[go: up one dir, main page]

CN109161551B - Cabbage BoMS1 gene and application thereof in creating sterile materials - Google Patents

Cabbage BoMS1 gene and application thereof in creating sterile materials Download PDF

Info

Publication number
CN109161551B
CN109161551B CN201811128213.7A CN201811128213A CN109161551B CN 109161551 B CN109161551 B CN 109161551B CN 201811128213 A CN201811128213 A CN 201811128213A CN 109161551 B CN109161551 B CN 109161551B
Authority
CN
China
Prior art keywords
gene
cabbage
boms1
seq
male sterile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811128213.7A
Other languages
Chinese (zh)
Other versions
CN109161551A (en
Inventor
宋洪元
朱陈曾
郑敏
李勤菲
任雪松
司军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201811128213.7A priority Critical patent/CN109161551B/en
Publication of CN109161551A publication Critical patent/CN109161551A/en
Application granted granted Critical
Publication of CN109161551B publication Critical patent/CN109161551B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于生物技术育种领域,具体涉及甘蓝BoMS1基因及其在创制不育材料中的应用。其提供了控制甘蓝雄性不育的关键基因甘蓝BoMS1基因,并通过RNAi技术下调甘蓝BoMS1基因的表达,进而创制了转基因雄性不育植株系,以此克服了利用雄性不育途径进行甘蓝杂种一代品种选育时,大量依赖于单一的ogura CMS单一不育资源,存在遗传脆弱性风险的问题;其利用RNAi技术同时下调了甘蓝BoMS1基因和甘蓝SRK基因的表达,创制了与保持系花期杂交亲和的转基因雄性不育系,该方法创制的不育株系避免了保持系的繁殖需进行人工蕾期授粉的问题,降低了甘蓝雄性不育系的繁殖成本;其还通过同时突变甘蓝BoMS1基因和甘蓝SRK基因,创制了与保持系花期杂交亲和的非转基因雄性不育系。

Figure 201811128213

The invention belongs to the field of biotechnology breeding, and particularly relates to the cabbage BoMS1 gene and its application in creating sterile materials. It provides the cabbage BoMS1 gene, a key gene for controlling male sterility in cabbage, and down-regulates the expression of the cabbage BoMS1 gene through RNAi technology, thereby creating a transgenic male sterile plant line, which overcomes the use of male sterility. When breeding, it relies heavily on a single ogura CMS single sterile resource, and there is a problem of genetic vulnerability risk; it uses RNAi technology to down-regulate the expression of the cabbage BoMS1 gene and the cabbage SRK gene at the same time, creating a hybrid compatibility with the maintainer line during flowering. The transgenic male sterile line created by this method avoids the problem of artificial bud stage pollination for the reproduction of the maintainer line, and reduces the reproductive cost of the male sterile line of cabbage; it also mutates the BoMS1 gene and Cabbage SRK gene, created a non-transgenic male sterile line compatible with the maintainer line at flowering.

Figure 201811128213

Description

甘蓝BoMS1基因及其在创制不育材料中的应用Cabbage BoMS1 Gene and Its Application in Creating Sterile Materials

技术领域technical field

本发明属于生物技术育种领域,具体涉及甘蓝BoMS1基因及其在创制不育材料中的应用。The invention belongs to the field of biotechnology breeding, and particularly relates to the cabbage BoMS1 gene and its application in creating sterile materials.

背景技术Background technique

甘蓝是世界上广泛种植的十字花科蔬菜之一,也是我国重要的秋冬叶菜类蔬菜之一。中国甘蓝年种植面积约1200万亩。杂种一代品种可以大幅度提高甘蓝的产量和抗逆性,推广利用杂种一代品种是提高甘蓝生产效益的重要途径。长期以来,甘蓝杂种一代品种的选育主要是利用自交不亲和途径而得以实现,即利用两个不同的S-单倍型自交不亲和系在开花时通过蜜蜂授粉杂交,从两个自交不亲和系上收到的种子则为杂种一代种子,而两个自交不亲和亲本的繁殖通过蕾期人工自交授粉完成。由于自交不亲和性易受到环境如高温、干旱等因素的干扰而出现花期亲和现象,导致杂交种子出现纯度问题,给甘蓝生产者带来经济损失,并出现亲本流失现象(

Figure BDA0001812965700000011
I.et al.Environmental factors and genotypicvariation of self-incompatibility in Brassica oleracea L.var.Capitata.ActaBiologica Cracoviensia-Series Botanica,2003,45:49-52;Liu LW et al.Evaluationof genetic purity of F1hybrid seeds in cabbage with RAPD,ISSR,SRAP,and SSRmarkers.2007,HORTSCIENCE 42(3):724–727)。Cabbage is one of the cruciferous vegetables widely grown in the world and one of the important autumn and winter leafy vegetables in my country. The annual planting area of cabbage in China is about 12 million mu. The first-generation hybrid varieties can greatly improve the yield and stress resistance of cabbage. The promotion and utilization of the first-generation hybrid varieties is an important way to improve the production efficiency of cabbage. For a long time, the breeding of first-generation cabbage hybrids was mainly achieved by using the self-incompatibility approach, that is, using two different S-haplotype self-incompatibility lines at flowering through bee pollination. The seeds received on one self-incompatible line were hybrid generation seeds, and the propagation of the two self-incompatible parents was accomplished by artificial self-pollination at the bud stage. Since self-incompatibility is easily disturbed by environmental factors such as high temperature and drought, the phenomenon of incompatibility during flowering occurs, resulting in purity problems in hybrid seeds, economic losses to cabbage producers, and the phenomenon of parent loss (
Figure BDA0001812965700000011
I.et al.Environmental factors and genotypicvariation of self-incompatibility in Brassica oleracea L.var.Capitata.ActaBiologica Cracoviensia-Series Botanica, 2003, 45:49-52; Liu LW et al.Evaluationof genetic purity of F1hybrid seeds in cabbage with RAPD, ISSR, SRAP, and SSRmarkers. 2007, HORTSCIENCE 42(3):724–727).

利用甘蓝雄性不育系选育杂种一代品种可以较好地解决上述问题,近年来,越来越多的甘蓝育种家倾向于利用甘蓝不育系进行甘蓝杂种一代品种的选育(DhallRK.Status of male sterility in vegetables for hybrid development.AReview.Adv.Hort.Sci.,2010,24(4):263-279)。当前,基于雄性不育途径的甘蓝类蔬菜杂种一代品种选育大量依赖于来自萝卜的ogura CMS胞质不育的雄性不育系(Parkash C etal.‘Ogura’-based‘CMS’lines with different nuclear backgrounds of cabbagerevealed substantial diversity at morphological and molecularlevels.3Biotech.2018,8:27;Shu JS et al.Detection of the diversity ofcytoplasmic male sterility sources in Broccoli(Brassica Oleracea var.Italica)using mitochondrial markers.Front Plant Sci.2016;7:927.),而单一细胞质在品种选育中的广泛使用将导致品种的遗传脆弱性,并带来潜在的生态风险(Tatum LA.Thesouthern corn leaf blight epidemic.Science,1971,171(3976):1113-1116)。植物花粉发育过程的基因突变往往导致彻底雄性不育,从而获得隐形核基因控制的植物雄性不育系(Chang F et al.Molecular control of microsporogenesis in Arabidopsis.CurrentOpinion in Plant Biology 2011,14:66–73)。因此,对卷入甘蓝花粉发育过程基因进行定点突变将能够产生雄性不育,从而有利于扩大甘蓝雄性不育资源,对解决当前甘蓝育种中使用单一的ogura CMS雄性不育源的风险问题具有重要的价值。Breeding the first-generation hybrid varieties of cabbage with male-sterile lines can solve the above problems. male sterility in vegetables for hybrid development. AReview. Adv. Hort. Sci., 2010, 24(4):263-279). Currently, the breeding of first-generation cabbage vegetable hybrids based on the male-sterile pathway relies heavily on the male-sterile male-sterile lines of ogura CMS from radish (Parkash C etal.'Ogura'-based'CMS'lines with different nuclear Backgrounds of cabbagerevealed substantial diversity at morphological and molecularlevels. 3 Biotech. 2018, 8: 27; Shu JS et al. Detection of the diversity of cytoplasmic male sterility sources in Broccoli (Brassica Oleracea var. Italica) using mitochondrial markers. Front Plant Sci. 2016; 7:927.), and the widespread use of single cytoplasm in variety breeding will lead to genetic vulnerability of varieties and bring potential ecological risks (Tatum LA. The southern corn leaf blight epidemic. Science, 1971, 171 (3976) :1113-1116). Genetic mutations during plant pollen development often lead to complete male sterility, resulting in plant male sterile lines controlled by recessive nuclear genes (Chang F et al. Molecular control of microsporogenesis in Arabidopsis. Current Opinion in Plant Biology 2011, 14: 66–73 ). Therefore, site-directed mutation of genes involved in the development of cabbage pollen will be able to produce male sterility, which is beneficial to expand male sterility resources in cabbage, and is important to solve the risk of using a single ogura CMS male sterility source in current cabbage breeding. the value of.

尽管通过雄性不育途径选育甘蓝杂种一代可以保证杂交种子纯度,但受到甘蓝自交不亲和特性的影响,该育种途径中的不育系、保持系以及父本系自身的繁殖仍需要依赖于传统的人工蕾期授粉手段,整个杂交种子的繁殖成本甚至高于利用自交不亲和系生产杂交种子的成本。因此,在创造甘蓝不育系的同时,将不育系中控制自交不亲和性SRK的基因下调表达或者进行突变,通过花期蜜蜂等媒介昆虫授粉杂交而使甘蓝雄性不育系的繁殖成本下降,从而实现基于雄性不育途径选育的甘蓝杂种一代种子的整个制种成本下降。Although the breeding of the first generation of cabbage hybrids through the male sterility approach can ensure the purity of hybrid seeds, due to the influence of the self-incompatibility of cabbage, the sterile line, maintainer line and the reproduction of the male parent line in this breeding approach still need to rely on In the traditional artificial pollination at the bud stage, the propagation cost of the entire hybrid seed is even higher than the cost of producing hybrid seeds using self-incompatible lines. Therefore, while creating a sterile line of cabbage, the gene that controls the self-incompatibility SRK in the sterile line is down-regulated or mutated, and the reproductive cost of the male sterile line of cabbage is reduced by pollination and hybridization of vector insects such as bees during flowering. The whole seed production cost of the first-generation seeds of cabbage hybrids selected based on the male sterility approach is reduced.

发明内容SUMMARY OF THE INVENTION

为解决上述利用雄性不育途径进行甘蓝杂种一代品种选育时,大量依赖于单一的oguraCMS单一不育资源,存在遗传脆弱性风险的问题,本发明提供一个控制甘蓝雄性不育的关键基因BoMS1,通过下调BoMS1的表达或突变BoMS1基因,可获得相应的转基因雄性不育株系和非转基因雄性不育株系。In order to solve the problem of genetic vulnerability risk due to a large amount of dependence on a single oguraCMS single sterile resource when the male sterility approach is used to carry out the breeding of the first generation of cabbage hybrids, the present invention provides a key gene BoMS1 for controlling male sterility in cabbage, Corresponding transgenic male sterile lines and non-transgenic male sterile lines can be obtained by down-regulating the expression of BoMS1 or mutating the BoMS1 gene.

甘蓝BoMS1基因,其编码蛋白的氨基酸序列如SEQ ID No.1所示。Cabbage BoMS1 gene, the amino acid sequence of the encoded protein is shown in SEQ ID No.1.

优选的,所述甘蓝BoMS1基因含有SEQ ID No.2所示的核苷酸序列。Preferably, the cabbage BoMS1 gene contains the nucleotide sequence shown in SEQ ID No.2.

优选的,所述甘蓝BoMS1基因的核苷酸序列如SEQ ID No.3所示。Preferably, the nucleotide sequence of the cabbage BoMS1 gene is shown in SEQ ID No.3.

下调上述甘蓝BoMS1基因的表达或突变上述甘蓝BoMS1基因在创制雄性不育植株系中的应用。The application of down-regulating the expression of the above-mentioned cabbage BoMS1 gene or mutating the above-mentioned cabbage BoMS1 gene in the creation of a male sterile plant line.

下调上述甘蓝BoMS1基因的表达主要有以下方法(1)RNA干扰,其中,RNAi发夹结构的制作不限于使用BoMS1基因的第一外显子和第一内含子,也包括利用该基因的任意一段序列(长度>25nt)制作的RNAi;(2)反义RNA技术;(3)其他可以导致BoMS1基因下降的途径。Down-regulating the expression of the above-mentioned cabbage BoMS1 gene mainly includes the following methods (1) RNA interference, wherein, the production of the RNAi hairpin structure is not limited to the use of the first exon and the first intron of the BoMS1 gene, but also includes any use of the gene. RNAi made from a sequence (>25nt in length); (2) antisense RNA technology; (3) other pathways that can lead to the decline of the BoMS1 gene.

突变上述甘蓝BoMS1基因的方法包括利用CRISPR/Cas9、TALE、ZFN等基因编辑技术、化学诱变和物理诱变等实现的甘蓝BoMS1基因突变。The method for mutating the above-mentioned Brassica oleracea BoMS1 gene includes the use of CRISPR/Cas9, TALE, ZFN and other gene editing technologies, chemical mutagenesis and physical mutagenesis, etc. to achieve the Brassica oleracea BoMS1 gene mutation.

本发明还提供一种下调上述甘蓝BoMS1基因的表达的iBoMS1,其核苷酸序列如SEQID No.4所示。The present invention also provides an iBoMS1 that downregulates the expression of the above-mentioned Brassica oleracea BoMS1 gene, the nucleotide sequence of which is shown in SEQ ID No.4.

含有上述iBoMS1的基因表达盒。Gene expression cassette containing iBoMS1 described above.

优选的,所述含有iBoMS1的基因表达盒中,iBoMS1的上游插入有启动子PBoMS1,PBoMS1的核苷酸序列如SEQ ID No.5所示。Preferably, in the gene expression cassette containing iBoMS1, a promoter PBoMS1 is inserted upstream of iBoMS1, and the nucleotide sequence of PBoMS1 is shown in SEQ ID No.5.

插入有上述含有iBoMS1的基因表达盒的植物表达载体。The above-mentioned plant expression vector containing the gene expression cassette of iBoMS1 is inserted.

优选的,上述植物表达载体还插入有iSRK3基因表达盒,所述iSRK3基因表达盒中含有iSRK3,所述iSRK3的核苷酸序列如SEQ ID No.8所示。Preferably, the above-mentioned plant expression vector is further inserted with an iSRK3 gene expression cassette, the iSRK3 gene expression cassette contains iSRK3, and the nucleotide sequence of the iSRK3 is shown in SEQ ID No.8.

更优选的,所述iSRK3的上游插入有SLG13启动子,SLG13启动子的核苷酸序列如SEQ ID No.9所示。More preferably, the SLG13 promoter is inserted upstream of the iSRK3, and the nucleotide sequence of the SLG13 promoter is shown in SEQ ID No.9.

利用上述植物表达载体创制转基因雄性不育株系的方法,将插入有iBoMS1基因表达盒的植物表达载体用农杆菌转染甘蓝下胚轴转化法转入甘蓝,获得转基因雄性不育株系。Using the above-mentioned plant expression vector to create a transgenic male sterile line, the plant expression vector inserted with the iBoMS1 gene expression cassette was transformed into cabbage by Agrobacterium-transfected cabbage hypocotyl transformation method to obtain a transgenic male sterile line.

为解决甘蓝雄性不育系繁殖因存在自交不亲和性的特点,在与对应保持系在花期出现杂交不亲和而使不育系种子的繁殖需进行人工蕾期授粉,导致制种成本增加的问题,本发明还提供了创制与保持系花期杂交亲和的雄性不育株系的方法。In order to solve the characteristics of self-incompatibility in the breeding of male sterile lines of cabbage, the breeding of sterile line seeds requires artificial bud pollination due to hybrid incompatibility with the corresponding maintainer line at the flowering stage, resulting in seed production costs. To add to the problem, the present invention also provides a method for creating a male sterile line that is cross-compatible with the maintainer line during flowering.

该方法是通过同时下调甘蓝BoMS1基因和甘蓝SRK基因的表达或同时突变甘蓝BoMS1基因和甘蓝SRK基因实现的。The method is achieved by simultaneously down-regulating the expression of the cabbage BoMS1 gene and the cabbage SRK gene or simultaneously mutating the cabbage BoMS1 gene and the cabbage SRK gene.

上述甘蓝SRK基因是指甘蓝S位点受体激酶基因。The above-mentioned cabbage SRK gene refers to the cabbage S-site receptor kinase gene.

上述同时下调甘蓝BoMS1基因和甘蓝SRK基因的表达主要有以下方法:(1)RNA干扰,其中,RNAi发夹结构的制作不限于使用BoMS1基因的第一外显子和第一内含子,也包括利用该基因的任意一段序列(长度>25nt)制作的RNAi;(2)利用反义RNA技术;(3)其他可以导致BoMS1基因下降的方法。The above-mentioned down-regulation of the expression of the cabbage BoMS1 gene and the cabbage SRK gene at the same time mainly includes the following methods: (1) RNA interference, wherein, the making of the RNAi hairpin structure is not limited to using the first exon and the first intron of the BoMS1 gene, but also Including RNAi made by using any sequence of the gene (length>25nt); (2) using antisense RNA technology; (3) other methods that can lead to the decrease of BoMS1 gene.

上述同时突变甘蓝BoMS1基因和甘蓝SRK基因的方法包括利用CRISPR/Cas9、TALEN,ZFN等基因编辑技术、化学诱变和物理诱变等实现的甘蓝BoMS1基因以及SRK基因的突变。The above-mentioned method for simultaneously mutating the cabbage BoMS1 gene and the cabbage SRK gene includes the use of CRISPR/Cas9, TALEN, ZFN and other gene editing technologies, chemical mutagenesis and physical mutagenesis, etc. to achieve the mutation of the cabbage BoMS1 gene and the SRK gene.

所述创制与保持系花期杂交亲和的雄性不育系的方法为:将插入有iBoMS1基因表达盒和iSRK3基因表达盒的植物表达载体用农杆菌转染甘蓝下胚轴转化法转入甘蓝,获得与保持系花期杂交亲和的转基因雄性不育株系。The method for creating a male sterile line that is hybrid compatible with the maintainer line at flowering stage is as follows: the plant expression vector inserted with the iBoMS1 gene expression cassette and the iSRK3 gene expression cassette is transfected into cabbage by Agrobacterium-transfected cabbage hypocotyl transformation method, A transgenic male sterile line that is cross-compatible with the maintainer line during flowering is obtained.

所述创制与保持系花期杂交亲和的雄性不育系的方法为:按照CRISPR/Cas9基因编辑系统目标位点的序列特征要求,分别从甘蓝BoMS1基因外显子和甘蓝SRK3基因外显子各选择4个长度为20bp的目标位点(实际操作中可以选择少于4个目标位点),所述目标位点下游应含PAM序列-NGG,将所述目标位点分别组装到tRNA-sgRNA多位点表达盒的BbsI,BsaI,BsmBI和BfuAI位点分别得到靶向BoMS1基因和SRK3基因的tRNA-sgRNA多位点表达盒,最后将靶向BoMS1基因和SRK3基因的tRNA-sgRNA多位点表达盒装载到表达Cas9蛋白的表达载体中,获得可同时敲除BoMS1基因和SRK基因的植物表达载体,植物表达载体转化甘蓝自交不亲和系选育与保持系花期杂交亲和的非转基因雄性不育系。The method for creating a male sterile line that is hybrid compatible with the maintainer line at flowering stage is as follows: according to the requirements of the sequence characteristics of the target site of the CRISPR/Cas9 gene editing system, the exon of the cabbage BoMS1 gene and the exon of the cabbage SRK3 gene are respectively selected. Select 4 target sites with a length of 20bp (less than 4 target sites can be selected in actual operation), the downstream of the target sites should contain PAM sequence-NGG, and the target sites are assembled into tRNA-sgRNA respectively The BbsI, BsaI, BsmBI and BfuAI loci of the multi-site expression cassette obtained tRNA-sgRNA multi-site expression cassettes targeting the BoMS1 gene and SRK3 gene, respectively, and finally the tRNA-sgRNA multi-site expression boxes targeting the BoMS1 gene and SRK3 gene were obtained. The expression cassette was loaded into an expression vector expressing Cas9 protein to obtain a plant expression vector capable of knocking out BoMS1 gene and SRK gene at the same time. Male sterile line.

上述创制与保持系花期杂交亲和的雄性不育株系方法是利用CRISPR/Cas9基因编辑系统定点突变甘蓝BoMS1基因和甘蓝SRK3基因,本发明中所述的CRISPR/Cas9基因编辑技术是目前农作物广泛使用的基因突变技术,其原理及技术路线可以通过站、网络或者其他专业期刊获取。The above-mentioned method for creating a male sterile line compatible with the maintenance line at the flowering stage is to use the CRISPR/Cas9 gene editing system to mutate the cabbage BoMS1 gene and the cabbage SRK3 gene. The CRISPR/Cas9 gene editing technology described in the present invention is widely used in crops at present. The gene mutation technology used, its principle and technical route can be obtained through the website, the Internet or other professional journals.

本发明的有益效果:Beneficial effects of the present invention:

1.本发明提供了控制甘蓝雄性不育的关键基因BoMS1基因,并通过RNAi技术下调甘蓝BoMS1基因的表达,进而创制了转基因雄性不育系,以此克服了利用雄性不育途径进行甘蓝杂种一代品种选育时,大量依赖于单一的ogura CMS单一不育资源,存在遗传脆弱性风险的问题。1. The present invention provides the key gene BoMS1 gene for controlling male sterility of cabbage, and down-regulates the expression of the cabbage BoMS1 gene by RNAi technology, and then creates a transgenic male sterile line, thus overcoming the use of male sterility approach to carry out the first generation of cabbage hybrids. Breeding of varieties relies heavily on a single ogura CMS single sterile resource, and there is a problem of genetic vulnerability risk.

2.本发明利用RNAi技术同时下调了甘蓝BoMS1基因和甘蓝SRK基因的表达,创制了与保持系花期杂交亲和的转基因雄性不育系,实现甘蓝不育系与保持系之间杂交通过昆虫媒介如蜜蜂授粉而降低不育系的繁殖成本,该方法创制的不育株系避免了保持系的繁殖需进行人工蕾期授粉的问题,降低了甘蓝雄性不育系的繁殖成本。2. The present invention uses RNAi technology to simultaneously down-regulate the expression of the cabbage BoMS1 gene and the cabbage SRK gene, and creates a transgenic male sterile line that is compatible with the maintainer line during flowering, and realizes the hybridization between the cabbage sterile line and the maintainer line through insect media. For example, bee pollination reduces the reproductive cost of sterile lines, the sterile line created by this method avoids the problem that artificial bud stage pollination is required for the propagation of maintainer lines, and reduces the reproductive cost of male sterile lines of cabbage.

3.本发明还通过同时突变甘蓝BoMS1基因和甘蓝SRK基因,可创制与保持系花期杂交亲和的非转基因雄性不育系。3. The present invention can also create a non-transgenic male sterile line compatible with the maintainer line at the flowering stage by simultaneously mutating the cabbage BoMS1 gene and the cabbage SRK gene.

附图说明Description of drawings

图1是BoMS1基因干扰表达载体构建相关质粒结构示意图,A:PBI525载体;B:iBoMS1基因表达盒;C:PCA13Bar植物表达载体;D:iBoMS1基因植物表达载体。Figure 1 is a schematic diagram of the plasmid structure related to the construction of BoMS1 gene interference expression vector, A: PBI525 vector; B: iBoMS1 gene expression cassette; C: PCA13Bar plant expression vector; D: iBoMS1 gene plant expression vector.

图2是iBoMS1转基因甘蓝植株与野生型非转基因植株花器官形态学及花粉发育比较。Figure 2 is a comparison of flower organ morphology and pollen development between iBoMS1 transgenic cabbage plants and wild-type non-transgenic plants.

图3是拟南芥ms1/ms1突变体中表达甘蓝BoMS1基因恢复育性,A:PCA13BAR-NP植物表达载体示意图;B.pCA13BarAPMS1-BoMS1植物表达载体示意图;C:突变体表达BoMS1基因恢复育性。Fig. 3 is the expression of the cabbage BoMS1 gene in the Arabidopsis ms1/ms1 mutant to restore fertility, A: the schematic diagram of the PCA13BAR-NP plant expression vector; B. the schematic diagram of the pCA13BarAPMS1-BoMS1 plant expression vector; C: the mutant expressing the BoMS1 gene to restore the fertility .

图4是PCABARiMS1/iSRK转基因甘蓝植株表现彻底雄性不育以及与可与保持系花期杂交亲和,A:PCABARiMS1/iSRK表达载体;B:PCABARiMS1/iSRK转基因植株表现雄性不育;C:雄性不育甘蓝植株与野生型植株花期杂交亲和。C1-C2:野生型植株蕾期和花期自交,C3-C4:不育型植株与野生型植株蕾期和花期杂交亲和;D:不育型植株与野生型植株表现花期杂交亲和。Figure 4 shows that the PCABARiMS1/iSRK transgenic cabbage plants show complete male sterility and are compatible with the maintainer line during flowering. A: PCABARiMS1/iSRK expression vector; B: PCABARiMS1/iSRK transgenic plants showing male sterility; C: male sterility Cabbage plants were cross-compatible with wild-type plants at flowering. C1-C2: wild-type plants were selfed at bud stage and flowering stage, C3-C4: sterile plants had cross-compatibility with wild-type plants at bud-stage and flowering stages; D: sterile plants had cross-compatibility with wild-type plants at flowering stage.

图5是利用CRISPR/Cas9系统进行BoMS1基因和SRK3基因的双敲除设计。A:BoMS1基因和SRK3基因敲除靶向位点;B:基于tRNA加工的多重sgRNAs表达盒序列,红色字母表示AtU6-26启动子;绿色字母表示拟南芥glycine-tRNA序列;蓝色字母表示BbsI,BsaI,BsmBI,and BfuAI酶切位点;黄色字母表示优化后的sgRNA结构序列,橙色字母表示终止子序列;C:PCACas-tMS1/tSRK双基因敲除植物表达载体示意图,Bar筛选标记基因表达盒未在图中标示出。Figure 5 is the double knockout design of BoMS1 gene and SRK3 gene using CRISPR/Cas9 system. A: BoMS1 gene and SRK3 gene knockout target site; B: tRNA processing-based multiple sgRNAs expression cassette sequences, red letters indicate the AtU6-26 promoter; green letters indicate Arabidopsis glycine-tRNA sequences; blue letters indicate BbsI, BsaI, BsmBI, and BfuAI restriction sites; yellow letters indicate the optimized sgRNA structural sequence, orange letters indicate the terminator sequence; C: schematic diagram of PCACas-tMS1/tSRK double gene knockout plant expression vector, Bar selection marker gene Expression cassettes are not indicated in the figure.

图6是CRISPR/Cas9-tRNA系统介导的BoMS1基因和SRK3基因的突变检测,A:BoMS1基因突变检测;B:SRK3基因突变检测。Figure 6 is the mutation detection of BoMS1 gene and SRK3 gene mediated by CRISPR/Cas9-tRNA system, A: BoMS1 gene mutation detection; B: SRK3 gene mutation detection.

图7是BoMS1基因敲除植株表现彻底的雄性不育。A-D:野生型对照植株(分别示花、雄蕊、花药、花粉发育情况);E-H:BoMS1基因敲除植株(分别示花、雄蕊、花药、花粉发育情况)。Figure 7 shows that BoMS1 knockout plants exhibit complete male sterility. A-D: wild-type control plants (respectively showing the development of flowers, stamens, anthers, and pollen); E-H: BoMS1 knockout plants (respectively showing the development of flowers, stamens, anthers, and pollen).

图8是BoMS1和SRK3双基因敲除不育系与非转基因保持系花期杂交亲和。A,C,E,G:野生型对照植株花期荧光及花期杂交亲和结子情况检测;B,D,F,H:双基因敲除植株花期荧光及花期杂交亲和结子情况检测。Figure 8 is the cross-compatibility of BoMS1 and SRK3 double knockout sterile lines with non-transgenic maintainer lines at flowering. A, C, E, G: Wild-type control plant flowering period fluorescence and flowering hybrid affinity knot detection; B, D, F, H: Double gene knockout plants flowering period fluorescence and flowering hybrid affinity knot detection.

具体实施方式Detailed ways

下面结合具体的实施例对本发明进行详细说明。以下实施例将有助于生物技术育种领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对该领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以在十字花科植物领域内做出若干变形和改进,但这些变形和改进均属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the field of biotechnology breeding to further understand the present invention, but do not limit the present invention in any form. It should be pointed out that, for those of ordinary skill in the field, without departing from the concept of the present invention, several modifications and improvements can also be made in the field of cruciferous plants, but these modifications and improvements belong to the present invention scope of protection.

下述实施例中所使用的实验方法若无特殊说明,均视为常规方法或者可以在公开的实验指导书或者实验技术网站获取。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径获取。Unless otherwise specified, the experimental methods used in the following examples are regarded as conventional methods or can be obtained from published experimental instructions or experimental technology websites. The materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.

实施例1:甘蓝BoMS1基因序列的鉴定Example 1: Identification of cabbage BoMS1 gene sequence

结合生物信息学分析,利用Brassica Database在线数据库,从中获取甘蓝基因Bol035718(BoMS1)序列(SEQ ID No.2),进而得到该基因的基因组序列(含内含子,SEQ IDNo.3),根据Bol035718基因序列信息,设计引物MS1-F:5-CATGCCATGGCCATGTCGAATCTGATTCG-3和MS1-R:5-CGCGGATCCTCAAGGCAAAAAAGAGAGAGGAATAAG-3。(1)提取甘蓝自交不亲和系F416蕾期总RNA,逆转录为cDNA;(2)提取甘蓝自交不亲和系F416基因组DNA。分别以提取的cDNA和基因组DNA为模板,利用MS1-F和MS1-R引物PCR产物克隆测序,结果显示克隆到的目标基因编码框序列和基因组序列均与Brassica Database数据库中的Bol035718基因编码框序列和基因组序列完全一致。Combined with bioinformatics analysis, the Brassica Database online database was used to obtain the cabbage gene Bol035718 (BoMS1) sequence (SEQ ID No. 2), and then the genome sequence (including introns, SEQ ID No. 3) of the gene was obtained. According to Bol035718 Gene sequence information, designed primers MS1-F: 5-CATGCCATGGCCATGTCGAATCTGATTCG-3 and MS1-R: 5-CGCGGATCCTCAAGGCAAAAAAGAGAGAGGAATAAG-3. (1) Extracting the total RNA at the bud stage of the self-incompatible line F416 of cabbage, and reverse transcribing it into cDNA; (2) Extracting the genomic DNA of the self-incompatible line F416 of cabbage. Using the extracted cDNA and genomic DNA as templates, the PCR products were cloned and sequenced using MS1-F and MS1-R primers, respectively. The results showed that the cloned target gene coding frame sequence and genomic sequence were both consistent with the Bol035718 gene coding frame sequence in the Brassica Database. completely consistent with the genome sequence.

实施例2:RNAi下调BoMS1基因表达获得甘蓝雄性不育材料Example 2: RNAi down-regulates BoMS1 gene expression to obtain male sterile material of cabbage

利用引物PMS1-F(5-AACTGCAGCCTTAAGTATACGACTAGAAACAT-3)和PMS-R(5-TGCCATGGATCGTATCGAACTTTAGTTTGGTC-3)从甘蓝基因组DNA中扩增获得BoMS1基因上游2068bp的启动子序列PBoMS1(SEQ ID No.5)。测序后将该序列用PstI+NcoI切下掺入PBI525载体(图1-A)的PstI和NcoI位点替换其中的35S-35S启动子。用引物MS1-F(5-CCATGGCCATGTCGAATCTGATTCGAACAGATC-3)和iMS-2(5-CGGGATCCCTGTAATGTTCCATAAATAAATGC-3)扩增得到674bp第一外显子到第一内含子序列,测序后插入PBoMS1启动子下游的NcoI+BamHI位点。另外,用引物iMS-3(5-CGGGATCCATGTCGAATCTGATTCGAACAGAT-3)和iMS-4(5-CGGGATCCCAACATATTGGCAATGGTTGCAAC-3)得到第一外显子的反向互补序列,测序后插入上一步获得载体的BamHI位点。鉴定插入方向后获得BoMS1基因RNAi发夹结构(iBoMS1,SEQ ID No.5),得到iBoMS1表达盒(图1-B)。最后将iBoMS1基因表达盒用PstI+EcoRI切下插入PCA13Bar植物表达载体,获得如图1-C所示的iBoMS1基因干扰表达载体。图1-C所示植物表达载体利用农杆菌EHA105介导的下胚轴转化法导入甘蓝F416自交不亲和系。在含有6mg/L草丁膦除草剂PPT的MS培养基上通过愈伤组织诱导、不定芽诱导、不定芽生根、PCR鉴定等过程获得阳性转基因植株。转基因甘蓝植株在营养生长阶段的形态学特征与非转基因植株完全一致,但植株开花后,雄蕊花丝变短,花药肥大且无正常花粉产生,表现彻底的雄性不育,但其雌蕊发育不受影响(图2)。Using primers PMS1-F (5-AACTGCAGCCTTAAGTATACGACTAGAAACAT-3) and PMS-R (5-TGCCATGGATCGTATCGAACTTTAGTTTGGTC-3), the promoter sequence PBoMS1 (SEQ ID No. 5) of 2068 bp upstream of BoMS1 gene was amplified from cabbage genomic DNA. After sequencing, the sequence was excised with PstI+NcoI and incorporated into the PstI and NcoI sites of the PBI525 vector (FIG. 1-A) to replace the 35S-35S promoter therein. Using primers MS1-F (5-CCATGGCCATGTCGAATCTGATTCGAACAGATC-3) and iMS-2 (5-CGGGATCCCTGTAATGTTCCATAAATAAATGC-3) to amplify the 674bp first exon to first intron sequence, and insert NcoI+ downstream of the PBoMS1 promoter after sequencing BamHI site. In addition, primers iMS-3 (5-CGGGATCCATGTCGAATCTGATTCGAACAGAT-3) and iMS-4 (5-CGGGATCCCAACATATTGGCAATGGTTGCAAC-3) were used to obtain the reverse complementary sequence of the first exon, sequenced and inserted into the BamHI site of the vector obtained in the previous step. After identifying the insertion direction, the BoMS1 gene RNAi hairpin structure (iBoMS1, SEQ ID No. 5) was obtained, and the iBoMS1 expression cassette was obtained (Fig. 1-B). Finally, the iBoMS1 gene expression cassette was excised with PstI+EcoRI and inserted into the PCA13Bar plant expression vector to obtain the iBoMS1 gene interference expression vector shown in Figure 1-C. The plant expression vector shown in Figure 1-C was introduced into the cabbage F416 self-incompatible line by Agrobacterium EHA105-mediated hypocotyl transformation. Positive transgenic plants were obtained by callus induction, adventitious bud induction, adventitious bud rooting and PCR identification on MS medium containing 6 mg/L glufosinate herbicide PPT. The morphological characteristics of the transgenic cabbage plants in the vegetative growth stage were completely consistent with those of the non-transgenic plants, but after flowering, the stamen filaments became shorter, the anthers became hypertrophic and no normal pollen was produced, showing complete male sterility, but its pistil development was not affected. (figure 2).

实施例3:在拟南芥ms1/ms1雄性不育突变体植株中表达BoMS1基因恢复育性Example 3: Restoring fertility by expressing BoMS1 gene in Arabidopsis ms1/ms1 male sterile mutant plants

ABRC拟南芥突变体库中的CS20突变体(Germplasm/Stock:CS75)是一个MS1基因突变体,其纯合突变体ms1/ms1表现为彻底的雄性不育。用引物APMS-F(5-AACTGCAGGAGACCCTCTCTCATCTTGCGTGT-3)和APMS-R(5-AACTGCAGCGAATCAGAAATTTGGTTTGATCTTG-3)从拟南芥DNA中扩增2981bp的MS1基因上游启动子APMS1(SEQ ID No.6)。设计引物MS1-TF(5-CGGGATCCATCATTCATGTTATATTAAACCTTC-3)和MS1-TR(5-GAAGATCTACTACACACTTCTTTCTCCGCCTTG-3)从拟南芥DNA中扩增MS1基因下游346bp的AT-MS1终止子(SEQ ID No.7)。首先将克隆到的拟南芥MS1基因终止子At-MS1用BamH+BglII切下后插入如图3-A所示PCA13BAR-NP植物载体中的Nos终止子上游BamH位点,并筛选所需方向;再将克隆到的BoMS1基因编码框用NcoI+BamHI切下后插入At-MS1终止子上游的NcoI和BamHI位点之间;最后拟南芥APMS1启动子用PstI切下插入BoMS1基因上游的PstI位点,筛选目标方向的阳性克隆,获得如图3-B所示的BoMS1基因植物表达载体pCA13BarAPMS1-BoMS1。通过农杆菌GV3101介导的花序侵染法转化拟南芥MS1基因突变体CS20,收获的种子在4℃低温处理1周后播种,生长约15d后喷洒500ppm的除草剂PPT筛选转基因阳性植株。其中抗除草剂PPT的阳性植株用引物MS1-GF(5-CATTTCGTGATCCCCTCAAAGG-3)和MS1-GR(5-GAGGATTGGAGTTTCTCGGTTAAG-3)扩增632bp大小的拟南芥MS1基因片段,回收PCR产物用限制性内切酶RsaI酶切进行相应单株的基因型鉴定。如对应单株PCR产物酶切后只有632bp的条带外,未切出任何条带,则表明其单株对应的基因型为ms1/ms1。进一步对ms1/ms1单株开花后的育性进行鉴定,结果发现在部分ms1/ms1基因型植株出现彻底的育性恢复现象(图3-C)。证明在拟南芥ms1/ms1突变体植株中表达甘蓝BoMS1基因可以恢复其不育表型,进一步证明了BoMS1基因与甘蓝的育性调控密切相关。The CS20 mutant (Germplasm/Stock: CS75) in the ABRC Arabidopsis mutant library is an MS1 gene mutant whose homozygous mutant ms1/ms1 exhibits complete male sterility. The 2981 bp MS1 gene upstream promoter APMS1 (SEQ ID No. 6) was amplified from Arabidopsis DNA with primers APMS-F (5-AACTGCAGGAGACCCTCTCTCATCTTGCGTGT-3) and APMS-R (5-AACTGCAGCGAATCAGAAATTTGGTTTGATCTTG-3). Primers MS1-TF (5-CGGGATCCATCATTCATGTTATATTAAACCTTC-3) and MS1-TR (5-GAAGATCTACTACACACTTCTTTCTCCGCCTTG-3) were designed to amplify the AT-MS1 terminator (SEQ ID No. 7) 346 bp downstream of the MS1 gene from Arabidopsis DNA. First, the cloned Arabidopsis thaliana MS1 gene terminator At-MS1 was cut with BamH+BglII and inserted into the BamH site upstream of the Nos terminator in the PCA13BAR-NP plant vector as shown in Figure 3-A, and the desired direction was screened ; The cloned BoMS1 gene coding frame was cut with NcoI+BamHI and inserted between the NcoI and BamHI sites upstream of the At-MS1 terminator; finally the Arabidopsis APMS1 promoter was cut with PstI and inserted into the PstI upstream of the BoMS1 gene site, screen the positive clones in the target direction, and obtain the BoMS1 gene plant expression vector pCA13BarAPMS1-BoMS1 as shown in Figure 3-B. Arabidopsis thaliana MS1 gene mutant CS20 was transformed by inflorescence infection mediated by Agrobacterium GV3101. The harvested seeds were sown at 4°C for 1 week and then sprayed with 500ppm herbicide PPT for about 15 days to screen transgenic positive plants. Among the herbicide-resistant PPT-positive plants, primers MS1-GF (5-CATTTCGTGATCCCCTCAAAGG-3) and MS1-GR (5-GAGGATTGGAGTTTCTCGGTTAAG-3) were used to amplify a 632 bp Arabidopsis thaliana MS1 gene fragment. The genotype identification of the corresponding individual plants was carried out by digestion with the Dicer RsaI. If the PCR product of the corresponding single plant has only a 632 bp band and no band is excised, it indicates that the corresponding genotype of the single plant is ms1/ms1. The fertility of individual ms1/ms1 plants after flowering was further identified, and it was found that complete fertility recovery occurred in some ms1/ms1 genotype plants (Fig. 3-C). It was proved that expressing BoMS1 gene of cabbage in Arabidopsis ms1/ms1 mutant plants could restore its sterile phenotype, which further proved that BoMS1 gene is closely related to the fertility regulation of cabbage.

实施例4:利用RNAi同时干扰BoMS1和SRK基因创制与保持系花期杂交亲和的转基因甘蓝不育系Example 4: Using RNAi to interfere with BoMS1 and SRK genes at the same time to create a transgenic sterile line of cabbage that is compatible with the flowering period of the maintainer line

利用自交不亲和系F416中SRK3基因第一外显子的一段序列和来自芥菜(Brassicajuncea)FLC基因的Intron序列做成一个针对SRK3基因干扰的RNAi发夹结构(iSRK,SEQ IDNo.8),将该RNAi发夹结构与来自甘蓝的SLG13柱头特异启动子序列(SEQ ID No.9)融合做成SRK3基因RNAi干扰表达盒。将该SRK3基因RNAi干扰表达盒用PstI切下后插入图1-D所示的BoMS1基因RNAi干扰植物表达载体的PstI位点,获得一个可以同时干扰BoMS1和SRK基因表达的植物表达载体PCABARiMS1/iSRK(图4-A)。将该植物表达载体用农杆菌介导的甘蓝下胚轴转化法转入甘蓝自交不亲和系F416。获得的21株转基因甘蓝植株在营养阶段与野生型差异不大,其中20株转基因植株表现完全的雄性不育。完全不育株的花朵花药干瘪,整体较野生型有些许瘦小,花丝正常,无花粉。通过石蜡切片对不育的花药切片鉴定,对比可育株,不育株的绒毡层延迟降解并异常膨大,游离小孢子外的胼胝壁不降解,大部分小孢子空泡化(图4-B)。将非转基因甘蓝自交不亲和系F416作为父本与转基因不育株在花期进行杂交,对花粉在转基因植株柱头杂交亲和性进行测定,结果显示转基因不育甘蓝植株在蕾期和花期授粉后均有大量的花粉管在伸长,其花期的杂交亲和性明显高于非转基因植株(图4-C)。针对雄性不育植株与对应非转基因植株花期杂交结荚、结子情况的调查显示转基因不育植株作为母本与对应可育保持系在花期杂交后能正常结子(图4-D)。An RNAi hairpin structure targeting SRK3 gene interference (iSRK, SEQ ID No. 8) was made by using a sequence of the first exon of SRK3 gene in the self-incompatible line F416 and the Intron sequence from the FLC gene of Brassica juncea , and the RNAi hairpin structure was fused with the SLG13 stigma-specific promoter sequence (SEQ ID No. 9) from cabbage to make the SRK3 gene RNAi interference expression cassette. The SRK3 gene RNAi interference expression cassette was excised with PstI and inserted into the PstI site of the BoMS1 gene RNAi interference plant expression vector shown in Figure 1-D to obtain a plant expression vector PCABARiMS1/iSRK that can interfere with the expression of both BoMS1 and SRK genes at the same time. (Figure 4-A). The plant expression vector was transformed into the cabbage self-incompatible line F416 by Agrobacterium-mediated transformation of cabbage hypocotyls. The obtained 21 transgenic cabbage plants showed little difference from the wild type in the vegetative stage, of which 20 transgenic plants showed complete male sterility. The flowers of the completely sterile plants have shriveled anthers, and are slightly thinner than the wild type, with normal filaments and no pollen. The sterile anther sections were identified by paraffin section, and compared with the fertile plants, the tapetum of the sterile plants was degraded and abnormally expanded, the callus wall outside the free microspores was not degraded, and most of the microspores were vacuolated (Figure 4- B). The non-transgenic cabbage self-incompatibility line F416 was used as the male parent to cross with transgenic sterile plants at the flowering stage, and the cross-compatibility of pollen on the stigma of the transgenic plants was determined. The results showed that the transgenic sterile cabbage plants were pollinated at the bud and flowering stages. Afterwards, a large number of pollen tubes were elongated, and the hybrid compatibility at flowering stage was significantly higher than that of non-transgenic plants (Fig. 4-C). The investigation of the pod-bearing and seed-bearing situation of the hybridization between male sterile plants and corresponding non-transgenic plants at flowering period showed that the transgenic sterile plants, as female parent and corresponding fertile maintainer line, could bear normal seeds at flowering (Fig. 4-D).

实施例5:同时敲除BoMS1基因和SRK基因创制与保持系花期杂交亲和的甘蓝不育系Example 5: Simultaneous knockout of BoMS1 gene and SRK gene to create a sterile line of cabbage that is cross-compatible with the maintainer line during flowering

根据SEQ ID No.3所示的BoMS1基因组序列,分别在其第2外显子,第3外显子各找一个位点;第1外显子找2个位点进行CRISPR/Cas9系统介导的BoMS1基因定点突变。在自交不亲和系F416的SRK3基因第一外显子选择4个位点进行CRISPR/Cas9系统介导的SRK基因定点突变(图5-A)。针对每个靶向位点合成两条互补引物,其中靶向BoMS1基因的四对引物如下:According to the BoMS1 genome sequence shown in SEQ ID No.3, find a site in the second exon and the third exon respectively; find two sites in the first exon for CRISPR/Cas9 system mediation Site-directed mutagenesis of the BoMS1 gene. The CRISPR/Cas9 system-mediated site-directed mutagenesis of the SRK gene was performed at four sites in the first exon of the SRK3 gene of the self-incompatible line F416 (Fig. 5-A). Two complementary primers were synthesized for each targeting site, and the four pairs of primers targeting the BoMS1 gene were as follows:

Site A:5-TGCAGCCTTTCTAAAACTAGAAGG-3,5-AAACCCTTCTAGTTTTAGAAAGGC-3;Site A: 5-TGCAGCCTTTCTAAAACTAGAAGG-3, 5-AAACCCTTCTAGTTTTAGAAAGGC-3;

Site B:5-TGCAGAGTAGCAAAAGGAGAGCCG-3,5-AAACCGGCTCTCCTTTTGCTACTC-3;Site B: 5-TGCAGAGTAGCAAAAGGAGAGCCG-3, 5-AAACCGGCTCTCCTTTTGCTACTC-3;

Site C:5-TGCAGAGGTTAAGAGAGGCTTCGA-3,5-AAACTCGAAGCCTCTCTTAACCTC-3;Site C: 5-TGCAGAGGTTAAGAGAGGCTTCGA-3, 5-AAACTCGAAGCCTCTCTTAACCTC-3;

Site D:5-TGCAAAGTTGGTCCTTTCAGCTCG-3,5-AAACCGAGCTGAAAGGACCAACTT-3。Site D: 5-TGCAAAGTTGGTCCTTTCAGCTCG-3, 5-AAACCGAGCTGAAAGGACCAACTT-3.

靶向SRK3基因的四对引物如下:The four pairs of primers targeting the SRK3 gene are as follows:

Site A:5-TGCAGGCAATAATCTTGTCCTCCT-3,5-AAACAGGAGGACAAGATTATTGCC-3;Site A: 5-TGCAGGCAATAATCTTGTCCTCCT-3, 5-AAACAGGAGGACAAGATTATTGCC-3;

Site B:5-TGCAGTGGCAGAGCTTCTCGCCAA-3,5-AAACTTGGCGAGAAGCTCTGCCAC-3;Site B: 5-TGCAGTGGCAGAGCTTCTCGCCAA-3, 5-AAACTTGGCGAGAAGCTCTGCCAC-3;

Site C:5-TGCAGTGGGATCTTTAGAGTGCAT-3,5-AAACATGCACTCTAAAGATCCCAC-3;Site C: 5-TGCAGTGGGATCTTTAGAGTGCAT-3, 5-AAACATGCACTCTAAAGATCCCAC-3;

Site D:5-TGCAAACCCTATATCCAACTCCAC-3,5-AAACGTGGAGTTGGATATAGGGTT-3。Site D: 5-TGCAAAACCCTATATCCAACTCCAC-3, 5-AAACGTGGAGTTGGATATAGGGTT-3.

上述合成的靶向位点互补引物根据http://www.genome-engineering.org/ crispr/在线提供的步骤分别插入基于内源tRNA加工的多重sgRNA序列表达盒的BbsI,BsaI,BsmBI,and BfuAI四个酶切位点(多重sgRNA序列表达盒见图5-B)。最后将两个基因的多位点sgRNA表达盒同时组装到表达Cas9蛋白的PCABar-Cas9载体中,获得PCACas-tMS1/tSRK双基因敲除植物表达载体(图5-C)。利用农杆菌介导的下胚轴转化法将其导入甘蓝自交不亲和材料F416。The above-mentioned synthetic targeting site complementary primers were inserted into BbsI, BsaI, BsmBI, and BfuAI of the multiple sgRNA sequence expression cassette based on endogenous tRNA processing according to the steps provided online at http://www.genome-engineering.org/crisr/ Four restriction sites (multiple sgRNA sequence expression cassettes are shown in Figure 5-B). Finally, the multi-site sgRNA expression cassettes of the two genes were simultaneously assembled into the PCABar-Cas9 vector expressing Cas9 protein to obtain the PCACas-tMS1/tSRK double gene knockout plant expression vector (Fig. 5-C). It was introduced into the self-incompatible material F416 of cabbage by Agrobacterium-mediated hypocotyl transformation.

总共有18株Cas9阳性转基因甘蓝植株被获得,通过靶向区域DNA片段的PCR直接测序法检测相应植株是否在靶向位点附近出现突变(根据测序图在靶向位点是否出现重峰判断对应转基因单株突变产生)。其中SRK3基因的靶向区域扩增用引物BoSRK3-F:5-GACATTGTCCGACAGAACCTATG-3和BoSRK3-R:5-CTTCACTATTATCTGTGAAATTG-3。BoMS1基因靶向区域扩增用引物:MS1-F:5-CCATGGCCATGTCGAATCTGATTCGAACAGATC-3和MS1-R1:5-GGAAGACGCGAATGGAGATGAAG-3。根据PCR直接测序结果,18株转基因植株中有6株BoMS1基因在相应区域出现靶位点重峰,13株SRK3基因在相应区域出现靶位点重峰。其中6株BoMS1基因均伴随SRK3基因的突变,因此,双基因同时突变频率达到33.3%。进一步的单克隆测序结果显示靶位点突变以碱基替换、缺失、插入等形式发生,无大的DNA片段删除(图6)。A total of 18 Cas9-positive transgenic cabbage plants were obtained, and the PCR direct sequencing method of DNA fragments in the targeted region was used to detect whether the corresponding plants had mutations near the target site (according to the sequencing map whether there was a heavy peak at the target site to determine the corresponding transgenic single plant mutation). The primers BoSRK3-F: 5-GACATTGTCCGACAGAACCTATG-3 and BoSRK3-R: 5-CTTCACTATTATCTGTGAAATTG-3 were used for the amplification of the targeted region of the SRK3 gene. Primers for amplification of the targeted region of the BoMS1 gene: MS1-F: 5-CCATGGCCATGTCGAATCTGATTCGAACAGATC-3 and MS1-R1: 5-GGAAGACGCGAATGGAGATGAAG-3. According to the results of direct PCR sequencing, 6 of the 18 transgenic plants showed a target site peak in the corresponding region of the BoMS1 gene, and 13 plants of the SRK3 gene showed a target site peak in the corresponding region. Among them, 6 strains of BoMS1 gene were accompanied by mutation of SRK3 gene, so the frequency of simultaneous mutation of both genes reached 33.3%. Further single-clonal sequencing results showed that target site mutations occurred in the form of base substitutions, deletions, insertions, etc., without deletion of large DNA fragments (Figure 6).

同时发生双基因突变的单株在营养生长阶段与野生型植株比较无明显差异,开花后发现有1株单株出现彻底雄性不育,表现为花丝较短,花柱突出,花药完全无花粉。通过石蜡切片鉴定完全不育株的花药发育过程,可见表皮、药室内壁、中间层细胞都发生了降解,花粉囊中几乎未见成熟的花粉粒,药壁上有少量沉积的败育花粉残迹(图7)。进一步用来自具有同样S-单倍型野生植株花粉与该不育植株在蕾期和花期分别进行杂交,发现花粉均能在柱头萌发并伸入花柱,且能正常结荚结子(图8)。Compared with wild-type plants, there was no significant difference in the vegetative growth stage of the single plant with double gene mutation at the same time. After flowering, one single plant was found to be completely male sterile, which showed that the filaments were shorter, the style was prominent, and the anthers were completely pollen-free. The anther development process of the completely sterile plant was identified by paraffin section. It can be seen that the epidermis, the inner wall of the drug chamber, and the middle layer cells are all degraded. There are almost no mature pollen grains in the pollen sac, and a small amount of abortive pollen residues deposited on the drug wall. (Figure 7). Further crossed the sterile plant with pollen from the wild plant with the same S-haplotype at bud stage and flowering stage respectively, and found that pollen could germinate at stigma and extend into style, and could produce pods and seeds normally (Fig. 8).

SEQUENCE LISTINGSEQUENCE LISTING

<110> 西南大学<110> Southwest University

<120> 甘蓝BoMS1基因及其在创制不育材料中的应用<120> Cabbage BoMS1 gene and its application in creating sterile materials

<130> 1<130> 1

<160> 9<160> 9

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 667<211> 667

<212> PRT<212> PRT

<213> Brassica oleracea<213> Brassica oleracea

<400> 1<400> 1

Met Ser Asn Leu Ile Arg Thr Asp Leu Pro Lys Lys Arg Lys Arg GlyMet Ser Asn Leu Ile Arg Thr Asp Leu Pro Lys Lys Arg Lys Arg Gly

1 5 10 151 5 10 15

Glu Ser Thr Val Phe Arg Leu Lys Thr Phe Gly Glu Thr Gly His ProGlu Ser Thr Val Phe Arg Leu Lys Thr Phe Gly Glu Thr Gly His Pro

20 25 30 20 25 30

Ala Glu Leu Asn Gln Leu Ser Phe Arg Asp Asn Leu Gly Lys Leu LeuAla Glu Leu Asn Gln Leu Ser Phe Arg Asp Asn Leu Gly Lys Leu Leu

35 40 45 35 40 45

Glu Phe Gly His Phe Glu Ser Ser Gly Leu Met Gly Ser Trp Ser PheGlu Phe Gly His Phe Glu Ser Ser Gly Leu Met Gly Ser Trp Ser Phe

50 55 60 50 55 60

Gln Leu Glu Val His Arg His Pro Asn Pro Leu Tyr Val Leu Leu PheGln Leu Glu Val His Arg His Pro Asn Pro Leu Tyr Val Leu Leu Phe

65 70 75 8065 70 75 80

Val Val Glu Glu Pro Ile Glu Ala Ser Leu Asn Leu Arg Cys Asn HisVal Val Glu Glu Pro Ile Glu Ala Ser Leu Asn Leu Arg Cys Asn His

85 90 95 85 90 95

Cys Gln Tyr Val Gly Trp Gly Asn His Met Ile Cys Asn Lys Lys TyrCys Gln Tyr Val Gly Trp Gly Asn His Met Ile Cys Asn Lys Lys Tyr

100 105 110 100 105 110

His Phe Val Ile Pro Ser Lys Glu Thr Met Ala Ala Phe Leu Lys LeuHis Phe Val Ile Pro Ser Lys Glu Thr Met Ala Ala Phe Leu Lys Leu

115 120 125 115 120 125

Glu Gly Gly Ile Leu Val Ser Pro Glu Lys Glu Ser Leu Ser His LeuGlu Gly Gly Ile Leu Val Ser Pro Glu Lys Glu Ser Leu Ser His Leu

130 135 140 130 135 140

Val Glu Leu Gln Gly His Val Leu His Gly Phe Phe His Ser Asn GlyVal Glu Leu Gln Gly His Val Leu His Gly Phe Phe His Ser Asn Gly

145 150 155 160145 150 155 160

Phe Gly His Leu Leu Ser Ile Asn Gly Ile Glu Ser Gly Ser Asp LeuPhe Gly His Leu Leu Ser Ile Asn Gly Ile Glu Ser Gly Ser Asp Leu

165 170 175 165 170 175

Thr Gly His Gln Val Met Glu Leu Trp Asp Arg Leu Cys Ser Gly LeuThr Gly His Gln Val Met Glu Leu Trp Asp Arg Leu Cys Ser Gly Leu

180 185 190 180 185 190

Lys Ala Arg Lys Ile Gly Leu Asn Asp Ala Ser His Lys Lys Gly MetLys Ala Arg Lys Ile Gly Leu Asn Asp Ala Ser His Lys Lys Gly Met

195 200 205 195 200 205

Glu Leu Arg Leu Leu His Gly Val Ala Lys Gly Glu Pro Trp Phe GlyGlu Leu Arg Leu Leu His Gly Val Ala Lys Gly Glu Pro Trp Phe Gly

210 215 220 210 215 220

Arg Trp Gly Tyr Arg Phe Gly Ser Gly Thr Tyr Gly Val Thr Gln LysArg Trp Gly Tyr Arg Phe Gly Ser Gly Thr Tyr Gly Val Thr Gln Lys

225 230 235 240225 230 235 240

Ile Tyr Glu Lys Ala Leu Glu Ser Val Arg Asn Val Pro Leu Cys LeuIle Tyr Glu Lys Ala Leu Glu Ser Val Arg Asn Val Pro Leu Cys Leu

245 250 255 245 250 255

Leu Asn His His Leu Thr Ser Leu Asn Arg Glu Thr Pro Ile Leu LeuLeu Asn His His Leu Thr Ser Leu Asn Arg Glu Thr Pro Ile Leu Leu

260 265 270 260 265 270

Ser Arg Tyr Gln Thr Leu Ser Thr Glu Pro Leu Ile Thr Leu Ser AspSer Arg Tyr Gln Thr Leu Ser Thr Glu Pro Leu Ile Thr Leu Ser Asp

275 280 285 275 280 285

Leu Phe Met Phe Met Leu His Leu His Ser Arg Leu Pro Arg Asp AsnLeu Phe Met Phe Met Leu His Leu His Ser Arg Leu Pro Arg Asp Asn

290 295 300 290 295 300

Tyr Met Asn Asn Ser Arg Asn Gln Ile Ile Ser Ile Asp Ser Thr AsnTyr Met Asn Asn Ser Arg Asn Gln Ile Ile Ser Ile Asp Ser Thr Asn

305 310 315 320305 310 315 320

Cys Arg Trp Ser Gln Lys Arg Ile Gln Met Ala Ile Lys Val Val IleCys Arg Trp Ser Gln Lys Arg Ile Gln Met Ala Ile Lys Val Val Ile

325 330 335 325 330 335

Glu Ser Leu Lys Arg Val Glu Cys Arg Trp Ile Ser Arg Gln Glu ValGlu Ser Leu Lys Arg Val Glu Cys Arg Trp Ile Ser Arg Gln Glu Val

340 345 350 340 345 350

Arg Asp Ala Ala Arg Asn Tyr Ile Gly Asp Thr Gly Leu Leu Asp PheArg Asp Ala Ala Arg Asn Tyr Ile Gly Asp Thr Gly Leu Leu Asp Phe

355 360 365 355 360 365

Val Leu Lys Ser Leu Gly Asn Gln Val Val Gly Asn Tyr Leu Val ArgVal Leu Lys Ser Leu Gly Asn Gln Val Val Gly Asn Tyr Leu Val Arg

370 375 380 370 375 380

Arg Ser Leu Asn Pro Val Lys Lys Val Leu Glu Tyr Cys Leu Glu AspArg Ser Leu Asn Pro Val Lys Lys Val Leu Glu Tyr Cys Leu Glu Asp

385 390 395 400385 390 395 400

Ile Ser Asn Leu Leu Pro Ser Ser Asn His Glu Leu Thr Thr Leu GlnIle Ser Asn Leu Leu Pro Ser Ser Asn His Glu Leu Thr Thr Leu Gln

405 410 415 405 410 415

Asn Gln Tyr Gln Met Gly Lys Thr Thr Thr Thr Thr Asn Gly His AsnAsn Gln Tyr Gln Met Gly Lys Thr Thr Thr Thr Thr Asn Gly His Asn

420 425 430 420 425 430

Lys Ile Thr Arg Gly Gln Val Met Lys Asp Met Val Tyr Phe Tyr LysLys Ile Thr Arg Gly Gln Val Met Lys Asp Met Val Tyr Phe Tyr Lys

435 440 445 435 440 445

His Ile Leu Met Asp Tyr Lys Gly Val Leu Gly Pro Ile Gly Ile LeuHis Ile Leu Met Asp Tyr Lys Gly Val Leu Gly Pro Ile Gly Ile Leu

450 455 460 450 455 460

Asn Gln Ile Gly Met Ala Ser Arg Ala Ile Leu Asp Ala Lys Tyr PheAsn Gln Ile Gly Met Ala Ser Arg Ala Ile Leu Asp Ala Lys Tyr Phe

465 470 475 480465 470 475 480

Ile Lys Glu Tyr His Tyr Ile Arg Asp Thr Leu Met Lys Thr Ile GlnIle Lys Glu Tyr His Tyr Ile Arg Asp Thr Leu Met Lys Thr Ile Gln

485 490 495 485 490 495

Leu Asp Gly Gly Gly Lys Leu Gly Ile Phe Cys Thr Ile Ala Trp LysLeu Asp Gly Gly Gly Lys Leu Gly Ile Phe Cys Thr Ile Ala Trp Lys

500 505 510 500 505 510

Ser His His His Asn Asn Asp Ile Lys Met Pro Pro Gln Glu Cys IleSer His His His Asn Asn Asp Ile Lys Met Pro Pro Gln Glu Cys Ile

515 520 525 515 520 525

Val Val Asn Lys Asn Ala Thr Met Ser Glu Val Tyr Arg Glu Ala GluVal Val Asn Lys Asn Ala Thr Met Ser Glu Val Tyr Arg Glu Ala Glu

530 535 540 530 535 540

Arg Val Phe Arg Glu Ile Tyr Trp Glu Leu Arg Asp Val Val Val AspArg Val Phe Arg Glu Ile Tyr Trp Glu Leu Arg Asp Val Val Val Asp

545 550 555 560545 550 555 560

Asn Gln Arg Glu Met Ala Pro Arg Val Asp Glu Met Ala Leu Asn GlyAsn Gln Arg Glu Met Ala Pro Arg Val Asp Glu Met Ala Leu Asn Gly

565 570 575 565 570 575

Asn Lys Gly Leu Val Leu Asp Gly Asn Val Gly Val Met Met Asn IleAsn Lys Gly Leu Val Leu Asp Gly Asn Val Gly Val Met Met Asn Ile

580 585 590 580 585 590

Glu Val Met Lys Tyr Tyr Asp Asp Glu Asp Ser Lys Lys Lys Asp LysGlu Val Met Lys Tyr Tyr Asp Asp Glu Asp Ser Lys Lys Lys Asp Lys

595 600 605 595 600 605

Arg Ile Glu Cys Glu Cys Gly Ala Lys Glu Glu Asp Gly Glu Arg MetArg Ile Glu Cys Glu Cys Gly Ala Lys Glu Glu Asp Gly Glu Arg Met

610 615 620 610 615 620

Val Cys Cys Asp Ile Cys Glu Val Trp Gln His Thr Arg Cys Val GlyVal Cys Cys Asp Ile Cys Glu Val Trp Gln His Thr Arg Cys Val Gly

625 630 635 640625 630 635 640

Val Gln His Asn Glu Glu Val Pro Arg Ile Phe Leu Cys Gln Ser CysVal Gln His Asn Glu Glu Val Pro Arg Ile Phe Leu Cys Gln Ser Cys

645 650 655 645 650 655

Asp Gln His Leu Ile Pro Leu Ser Phe Leu ProAsp Gln His Leu Ile Pro Leu Ser Phe Leu Pro

660 665 660 665

<210> 2<210> 2

<211> 2004<211> 2004

<212> DNA<212> DNA

<213> Brassica oleracea<213> Brassica oleracea

<400> 2<400> 2

atgtcgaatc tgattcgaac agatcttcca aagaagagga agagaggaga aagtacggtt 60atgtcgaatc tgattcgaac agatcttcca aagaagagga agagaggaga aagtacggtt 60

tttaggctga agactttcgg agagacagga catcccgctg agctgaacca gttgtctttt 120tttaggctga agactttcgg agagacagga catcccgctg agctgaacca gttgtctttt 120

agagacaacc ttgggaagct tcttgagttt ggtcactttg agagctccgg tctcatggga 180agagacaacc ttgggaagct tcttgagttt ggtcactttg agagctccgg tctcatggga 180

agttggtcct ttcagctcga ggttcatcgt cacccaaatc ctctatatgt tcttctcttt 240agttggtcct ttcagctcga ggttcatcgt cacccaaatc ctctatatgt tcttctcttt 240

gtcgtcgaag agcccatcga agcctctctt aacctccgtt gcaaccattg ccaatatgtt 300gtcgtcgaag agcccatcga agcctctctt aacctccgtt gcaaccattg ccaatatgtt 300

ggttggggaa accacatgat atgcaacaag aagtaccatt tcgtgatccc ctcaaaggaa 360ggttgggggaa accacatgat atgcaacaag aagtaccatt tcgtgatccc ctcaaaggaa 360

acaatggccg cctttctaaa actagaagga ggaatcttgg tttctcccga aaaagaaagc 420acaatggccg cctttctaaa actagaagga ggaatcttgg tttctcccga aaaagaaagc 420

ctctcccatc ttgtggaact tcaaggccat gtccttcacg gctttttcca ctccaacgga 480ctctcccatc ttgtggaact tcaaggccat gtccttcacg gctttttcca ctccaacgga 480

tttggtcact tgctctcaat caatggcatc gagtccggtt ccgacttaac cggtcatcaa 540tttggtcact tgctctcaat caatggcatc gagtccggtt ccgacttaac cggtcatcaa 540

gtcatggagt tgtgggatcg cctctgctct ggtttaaagg ccaggaaaat agggttgaac 600gtcatggagt tgtgggatcg cctctgctct ggtttaaagg ccaggaaaat agggttgaac 600

gatgcatcgc acaagaaagg gatggaactg aggctgctgc atggagtagc aaaaggagag 660gatgcatcgc acaagaaagg gatggaactg aggctgctgc atggagtagc aaaaggagag 660

ccgtggttcg gtcgttgggg ttaccggttc gggtcaggga catacggagt gactcaaaag 720ccgtggttcg gtcgttgggg ttaccggttc gggtcaggga catacggagt gactcaaaag 720

atttacgaga aggcacttga gtcggtccgc aacgtaccct tgtgtttgct taaccatcac 780atttacgaga aggcacttga gtcggtccgc aacgtaccct tgtgtttgct taaccatcac 780

ctaaccagcc ttaaccgtga gactccaatc ctcttgtcaa ggtatcaaac tttatccacc 840ctaaccagcc ttaaccgtga gactccaatc ctcttgtcaa ggtatcaaac tttatccacc 840

gagccattga ttactctcag tgatctcttc atgttcatgc ttcatctcca ttcgcgtctt 900gagccattga ttactctcag tgatctcttc atgttcatgc ttcatctcca ttcgcgtctt 900

ccaagagaca actacatgaa taactcccga aaccaaatca tctccattga tagtaccaac 960ccaagagaca actacatgaa taactcccga aaccaaatca tctccattga tagtaccaac 960

tgtagatggt ctcaaaaacg gattcaaatg gctattaaag tggttataga gtctttgaaa 1020tgtagatggt ctcaaaaacg gattcaaatg gctattaaag tggttataga gtctttgaaa 1020

agggtcgaat gccggtggat atcgagacaa gaagtgaggg acgcagctag aaattacatc 1080agggtcgaat gccggtggat atcgagacaa gaagtgaggg acgcagctag aaattacatc 1080

ggggacacgg gtttgcttga cttcgtgttg aagtcgctcg gtaaccaagt ggtcgggaac 1140ggggacacgg gtttgcttga cttcgtgttg aagtcgctcg gtaaccaagt ggtcgggaac 1140

tatttggtcc gacgtagtct aaacccggtg aagaaagtgc tagagtattg cttggaggac 1200tatttggtcc gacgtagtct aaacccggtg aagaaagtgc tagagtattg cttggaggac 1200

atatcaaatt tattaccaag tagtaaccat gaactcacaa cccttcaaaa tcaatatcaa 1260atatcaaatt tattaccaag tagtaaccat gaactcacaa cccttcaaaa tcaatatcaa 1260

atggggaaga ctactaccac gacgaacgga cataacaaga tcacaagagg tcaagtgatg 1320atggggaaga ctactaccac gacgaacgga cataacaaga tcacaagagg tcaagtgatg 1320

aaagacatgg tatactttta caaacacatt cttatggact acaagggagt gttaggcccc 1380aaagacatgg tatactttta caaacacatt cttatggact acaagggagt gttaggcccc 1380

ataggcatat tgaaccaaat cggaatggct tcaagggcta tcctcgacgc taagtacttc 1440ataggcatat tgaaccaaat cggaatggct tcaagggcta tcctcgacgc taagtacttc 1440

atcaaagagt atcactacat cagagataca ttgatgaaaa caattcagtt agatggaggt 1500atcaaagagt atcactacat cagagataca ttgatgaaaa caattcagtt agatggaggt 1500

ggcaaattag gaatattctg cacaatcgcg tggaaatctc atcatcataa caacgacata 1560ggcaaattag gaatattctg cacaatcgcg tggaaatctc atcatcataa caacgacata 1560

aagatgcctc cacaagaatg catagtggtg aacaaaaatg caacaatgag tgaagtgtat 1620aagatgcctc cacaagaatg catagtggtg aacaaaaatg caacaatgag tgaagtgtat 1620

agagaggcag agagagtgtt cagagagatc tattgggaac taagagacgt cgtagtggat 1680agagaggcag agagagtgtt cagagagatc tattgggaac taagagacgt cgtagtggat 1680

aatcaaaggg agatggctcc aagggtcgat gaaatggcat tgaatgggaa caaaggattg 1740aatcaaaggg agatggctcc aagggtcgat gaaatggcat tgaatgggaa caaaggattg 1740

gtgttagatg ggaatgtagg agtgatgatg aacattgaag tgatgaagta ttatgatgat 1800gtgttagatg ggaatgtagg agtgatgatg aacattgaag tgatgaagta ttatgatgat 1800

gaagatagta agaagaagga taagaggatc gagtgtgaat gtggagcgaa ggaggaagat 1860gaagatagta agaagaagga taagaggatc gagtgtgaat gtggagcgaa ggaggaagat 1860

ggagagagga tggtgtgttg tgatatttgt gaagtatggc aacacacaag gtgtgttggt 1920ggagagagga tggtgtgttg tgatatttgt gaagtatggc aacacacaag gtgtgttggt 1920

gttcaacata acgaggaagt tcctcgcatt tttctttgtc aaagctgtga tcaacatctt 1980gttcaacata acgaggaagt tcctcgcatt tttctttgtc aaagctgtga tcaacatctt 1980

attcctctct cttttttgcc ttga 2004attcctctct ctttttttgcc ttga 2004

<210> 3<210> 3

<211> 2775<211> 2775

<212> DNA<212> DNA

<213> Brassica oleracea<213> Brassica oleracea

<400> 3<400> 3

atgtcgaatc tgattcgaac agatcttcca aagaagagga agagaggaga aagtacggtt 60atgtcgaatc tgattcgaac agatcttcca aagaagagga agagaggaga aagtacggtt 60

tttaggctga agactttcgg agagacagga catcccgctg agctgaacca gttgtctttt 120tttaggctga agactttcgg agagacagga catcccgctg agctgaacca gttgtctttt 120

agagacaacc ttgggaagct tcttgagttt ggtcactttg agagctccgg tctcatggga 180agagacaacc ttgggaagct tcttgagttt ggtcactttg agagctccgg tctcatggga 180

agttggtcct ttcagctcga ggttcatcgt cacccaaatc ctctatatgt tcttctcttt 240agttggtcct ttcagctcga ggttcatcgt cacccaaatc ctctatatgt tcttctcttt 240

gtcgtcgaag agcccatcga agcctctctt aacctccgtt gcaaccattg ccaatatgtt 300gtcgtcgaag agcccatcga agcctctctt aacctccgtt gcaaccattg ccaatatgtt 300

ggtgacgtca tctccctctt tctctccact tctctcattg tctatatata ttttgcatat 360ggtgacgtca tctccctctt tctctccact tctctcattg tctatatata ttttgcatat 360

cgatatctat ctatctatat gtgtgtgtgc atgctgatac atccataata tgatcaacga 420cgatatctat ctatctatat gtgtgtgtgc atgctgatac atccataata tgatcaacga 420

tcacaacgta acaataaaaa gacctgataa gataatttag ctcaccgagt aagcattttt 480tcacaacgta acaataaaaa gacctgataa gataatttag ctcaccgagt aagcattttt 480

cgttgcatat ctatgaaaaa tataacaagc ggaaaaaaaa atgatatggt gatccaagag 540cgttgcatat ctatgaaaaa tataacaagc ggaaaaaaaa atgatatggt gatccaagag 540

tgttggaggc tcaacctctt ttagaaggat gatagtttca ttgattcaaa tttcatatgt 600tgttggaggc tcaacctctt ttagaaggat gatagtttca ttgattcaaa tttcatatgt 600

taattttaat atgttacatg taataggtca acaatatgta ttatgcattt atttatggaa 660taattttaat atgttacatg taataggtca acaatatgta ttatgcattt atttatggaa 660

cattacaggt tggggaaacc acatgatatg caacaagaag taccatttcg tgatcccctc 720cattacaggt tggggaaacc acatgatatg caacaagaag taccatttcg tgatcccctc 720

aaaggaaaca atggccgcct ttctaaaact agaaggagga atcttggttt ctcccgaaaa 780aaaggaaaca atggccgcct ttctaaaact agaaggagga atcttggttt ctcccgaaaa 780

agaaagcctc tcccatcttg tggaacttca aggccatgtc cttcacggct ttttccactc 840agaaagcctc tcccatcttg tggaacttca aggccatgtc cttcacggct ttttccactc 840

caacggattt ggtcacttgc tctcaatcaa tggcatcgag tccggttccg acttaaccgg 900caacggattt ggtcacttgc tctcaatcaa tggcatcgag tccggttccg acttaaccgg 900

tcatcaagtc atggagttgt gggatcgcct ctgctctggt ttaaaggcca ggtatacgta 960tcatcaagtc atggagttgt gggatcgcct ctgctctggt ttaaaggcca ggtatacgta 960

ttaagattat aattatcatc ttttatattt gtatacgttg tgcaatgttc acgtgataca 1020ttaagattat aattatcatc ttttatattt gtatacgttg tgcaatgttc acgtgataca 1020

tatcatatgg tactaaacca ttcagcagaa ttctatgact tgtcataaat aataaagttt 1080tatcatatgg tactaaacca ttcagcagaa ttctatgact tgtcataaat aataaagttt 1080

ggatttttaa ccatttaatt catggtagtc aagtgctttg aagattcaac acatggttga 1140ggatttttaa ccatttaatt catggtagtc aagtgctttg aagattcaac acatggttga 1140

gagcaatttc aaccatacta gtaactttgt taactcaaga aaccaccact ttatagaact 1200gagcaatttc aaccatacta gtaactttgt taactcaaga aaccaccact ttatagaact 1200

tgggacgaaa ttctggattt tagtttcgaa ttatagatat tattcgaatt ttctcttttg 1260tgggacgaaa ttctggattt tagtttcgaa ttatagatat tattcgaatt ttctcttttg 1260

cttttagtta taaatttcac atattaggcc attttattag aaatggtaac aattatttgt 1320cttttagtta taaatttcac atattaggcc attttattag aaatggtaac aattatttgt 1320

atcttattat gttatggtat atatgttgga tataggaaaa tagggttgaa cgatgcatcg 1380atcttattat gttatggtat atatgttgga tataggaaaa tagggttgaa cgatgcatcg 1380

cacaagaaag ggatggaact gaggctgctg catggagtag caaaaggaga gccgtggttc 1440cacaagaaag ggatggaact gaggctgctg catggagtag caaaaggaga gccgtggttc 1440

ggtcgttggg gttaccggtt cgggtcaggg acatacggag tgactcaaaa gatttacgag 1500ggtcgttggg gttaccggtt cgggtcaggg acatacggag tgactcaaaa gatttacgag 1500

aaggcacttg agtcggtccg caacgtaccc ttgtgtttgc ttaaccatca cctaaccagc 1560aaggcacttg agtcggtccg caacgtaccc ttgtgtttgc ttaaccatca cctaaccagc 1560

cttaaccgtg agactccaat cctcttgtca aggtatcaaa ctttatccac cgagccattg 1620cttaaccgtg agactccaat cctcttgtca aggtatcaaa ctttatccac cgagccattg 1620

attactctca gtgatctctt catgttcatg cttcatctcc attcgcgtct tccaagagac 1680attactctca gtgatctctt catgttcatg cttcatctcc attcgcgtct tccaagagac 1680

aactacatga ataactcccg aaaccaaatc atctccattg atagtaccaa ctgtagatgg 1740aactacatga ataactcccg aaaccaaatc atctccattg atagtaccaa ctgtagatgg 1740

tctcaaaaac ggattcaaat ggctattaaa gtggttatag agtctttgaa aagggtcgaa 1800tctcaaaaac ggattcaaat ggctattaaa gtggttatag agtctttgaa aagggtcgaa 1800

tgccggtgga tatcgagaca agaagtgagg gacgcagcta gaaattacat cggggacacg 1860tgccggtgga tatcgagaca agaagtgagg gacgcagcta gaaattacat cggggacacg 1860

ggtttgcttg acttcgtgtt gaagtcgctc ggtaaccaag tggtcgggaa ctatttggtc 1920ggtttgcttg acttcgtgtt gaagtcgctc ggtaaccaag tggtcgggaa ctatttggtc 1920

cgacgtagtc taaacccggt gaagaaagtg ctagagtatt gcttggagga catatcaaat 1980cgacgtagtc taaacccggt gaagaaagtg ctagagtatt gcttggagga catatcaaat 1980

ttattaccaa gtagtaacca tgaactcaca acccttcaaa atcaatatca aatggggaag 2040ttattaccaa gtagtaacca tgaactcaca acccttcaaa atcaatatca aatggggaag 2040

actactacca cgacgaacgg acataacaag atcacaagag gtcaagtgat gaaagacatg 2100actactacca cgacgaacgg acataacaag atcacaagag gtcaagtgat gaaagacatg 2100

gtatactttt acaaacacat tcttatggac tacaagggag tgttaggccc cataggcata 2160gtatactttt acaaacacat tcttatggac tacaagggag tgttaggccc cataggcata 2160

ttgaaccaaa tcggaatggc ttcaagggct atcctcgacg ctaagtactt catcaaagag 2220ttgaaccaaa tcggaatggc ttcaagggct atcctcgacg ctaagtactt catcaaagag 2220

tatcactaca tcagagatac attgatgaaa acaattcagt tagatggagg tggcaaatta 2280tatcactaca tcagagatac attgatgaaa acaattcagt tagatggagg tggcaaatta 2280

ggaatattct gcacaatcgc gtggaaatct catcatcata acaacgacat aaagatgcct 2340ggaatattct gcacaatcgc gtggaaatct catcatcata acaacgacat aaagatgcct 2340

ccacaagaat gcatagtggt gaacaaaaat gcaacaatga gtgaagtgta tagagaggca 2400ccacaagaat gcatagtggt gaacaaaaat gcaacaatga gtgaagtgta tagagaggca 2400

gagagagtgt tcagagagat ctattgggaa ctaagagacg tcgtagtgga taatcaaagg 2460gagagagtgt tcagagagat ctattgggaa ctaagagacg tcgtagtgga taatcaaagg 2460

gagatggctc caagggtcga tgaaatggca ttgaatggga acaaaggatt ggtgttagat 2520gagatggctc caagggtcga tgaaatggca ttgaatggga acaaaggatt ggtgttagat 2520

gggaatgtag gagtgatgat gaacattgaa gtgatgaagt attatgatga tgaagatagt 2580gggaatgtag gagtgatgat gaacattgaa gtgatgaagt attatgatga tgaagatagt 2580

aagaagaagg ataagaggat cgagtgtgaa tgtggagcga aggaggaaga tggagagagg 2640aagaagaagg ataagaggat cgagtgtgaa tgtggagcga aggaggaaga tggagagagg 2640

atggtgtgtt gtgatatttg tgaagtatgg caacacacaa ggtgtgttgg tgttcaacat 2700atggtgtgtt gtgatatttg tgaagtatgg caacacacaa ggtgtgttgg tgttcaacat 2700

aacgaggaag ttcctcgcat ttttctttgt caaagctgtg atcaacatct tattcctctc 2760aacgaggaag ttcctcgcat ttttctttgt caaagctgtg atcaacatct tattcctctc 2760

tcttttttgc cttga 2775tctttttttgc cttga 2775

<210> 4<210> 4

<211> 987<211> 987

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<220><220>

<223> artificial<223> artificial

<400> 4<400> 4

ccatggatgt cgaatctgat tcgaacagat cttccaaaga agaggaagag aggagaaagt 60ccatggatgt cgaatctgat tcgaacagat cttccaaaga agaggaagag aggagaaagt 60

acggttttta ggctgaagac tttcggagag acaggacatc ccgctgagct gaaccagttg 120acggttttta ggctgaagac tttcggagag acaggacatc ccgctgagct gaaccagttg 120

tcttttagag acaaccttgg gaagcttctt gagtttggtc actttgagag ctccggtctc 180tcttttagag acaaccttgg gaagcttctt gagtttggtc actttgagag ctccggtctc 180

atgggaagtt ggtcctttca gctcgaggtt catcgtcacc caaatcctct atatgttctt 240atgggaagtt ggtcctttca gctcgaggtt catcgtcacc caaatcctct atatgttctt 240

ctctttgtcg tcgaagagcc catcgaagcc tctcttaacc tccgttgcaa ccattgccaa 300ctctttgtcg tcgaagagcc catcgaagcc tctcttaacc tccgttgcaa ccattgccaa 300

tatgttggtg acgtcatctc cctctttctc tccacttctc tcattgtcta tatatatttt 360tatgttggtg acgtcatctc cctctttctc tccacttctc tcattgtcta tatatatttt 360

gcatatcgat atctatctat ctatatgtgt gtgtgcatgc tgatacatcc ataatatgat 420gcatatcgat atctatctat ctatatgtgt gtgtgcatgc tgatacatcc ataatatgat 420

caacgatcac aacgtaacaa taaaaagacc tgataagata atttagctca ccgagtaagc 480caacgatcac aacgtaacaa taaaaagacc tgataagata atttagctca ccgagtaagc 480

atttttcgtt gcatatctat gaaaaatata acaagcggaa aaaaaaatga tatggtgatc 540atttttcgtt gcatatctat gaaaaatata acaagcggaa aaaaaaatga tatggtgatc 540

caagagtgtt ggaggctcaa cctcttttag aaggatgata gtttcattga ttcaaatttc 600caagagtgtt ggaggctcaa cctcttttag aaggatgata gtttcattga ttcaaatttc 600

atatgttaat tttaatatgt tacatgtaat aggtcaacaa tatgtattat gcatttattt 660atatgttaat tttaatatgt tacatgtaat aggtcaacaa tatgtattat gcatttattt 660

atggaacatt acagggatcc caacatattg gcaatggttg caacggaggt taagagaggc 720atggaacatt acagggatcc caacatattg gcaatggttg caacggaggt taagagaggc 720

ttcgatgggc tcttcgacga caaagagaag aacatataga ggatttgggt gacgatgaac 780ttcgatgggc tcttcgacga caaagagaag aacatataga ggatttgggt gacgatgaac 780

ctcgagctga aaggaccaac ttcccatgag accggagctc tcaaagtgac caaactcaag 840ctcgagctga aaggaccaac ttcccatgag accggagctc tcaaagtgac caaactcaag 840

aagcttccca aggttgtctc taaaagacaa ctggttcagc tcagcgggat gtcctgtctc 900aagcttccca aggttgtctc taaaagacaa ctggttcagc tcagcgggat gtcctgtctc 900

tccgaaagtc ttcagcctaa aaaccgtact ttctcctctc ttcctcttct ttggaagatc 960tccgaaagtc ttcagcctaa aaaccgtact ttctcctctc ttcctcttct ttggaagatc 960

tgttcgaatc agattcgaca tggatcc 987tgttcgaatc agattcgaca tggatcc 987

<210> 5<210> 5

<211> 2068<211> 2068

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<220><220>

<223> Artificial<223> Artificial

<400> 5<400> 5

ccttaagtat acgactagaa acattaaaat gacatgtatc agttttgtgt taaaaaaaag 60ccttaagtat acgactagaa acattaaaat gacatgtatc agttttgtgt taaaaaaaag 60

agacatgtat cagtttgatg gttgatttga aagctttcaa aaccatatgt aagataaaag 120agacatgtat cagtttgatg gttgatttga aagctttcaa aaccatatgt aagataaaag 120

tcaaaataat ttaactgtga aaacaatact gttcactttt tcaagaatgt gttcgaggaa 180tcaaaataat ttaactgtga aaacaatact gttcactttt tcaagaatgt gttcgaggaa 180

aaaaataaga tttttatgtc ataatttgtt taatgtacac tagagaacat tatattaacc 240aaaaataaga ttttttatgtc ataatttgtt taatgtacac tagagaacat tatattaacc 240

taaaatataa gaagtgtgta ttctttcaca aaataaaaat agctacgaaa ttacctaata 300taaaatataa gaagtgtgta ttctttcaca aaataaaaat agctacgaaa ttacctaata 300

atatttacat atatatggta attaatgatt atgaataata aagatttgat aacaattttt 360atatttacat atatatggta attaatgatt atgaataata aagatttgat aacaattttt 360

gcatccttct tcatttttgt ttaaatttat attattaaaa aaacttaaac aatcacatta 420gcatccttct tcatttttgt ttaaatttat attattaaaa aaacttaaac aatcacatta 420

accatataat aaaaaattag attttttctt atatgttata ttttgaattt ttttaaatga 480accatataat aaaaaattag atttttttctt atatgttata ttttgaattt ttttaaatga 480

ctttaaatta caaaaatgag gaaaccttat atgttttttt taaacgactt taaaatacaa 540ctttaaatta caaaaatgag gaaaccttat atgttttttt taaacgactt taaaatacaa 540

aaattaggac accttatatg ttatattttt cttatatgtt agaattttct tatatgttat 600aaattaggac accttatatg ttatattttt cttatatgtt agaattttct tatatgttat 600

attttgaatt ttttaaaacg actttaaatt acaaaaatgt aagttttcct taagtatacg 660attttgaatt ttttaaaacg actttaaatt acaaaaatgt aagttttcct taagtatacg 660

actaaaaaca ttaaaatgac atgtatcaat tcattggttg atttgaaagc tttcaaaacc 720actaaaaaca ttaaaatgac atgtatcaat tcattggttg atttgaaagc tttcaaaacc 720

atatggaaga taaaagtcaa aataattcaa ctgtgaaaac aatactgttc atttttttca 780atatggaaga taaaagtcaa aataattcaa ctgtgaaaac aatactgttc atttttttca 780

agaatgtgtt ctatggaaaa ataaggtttt tatgtcataa tttgtttaat gttcaatccg 840agaatgtgtt ctatggaaaa ataaggtttt tatgtcataa tttgtttaat gttcaatccg 840

atcaatccca tgatgtatta attatagttt tgttccatta tttttaataa aaattgatcc 900atcaatccca tgatgtatta attatagttt tgttccatta ttttttaataa aaattgatcc 900

gatccatcgg aaagaaatta tataataaca acaaaaatat tttatatata taaataaaat 960gatccatcgg aaagaaatta tataataaca acaaaaatat tttatatata taaataaaat 960

gatcaaatat ataaaagaaa ctaccaaaat atatacaaat aaattcaccc tgcgtaagtc 1020gatcaaatat ataaaagaaa ctaccaaaat atatacaaat aaattcaccc tgcgtaagtc 1020

ttatcctagt atattagtgt tttcgaatac tttctttatc catattgttt cgtgtggtca 1080ttatcctagt atattagtgt tttcgaatac tttctttatc catattgttt cgtgtggtca 1080

ccaatcgata cttgtatttt agacacggtc tcttttgttg tttagccctc ccaaagtttt 1140ccaatcgata cttgtatttt agacacggtc tcttttgttg tttagccctc ccaaagtttt 1140

agtgggtttt atgattttga taaagcccaa ttaaaaagat tcctatgatc aagaggtata 1200agtgggtttt atgattttga taaagcccaa ttaaaaagat tcctatgatc aagaggtata 1200

taggctttat ttgttttctt ttattttttg gtcaaaggct ttatttgttt tttagtcgcc 1260taggctttat ttgttttctt ttattttttg gtcaaaggct ttatttgttt tttagtcgcc 1260

acaaattaca ttcatataca tcaccaatca ctcagtacaa acctcatttg atgagactga 1320acaaattaca ttcatataca tcaccaatca ctcagtacaa acctcatttg atgagactga 1320

gaatcgatta aagtttgaag tccgcagcta cgctatgctg catgcttgca tatgaaacga 1380gaatcgatta aagtttgaag tccgcagcta cgctatgctg catgcttgca tatgaaacga 1380

aatctgatat atagactagc gtcaatatac acacgtgtgt ttgcgtgtac atatagaaat 1440aatctgatat atagactagc gtcaatatac acacgtgtgt ttgcgtgtac atatagaaat 1440

aatagataca tgtaagtgca ggtagctcat gacagaaatt gacggaacac agagttactc 1500aatagataca tgtaagtgca ggtagctcat gacagaaatt gacggaacac agagttactc 1500

tgattctata aaatagtggg aagctcaaat gcatgtcttc attattttat tattatatct 1560tgattctata aaatagtggg aagctcaaat gcatgtcttc attattttat tattatatct 1560

tctcatgttc tcaagccacg tgacattcct caccctcgat ctttttgcat gcgtatacac 1620tctcatgttc tcaagccacg tgacattcct caccctcgat ctttttgcat gcgtatacac 1620

acaaatacat atataggatg catatacaat aactaatggc ggatactaat taaattatca 1680acaaatacat atataggatg catatacaat aactaatggc ggatactaat taaattatca 1680

gtcctttcaa ataaatattt gtatgaaaga tagatttggg acagtggggt tcgaatgttt 1740gtcctttcaa ataaatattt gtatgaaaga tagatttggg acagtggggt tcgaatgttt 1740

tgtatttaat tattctatct aagaaagaac agttgttaat ggttgtaaga atacaagagt 1800tgtatttaat tattctatct aagaaagaac agttgttaat ggttgtaaga atacaagagt 1800

catgcacata tcaagaccta acatccaatc cattagtatc aattgttaaa tcacagttta 1860catgcacata tcaagaccta acatccaatc cattagtatc aattgttaaa tcacagttta 1860

attacccttt ctctttctct cactcacttt tccttttcac cataaagcac taatcgtgtg 1920attacccttt ctctttctct cactcacttt tccttttcac cataaagcac taatcgtgtg 1920

atcatcatct taatgactac tatatctcta aacccttcac acacacgtcc tcaacacttc 1980atcatcatct taatgactac tatatctcta aacccttcac acacacgtcc tcaacacttc 1980

tcggcctctt ataattataa caaacccatg atatataaat ccaaaccaac cagtatctct 2040tcggcctctt ataattataa caaacccatg atatataaat ccaaaccaac cagtatctct 2040

tgtcaagacc aaactaaagt tcgatacg 2068tgtcaagacc aaactaaagt tcgatacg 2068

<210> 6<210> 6

<211> 2981<211> 2981

<212> DNA<212> DNA

<213> Arabidopsis thaliana<213> Arabidopsis thaliana

<400> 6<400> 6

gagaccctct ctcatcttgc gtgtatcttc tcctctatct atatatatat aacagccact 60gagaccctct ctcatcttgc gtgtatcttc tcctctatct atatatatat aacagccact 60

aacatgcaga catcaaacta tctctcttta aatctcaaga acaagaacta aactactact 120aacatgcaga catcaaacta tctctcttta aatctcaaga acaagaacta aactactact 120

agtcttcacc aaggtaaagc tactttggaa cccgagaacc aagttaattt gttctcatcg 180agtcttcacc aaggtaaagc tactttggaa cccgagaacc aagttaattt gttctcatcg 180

aatttttttt gttctcatat gttgaaattt tgttattgtc atcttcactt tttgattgat 240aatttttttt gttctcatat gttgaaattt tgttattgtc atcttcactt tttgattgat 240

cgatagaaaa ataagtattc aattgatcaa ttctttttat atatatacat gttttataaa 300cgatagaaaa ataagtattc aattgatcaa ttctttttat atatatacat gttttataaa 300

ccatggatct ccatctaaag ttttgtttta ctgtgtttct tattctgatt cttgtagaat 360ccatggatct ccatctaaag ttttgtttta ctgtgtttct tattctgatt cttgtagaat 360

aatatatcaa cacacatagt atactcttct tggaaggcaa ggaacatgaa tcaagaagct 420aatatatcaa cacacatagt atactcttct tggaaggcaa ggaacatgaa tcaagaagct 420

gcgagtaacc ttggacttga tctgaaacta aatatttcac cgtcgttgga ttcatctttg 480gcgagtaacc ttggacttga tctgaaacta aatatttcac cgtcgttgga ttcatctttg 480

ctcactgaga gttcatcgtc atcgttatgc tcggaggaag ctgagggtgg aggaggagag 540ctcactgaga gttcatcgtc atcgttatgc tcggaggaag ctgagggtgg aggaggag 540

gctaaatcaa tggtggtcgt tggctgccct aattgcatca tgtacatcat cacttcttta 600gctaaatcaa tggtggtcgt tggctgccct aattgcatca tgtacatcat cacttcttta 600

gagaatgacc ctagatgccc tagatgcaac agccatgttt tgcttgattt tctcacagga 660gagaatgacc ctagatgccc tagatgcaac agccatgttt tgcttgattt tctcacagga 660

aaccatagca agaagagcac tagttaaaaa aaaaaataaa aaaaaaatac ataatattaa 720aaccatagca agaagagcac tagttaaaaa aaaaaataaa aaaaaaatac ataatattaa 720

attaaggatg ttcttttatt tttctttctt ttttcttttc cttaatttgt tgccacattt 780attaaggatg ttcttttatt tttctttctt ttttcttttc cttaatttgt tgccacattt 780

attgatagtt tgaattaatc cacaatgaac ggatatgttc ataaaatcga aacctatata 840attgatagtt tgaattaatc cacaatgaac ggatatgttc ataaaatcga aacctatata 840

cttatgtttt taaaacatcc ttaacttcat ttgtaatatt gactgcttaa cgatggataa 900cttatgtttt taaaacatcc ttaacttcat ttgtaatatt gactgcttaa cgatggataa 900

ttcttgtaga aaactaagca atattaatat tgattctttg caacgggtga ttacaaaaat 960ttcttgtaga aaactaagca atattaatat tgattctttg caacgggtga ttacaaaaat 960

ttaaacttgg attaatagct agtataaatg atggatgtgt cattgtgtcc tcatcaaaag 1020ttaaacttgg attaatagct agtataaatg atggatgtgt cattgtgtcc tcatcaaaag 1020

gttacgtatt cggactattg cgatatttaa ttttataaat ggaaaatggt cgttgttgac 1080gttacgtatt cggactattg cgatatttaa ttttataaat ggaaaatggt cgttgttgac 1080

ttgttataag ttcaatgtat atgtacatgg cacaattaat tatgttttta atatgaaaaa 1140ttgttataag ttcaatgtat atgtacatgg cacaattaat tatgttttta atatgaaaaa 1140

tgtggaacaa tgactttttt ttcttttcct ttttttgcac tatgtaattc tagcgttaaa 1200tgtggaacaa tgacttttttt ttcttttcct ttttttgcac tatgtaattc tagcgttaaa 1200

tgcgaagtat atacataaat atatacacat catacgtcaa acaataaata ggtttggttt 1260tgcgaagtat atacataaat atatacacat catacgtcaa acaataaata ggtttggttt 1260

acttgttacc aaagttgttg aactaacaaa ttaaatgttt ataaaaacat gaaaaagagt 1320acttgttacc aaagttgttg aactaacaaa ttaaatgttt ataaaaacat gaaaaagagt 1320

tatgcttatt ataaatgtga aaaatcttca cctaaactta ctataaaaaa aatgcatgtt 1380tatgcttatt ataaatgtga aaaatcttca cctaaactta ctataaaaaa aatgcatgtt 1380

ggttttacat taatgtcgga ttcaacatta cgtgtgtttt gttcctttcc ccaactatca 1440ggttttacat taatgtcgga ttcaacatta cgtgtgtttt gttcctttcc ccaactatca 1440

aaagaaacaa cacgtatcct ttaagtagat ttctcacatt tttatcatta tatttaccgc 1500aaagaaacaa cacgtatcct ttaagtagat ttctcacatt tttatcatta tatttaccgc 1500

tactggcaat ttcaattgga caaaccaaaa ccaaatatat attttttcgc tgacgtaaga 1560tactggcaat ttcaattgga caaaccaaaa ccaaatatat attttttcgc tgacgtaaga 1560

cctatcaaag aaatctatca ttcaaccaac aactataaaa acgaatcaaa gtcacttgtt 1620cctatcaaag aaatctatca ttcaaccaac aactataaaa acgaatcaaa gtcacttgtt 1620

ggctactatt caactaacaa tataatgtat cgctgcctcg ctggtcgttg ttacttgtta 1680ggctactatt caactaacaa tataatgtat cgctgcctcg ctggtcgttg ttacttgtta 1680

ctaagaatcg tgaaacaaaa atgatacaaa attatcaaca attattcagt ctacgtacgt 1740ctaagaatcg tgaaacaaaa atgatacaaa attatcaaca attattcagt ctacgtacgt 1740

atatacctac ttatactatt agtggctgtc aaagtttaaa ctttaaacac taaacaagtg 1800atatacctac ttatactatt agtggctgtc aaagtttaaa ctttaaacac taaacaagtg 1800

atagtaggtc aacattttag ttagatatgc ttaatattga ttcaaactca aatattgcaa 1860atagtaggtc aacattttag ttagatatgc ttaatattga ttcaaactca aatattgcaa 1860

ttgttagcat cgggatttaa caaggcatat cattaatttt aaaaaaagat taaaatttga 1920ttgttagcat cgggatttaa caaggcatat cattaatttt aaaaaaagat taaaatttga 1920

ttggtctgaa cttttaactc ttttttttta cgaagattgt aacactaaaa acatatattt 1980ttggtctgaa cttttaactc tttttttttta cgaagattgt aacactaaaa acatatattt 1980

gaagcactga agtgactgta agtacccaaa gttgttgtga tcactgcaat cattaaggtg 2040gaagcactga agtgactgta agtacccaaa gttgttgtga tcactgcaat cattaaggtg 2040

agtacaattt tgaatgtaat atattaacta ttaagtaaat accattgcaa tttgcaaacc 2100agtacaattt tgaatgtaat atattaacta ttaagtaaat accattgcaa tttgcaaacc 2100

actttttctg agaacataat ttgaaacttt ctttaaaccg ctaaaaaaca tctattgatg 2160actttttctg agaacataat ttgaaacttt ctttaaaccg ctaaaaaaca tctattgatg 2160

taaacacctt tttctattga tgtaacatat taattatgtt taattaacaa taactatgtg 2220taaacacctt tttctattga tgtaacatat taattatgtt taattaacaa taactatgtg 2220

ggtttgaaca tatagtgatg acaaatcatc aacactatca caaatcaata aactacatat 2280ggtttgaaca tatagtgatg acaaatcatc aacactatca caaatcaata aactacatat 2280

caattaaaac attgataatc gactaaattg agtttgtcca accacgcaaa cacacacgtg 2340caattaaaac attgataatc gactaaattg agtttgtcca accacgcaaa cacacacgtg 2340

tgtgttatgt aatagatgca tatatgtgca ggtagacatg acagaaattg acggaacaca 2400tgtgttatgt aatagatgca tatatgtgca ggtagacatg acagaaattg acggaacaca 2400

gagttaatct gattctttaa aaatgtgaga agctcaaatg catgtcttca ttattttatt 2460gagttaatct gattctttaa aaatgtgaga agctcaaatg catgtcttca ttattttatt 2460

atattatctt ctcatgttcc caagtcacgt gacattcctc accctcgatc tttttgcatg 2520atattatctt ctcatgttcc caagtcacgt gacattcctc accctcgatc tttttgcatg 2520

ccatttgtca catattctta cacaaataca tgtatatgta ttaaaattat caatccagtt 2580ccatttgtca catattctta cacaaataca tgtatatgta ttaaaattat caatccagtt 2580

tcgaatatta cagaagtatt tttagaaatg aaattagatt tgggaataag aagggtttga 2640tcgaatatta cagaagtatt tttagaaatg aaattagatt tgggaataag aagggtttga 2640

atgttttttt gaaaaatagt taattatttg gctaagaaag aaaagttgtt aatgttacaa 2700atgttttttt gaaaaatagt taattatttg gctaagaaag aaaagttgtt aatgttacaa 2700

gtcatgcaca tatcaagacc taacatacaa tccaatggta acaattgtta attcacagtt 2760gtcatgcaca tatcaagacc taacatacaa tccaatggta acaattgtta attcacagtt 2760

taattaacct ttctctttct ctcactcact tttccttttc atcaccacaa agcactaatt 2820taattaacct ttctctttct ctcactcact tttccttttc atcaccacaa agcactaatt 2820

gtgtgaccat catcttaatg actactatat ctctaaaccc ttaacacact tcctcaacac 2880gtgtgaccat catcttaatg actactatat ctctaaaccc ttaacacact tcctcaacac 2880

ttttcggtct cttcttataa caaaccccat cataatatat atccaaatct atcatattcc 2940ttttcggtct cttcttataa caaaccccat cataatatat atccaaatct atcatattcc 2940

tattccctct cttctcaaga tcaaaccaaa tttctgattc g 2981tattccctct cttctcaaga tcaaaccaaa tttctgattc g 2981

<210> 7<210> 7

<211> 346<211> 346

<212> DNA<212> DNA

<213> Unknown<213> Unknown

<220><220>

<223> Unknown<223> Unknown

<400> 7<400> 7

atcattcatg ttatattaaa ccttcttttt ttctatcatt acgtcataat acataaatta 60atcattcatg ttatattaaa ccttcttttt ttctatcatt acgtcataat acataaatta 60

tactcctcga tcaacgtgaa ttctaatgat ccctcctgcg tctatatcac caacatgttg 120tactcctcga tcaacgtgaa ttctaatgat ccctcctgcg tctatatcac caacatgttg 120

aatcacaaag tcatatcctt gcctcctctg gagcctgact gttctaataa tatcattatc 180aatcacaaag tcatatcctt gcctcctctg gagcctgact gttctaataa tatcattatc 180

aacatgtcgc tctcctcttc ccctgatgac tcatgtgacg tcatctactc caaccgtgat 240aacatgtcgc tctcctcttc ccctgatgac tcatgtgacg tcatctactc caaccgtgat 240

tccaagtttt acttgacaac aaccttaagg cttgtctcca agaaaaggca gttaaatttt 300tccaagtttt acttgacaac aaccttaagg cttgtctcca agaaaaggca gttaaatttt 300

aacagaaaat aattcacaac acaaggcgga gaaagaagtg tgtagt 346aacagaaaat aattcacaac acaaggcgga gaaagaagtg tgtagt 346

<210> 8<210> 8

<211> 1186<211> 1186

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<220><220>

<223> Artificial<223> Artificial

<400> 8<400> 8

ccatgggcaa tagaacactt gtatctcccg gtgatgtctt cgagctcggt ttcttcaaaa 60ccatgggcaa tagaacactt gtatctcccg gtgatgtctt cgagctcggt ttcttcaaaa 60

ccacctcaag ttctcgttgg tatctcggta tatggtacaa gacattgtcc gacagaacct 120ccacctcaag ttctcgttgg tatctcggta tatggtacaa gacattgtcc gacagaacct 120

atgtatggat tgccaacaga gataacccta tatccaactc cactggaacc ctcaaaatct 180atgtatggat tgccaacaga gataacccta tatccaactc cactggaacc ctcaaaatct 180

caggcaataa tcttgtcctc cttggtgact ccaataaacc tgtttggtcg acgaatctaa 240caggcaataa tcttgtcctc cttggtgact ccaataaacc tgtttggtcg acgaatctaa 240

ctagaagaag tgagagatct ccagtggtgg cagagcttct cgccaacgga aacttcgtga 300ctagaagaag tgagagatct ccagtggtgg cagagcttct cgccaacgga aacttcgtga 300

tgcgagactc caacaacaac gatgcaagtc aatttttatg gcaaagtttc gattacccta 360tgcgagactc caacaacaac gatgcaagtc aatttttatg gcaaagtttc gattacccta 360

cagatacttt gcttcctgac atgaaactgg gttacgacct aaaaacaggg ctggacagat 420cagatacttt gcttcctgac atgaaactgg gttacgacct aaaaacaggg ctggacagat 420

tccttacatc atggagaagt ttagatgatc cgtcaagcgg gaatttctcg tacaccatgg 480tccttacatc atggagaagt ttagatgatc cgtcaagcgg gaatttctcg tacaccatgg 480

gttagatata tgatttgata gcacttcaga tatcttctct tgtggtgaga gcctcaaaat 540gttagatata tgatttgata gcacttcaga tatcttctct tgtggtgaga gcctcaaaat 540

acttgtgtta gtttctctaa gtgtgcttta tgagcttgca agtctacagc aaacttcttc 600acttgtgtta gtttctctaa gtgtgcttta tgagcttgca agtctacagc aaacttcttc 600

ataacgcatc ttatctatca ggaatgatgc aagtgttttg aataccagaa tctgaaatag 660ataacgcatc ttatctatca ggaatgatgc aagtgttttg aataccagaa tctgaaatag 660

gtttagaaac ttggtaactg atgaacatgt tgtccgtatt aaacagggat cctgtacgag 720gtttagaaac ttggtaactg atgaacatgt tgtccgtatt aaacagggat cctgtacgag 720

aaattcccgc ttgacggatc atctaaactt ctccatgatg taaggaatct gtccagccct 780aaattcccgc ttgacggatc atctaaactt ctccatgatg taaggaatct gtccagccct 780

gtttttaggt cgtaacccag tttcatgtca ggaagcaaag tatctgtagg gtaatcgaaa 840gtttttaggt cgtaacccag tttcatgtca ggaagcaaag tatctgtagg gtaatcgaaa 840

ctttgccata aaaattgact tgcatcgttg ttgttggagt ctcgcatcac gaagtttccg 900ctttgccata aaaattgact tgcatcgttg ttgttggagt ctcgcatcac gaagtttccg 900

ttggcgagaa gctctgccac cactggagat ctctcacttc ttctagttag attcgtcgac 960ttggcgagaa gctctgccac cactggagat ctctcacttc ttctagttag attcgtcgac 960

caaacaggtt tattggagtc accaaggagg acaagattat tgcctgagat tttgagggtt 1020caaacaggtt tattggagtc accaaggagg acaagattat tgcctgagat tttgagggtt 1020

ccagtggagt tggatatagg gttatctctg ttggcaatcc atacataggt tctgtcggac 1080ccagtggagt tggatatagg gttatctctg ttggcaatcc atacataggt tctgtcggac 1080

aatgtcttgt accatatacc gagataccaa cgagaacttg aggtggtttt gaagaaaccg 1140aatgtcttgt accatatacc gagataccaa cgagaacttg aggtggtttt gaagaaaccg 1140

agctcgaaga catcaccggg agatacaagt gttctattgc ggatcc 1186agctcgaaga catcaccggg agatacaagt gttctattgc ggatcc 1186

<210> 9<210> 9

<211> 411<211> 411

<212> DNA<212> DNA

<213> Artificial<213> Artificial

<220><220>

<223> Artificial<223> Artificial

<400> 9<400> 9

taaccaattt acgttatacc aaatttttca accctctttt tagtaaaaaa cgaaattaaa 60taaccaattt acgttatacc aaatttttca accctctttt tagtaaaaaa cgaaattaaa 60

gttttttccc tcttagtccg acgattttaa gctaattagt tcgaacaaag agtacaacat 120gttttttccc tcttagtccg acgattttaa gctaattagt tcgaacaaag agtacaacat 120

taattttcta acagacttag atgcacttgc gaacaacata cttgctgaac accatatgtt 180taattttcta acagacttag atgcacttgc gaacaacata cttgctgaac accatatgtt 180

atgttggcag ggtgagaaat taatcacgtg tagatataga agtagtagac aaatgatata 240atgttggcag ggtgagaaat taatcacgtg tagatataga agtagtagac aaatgatata 240

ggtttgtggg aatgaattaa tcgtagggat gaaaaagtca tcgaacatgt aacaccacat 300ggtttgtggg aatgaattaa tcgtagggat gaaaaagtca tcgaacatgt aacaccacat 300

tttacttgtc tgctaggttc gtgatagtcg tttaaattag atacgtgaaa aaagattata 360tttacttgtc tgctaggttc gtgatagtcg tttaaattag atacgtgaaa aaagattata 360

aatatgcaaa aggggaaggg gaagaaaaga aagaaaaagg aggggagaga a 411aatatgcaaa aggggaaggg gaagaaaaga aagaaaaagg aggggagaga a 411

Claims (5)

1. Down-regulated or mutated cabbageBoMS1Use of the expression of genes for the creation of male sterile plant lines, characterized in that said cabbage isBoMS1The amino acid sequence of the gene coding protein is shown as SEQ ID No.1, and the cabbage isBoMS1The nucleotide sequence of the gene is shown as SEQ ID No.2 or SEQ ID No. 3; the application is to be inserted withiBoMS1The plant expression vector of the gene expression cassette is transferred into the cabbage by agrobacterium transfection cabbage hypocotyl transformation method to obtain transgenic male sterile line, and the transgenic male sterile line is obtainediBoMS1The nucleotide sequence of (A) is shown as SEQ ID No. 4;iBoMS1has a promoter inserted upstream ofPBoMS1PBoMS1The nucleotide sequence of (A) is shown as SEQ ID No. 5.
2. Down-regulated or mutated cabbageBoMS1Use of gene expression for creating a male sterile line with cross-compatibility with the flowering phase of a maintainer line, characterised in that the cabbage is selected from the group consisting ofBoMS1The amino acid sequence of the encoded protein of the gene is shown in SEQ ID No.1, the cabbageBoMS1The nucleotide sequence of the gene is shown as SEQ ID No.2 or SEQ ID No. 3; the application is to be inserted withiBoMS1The plant expression vector of the gene expression cassette is transferred into the cabbage by agrobacterium transfection cabbage hypocotyl transformation method to obtain transgenic male sterile line, and the transgenic male sterile line is obtainediBoMS1The nucleotide sequence of (A) is shown as SEQ ID No. 4;iBoMS1has a promoter inserted upstream ofPBoMS1PBoMS1The nucleotide sequence of (A) is shown as SEQ ID No. 5; the plant expression vector is also inserted withiSRK3A gene expression cassette, saidiSRK3The gene expression cassette containsiSRK3iSRK3The nucleotide sequence of (A) is shown as SEQ ID No. 8.
3. Use according to claim 2, characterized in that saidiSRK3Is inserted upstream ofSLG13A promoter, a promoter-specific protein,SLG13the nucleotide sequence of the promoter is shown as SEQ ID No. 9.
4. The use according to claim 2 or 3, wherein the plant expression vector of claim 2 or 3 is transformed into Brassica oleracea by Agrobacterium transfection of the hypocotyl of Brassica oleracea to obtain a transgenic male sterile line with cross-compatibility with the flowering phase of the maintainer line.
5. Down-regulated or mutated cabbageBoMS1Use of the expression of genes for the creation of male sterile plant lines, characterized in that said cabbage isBoMS1The amino acid sequence of the encoded protein of the gene is shown in SEQ ID No.1, the cabbageBoMS1The nucleotide sequence of the gene is shown as SEQ ID No.2 or SEQ ID No. 3; according to the sequence characteristic requirements of CRISPR/Cas9 gene editing system target sitesBoMS1Gene exons andSRK34 target sites with the length of 20bp are respectively selected from the gene exons, and the downstream of the target sites contains a PAM sequence-NGG; to is directed atBoMS1The nucleotide sequence of the target site containing PAM sequence-NGG of the gene exon is 5'-GCCTTTCTAAAACTAGAAGGAGG-3', 5'-GAGTAGCAAAAGGAGAGCCGTGG-3', 5'-CCATCGAAGCCTCTCTTAACCTC-3' and 5'-AAGTTGGTCCTTTCAGCTCGAGG-3'; for the purpose ofSRK3The nucleotide sequence of the target site containing PAM sequence-NGG of the gene exon is 5'-GTGGCAGAGCTTCTCGCCAACGG-3', 5'-AACCCTATATCCAACTCCACTGG-3', 5'-GTGGGATCTTTAGAGTGCATCGG-3' and 5'-GGCAATAATCTTGTCCTCCTTGG-3'; respectively assembling the target sites to BbsI, BsaI, BsmBI and BfuAI sites of tRNA-sgRNA multi-site expression cassettes to obtain targetsBoMS1Genes andSRK3tRNA-sgRNA multi-site expression cassette of gene is packaged, and finally target is carried outBoMS1Genes andSRK3the tRNA-sgRNA multi-site expression cassette of the gene is loaded into an expression vector for expressing Cas9 protein, so that the genes can be knocked out simultaneouslyBoMS1Genes andSRKthe plant expression vector of the gene is used for transforming the cabbage self-incompatible line to breed the non-transgenic male sterile line which is compatible with the maintainer line in the flowering phase in a hybrid way.
CN201811128213.7A 2018-09-27 2018-09-27 Cabbage BoMS1 gene and application thereof in creating sterile materials Active CN109161551B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811128213.7A CN109161551B (en) 2018-09-27 2018-09-27 Cabbage BoMS1 gene and application thereof in creating sterile materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811128213.7A CN109161551B (en) 2018-09-27 2018-09-27 Cabbage BoMS1 gene and application thereof in creating sterile materials

Publications (2)

Publication Number Publication Date
CN109161551A CN109161551A (en) 2019-01-08
CN109161551B true CN109161551B (en) 2022-07-26

Family

ID=64892456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811128213.7A Active CN109161551B (en) 2018-09-27 2018-09-27 Cabbage BoMS1 gene and application thereof in creating sterile materials

Country Status (1)

Country Link
CN (1) CN109161551B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988862B (en) * 2019-04-24 2021-07-02 中国农业科学院蔬菜花卉研究所 PCR markers associated with male sterility of cabbage dominant nuclear gene and its application
CN110157732A (en) * 2019-07-08 2019-08-23 山东省农作物种质资源中心 A method of creation rape cell genic male sterile line and holding system
CN119506297A (en) * 2023-09-11 2025-02-25 中国农业科学院蔬菜花卉研究所 Dominant male sterile gene Ms-cd1 in cabbage, its promoter sequence and its application in plant breeding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612251B2 (en) * 2000-09-26 2009-11-03 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating male fertility and method of using same
CN101525630B (en) * 2009-04-08 2011-05-11 华中农业大学 Rapeseed plant recessive cytoblast sterile restoring gene BnCYP704B1 and application
CN101974081B (en) * 2010-05-28 2013-03-06 中国农业科学院油料作物研究所 PDF1 gene for controlling plant pollen fertility, and preparation method and application thereof
CN102150613A (en) * 2011-04-20 2011-08-17 西南大学 Method for breeding cytoplasm male sterile line of novel cabbage type rape

Also Published As

Publication number Publication date
CN109161551A (en) 2019-01-08

Similar Documents

Publication Publication Date Title
CN109844107B (en) Methods and compositions for dwarf plants for increasing harvestable yield by manipulating gibberellin metabolism
US12241074B2 (en) Genome editing-based crop engineering and production of brachytic plants
US12145967B2 (en) Compositions and methods for improving crop yields through trait stacking
CN111741969B (en) Maize gene KRN2 and its application
WO2015035951A1 (en) Use of genic male sterility gene and mutation thereof in hybridization
US12116586B2 (en) Compositions and methods for improving crop yields through trait stacking
CN109161551B (en) Cabbage BoMS1 gene and application thereof in creating sterile materials
CN113557408A (en) Methods and compositions for generating dominant dwarf alleles using genome editing
CN105695477A (en) Male sterile mutant oss125 and use thereof
US12385060B2 (en) Compositions and methods for improving crop yields through trait stacking
CN101921777B (en) Application of rice leaf inclination control gene SAL1
CN105579583B (en) Reproduction of Female Sterile Lines and Hybrid Seed Production Techniques
CN113151295B (en) Rice Thermosensitive Male Sterile Gene OsFMS1 and Its Application
CN104519735A (en) Nucleotide sequences encoding FASCIATED EAR4 (FEA4) and methods of use thereof
US20220307042A1 (en) Compositions and methods for improving crop yields through trait stacking
CN104561087A (en) OsSDS protein and application of encoding genes of OsSDS protein
CN104193810B (en) The application of OsMSH4 albumen and its encoding gene in regulation and control plant pollen fertility
US20250171798A1 (en) Genome editing-based crop engineering and production of brachytic plants
CN117947046A (en) A rice male sterility gene CHR5 and its application
WO2025131041A1 (en) Rice female sterility related mutant protein and gene, and molecular marker and use thereof
CN118202059A (en) Compositions and methods for altering plant certainty

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant