维-4维。Further, the dimension is reduced by 1-4 dimensions during dimensionality reduction.
进一步地,M的取值范围为0.1-2。Further, the value range of M is 0.1-2.
进一步地,阈值为0.4-0.6。Further, the threshold is 0.4-0.6.
进一步地,步骤(2)还包括:Further, step (2) also includes:
使用傅里叶变换加速计算滑动窗口与滑动窗口内的输入图像的LARK特征图的余弦相似度中的卷积操作。Use the Fourier transform to accelerate the convolution operation in computing the cosine similarity between a sliding window and the LARK feature map of the input image within the sliding window.
进一步地,步骤(4)包括:Further, step (4) includes:
(4-1)采用AKAZE算法提取最终的指针式仪表候选区域图像和模板图像的特征点,进行匹配,得到多个匹配点,然后使用基于网格运动统计的方法排除多个匹配点中的错误匹配点,得到剩余匹配点;(4-1) Use the AKAZE algorithm to extract the feature points of the final pointer instrument candidate area image and the template image, perform matching, and obtain multiple matching points, and then use the method based on grid motion statistics to eliminate errors in multiple matching points Matching points to get the remaining matching points;
(4-2)利用剩余匹配点完成图像配准,得到输入图像中指针式仪表区域的精确定位。(4-2) Use the remaining matching points to complete image registration, and obtain the precise positioning of the pointer instrument area in the input image.
进一步地,步骤(4-2)包括:Further, step (4-2) includes:
使用RANSAC方法处理剩余匹配点,得到单应性矩阵;通过单应性矩阵完成图像配准,得到输入图像中指针式仪表区域的精确定位。The RANSAC method is used to process the remaining matching points to obtain the homography matrix; the image registration is completed through the homography matrix, and the precise positioning of the pointer instrument area in the input image is obtained.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:Generally speaking, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:
(1)本发明方法可以实现电力、化工、石油等行业的智能巡检系统中指针式仪表的准确定位,而且可以用于输入图像中存在多个指针式仪表的情况,方法适应性好,实时性强,准确率高,为后续的指针式仪表读数识别提供了高精度的定位。(1) The method of the present invention can realize the accurate positioning of the pointer instrument in the intelligent inspection system of industries such as electric power, chemical industry, petroleum, and can be used in the situation that there are a plurality of pointer instruments in the input image, the method adaptability is good, real-time With strong performance and high accuracy, it provides high-precision positioning for the subsequent identification of pointer instrument readings.
(2)本发明针对指针式仪表定位问题,使用对不同光照以及有噪声情况下都具有稳定性的LARK特征,运用PCA算法,突出仪表的边缘特征,提高仪表定位准确度。同时,通过对输入图像在不同尺度的LARK特征图,进行多尺度检测,可以有效防止漏检,也适用于存在多个指针式仪表的情况。(2) The present invention aims at the positioning problem of the pointer instrument, uses the LARK feature that is stable under different illumination and noise conditions, uses the PCA algorithm, highlights the edge features of the instrument, and improves the accuracy of instrument positioning. At the same time, by performing multi-scale detection on the LARK feature maps of the input image at different scales, it can effectively prevent missed detection, and it is also applicable to the situation where there are multiple pointer instruments.
(3)本发明采用滑动窗口方法,对指针式仪表输入图像进行检测,可用于图像中存在多个指针式仪表时的情况,并且针对滑动窗口匹配慢的问题,运用傅里叶变换加速卷积操作,提高了仪表定位速度。(3) The present invention adopts the sliding window method to detect the input image of the pointer instrument, which can be used when there are multiple pointer instruments in the image, and for the problem of slow matching of the sliding window, the Fourier transform is used to accelerate the convolution Operation, improve the instrument positioning speed.
(4)本发明通过图像配准,可以有效解决由于指针式仪表输入图像的视角偏转造成的定位误差问题,采用网格运动统计方法排除错误匹配点,结合使用RANSAC方法处理剩余匹配点,提高了指针式仪表区域定位的配准精度,为后续的指针式仪表读数识别提供了高精度的定位。(4) The present invention can effectively solve the positioning error problem caused by the deflection of the angle of view of the input image of the pointer instrument through image registration, adopt the grid motion statistical method to eliminate the wrong matching points, and use the RANSAC method to process the remaining matching points, which improves the The registration accuracy of the pointer instrument area positioning provides high-precision positioning for the subsequent pointer instrument reading recognition.
附图说明Description of drawings
图1是本发明实施例提供的一种用于多个指针式仪表识别的定位方法的流程图;Fig. 1 is a flow chart of a positioning method for identifying multiple pointer instruments provided by an embodiment of the present invention;
图2是本发明实施例1提供的待识别定位的指针式仪表的输入图像;Fig. 2 is the input image of the pointer instrument to be identified and positioned provided by Embodiment 1 of the present invention;
图3是本发明实施例1提供的指针式仪表的模板图像;Fig. 3 is a template image of the pointer meter provided by Embodiment 1 of the present invention;
图4(a)是本发明实施例1提供的待识别指针式仪表输入图像使用PCA算法降维后的LARK特征图;Fig. 4 (a) is the LARK feature map after using the PCA algorithm to reduce the dimensionality of the input image of the pointer instrument to be recognized provided by Embodiment 1 of the present invention;
图4(b)是本发明实施例1提供的模板图像使用PCA算法降维后的LARK特征图;Fig. 4(b) is the LARK feature map of the template image provided by Embodiment 1 of the present invention after using the PCA algorithm for dimensionality reduction;
图5(a)是本发明实施例1提供的余弦相似度示意图;Figure 5(a) is a schematic diagram of the cosine similarity provided by Embodiment 1 of the present invention;
图5(b)是本发明实施例1提供的RM相似度示意图;Figure 5(b) is a schematic diagram of the RM similarity provided by Embodiment 1 of the present invention;
图6是本发明实施例1提供的没有经过非极大值抑制算法的示意图;Fig. 6 is a schematic diagram provided by Embodiment 1 of the present invention without the non-maximum value suppression algorithm;
图7是本发明实施例1提供的经过非极大值抑制算法后的示意图;FIG. 7 is a schematic diagram of the non-maximum value suppression algorithm provided by Embodiment 1 of the present invention;
图8是本发明实施例1提供的配准前没有排除错误匹配点的示意图;Fig. 8 is a schematic diagram of error matching points not excluded before registration provided by Embodiment 1 of the present invention;
图9是本发明实施例1提供的配准后排除了错误匹配点的示意图。Fig. 9 is a schematic diagram of excluding wrong matching points after registration provided by Embodiment 1 of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
如图1所示,本发明提供了一种用于多个指针式仪表识别的定位方法,包括:As shown in Figure 1, the present invention provides a positioning method for identifying multiple pointer instruments, including:
(1)获取输入图像的LARK(Locally Adaptive Regression Kernels,局部自适应回归核)特征构成输入图像的LARK特征图,获取模板图像的LARK特征构成模板图像的LARK特征图,利用PCA(Principal ComponentAnalysis,主成分分析)算法降低输入图像的LARK特征图和模板图像的LARK特征图的维度;对降维后的输入图像的LARK特征图进行缩放,得到多个尺度下的输入图像的LARK特征图。降维后的输入图像的LARK特征图与降维后的模板图像的LARK特征图的维度一致。(1) Obtain the LARK (Locally Adaptive Regression Kernels) features of the input image to form the LARK feature map of the input image, obtain the LARK features of the template image to form the LARK feature map of the template image, and use PCA (Principal Component Analysis, the main Component analysis) algorithm reduces the dimensions of the LARK feature map of the input image and the LARK feature map of the template image; scales the LARK feature map of the input image after dimensionality reduction, and obtains the LARK feature map of the input image at multiple scales. The dimensions of the LARK feature map of the input image after dimension reduction are consistent with the dimensions of the LARK feature map of the template image after dimension reduction.
(2)将降维后的模板图像的LARK特征图作为滑动窗口,利用滑动窗口在多个尺度下的输入图像的LARK特征图中滑动,每次滑动后计算滑动窗口与滑动窗口内的输入图像的LARK特征图的余弦相似度,多次滑动后得到每个尺度下的输入图像的LARK特征图的多个余弦相似度;使用傅里叶变换加速计算滑动窗口与滑动窗口内的输入图像的LARK特征图的余弦相似度中的卷积操作。(2) The LARK feature map of the template image after dimensionality reduction is used as a sliding window, and the sliding window is used to slide the LARK feature map of the input image at multiple scales, and the sliding window and the input image in the sliding window are calculated after each sliding The cosine similarity of the LARK feature map, after sliding multiple times, multiple cosine similarities of the LARK feature map of the input image at each scale are obtained; use the Fourier transform to accelerate the calculation of the LARK of the sliding window and the input image within the sliding window Convolution operations in cosine similarity of feature maps.
(3)将多个余弦相似度变换为多个RM相似度,利用多个RM相似度构成每个尺度下的输入图像的相似图,对每个尺度下的输入图像的相似图进行仪表检测,若相似图中的最大RM相似度大于阈值,则选择相似图中RM(Resemblance Map)相似度最高的前M%在输入图像中对应的区域,作为初步的指针式仪表候选区域;在初步的指针式仪表候选区域中使用非极大值抑制(Non Maximum Suppression,NMS)算法进行多个指针式仪表检测,排除掉指针式仪表候选区域中的多余重叠区域,得到每个指针式仪表相似度值最大的区域,即最终的指针式仪表候选区域。(3) Multiple cosine similarities are transformed into multiple RM similarities, and multiple RM similarities are used to form a similarity map of the input image under each scale, and instrumentation detection is performed on the similarity map of the input image under each scale, If the maximum RM similarity in the similarity map is greater than the threshold, select the area corresponding to the top M% of the RM (Resemblance Map) similarity in the similarity map in the input image, as the preliminary pointer instrument candidate area; in the preliminary pointer Using the Non Maximum Suppression (NMS) algorithm to detect multiple pointer meters in the candidate area of the pointer meter, the redundant overlapping areas in the candidate region of the pointer meter are eliminated, and the maximum similarity value of each pointer meter is obtained. area, which is the final candidate area of the pointer instrument.
(4)采用AKAZE算法提取最终的指针式仪表候选区域图像和模板图像的特征点,进行匹配,得到多个匹配点,然后使用基于网格运动统计的方法排除多个匹配点中的错误匹配点,得到剩余匹配点;使用RANSAC(RandomSampleConsensus,随机抽样一致性)方法处理剩余匹配点,得到单应性矩阵;通过单应性矩阵完成图像配准,实现输入图像中指针式仪表区域的精确定位。(4) Use the AKAZE algorithm to extract the feature points of the final pointer instrument candidate area image and the template image, and perform matching to obtain multiple matching points, and then use the method based on grid motion statistics to eliminate the wrong matching points among the multiple matching points , to obtain the remaining matching points; use the RANSAC (RandomSample Consensus, random sampling consistency) method to process the remaining matching points to obtain a homography matrix; complete image registration through the homography matrix, and realize the precise positioning of the pointer instrument area in the input image.
进一步地,降维时维度降低1维-4维,优选地,降维时维度降低2维,此时可以更好的突出仪表的边缘特征。Further, the dimension is reduced by 1-4 dimensions during dimensionality reduction, preferably, the dimensionality is reduced by 2 dimensions during dimensionality reduction, at this time, the edge features of the instrument can be better highlighted.
进一步地,M的取值范围为0.1-2,优选地,M为1,如果M设置过低可能存在漏检,如果设置过高可能产生误检,M为1时检测效果最好。Further, the value range of M is 0.1-2. Preferably, M is 1. If M is set too low, there may be missed detection, and if it is set too high, false detection may occur. When M is 1, the detection effect is the best.
进一步地,阈值为0.4-0.6,优选地,阈值为0.5,使得后续得到的指针式仪表候选区域更准确。Further, the threshold value is 0.4-0.6, preferably, the threshold value is 0.5, so that the subsequently obtained pointer instrument candidate areas are more accurate.
实施例1Example 1
对于如图2所示的待识别定位的指针式仪表的输入图像和图3所示的指针式仪表的模板图像,经过以下几个步骤实现多个指针式仪表的精确定位:For the input image of the pointer instrument to be identified and positioned as shown in Figure 2 and the template image of the pointer instrument shown in Figure 3, the precise positioning of multiple pointer instruments is achieved through the following steps:
步骤(1):提取输入图像和模板图像的LARK特征,得到输入图像和模板图像的LARK特征图,并使用PCA算法降低LARK特征图的维度,得到图4(a)所示的输入图像使用PCA算法降维后的LARK特征图和图4(b)所示的模板图像使用PCA算法降维后的LARK特征图;突出仪表的边缘特征。然后对输入图像降维后的LARK特征图进行缩放,缩放比例大小范围为0.6~1.5,间隔为0.1,由此得到输入图像的10张不同尺度的降维后的LARK特征图。Step (1): Extract the LARK feature of the input image and the template image, obtain the LARK feature map of the input image and the template image, and use the PCA algorithm to reduce the dimension of the LARK feature map, and obtain the input image shown in Figure 4(a) using PCA The LARK feature map after dimensionality reduction by the algorithm and the template image shown in Figure 4(b) use the LARK feature map after dimensionality reduction by the PCA algorithm; the edge features of the instrument are highlighted. Then the dimensionally reduced LARK feature map of the input image is scaled, the scaling range is 0.6-1.5, and the interval is 0.1, thus obtaining 10 dimensionally reduced LARK feature maps of the input image at different scales.
步骤(2):采用滑动窗口方法,将模板图像降维后的LARK特征图像作为滑动窗口分别在输入图像的10张不同尺度的降维后的LARK特征图中滑动,每次滑动后计算滑动窗口与滑动窗口内的输入图像的LARK特征图的余弦相似度,多次滑动后得到每个尺度下的输入图像的LARK特征图的多个余弦相似度,如图5(a)所示;使用傅里叶变换加速计算滑动窗口与滑动窗口内的输入图像的LARK特征图的余弦相似度中的卷积操作。Step (2): Using the sliding window method, the LARK feature image after dimensionality reduction of the template image is used as a sliding window to slide in the 10 dimensionality-reduced LARK feature maps of different scales of the input image, and the sliding window is calculated after each sliding With the cosine similarity of the LARK feature map of the input image in the sliding window, multiple cosine similarities of the LARK feature map of the input image at each scale are obtained after multiple slidings, as shown in Figure 5(a); using Fu The Lie transform accelerates the convolution operation in calculating the cosine similarity between the sliding window and the LARK feature map of the input image within the sliding window.
步骤(3):对余弦相似度ρi进行变换,如公式(1)所示:Step (3): Transform the cosine similarity ρ i , as shown in formula (1):
之后可得到输入图像在不同尺度下的10张RM相似图,相比余弦相似度ρi,采用f(ρi)作为RM相似度,可以将背景和前景更加有效地区分,如图5(b)所示,可以很明显地看出使用RM相似度,极值更为明显,这样前景与背景的区分就相差得很大。Afterwards, 10 RM similarity images of the input image at different scales can be obtained. Compared with the cosine similarity ρ i , using f(ρ i ) as the RM similarity can distinguish the background and the foreground more effectively, as shown in Figure 5(b ), it can be clearly seen that using the RM similarity, the extreme value is more obvious, so that the distinction between the foreground and the background is very different.
对每一张RM相似图进行判断,若至少存在一张相似图中的最大相似度值大于设定阈值0.5,则确认输入图像中存在指针式仪表区域。对于存在最大相似度值大于设定阈值的相似图,则选择这些相似图中相似度值最高的前1%所对应的原始输入图像中的区域,作为初步的指针式仪表候选区域。在本实例1中,一般地会得到20~30个初步的指针式仪表候选区域。Each RM similarity map is judged. If there is at least one similarity map with a maximum similarity value greater than the set threshold of 0.5, it is confirmed that there is a pointer meter area in the input image. For the similarity graphs with the maximum similarity value greater than the set threshold, the regions in the original input image corresponding to the top 1% of the similarity graphs with the highest similarity value are selected as the preliminary candidate regions of pointer instruments. In this example 1, generally 20 to 30 preliminary pointer instrument candidate areas will be obtained.
由于输入图像中,可能存在多个指针式仪表区域,并且每个指针式仪表区域经过前面的步骤后,会存在多个重叠的候选区域,然后使用非极大值抑制(Non MaximumSuppression,NMS)算法,进行多个指针式仪表检测,搜索局部极大值,抑制非极大值元素,就会排除掉指针式仪表候选区域中的多余重叠区域。之后,就可以得到每个指针式仪表相似度值最大的区域,即最终的指针式仪表候选区域。Since there may be multiple pointer instrument areas in the input image, and after each pointer instrument area passes through the previous steps, there will be multiple overlapping candidate areas, and then use the Non Maximum Suppression (NMS) algorithm , to detect multiple pointer instruments, search for local maxima, suppress non-maximum elements, and then eliminate redundant overlapping areas in the pointer instrument candidate area. After that, the area with the largest similarity value of each pointer instrument can be obtained, that is, the final candidate area of the pointer instrument.
图6中密集的多个候选框是没有经过非极大值抑制算法的候选框,图7中的方框区域为经过非极大值抑制算法后,相似度值最大的区域,即最终的指针式仪表候选区域,也是配准前的指针式仪表定位区域。The dense multiple candidate boxes in Figure 6 are candidate boxes that have not passed the non-maximum value suppression algorithm, and the box area in Figure 7 is the area with the largest similarity value after the non-maximum value suppression algorithm, that is, the final pointer The candidate area of the type instrument is also the positioning area of the pointer type instrument before registration.
步骤(4):采用AKAZE算法提取最终的指针式仪表候选区域图像和模板图像的特征点,进行匹配,得到多个匹配点。一般地,匹配结果会存在错误匹配点,如图8所示。然后使用基于网格运动统计的方法排除错误匹配点,如图9所示。Step (4): AKAZE algorithm is used to extract the feature points of the final pointer instrument candidate area image and the template image, and perform matching to obtain multiple matching points. Generally, there will be wrong matching points in the matching result, as shown in FIG. 8 . Then use the method based on grid motion statistics to exclude wrong matching points, as shown in Figure 9.
接着,使用RANSAC方法处理剩余匹配点,得到单应性矩阵。通过单应性矩阵对图像进行变换,完成图像配准,实现指针式仪表区域的精确定位,从而为后续的指针式仪表读数识别提供了高精度的定位。Then, use the RANSAC method to process the remaining matching points to obtain the homography matrix. The image is transformed through the homography matrix, the image registration is completed, and the precise positioning of the pointer meter area is realized, thereby providing high-precision positioning for the subsequent pointer meter reading recognition.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810695727.4A CN109034151A (en) | 2018-06-27 | 2018-06-27 | A kind of localization method for the identification of multiple pointer instruments |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810695727.4A CN109034151A (en) | 2018-06-27 | 2018-06-27 | A kind of localization method for the identification of multiple pointer instruments |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN109034151A true CN109034151A (en) | 2018-12-18 |
Family
ID=65520934
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810695727.4A Pending CN109034151A (en) | 2018-06-27 | 2018-06-27 | A kind of localization method for the identification of multiple pointer instruments |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109034151A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110440764A (en) * | 2019-08-19 | 2019-11-12 | 广东电网有限责任公司 | A kind of secondary alignment methods of meter detection holder, device and equipment |
| CN111369599A (en) * | 2018-12-25 | 2020-07-03 | 阿里巴巴集团控股有限公司 | Image matching method, device and apparatus and storage medium |
| CN113554018A (en) * | 2021-01-26 | 2021-10-26 | 浙江国自机器人技术股份有限公司 | Meter automatic modeling method based on machine vision |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1286304A2 (en) * | 2001-08-07 | 2003-02-26 | Eastman Kodak Company | System and method for extracting a watermark signal in a digital image sequence |
| CN105825215A (en) * | 2016-03-15 | 2016-08-03 | 云南大学 | Instrument positioning method based on local neighbor embedded kernel function and carrier of method |
| CN107066635A (en) * | 2017-06-27 | 2017-08-18 | 徐桐 | A kind of method and system of the architecture information guide to visitors recognized based on image comparison |
| CN107067413A (en) * | 2016-12-27 | 2017-08-18 | 南京理工大学 | A kind of moving target detecting method of time-space domain statistical match local feature |
| CN107833212A (en) * | 2017-11-01 | 2018-03-23 | 国网山东省电力公司电力科学研究院 | A kind of image matching method for improving electric transmission line channel perils detecting accuracy rate |
-
2018
- 2018-06-27 CN CN201810695727.4A patent/CN109034151A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1286304A2 (en) * | 2001-08-07 | 2003-02-26 | Eastman Kodak Company | System and method for extracting a watermark signal in a digital image sequence |
| CN105825215A (en) * | 2016-03-15 | 2016-08-03 | 云南大学 | Instrument positioning method based on local neighbor embedded kernel function and carrier of method |
| CN107067413A (en) * | 2016-12-27 | 2017-08-18 | 南京理工大学 | A kind of moving target detecting method of time-space domain statistical match local feature |
| CN107066635A (en) * | 2017-06-27 | 2017-08-18 | 徐桐 | A kind of method and system of the architecture information guide to visitors recognized based on image comparison |
| CN107833212A (en) * | 2017-11-01 | 2018-03-23 | 国网山东省电力公司电力科学研究院 | A kind of image matching method for improving electric transmission line channel perils detecting accuracy rate |
Non-Patent Citations (3)
| Title |
|---|
| 吴含前等: "一种改进的 A-KAZE 算法在图像配准中的应用", 《东南大学学报(自然科学版)》 * |
| 王胜平: "《水下地磁匹配导航定位关键技术研究》", 31 December 2017 * |
| 高品贤: "《测试信号分析处理方法与程序》", 30 April 1999 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111369599A (en) * | 2018-12-25 | 2020-07-03 | 阿里巴巴集团控股有限公司 | Image matching method, device and apparatus and storage medium |
| CN111369599B (en) * | 2018-12-25 | 2024-04-16 | 阿里巴巴集团控股有限公司 | Image matching method, device, apparatus and storage medium |
| CN110440764A (en) * | 2019-08-19 | 2019-11-12 | 广东电网有限责任公司 | A kind of secondary alignment methods of meter detection holder, device and equipment |
| CN110440764B (en) * | 2019-08-19 | 2021-07-09 | 广东电网有限责任公司 | Meter detection cradle head secondary alignment method, device and equipment |
| CN113554018A (en) * | 2021-01-26 | 2021-10-26 | 浙江国自机器人技术股份有限公司 | Meter automatic modeling method based on machine vision |
| CN113554018B (en) * | 2021-01-26 | 2024-05-31 | 浙江国自机器人技术股份有限公司 | Meter automatic modeling method based on machine vision |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104657711B (en) | A Robust Automatic Recognition Method of Pointer Meter Readings | |
| CN111368906B (en) | A reading recognition method of pointer oil level gauge based on deep learning | |
| CN107798326B (en) | A Contour Vision Detection Method | |
| CN109409385B (en) | Automatic identification method for pointer instrument | |
| WO2022151658A1 (en) | Defect detection method and apparatus, and computer device and computer-readable storage medium | |
| CN105894002B (en) | A kind of instrument registration recognition methods based on machine vision | |
| CN109241901B (en) | A detection and recognition method for 3D point cloud with holes | |
| CN113705564B (en) | Pointer type instrument identification reading method | |
| CN109034170B (en) | Reading method for circular pointer type instrument of switch cabinet detection device | |
| CN109508709B (en) | Single pointer instrument reading method based on machine vision | |
| CN106340010B (en) | A Corner Detection Method Based on Second-Order Contour Difference | |
| CN109034151A (en) | A kind of localization method for the identification of multiple pointer instruments | |
| CN111444964A (en) | Multi-target rapid image matching method based on self-adaptive ROI (region of interest) division | |
| CN107092905B (en) | A method for locating an instrument to be identified for a power inspection robot | |
| CN114936997A (en) | Detection method, detection device, electronic equipment and readable storage medium | |
| Sowah et al. | An intelligent instrument reader: using computer vision and machine learning to automate meter reading | |
| CN111091534A (en) | A method for detecting and locating PCB board defects based on target detection | |
| CN116205889A (en) | Offset detection method, device, electronic equipment and storage medium | |
| Fan et al. | Image recognition and reading of single pointer meter based on deep learning | |
| CN114898198A (en) | An image processing method for automatic reading of pointer pressure gauge | |
| CN111091121B (en) | Ellipse dial plate detection and correction method based on image processing | |
| CN111080703A (en) | Relocation method of mobile robot based on line matching | |
| CN116994252A (en) | An automatic identification method and device for pointer instruments | |
| CN117115485A (en) | Contour matching method and device, electronic equipment and storage medium | |
| CN110211179B (en) | Microscopic image calibration method, device, terminal and medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181218 |
|
| RJ01 | Rejection of invention patent application after publication |