CN109245746B - a signal generating circuit - Google Patents
a signal generating circuit Download PDFInfo
- Publication number
- CN109245746B CN109245746B CN201811172698.XA CN201811172698A CN109245746B CN 109245746 B CN109245746 B CN 109245746B CN 201811172698 A CN201811172698 A CN 201811172698A CN 109245746 B CN109245746 B CN 109245746B
- Authority
- CN
- China
- Prior art keywords
- signal
- circuit
- sample
- output
- amplifying circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K7/00—Modulating pulses with a continuously-variable modulating signal
- H03K7/08—Duration or width modulation ; Duty cycle modulation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/26—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
Landscapes
- Amplifiers (AREA)
Abstract
一种信号产生电路,用以产生较佳效果的指数信号。该信号产生电路包括第一信号放大电路和采样保持电路,其中:第一信号放大电路用于采用第一设定倍数将第一信号放大电路的输入信号放大,输出第一模拟信号至采样保持电路,第一信号放大电路首次放大的输入信号为信号产生电路的输入信号;采样保持电路用于保存第一信号放大电路输出的第一模拟信号,每当保存一次第一模拟信号时将计数值加一,该计数值的初始值为零;当计数值小于N时,将最近一次保存的第一模拟信号作为第一信号放大电路的输入信号输出至第一信号放大电路;当计数值等于N时,将最近一次保存的第一模拟信号作为第一指数信号输出,其中,N为大于一的整数。
A signal generating circuit is used to generate an exponential signal with better effect. The signal generating circuit includes a first signal amplifying circuit and a sample-holding circuit, wherein: the first signal amplifying circuit is used to amplify the input signal of the first signal amplifying circuit with a first set multiple, and output a first analog signal to the sampling-holding circuit The input signal amplified by the first signal amplifying circuit for the first time is the input signal of the signal generating circuit; the sampling and holding circuit is used to save the first analog signal output by the first signal amplifying circuit, and the count value is added to the count value every time the first analog signal is saved. One, the initial value of the count value is zero; when the count value is less than N, the first analog signal saved last time is output to the first signal amplifying circuit as the input signal of the first signal amplifying circuit; when the count value is equal to N , output the first analog signal saved most recently as the first index signal, where N is an integer greater than one.
Description
技术领域technical field
本发明涉及电路技术领域,尤其涉及一种信号产生电路。The present invention relates to the technical field of circuits, in particular to a signal generating circuit.
背景技术Background technique
在电路技术领域,通常通过信号产生电路产生某种形式的信号,如方波信号、对数信号或指数信号。根据需求不同,产生的信号可作为控制信号、时钟源信号或驱动信号等。产生指数信号的信号产生电路包含三极管,该信号产生电路利用三极管的指数伏安特性对线性信号进行指数运算,得到指数信号。In the field of circuit technology, some form of signal, such as a square wave signal, a logarithmic signal or an exponential signal, is usually generated by a signal generating circuit. According to different requirements, the generated signal can be used as a control signal, a clock source signal or a driving signal, etc. The signal generating circuit for generating the exponential signal includes a triode, and the signal generating circuit uses the exponential volt-ampere characteristic of the triode to perform exponential operation on the linear signal to obtain the exponential signal.
比如,在调节发光二极管(Light Emitting Diode,LED)的亮度时,为了使用户感知到细腻柔和的调光效果,需产生指数形式的驱动信号来驱动LED,驱动电路可如图1所示。图1中,线性信号输入至信号产生电路后产生指数信号,指数信号经过功率驱动电路后产生用于调节LED的亮度的指数信号。图1中,由于信号产生电路利用三极管固有的指数伏安特性产生指数信号,而三极管仅能产生以e为底的指数信号,因而信号产生电路仅能产生以e为底的指数信号。此外,随着三极管的结温的变化,三极管的伏安特性会出现变化,进而影响指数信号的输出,因此在图1所示的驱动电路中,还需为信号产生电路配置温度补偿电路,从而对三极管结温的变化进行补偿。For example, when adjusting the brightness of a light emitting diode (Light Emitting Diode, LED), in order to allow the user to perceive a delicate and soft dimming effect, an exponential driving signal needs to be generated to drive the LED. The driving circuit is shown in FIG. 1 . In Fig. 1, the linear signal is input to the signal generating circuit to generate an exponential signal, and the exponential signal passes through the power driving circuit to generate an exponential signal for adjusting the brightness of the LED. In Figure 1, since the signal generating circuit utilizes the inherent exponential volt-ampere characteristics of the triode to generate the exponential signal, and the triode can only generate the exponential signal with the base e, the signal generating circuit can only generate the exponential signal with the base e. In addition, with the change of the junction temperature of the triode, the volt-ampere characteristics of the triode will change, which will affect the output of the exponential signal. Therefore, in the driving circuit shown in Figure 1, it is necessary to configure a temperature compensation circuit for the signal generation circuit, so as to Compensate for changes in transistor junction temperature.
由此可见,现有的用于产生指数信号的信号产生电路需配置温度补偿电路,增加了信号产生电路的复杂性;而且由于三极管固有的指数伏安特性的限制,仅能产生以e为底数的指数信号,不能产生以任意常数为底数的指数信号,指数信号的种类受到限制。因此,采用现有的信号产生电路产生的指数信号的效果较差。It can be seen that the existing signal generation circuit for generating exponential signals needs to be equipped with a temperature compensation circuit, which increases the complexity of the signal generation circuit; and due to the inherent limitation of the exponential volt-ampere characteristic of the triode, it can only generate a base number e. The exponential signal cannot be generated with an arbitrary constant as the base, and the types of exponential signals are limited. Therefore, the effect of the exponential signal generated by the existing signal generating circuit is poor.
综上,亟需一种能产生较佳效果的指数信号的信号产生电路。In conclusion, there is an urgent need for a signal generating circuit capable of generating an exponential signal with better effects.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种信号产生电路,用以产生较佳效果的指数信号。An embodiment of the present invention provides a signal generating circuit for generating an exponential signal with better effect.
第一方面,本发明实施例提供一种信号产生电路,该信号产生电路包括第一信号放大电路和采样保持电路,其中:In a first aspect, an embodiment of the present invention provides a signal generation circuit, the signal generation circuit includes a first signal amplification circuit and a sample-and-hold circuit, wherein:
第一信号放大电路用于采用第一设定倍数将第一信号放大电路的输入信号放大,输出第一模拟信号至采样保持电路,第一信号放大电路首次放大的输入信号为信号产生电路的输入信号;The first signal amplifying circuit is used to amplify the input signal of the first signal amplifying circuit by using the first set multiple, and output the first analog signal to the sampling and holding circuit, and the input signal amplified by the first signal amplifying circuit for the first time is the input of the signal generating circuit Signal;
采样保持电路用于保存第一信号放大电路输出的第一模拟信号;每当保存一次第一模拟信号时将计数值加一,该计数值的初始值为零;当该计数值小于N时,将最近一次保存的第一模拟信号作为第一信号放大电路的输入信号输出至第一信号放大电路;当该计数值等于N时,将最近一次保存的第一模拟信号作为第一指数信号输出,其中,N为大于一的整数。The sample and hold circuit is used to save the first analog signal output by the first signal amplifying circuit; the count value is increased by one every time the first analog signal is saved, and the initial value of the count value is zero; when the count value is less than N, The first analog signal saved last time is output to the first signal amplifying circuit as the input signal of the first signal amplifying circuit; when the count value is equal to N, the first analog signal saved last time is output as the first index signal, Wherein, N is an integer greater than one.
采用第一方面提供的信号产生电路产生第一指数信号时,由于第一信号放大电路采用第一设定倍数对信号产生电路的输入信号放大N次,因而产生的第一指数信号的底数即为第一设定倍数,产生的第一指数信号的指数即为N,产生的第一指数信号的幅值即为信号产生电路的输入信号,即第一信号放大电路采用第一设定倍数B对上述第一方面提供的信号产生电路的输入信号A放大N次后,第一指数信号为A*BN的形式,对于该第一指数信号,底数为第一设定倍数B,指数为N,幅值为上述第一方面提供的信号产生电路的输入信号A。因此,可通过设定第一设定倍数来设定第一指数信号的底数,可通过设定N的数值来设定第一指数信号的指数,可通过设定信号产生电路的输入信号来设定第一指数信号的幅值。因而,第一方面提供的信号产生电路可产生以任意常数(第一设定倍数)为底数的第一指数信号,与现有技术中仅能产生以e为底数的指数信号相比,第一方面提供的信号产生电路能产生效果较佳的指数信号。When the signal generating circuit provided in the first aspect is used to generate the first index signal, since the first signal amplifying circuit uses the first set multiple to amplify the input signal of the signal generating circuit N times, the base of the generated first index signal is The first set multiple, the index of the generated first index signal is N, and the amplitude of the generated first index signal is the input signal of the signal generation circuit, that is, the first signal amplification circuit adopts the first set multiple B to After the input signal A of the signal generating circuit provided by the first aspect is amplified N times, the first index signal is in the form of A*B N. For the first index signal, the base is the first set multiple B, and the index is N, The amplitude is the input signal A of the signal generating circuit provided in the first aspect. Therefore, the base of the first exponent signal can be set by setting the first set multiple, the exponent of the first exponent signal can be set by setting the value of N, and the exponent of the first exponent signal can be set by setting the input signal of the signal generating circuit. Determine the amplitude of the first exponential signal. Therefore, the signal generating circuit provided by the first aspect can generate the first exponential signal with an arbitrary constant (the first set multiple) as the base. Compared with the prior art that can only generate the exponential signal with the base e, the first exponential signal The signal generating circuit provided by the aspect can generate an exponential signal with better effect.
此外,由于第一方面提供的信号产生电路是依靠第一信号放大电路对信号产生电路的输入信号进行N次放大来实现产生第一指数信号的,而第一信号放大电路对信号产生电路的输入信号进行放大时无需第一信号放大电路工作在某个设定的温度范围,因而无需像现有技术那样为信号产生电路配置温度补偿电路,因而与现有技术相比,第一方面提供的信号产生电路的结构更简单。In addition, since the signal generating circuit provided by the first aspect relies on the first signal amplifying circuit to amplify the input signal of the signal generating circuit N times to realize the generation of the first index signal, and the first signal amplifying circuit inputs the signal generating circuit When the signal is amplified, it is not necessary for the first signal amplifying circuit to work in a certain temperature range, so it is not necessary to configure a temperature compensation circuit for the signal generating circuit as in the prior art. Therefore, compared with the prior art, the signal provided by the first aspect does not need to be The structure of the generating circuit is simpler.
在一种可能的设计中,采样保持电路可具体包括:采样保持器,用于保存第一信号放大电路每次输出的第一模拟信号;计数器,用于每当采样保持器保存一次第一模拟信号时将计数值加一;输出控制器,用于当计数值小于N时,将采样保持器最近一次保存的第一模拟信号作为第一信号放大电路的输入信号输出至第一信号放大电路;当计数值等于N时,将采样保持器最近一次保存的第一模拟信号作为第一指数信号输出。In a possible design, the sample-and-hold circuit may specifically include: a sample-and-hold device for storing the first analog signal output by the first signal amplifying circuit every time; a counter for storing the first analog signal every time the sample-and-hold device The count value is increased by one when the signal is generated; the output controller is used for outputting the first analog signal saved by the sample holder last time to the first signal amplifying circuit as the input signal of the first signal amplifying circuit when the counting value is less than N; When the count value is equal to N, the first analog signal last saved by the sample holder is output as the first index signal.
在上述方案中,采样保持电路中设置了一个采样保持器,实际实现时,采样保持电路中也可以设置两个采样保持器,第一个采样保持器用于保存第一信号放大电路输出的第一模拟信号,并将保存的第一模拟信号输出至输出控制器;第二个采样保持器用于在信号产生电路的输入信号输入时保存该输入信号,以及在输出控制器根据计数值判断需要将第一模拟信号输出至第一信号放大电路时,保存输出控制器输出的第一模拟信号。按照上述功能划分,第一个采样保持器与第一信号放大电路的输出端连接,第二个采样保持器与第一信号放大电路的输入端连接。上述在采样保持电路中设置两个采样保持器的实现方式实际是将上述实现方式中的一个采样保持器按功能划分为两个模块,这两个模块的功能分别由第一个采样保持器和第二个采样保持器实现。In the above solution, one sample-and-hold device is set in the sample-and-hold circuit. In actual implementation, two sample-and-hold devices can also be set in the sample-and-hold circuit, and the first sample-and-hold device is used to store the first signal output by the first signal amplifying circuit. analog signal, and output the saved first analog signal to the output controller; the second sample-and-hold is used to save the input signal when the input signal of the signal generating circuit is input, and the output controller judges the need to send the first analog signal according to the count value according to the count value. When an analog signal is output to the first signal amplifying circuit, the first analog signal output by the output controller is saved. According to the above functional division, the first sample-and-hold is connected to the output end of the first signal amplifying circuit, and the second sample-and-hold is connected to the input end of the first signal amplifying circuit. The above-mentioned implementation of setting two sample-and-holds in the sample-and-hold circuit actually divides one of the sample-and-holds in the above-mentioned implementation into two modules by function, and the functions of these two modules are respectively composed of the first sample-and-hold and the The second sample-and-hold implementation.
采用上述方案,采样保持电路的各个功能分别由采样保持器、计数器和输出控制器实现,提供了一种采样保持电路的具体实现方式。With the above solution, each function of the sample-and-hold circuit is realized by a sample-and-hold device, a counter and an output controller respectively, and a specific implementation manner of the sample-and-hold circuit is provided.
在一种可能的设计中,第一方面提供的信号产生电路在产生第一指数信号时,N的数值可以由采样保持电路预先设置,也可以通过脉冲宽度调制的方式设置。当通过脉冲宽度调制的方式设置N时,信号产生电路还包括脉冲宽度调制器,该脉冲宽度调制器用于产生矩形波信号,并将矩形波信号输出至采样保持电路那么采样保持电路可根据该矩形波信号的占空比确定N的数值。In a possible design, when the signal generating circuit provided in the first aspect generates the first index signal, the value of N may be preset by the sample and hold circuit, or may be set by means of pulse width modulation. When N is set by means of pulse width modulation, the signal generating circuit further includes a pulse width modulator, the pulse width modulator is used to generate a rectangular wave signal, and output the rectangular wave signal to the sample and hold circuit, then the sample and hold circuit can be based on the rectangular wave signal. The duty cycle of the wave signal determines the value of N.
在一种可能的设计中,上述信号产生电路还包括:第二信号放大电路,该第二信号放大电路用于采用第二设定倍数对第一指数信号放大,得到第二指数信号作为上述信号产生电路的输出。In a possible design, the above-mentioned signal generating circuit further includes: a second signal amplifying circuit, the second signal amplifying circuit is used to amplify the first exponential signal by using a second preset multiple to obtain a second exponential signal as the above-mentioned signal produce the output of the circuit.
采用上述方案,不仅可以通过设置第二信号放大电路的第二设定倍数来灵活调节信号产生电路输出的指数信号的幅值,还可以在需要产生的指数信号的底数满足设定条件时,通过公式简化来减小第一信号放大电路的放大次数,进而减小第一信号放大电路的处理负荷,提高信号产生电路产生指数信号的效率。With the above solution, not only can the amplitude of the exponential signal output by the signal generating circuit be flexibly adjusted by setting the second set multiple of the second signal amplifying circuit, but also when the base of the exponential signal to be generated satisfies the set condition, the The formula is simplified to reduce the amplification times of the first signal amplifying circuit, thereby reducing the processing load of the first signal amplifying circuit, and improving the efficiency of the signal generating circuit for generating the exponential signal.
在一种可能的设计中,当信号产生电路的输入信号为电压信号时,如要产生指数形式的电流信号,则信号产生电路还可包括信号转换器,该信号转换器用于当第一指数信号为电压信号时,将第一指数信号由电压信号转换为电流信号。In a possible design, when the input signal of the signal generating circuit is a voltage signal, if an exponential current signal is to be generated, the signal generating circuit may further include a signal converter, the signal converter is used to generate the first exponential signal When it is a voltage signal, the first index signal is converted from a voltage signal to a current signal.
采用上述方案,当产生的第一指数信号用于驱动或控制其他电路中的某些器件时,由于采用电流信号驱动或控制时比采用电压信号进行驱动或控制时的精度高,因而采用上述方案,产生的第一指数信号可以满足高精度的驱动和控制要求。With the above scheme, when the generated first index signal is used to drive or control some devices in other circuits, the above scheme is adopted because the current signal is used to drive or control more accurately than the voltage signal is used to drive or control. , the generated first index signal can meet high-precision driving and control requirements.
附图说明Description of drawings
图1为本现有技术提供的信号产生电路的结构示意图;1 is a schematic structural diagram of a signal generating circuit provided by the prior art;
图2为本发明实施例提供的第一种信号产生电路的结构示意图;FIG. 2 is a schematic structural diagram of a first signal generating circuit provided by an embodiment of the present invention;
图3为本发明实施例提供的第二种信号产生电路的结构示意图;3 is a schematic structural diagram of a second signal generating circuit provided by an embodiment of the present invention;
图4为本发明实施例提供的第三种信号产生电路的结构示意图;4 is a schematic structural diagram of a third signal generating circuit provided by an embodiment of the present invention;
图5为本发明实施例提供的第四种信号产生电路的结构示意图。FIG. 5 is a schematic structural diagram of a fourth signal generating circuit provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了更好地理解本发明实施例的上述目的、方案和优势,下文提供了详细描述。该详细描述通过使用框图、流程图等附图和/或示例,阐明了装置和/或方法的各种实施方式。在这些框图、流程图和/或示例中,包含一个或多个功能和/或操作。本领域技术人员将理解到:这些框图、流程图或示例内的各个功能和/或操作,能够通过各种各样的硬件、软件、固件单独或共同实施,或者通过硬件、软件和固件的任意组合实施。For a better understanding of the above objects, solutions and advantages of the embodiments of the present invention, detailed descriptions are provided below. The detailed description illustrates various embodiments of apparatuses and/or methods through the use of block diagrams, flowcharts, etc., drawings and/or examples. In these block diagrams, flowcharts and/or examples, one or more functions and/or operations are included. Those skilled in the art will appreciate that the various functions and/or operations within these block diagrams, flowcharts, or examples can be implemented individually or collectively by a variety of hardware, software, firmware, or by any combination of hardware, software, and firmware. Combination implementation.
为了产生效果较佳的指数信号,本发明实施例提供一种信号产生电路。如图2所示,该信号产生电路200包括第一信号放大电路201和采样保持电路202,其中:In order to generate an exponential signal with better effect, an embodiment of the present invention provides a signal generating circuit. As shown in FIG. 2, the signal generating
第一信号放大电路201,用于采用第一设定倍数将第一信号放大电路201的输入信号放大,输出第一模拟信号至采样保持电路202;The first
其中,第一信号放大电路201首次放大的输入信号为信号产生电路200的输入信号;Wherein, the input signal amplified by the first
采样保持电路202,用于保存第一信号放大电路201输出的第一模拟信号;每当保存一次第一模拟信号时将计数值加一,其中,计数值的初始值为零;当计数值小于N时,将最近一次保存的第一模拟信号作为第一信号放大电路201的输入信号输出至第一信号放大电路201;当计数值等于N时,将最近一次保存的第一模拟信号作为第一指数信号输出,其中,N为大于一的整数。The sample and
可选地,采样保持电路202可具体包括:采样保持器,用于保存第一信号放大电路每次输出的第一模拟信号;计数器,用于每当采样保持器保存一次第一模拟信号时将计数值加一;输出控制器,用于当计数值小于N时,将采样保持器最近一次保存的第一模拟信号作为第一信号放大电路的输入信号输出至第一信号放大电路;当计数值等于N时,将采样保持器最近一次保存的第一模拟信号作为第一指数信号输出。Optionally, the sample-and-
采样保持电路202的各个功能分别由采样保持器、计数器和输出控制器实现,提供了一种采样保持电路202的具体实现方式。Each function of the sample-and-
在上述实现方式中,采样保持电路202中设置了一个采样保持器,实际实现时,采样保持电路202中也可以设置两个采样保持器,第一个采样保持器用于保存第一信号放大电路输出的第一模拟信号,并将保存的第一模拟信号输出至输出控制器;第二个采样保持器用于在信号产生电路的输入信号输入时保存该输入信号,以及在输出控制器根据计数值判断需要将第一模拟信号输出至第一信号放大电路时,保存输出控制器输出的第一模拟信号。按照上述功能划分,第一个采样保持器与第一信号放大电路的输出端连接,第二个采样保持器与第一信号放大电路的输入端连接。上述在采样保持电路202中设置两个采样保持器的实现方式实际是将上述实现方式中的一个采样保持器按功能划分为两个模块,这两个模块的功能分别由第一个采样保持器和第二个采样保持器实现。In the above implementation manner, one sample-and-hold is set in the sample-and-
需要说明的是,计数值用于对采样保持器保存第一模拟信号的次数进行计数时,计数值的初始值通常设置为零。因而,若需要产生指数为N的第一指数信号时,采样保持电路则在计数值为N时将最近一次保存的第一模拟信号作为第一指数信号输出。以上为一种常见的计数方式。当然,本发明实施例中也可以设置计数值的初始值不为零,比如,设置计数值的初始值为2,那么若需要产生指数为N的第一指数信号时,采样保持电路则在计数值为N+2时将最近一次保存的第一模拟信号作为第一指数信号输出。这种计数值的初始值不为零的方式应视为本发明实施例中对计数值进行计数的方式的一种常见拓展方式。若某个信号产生电路在对计数值进行计数时将计数值的初始值成不为零的数值,但该信号产生电路的其他特征与本发明实施例提供的信号产生电路200的相应特征相同,那么该信号产生电路也应视为落入本发明实施例的保护范围。It should be noted that, when the count value is used to count the number of times the first analog signal is stored by the sample holder, the initial value of the count value is usually set to zero. Therefore, if a first index signal with an index of N needs to be generated, the sample-and-hold circuit outputs the first analog signal saved most recently as the first index signal when the count value is N. The above is a common counting method. Of course, in the embodiment of the present invention, the initial value of the count value may also be set to be non-zero. For example, if the initial value of the count value is set to 2, then if a first index signal with an index of N needs to be generated, the sample-and-hold circuit is counting When the value is N+2, the first analog signal saved last time is output as the first index signal. The manner in which the initial value of the count value is not zero should be regarded as a common expansion manner of the manner of counting the count value in the embodiment of the present invention. If a certain signal generation circuit changes the initial value of the count value to a value other than zero when counting the count value, but other features of the signal generation circuit are the same as the corresponding features of the
可选地,信号产生电路200在产生第一指数信号时,N的数值可以由采样保持电路202预先设置,也可以通过脉冲宽度调制的方式设置。当通过脉冲宽度调制的方式设置N时,信号产生电路200还包括脉冲宽度调制器,该脉冲宽度调制器用于产生矩形波信号,并将矩形波信号输出至采样保持电路202,那么采样保持电路202可根据该矩形波信号的占空比确定N的数值。Optionally, when the
比如,假设脉冲宽度调制器输出的矩形波信号的占空比为1时,N的数值为10;那么当脉冲宽度调制器输出的矩形波信号的占空比为0.2时,可确定N的数值为2;当脉冲宽度调制器输出的矩形波信号的占空比为0.7时,可确定N的数值为7。For example, assuming that the duty cycle of the rectangular wave signal output by the pulse width modulator is 1, the value of N is 10; then when the duty cycle of the rectangular wave signal output by the pulse width modulator is 0.2, the value of N can be determined is 2; when the duty cycle of the rectangular wave signal output by the pulse width modulator is 0.7, the value of N can be determined to be 7.
当产生的第一指数信号用于驱动或控制其他电路中的某些器件时,比如用于驱动LED,即用于调节LED的亮度时,该器件采用电流信号驱动与采用电压信号驱动相比,采用电流信号驱动时的驱动精度更高。因此,若信号产生电路200的输入信号为电压信号,那么经过信号产生电路200的处理后,产生的第一指数信号也为电压信号。这时,为了提高第一指数信号的驱动精度,信号产生电路200中还可以设置一个信号转换器,该信号转换器用于将第一指数信号由电压信号转换为电流信号。When the generated first index signal is used to drive or control some devices in other circuits, such as for driving LEDs, that is, for adjusting the brightness of LEDs, the device is driven by a current signal compared to driving by a voltage signal. The driving accuracy is higher when the current signal is used to drive. Therefore, if the input signal of the
将第一指数信号由电压信号转换为电流信号后,可满足第一指数信号驱动或控制其他电路中的某些器件时的精度要求,即使得产生的第一指数信号的效果更好。After the first index signal is converted from a voltage signal to a current signal, the precision requirement when the first index signal drives or controls some devices in other circuits can be met, that is, the effect of the generated first index signal is better.
需要说明的是,若信号产生电路200的输入信号为电压信号时,采样保持电路202为可以对电压信号进行保存、计数和输出的采样保持电路;若信号产生电路200的输入信号为电流信号时,采样保持电路202为可以对电流信号进行保存、计数和输出的采样保持电路。It should be noted that, if the input signal of the
本发明实施例中,第一设定倍数可以为正实数,也可以为负实数。若第一设定倍数为负实数,则当N为奇数时,第一指数信号为负的指数信号,当N为偶数时,第一指数信号为正的指数信号;若第一设定倍数为正实数,则无论N为奇数还是偶数,第一指数信号均为正的指数信号,具体理由如下:In this embodiment of the present invention, the first set multiple may be a positive real number or a negative real number. If the first set multiple is a negative real number, then when N is an odd number, the first index signal is a negative index signal, and when N is an even number, the first index signal is a positive index signal; if the first set multiple is If N is an odd or even number, the first exponential signal is a positive exponential signal. The specific reasons are as follows:
采用信号产生电路200产生第一指数信号时,假设信号产生电路200的输入信号为A,第一设定倍数为B,则信号产生电路200输出的第一指数信号为A*BN。由此可以看出,若第一设定倍数B为负实数,由于A为正实数,那么当N为奇数时,第一指数信号A*BN为负值,当N为偶数时,第一指数信号A*BN为正的指数信号;若第一设定倍数B为正实数,那么无论N为奇数还是偶数,第一指数信号A*BN均为正值。When the
因此,若信号产生电路200输出的第一指数信号为负的指数信号时,可再设置一个放大倍数为-1的信号放大电路对第一指数信号进行放大,从而实现信号产生电路200输出的第一指数信号为正的指数信号。Therefore, if the first index signal output by the
采用图2所示的信号产生电路200产生第一指数信号时,由于第一信号放大电路201采用第一设定倍数对信号产生电路200的输入信号放大N次,因而产生的第一指数信号的底数即为第一设定倍数,产生的第一指数信号的指数即为N,产生的第一指数信号的幅值即为信号产生电路200的输入信号,即第一信号放大电路采用第一设定倍数B对信号产生电路200的输入信号A放大N次后,第一指数信号为A*BN的形式,对于该第一指数信号,底数为第一设定倍数B,指数为N,幅值为信号产生电路200的输入信号A。采用图2所示的信号产生电路200产生第一指数信号时,可通过设定第一设定倍数来设定第一指数信号的底数,可通过设定N的数值来设定第一指数信号的指数,可通过设定信号产生电路200的输入信号来设定第一指数信号的幅值。因而,信号产生电路200可产生以任意常数(第一设定倍数)为底数的第一指数信号,与现有技术中仅能产生以e为底数的指数信号相比,图2所示的信号产生电路200能产生效果较佳的指数信号。When the
此外,由于信号产生电路200是依靠第一信号放大电路201对信号产生电路200的输入信号进行N次放大来实现产生第一指数信号,而第一信号放大电路201对信号产生电路200的输入信号进行放大时无需第一信号放大电路201工作在某个设定的温度范围,因而无需像现有技术那样为信号产生电路200配置温度补偿电路,因而与现有技术相比,信号产生电路200的结构更简单。In addition, since the
此外,为了满足信号产生电路200输出的指数信号的幅值要求,信号产生电路还可以包括:第二信号放大电路,该第二信号放大电路用于采用第二设定倍数对第一指数信号放大,得到第二指数信号作为信号产生电路200的输出。比如,当信号产生电路200的输入信号为A,若要产生A*C*BN形式的指数信号,可设置信号产生电路200中的第一设定倍数为B、第二设定倍数为C,那么第一指数信号为A*BN,第二指数信号为A*C*BN,将第二指数信号作为信号产生电路200的输出信号即可满足信号产生电路200输出的指数信号的幅值要求。In addition, in order to meet the amplitude requirement of the exponential signal output by the
通过设定第二信号放大电路,不仅可以通过设置第二信号放大电路的第二设定倍数来灵活调节信号产生电路200输出的指数信号的幅值,还可以在某些情况下减小第一信号放大电路201的放大次数,具体原因将在下面的示例三中详述。By setting the second signal amplifying circuit, not only can the amplitude of the exponential signal output by the
结合以上对信号产生电路200及其各种可能实现方式的介绍,下面给出信号产生电路200的三个示例。这三个示例可视为信号产生电路200的三种具体实现方式。In conjunction with the above description of the
示例一Example 1
当信号产生电路的输入信号为电压信号时,信号产生电路可如图3所示。图3中,信号产生电路的输入信号经第一个采样保持器保存后输出至第一信号放大电路,第一信号放大电路采用第一设定倍数对信号产生电路的输入信号放大后得到第一模拟信号,并输出至第二个采样保持器,第二采样保持器将输出的第一模拟信号保存后输出至输出控制器,输出控制器在计数器中的计数值小于N时,将第一模拟信号输入至第一个采样保持器,进而继续对第一模拟信号采用第一设定倍数进行放大;输出控制器在计数值等于N时,将第一模拟信号作为第一指数信号输出至信号转换器,信号转换器将第一指数信号由电压信号转换为电流信号,转换为电流信号的第一指数信号作为信号放大电路最终输出的指数形式的电流信号。When the input signal of the signal generating circuit is a voltage signal, the signal generating circuit may be as shown in FIG. 3 . In Fig. 3, the input signal of the signal generating circuit is saved by the first sample-and-holding device and then output to the first signal amplifying circuit. The first signal amplifying circuit uses the first set multiple to amplify the input signal of the signal generating circuit to obtain the The analog signal is output to the second sample-and-hold, and the second sample-and-hold saves the output first analog signal and outputs it to the output controller. When the count value of the output controller in the counter is less than N, the first analog signal is The signal is input to the first sample-and-hold, and then continues to amplify the first analog signal with the first set multiple; when the count value is equal to N, the output controller outputs the first analog signal as the first index signal to the signal conversion The signal converter converts the first index signal from a voltage signal into a current signal, and the first index signal converted into a current signal is used as an exponential current signal finally output by the signal amplifying circuit.
示例二Example 2
当信号产生电路的输入信号为电流信号时,信号产生电路可如图4所示。图4中,信号产生电路的输入信号经第一个采样保持器保存后输出至第一信号放大电路,第一信号放大电路采用第一设定倍数对信号产生电路的输入信号放大后得到第一模拟信号,并输出至第二个采样保持器,第二采样保持器将输出的第一模拟信号保存后输出至输出控制器,输出控制器在计数器中的计数值小于N时,将第一模拟信号输入至第一个采样保持器,进而继续对第一模拟信号采用第一设定倍数进行放大;输出控制器在计数值等于N时,将第一模拟信号作为第一指数信号输出。信号产生电路的输入信号为电流信号时,第一指数信号也为电流信号,因而图4所示的信号产生电路无需像图3所示的信号产生电路那样配置信号转换器,即可输出指数形式的电流信号。When the input signal of the signal generating circuit is a current signal, the signal generating circuit may be as shown in FIG. 4 . In FIG. 4, the input signal of the signal generating circuit is saved by the first sample-and-hold and then output to the first signal amplifying circuit. The first signal amplifying circuit uses the first set multiple to amplify the input signal of the signal generating circuit to obtain the first The analog signal is output to the second sample-and-hold, and the second sample-and-hold saves the output first analog signal and outputs it to the output controller. When the count value of the output controller in the counter is less than N, the first analog signal is The signal is input to the first sample-and-hold, and then continues to amplify the first analog signal with the first set multiple; when the count value is equal to N, the output controller outputs the first analog signal as the first index signal. When the input signal of the signal generating circuit is a current signal, the first exponential signal is also a current signal, so the signal generating circuit shown in Fig. 4 can output an exponential form without configuring a signal converter like the signal generating circuit shown in Fig. 3 current signal.
示例三Example three
当信号产生电路的输入信号为电压信号时,且需要产生(1+A)N形式的第一指数信号时,信号产生电路可如图5所示,其中A大于0且远小于1。When the input signal of the signal generating circuit is a voltage signal and the first index signal in the form of (1+A) N needs to be generated, the signal generating circuit can be shown in FIG. 5 , where A is greater than 0 and much less than 1.
根据牛顿二项式公式,当A大于0且远小于1时,(1+A)x=(1+A*x),也就是说,通过牛顿二项式公式可对(1+A)N进行简化,从而将对输入信号进行放大的次数减少x次。According to Newton's binomial formula, when A is greater than 0 and much less than 1, (1+A) x = (1+A*x), that is, through Newton's binomial formula, (1+A) N Simplifies so that the number of times the input signal is amplified is reduced by x times.
需要产生(1+A)N形式的第一指数信号时,可通过牛顿二项式公式对第一指数信号进行简化,来减小第一信号放大电路的放大次数。假设N=n*m+b,那么(1+A)N可以简化为(1+A*b)*Bm,其中B=(1+A)n,而B=(1+A)n可简化为B=1+A*n,即(1+A)N=(1+A*b)*Bm=(1+A*b)*(1+A*n)m。因此,在输入的电压信号为1V时,产生(1+A)N形式的第一指数信号原本需要第一信号放大电路采用第一设定倍数1+A对输入信号放大N次,而采用上述简化过程后,仅需要第一信号放大电路采用第一设定倍数1+A*n对输入信号放大m次,输出第一指数信号,第二信号放大电路再采用第二设定倍数1+A*b对第一指数信号放大,得到第二指数信号即可作为信号产生电路的输出。When the first exponential signal in the form of (1+A) N needs to be generated, the first exponential signal can be simplified by using the Newton binomial formula to reduce the amplification times of the first signal amplifying circuit. Assuming N=n*m+b, then (1+A) N can be simplified to (1+A*b)*B m , where B=(1+A) n , and B=(1+A) n can be Simplifies to B=1+A*n, ie (1+A) N =(1+A*b)*Bm=(1+A*b)*(1+A* n)m . Therefore, when the input voltage signal is 1V, generating the first index signal in the form of (1+A) N originally requires the first signal amplifying circuit to amplify the input signal N times by using the first set multiple of 1+A, and using the above After the simplified process, only the first signal amplifying circuit needs to amplify the input signal m times by using the first set multiple 1+A*n, and output the first index signal, and the second signal amplifying circuit uses the second set multiple 1+A. *b Amplifies the first index signal, and obtains the second index signal, which can be used as the output of the signal generating circuit.
需要说明的是,在采用上述方案对指数信号(1+A)N进行简化时,N=n*m+b中的n、m和b和通过如下方式确定:将N除以整数m,得到的整数的商即为n、余数即为b。在本发明实施例中,n和b的数值越小,简化的准确度越高。It should be noted that when using the above scheme to simplify the exponential signal (1+A) N , the sum of n, m and b in N=n*m+b is determined by dividing N by the integer m to obtain The quotient of the integer is n, and the remainder is b. In the embodiment of the present invention, the smaller the values of n and b, the higher the accuracy of simplification.
在图5所示的信号产生电路中,若需要产生(1+A)N形式的第一指数信号,则信号产生电路的输入信号经第一个采样保持器保存后输出至第一信号放大电路,第一信号放大电路采用第一设定倍数1+A*n对信号产生电路的输入信号放大后得到第一模拟信号,并输出至第二个采样保持器,第二个采样保持器将输出的第一模拟信号保存后输出至输出控制器,输出控制器在计数器中的计数值小于m时,将第一模拟信号输入至第一个采样保持器,进而继续对第一模拟信号采用第一设定倍数1+A*n进行放大;输出控制器在计数值等于m时,将第一模拟信号作为第一指数信号输出至第二信号放大电路,第二信号放大电路采用第二设定倍数1+A*b对第一指数信号放大后得到第二指数信号,并输出至信号转换器,信号转换器将第二指数信号由电压信号转换为电流信号,转换为电流信号的第二指数信号作为信号放大电路最终输出的指数形式的电流信号。In the signal generating circuit shown in FIG. 5 , if it is necessary to generate the first index signal in the form of (1+A) N , the input signal of the signal generating circuit is saved by the first sampling and holding device and then output to the first signal amplifying circuit , the first signal amplifying circuit uses the first set multiple 1+A*n to amplify the input signal of the signal generating circuit to obtain the first analog signal, and outputs it to the second sampling and holding device, and the second sampling and holding device will output The first analog signal is saved and output to the output controller. When the count value in the counter is less than m, the output controller inputs the first analog signal to the first sample holder, and then continues to use the first analog signal for the first analog signal. Set a multiple of 1+A*n for amplification; when the count value is equal to m, the output controller outputs the first analog signal as the first index signal to the second signal amplifying circuit, and the second signal amplifying circuit adopts the second set multiple 1+A*b amplifies the first index signal to obtain the second index signal, and outputs it to the signal converter. The signal converter converts the second index signal from a voltage signal to a current signal, and converts it into a second index signal of the current signal. The current signal in exponential form as the final output of the signal amplification circuit.
此外,若不考虑对需要产生的指数信号进行简化,图5所示的信号产生电路与图3或图4所示的信号产生电路相比,由于在输出控制器输出第一指数信号后设置了第二信号放大电路,第二信号放大电路可采用第二设定倍数对第一指数信号放大,因而图5所示的信号产生电路可以灵活调节输出的指数信号的幅值。In addition, if the simplification of the index signal to be generated is not considered, the signal generation circuit shown in FIG. 5 is compared with the signal generation circuit shown in FIG. 3 or FIG. The second signal amplifying circuit, the second signal amplifying circuit can amplify the first exponential signal by using the second preset multiple, so the signal generating circuit shown in FIG. 5 can flexibly adjust the amplitude of the output exponential signal.
综上,在图5所示的信号产生电路中,不仅可以通过设置第二信号放大电路的第二设定倍数来灵活调节信号产生电路输出的指数信号的幅值,还可以通过公式简化过程来减小第一信号放大电路的放大次数,进而减小第一信号放大电路的处理负荷,提高信号产生电路产生指数信号的效率。To sum up, in the signal generating circuit shown in FIG. 5, not only can the amplitude of the exponential signal output by the signal generating circuit be flexibly adjusted by setting the second set multiple of the second signal amplifying circuit, but also the process can be simplified by formulas. The amplification times of the first signal amplifying circuit are reduced, thereby reducing the processing load of the first signal amplifying circuit, and improving the efficiency of the signal generating circuit for generating the exponential signal.
综上,本发明实施例提供的信号产生电路200可产生以任意常数(第一设定倍数)为底数的第一指数信号,与现有技术中仅能产生以e为底数的指数信号相比,本发明实施例提供的信号产生电路200能产生效果较佳的指数信号。To sum up, the
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although the preferred embodiments of the present invention have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of the present invention.
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the embodiments of the present invention without departing from the spirit and scope of the embodiments of the present invention. Thus, provided that these modifications and variations of the embodiments of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811172698.XA CN109245746B (en) | 2016-11-25 | 2016-11-25 | a signal generating circuit |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811172698.XA CN109245746B (en) | 2016-11-25 | 2016-11-25 | a signal generating circuit |
| CN201611060594.0A CN106856635B (en) | 2016-11-25 | 2016-11-25 | A signal generating circuit |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611060594.0A Division CN106856635B (en) | 2016-11-25 | 2016-11-25 | A signal generating circuit |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109245746A CN109245746A (en) | 2019-01-18 |
| CN109245746B true CN109245746B (en) | 2020-08-25 |
Family
ID=59126864
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811172698.XA Active CN109245746B (en) | 2016-11-25 | 2016-11-25 | a signal generating circuit |
| CN201611060594.0A Active CN106856635B (en) | 2016-11-25 | 2016-11-25 | A signal generating circuit |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611060594.0A Active CN106856635B (en) | 2016-11-25 | 2016-11-25 | A signal generating circuit |
Country Status (1)
| Country | Link |
|---|---|
| CN (2) | CN109245746B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4810940A (en) * | 1987-04-13 | 1989-03-07 | Hitachi, Ltd. | Vertical deflection circuit |
| CN1294291A (en) * | 1999-10-26 | 2001-05-09 | 深圳市华为技术有限公司 | Method and device for acquirong data in optical transmission for spectral analysis |
| CN103036538A (en) * | 2012-12-06 | 2013-04-10 | 国民技术股份有限公司 | Circuit and method for correcting offset voltage of comparator |
| CN103490739A (en) * | 2013-08-29 | 2014-01-01 | 苏州苏尔达信息科技有限公司 | Gain amplifying circuit with variable exponents |
| CN103762963A (en) * | 2014-01-16 | 2014-04-30 | 四川和芯微电子股份有限公司 | Comparison circuit high in speed |
| CN104868856A (en) * | 2015-05-28 | 2015-08-26 | 北京凌阳益辉科技有限公司 | Non-linear feedback circuit and integrated amplifying circuit |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100562030C (en) * | 2007-03-07 | 2009-11-18 | 华为技术有限公司 | Mobile terminal with radiation detection function |
| CN101378570A (en) * | 2008-09-23 | 2009-03-04 | 深圳华为通信技术有限公司 | Signal processing method, signal processing circuit and electronic device |
| JP2012244553A (en) * | 2011-05-23 | 2012-12-10 | Toshiba Corp | Power amplifier, lut control circuit, and predistortion compensation method |
-
2016
- 2016-11-25 CN CN201811172698.XA patent/CN109245746B/en active Active
- 2016-11-25 CN CN201611060594.0A patent/CN106856635B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4810940A (en) * | 1987-04-13 | 1989-03-07 | Hitachi, Ltd. | Vertical deflection circuit |
| CN1294291A (en) * | 1999-10-26 | 2001-05-09 | 深圳市华为技术有限公司 | Method and device for acquirong data in optical transmission for spectral analysis |
| CN103036538A (en) * | 2012-12-06 | 2013-04-10 | 国民技术股份有限公司 | Circuit and method for correcting offset voltage of comparator |
| CN103490739A (en) * | 2013-08-29 | 2014-01-01 | 苏州苏尔达信息科技有限公司 | Gain amplifying circuit with variable exponents |
| CN103762963A (en) * | 2014-01-16 | 2014-04-30 | 四川和芯微电子股份有限公司 | Comparison circuit high in speed |
| CN104868856A (en) * | 2015-05-28 | 2015-08-26 | 北京凌阳益辉科技有限公司 | Non-linear feedback circuit and integrated amplifying circuit |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109245746A (en) | 2019-01-18 |
| CN106856635B (en) | 2018-10-30 |
| CN106856635A (en) | 2017-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101932154B1 (en) | Rf pulse edge shaping | |
| EP3334038A3 (en) | Discrete levels envelope tracking | |
| CN106255255B (en) | LED backlight drive circuit, liquid crystal display device and drive method of drive circuit | |
| TWI551053B (en) | Pulcse width modulation signal generation circuit and method | |
| TW201705688A (en) | Three input comparator | |
| WO2020038373A1 (en) | Volume adjustment method and device | |
| CN109245746B (en) | a signal generating circuit | |
| CN110708022B (en) | High-efficiency Class-D amplifier with reduced EMI generation | |
| CN103605226B (en) | Backlight regulating circuit and liquid crystal indicator | |
| US9077321B2 (en) | Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (DC) offset variation, and related devices, systems, and methods | |
| CN107132392B (en) | Dynamic output clamp for probe or accessory | |
| JP7132301B2 (en) | Transimpedance amplifier with adjustable input range | |
| CN106900102B (en) | Current mirror for constant current LED driver IC device and constant current LED driver system | |
| EP2549248A3 (en) | Rain drop detection device having a state detecting unit | |
| CN107835000B (en) | Output circuit for pulse code pattern generator | |
| US9583050B2 (en) | Display apparatus and backlight driving module | |
| US9799288B2 (en) | Driving circuit and liquid crystal display device | |
| CN103988430A (en) | Pulse generating device and pulse generating method | |
| JP2015133631A (en) | Analog-digital converter | |
| CN107086829B (en) | Signal source control circuit and control method for brushless motor driver | |
| US20150162519A1 (en) | Apparatus and method for generating sinusodial waves, and system for driving piezo actuator using the same | |
| CN115580273B (en) | Signal generating circuit, signal generating method, and voltage control method | |
| JP2015153236A5 (en) | ||
| US20150137662A1 (en) | Apparatus and method of driving piezoelectric actuator, and system for driving piezoelectric actuator using the same | |
| GB2510656A (en) | Inverter control for harmonic reduction amplifies an error signal to control inverter driving |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |