CN109241640A - A kind of multiple faults partition method of the Mechatronic Systems based on BG-LFT model - Google Patents
A kind of multiple faults partition method of the Mechatronic Systems based on BG-LFT model Download PDFInfo
- Publication number
- CN109241640A CN109241640A CN201811086082.0A CN201811086082A CN109241640A CN 109241640 A CN109241640 A CN 109241640A CN 201811086082 A CN201811086082 A CN 201811086082A CN 109241640 A CN109241640 A CN 109241640A
- Authority
- CN
- China
- Prior art keywords
- fault
- arr
- model
- isolation
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
Abstract
Description
技术领域technical field
本发明涉及系统的多故障的隔离诊断领域,尤其是一种基于BG-LFT模型的机电系统的多故障隔离方法。The invention relates to the field of multi-fault isolation diagnosis of a system, in particular to a multi-fault isolation method of an electromechanical system based on a BG-LFT model.
背景技术Background technique
近年来,机电系统在现代生产生活中应用广泛,并且随着科技的发展和进步,结构也愈发复杂,因此,对机电系统进行故障诊断的研究十分必要。由于机电系统的故障具有种类繁多和来源繁多的特点,导致在检测和隔离上都具有一定难度,而且由于大部分机电系统的都含有非线性和参数不确定性,故对故障诊断要求更高。In recent years, electromechanical systems have been widely used in modern production and life, and with the development and progress of science and technology, the structure has become more and more complex. Therefore, it is necessary to study the fault diagnosis of electromechanical systems. Because the faults of electromechanical systems are of various types and sources, it is difficult to detect and isolate them. Moreover, because most electromechanical systems contain nonlinearity and parameter uncertainty, they have higher requirements for fault diagnosis.
目前,国内外对故障诊断方法有较深入的研究,现代机电装置的故障诊断系统要求对故障诊断灵敏,传统的故障诊断方法已经渐渐不能达到要求。At present, there are in-depth research on fault diagnosis methods at home and abroad. The fault diagnosis system of modern electromechanical devices requires sensitive fault diagnosis, and the traditional fault diagnosis methods have gradually failed to meet the requirements.
其中,故障隔离是故障诊断中的一个重要环节,其主要任务是在系统检测到故障以后,隔离出真正的故障元件。传统的基于故障特征矩阵的故障隔离方法对元件故障隔离性不高,大多数只适用于单故障发生的情况,随着系统复杂性的不断增加,多故障同时发生的概率不断增大,传统的故障隔离方法已经不能满足多故障同时发生时的故障隔离要求。Among them, fault isolation is an important link in fault diagnosis, and its main task is to isolate the real faulty components after the system detects a fault. The traditional fault isolation method based on the fault characteristic matrix is not high on component fault isolation, and most of them are only suitable for the occurrence of a single fault. The fault isolation method can no longer meet the fault isolation requirements when multiple faults occur simultaneously.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术中的缺陷,本发明提供一种基于BG-LFT模型的机电系统的多故障隔离方法,解决了系统中多故障同时发生时的故障隔离问题,在多故障同时发生的情况下显著提高了故障的可隔离性。In order to overcome the above-mentioned defects in the prior art, the present invention provides a multi-fault isolation method for an electromechanical system based on the BG-LFT model, which solves the problem of fault isolation when multiple faults occur simultaneously in the system. This significantly improves the isolation of faults.
为实现上述目的,本发明采用以下技术方案,包括:To achieve the above object, the present invention adopts the following technical solutions, including:
一种基于BG-LFT模型的机电系统的多故障隔离方法,包括以下步骤:A multi-fault isolation method of electromechanical system based on BG-LFT model, comprising the following steps:
S1,对非线性机电系统建模,得到非线性机电系统的键合图模型;S1, modeling the nonlinear electromechanical system to obtain the bond graph model of the nonlinear electromechanical system;
S2,按照线性分式变换的方式,建立BG-LFT模型,并根据BG-LFT模型推导出系统的解析冗余关系ARR的表达式,再分别将系统中各个参数的标称部分和不确定性部分分离;所述BG-LFT模型为对键合图模型进行线性分式变换后所得到的模型;S2, establish a BG-LFT model according to the method of linear fractional transformation, and derive the expression of the analytical redundancy relation ARR of the system according to the BG-LFT model, and then respectively calculate the nominal part and uncertainty of each parameter in the system Partial separation; the BG-LFT model is the model obtained after carrying out the linear fractional transformation to the bond graph model;
S3,对系统的解析冗余关系ARR进行分析,得到多故障隔离矩阵,根据多故障隔离矩阵判断系统的解析冗余关系ARR中的参数是否具有可隔离性;S3, analyze the analytical redundancy relation ARR of the system to obtain a multi-fault isolation matrix, and judge whether the parameters in the analytical redundancy relation ARR of the system are isolating according to the multi-fault isolation matrix;
S4,利用多故障隔离算法对具有隔离性的参数进行故障判断,获得故障元件信息。S4, using a multi-fault isolation algorithm to perform fault judgment on the parameters with isolation to obtain faulty component information.
步骤S1中,所述非线性机电系统的键合图模型包括:电机、传动轴、减速机构、负载;所述非线性机电系统的键合图模型的功率流向依次为由电机指向传动轴、由传动轴指向减速机构、由减速机构指向负载。In step S1, the bond graph model of the nonlinear electromechanical system includes: a motor, a transmission shaft, a deceleration mechanism, and a load; the power flow direction of the bond graph model of the nonlinear electromechanical system is from the motor to the drive shaft, from the motor to the drive shaft. The transmission shaft points to the reduction mechanism, and the reduction mechanism points to the load.
步骤S2中,包括以下步骤:In step S2, the following steps are included:
S21,根据BG-LFT模型推导出的系统的解析冗余关系ARR的表达式如公式(1)所示:S21, the expression of the analytical redundancy relation ARR of the system derived according to the BG-LFT model is shown in formula (1):
其中,上标L表示该模型加入了线性分式变换;下标m表示键合图模型中的第m个参数,m=1,2,3…,n;表示键合图模型中的第m个参数的隔离特征,所述隔离特征为对键合图中的传感器信号进行计算得到;表示键合图模型中的第m个参数的参数项,第m个参数既包含标称部分θm又包含不确定性部分Δθm;Among them, the superscript L indicates that the model has added linear fractional transformation; the subscript m indicates the mth parameter in the bond graph model, m=1,2,3...,n; represents the isolation feature of the mth parameter in the bond graph model, and the isolation feature is obtained by calculating the sensor signal in the bond graph; represents the mth parameter in the bond graph model The parameter item of , the mth parameter contains both the nominal part θ m and the uncertainty part Δθ m ;
S22,将系统的解析冗余关系ARR中的各个参数的标称部分和不确定性部分分离,分离后的系统的解析冗余关系ARR的表示式如公式(2)所示:S22, the nominal part and the uncertainty part of each parameter in the analytical redundancy relation ARR of the system are separated, and the expression of the analytical redundancy relation ARR of the separated system is shown in formula (2):
S23,对分离后的系统的解析冗余关系ARR进行提取,提取出解析冗余关系ARR中的参数只含有标称部分的部分Np,以及解析冗余关系ARR中的参数只含有不确定性部分的部分Up,提取后的系统的解析冗余关系ARR的表达式如公式(3)所示:S23, extracting the analytical redundancy relation ARR of the separated system, and extracting the part Np in which the parameters in the analytical redundancy relation ARR only contain the nominal part, and the parameters in the analytical redundancy relation ARR only contain the uncertain part The part Up of , the expression of the analytical redundancy relation ARR of the extracted system is shown in formula (3):
步骤S3中,根据系统的未分离的解析冗余关系ARR的结构特性得到多故障隔离矩阵,获得解析冗余关系ARR中参数的可隔离性;其中,多故障隔离矩阵的行表示参数,列表示隔离特征;多故障隔离矩阵中的1表示该行的参数对该列的故障特征敏感,多故障隔离矩阵中的0表示该行的参数对该列的故障特征不敏感,且每个参数在其对应的隔离特征下的值均为1;若某个参数的隔离特征在所有隔离特征中具有唯一性,即除了该参数的隔离特征以外,该参数对其余的隔离特征均不敏感,多故障隔离矩阵该参数行在其余隔离特征列下的值均为0,则该参数具有可隔离性。In step S3, a multi-fault isolation matrix is obtained according to the structural characteristics of the unseparated analytical redundancy relation ARR of the system, and the isolation of parameters in the analytical redundancy relation ARR is obtained; wherein, the rows of the multi-fault isolation matrix represent parameters, and the columns represent the parameters. Isolation characteristics; 1 in the multi-fault isolation matrix means that the parameters of the row are sensitive to the fault characteristics of the column, 0 in the multi-fault isolation matrix means that the parameters of the row are not sensitive to the fault characteristics of the column, and each parameter is in its The values under the corresponding isolation characteristics are all 1; if the isolation characteristics of a parameter are unique among all isolation characteristics, that is, except for the isolation characteristics of this parameter, this parameter is not sensitive to the other isolation characteristics, and multi-fault isolation If the value of this parameter row in the matrix is all 0 under the other isolation feature columns, the parameter can be isolated.
步骤S4中,若系统的某个解析冗余关系ARR的残差高于残差阈值时,则利用多故障隔离算法对该解析冗余关系ARR中的具有可隔离性的参数进行故障判断,获得故障元件信息,即故障参数;所述多故障隔离算法为:In step S4, if the residual error of a certain analytical redundancy relationship ARR of the system is higher than the residual error threshold, the multi-fault isolation algorithm is used to perform fault judgment on the parameters that can be isolated in the analytical redundancy relationship ARR, and obtain: Fault element information, namely fault parameters; the multi-fault isolation algorithm is:
S41,对系统中故障元件的个数i进行定义,i=1,2,…,n,n表示系统中所有元件的个数,即系统的解析冗余关系ARR中所有参数的个数;S41, define the number i of faulty components in the system, i=1, 2, . . . , n, n represents the number of all components in the system, that is, the number of all parameters in the analytical redundancy relationship ARR of the system;
S42,确定故障元件的个数为i的情况下的故障集合Fi,故障集合Fi中含有个子集合,且故障集合Fi中的每个子集合fj中均含有个i元件,即故障集合fj中元素的个数为i,表示系统的故障由此集合fj中的此i个元件造成;S42, determine the fault set F i when the number of fault elements is i, and the fault set F i contains subsets, and each subset f j in the fault set Fi contains i elements, That is, the number of elements in the fault set f j is i, indicating that the fault of the system is caused by this i element in the set f j ;
S43,从i=1开始至i=n结束,依次对故障集合Fi中的每个子集合fj进行计算,得到集合Rj中的每个元素rj,并根据集合Rj中的每个元素rj相应的得到集合Conj中每个元素cj的值,若集合Rj中的某个元素rj的对应的数据波动小,则相应的集合Conj中的元素cj=1;若波动集合Rj中的某个元素rj的波动大,则相应的集合Conj中的元素cj=0;所述波动小为波动只在系统正常情况下波动的10%以内,反之,则为波动大;若集合Conj中某个元素cj的值为1,则表示系统中的故障由子集合为fj中的元素所产生,系统的故障元件为该子集合为fj中的元素所表示的元件,且系统的故障元件的个数为该子集合为fj中元素的个数;S43, starting from i=1 and ending with i=n, successively calculate each subset f j in the fault set F i , Obtain each element r j in the set R j , and correspondingly obtain the value of each element c j in the set Con j according to each element r j in the set R j , if an element r j in the set R j If the fluctuation of the corresponding data is small, then the element c j in the corresponding set Con j =1; if the fluctuation of an element r j in the fluctuation set R j is large, then the element c j in the corresponding set Con j = 0 ; The small fluctuation means that the fluctuation is only within 10% of the fluctuation of the system under normal conditions, otherwise, the fluctuation is large; if the value of an element c j in the set Con j is 1, it means that the fault in the system is composed of a subset of Generated by the elements in f j , the fault element of the system is the subset represented by the element in f j , and the number of fault elements of the system is the number of elements in the subset f j ;
其中,集合Rj中的每个元素rj的计算方式为:Among them, the calculation method of each element r j in the set R j is:
若i=1,从j=1开始至结束,If i=1, start from j=1 to Finish,
若i≠1,从j=1开始至结束,定义ek为子集合fj中的第k个元素,k=1,2,…,i;定义中间变量Mk,Nk,且对中间变量Mk,Nk的初始值进行定义,Nk=N′k-1/Mk;rj=Nk。If i≠1, start from j=1 to At the end, define e k as the kth element in the subset f j , k=1, 2, ..., i; define intermediate variables M k , N k , and define the initial values of the intermediate variables M k , N k , N k =N′ k − 1 /M k ; r j =N k .
本发明的优点在于:The advantages of the present invention are:
(1)本发明采用的BG-LFT模型,考虑到参数的波动,把参数的不确定性部分利用线性分式变换的概念在键合图的框架下进行单独描述,更加逼近真实系统。(1) The BG-LFT model adopted by the present invention takes into account the fluctuation of parameters, and uses the concept of linear fractional transformation to describe the uncertain part of the parameters separately under the framework of the bond graph, which is closer to the real system.
(2)传统的故障隔离方法是基于故障特征矩阵,其隔离方法对元件故障的可隔离性不高,通常只能处理单故障发生的情况,而本发明提出的多故障隔离方法是基于多故障隔离矩阵,分析出了系统的解析冗余关系ARR中所有参数的可隔离性,有效的处理了多故障发生的情况,且通过对隔离特征的分析提高了对故障元件的隔离能力。(2) The traditional fault isolation method is based on the fault characteristic matrix, and its isolation method is not high in isolation of component faults, and usually can only deal with the occurrence of a single fault, while the multi-fault isolation method proposed by the present invention is based on multiple faults. The isolation matrix analyzes the isolation of all parameters in the analytical redundancy relationship ARR of the system, effectively handles the situation of multiple faults, and improves the isolation capability of faulty components through the analysis of isolation characteristics.
(3)本发明的对单一的系统的解析冗余关系ARR进行故障隔离分析,减少了计算量;当有多个ARR同时触发时,则对多个ARR进行多故障隔离分析,其判断结果更具可靠性。(3) The present invention performs fault isolation analysis on the analytic redundancy relationship ARR of a single system, which reduces the amount of calculation; when multiple ARRs are triggered at the same time, multiple fault isolation analysis is performed on the multiple ARRs, and the judgment result is more accurate. Reliable.
附图说明Description of drawings
图1为本发明的整体流程图。FIG. 1 is an overall flow chart of the present invention.
图2为本发明的机电系统的BG-LFT模型。FIG. 2 is a BG-LFT model of the electromechanical system of the present invention.
图3(1)为本发明单故障情况下rjs的实验结果图。Fig. 3(1) is the experimental result diagram of r js under the single fault condition of the present invention.
图3(2)为本发明单故障情况下rfs的实验结果图。FIG. 3(2) is a graph of the experimental result of r fs under the single fault condition of the present invention.
图3(3)为本发明单故障情况下rK的实验结果图。FIG. 3(3) is a graph of the experimental result of r K under the single fault condition of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
由图1所示,一种基于BG-LFT模型的机电系统的多故障隔离算法,包括以下步骤:As shown in Figure 1, a multi-fault isolation algorithm for electromechanical systems based on the BG-LFT model includes the following steps:
S1,对非线性机电系统建模,得到非线性机电系统的键合图模型;S1, modeling the nonlinear electromechanical system to obtain the bond graph model of the nonlinear electromechanical system;
S2,按照线性分式变换的方式,建立BG-LFT模型,并根据BG-LFT模型推导出系统的解析冗余关系ARR的表达式,再分别将系统中各个参数的标称部分和不确定性部分分离;所述BG-LFT模型为对键合图模型进行线性分式变换后所得到的模型;S2, establish a BG-LFT model according to the method of linear fractional transformation, and derive the expression of the analytical redundancy relation ARR of the system according to the BG-LFT model, and then respectively calculate the nominal part and uncertainty of each parameter in the system Partial separation; the BG-LFT model is the model obtained after carrying out the linear fractional transformation to the bond graph model;
S3,对系统的解析冗余关系ARR进行分析,得到多故障隔离矩阵,根据多故障隔离矩阵判断系统的解析冗余关系ARR中的参数是否具有可隔离性;S3, analyze the analytical redundancy relation ARR of the system to obtain a multi-fault isolation matrix, and judge whether the parameters in the analytical redundancy relation ARR of the system are isolating according to the multi-fault isolation matrix;
S4,利用多故障隔离算法对具有隔离性的参数进行故障判断,获得故障元件信息,对故障进行隔离。S4, using a multi-fault isolation algorithm to perform fault judgment on the parameters with isolation, obtain fault element information, and isolate the fault.
步骤S1中,所述非线性机电系统的键合图模型包括:电机、传动轴、减速机构、负载;所述非线性机电系统的键合图模型的功率流向依次为由电机指向传动轴、由传动轴指向减速机构、由减速机构指向负载。In step S1, the bond graph model of the nonlinear electromechanical system includes: a motor, a transmission shaft, a deceleration mechanism, and a load; the power flow direction of the bond graph model of the nonlinear electromechanical system is from the motor to the drive shaft, from the motor to the drive shaft. The transmission shaft points to the reduction mechanism, and the reduction mechanism points to the load.
步骤S2中,包括以下步骤:In step S2, the following steps are included:
S21,根据键合图模型推导出的系统的解析冗余关系ARR的表达式如下公式所示:S21, the expression of the analytical redundancy relation ARR of the system derived according to the bond graph model is shown in the following formula:
其中,上标L表示该模型加入了线性分式变换;下标m表示键合图模型中的第m个参数,m=1,2,3…,n;表示键合图模型中的第m个参数的隔离特征,所述隔离特征为对键合图中的传感器信号进行计算得到;表示键合图模型中的第m个参数的参数项,第m个参数既包含标称部分θm又包含不确定性部分Δθm;Among them, the superscript L indicates that the model has added linear fractional transformation; the subscript m indicates the mth parameter in the bond graph model, m=1,2,3...,n; represents the isolation feature of the mth parameter in the bond graph model, and the isolation feature is obtained by calculating the sensor signal in the bond graph; represents the mth parameter in the bond graph model The parameter item of , the mth parameter contains both the nominal part θ m and the uncertainty part Δθ m ;
S22,将系统的解析冗余关系ARR中的各个参数的标称部分和不确定性部分分离,分离后的系统的解析冗余关系ARR的表示式如下公式所示:S22, the nominal part and the uncertainty part of each parameter in the analytical redundancy relation ARR of the system are separated, and the expression of the analytical redundancy relation ARR of the system after separation is shown in the following formula:
S23,对分离后的系统的解析冗余关系ARR进行提取,提取出解析冗余关系ARR中的参数只含有标称部分的部分Np,以及解析冗余关系ARR中的参数只含有不确定性部分的部分Up,提取后的系统的解析冗余关系ARR的表达式如下公式所示:S23, extracting the analytical redundancy relation ARR of the separated system, and extracting the part Np in which the parameters in the analytical redundancy relation ARR only contain the nominal part, and the parameters in the analytical redundancy relation ARR only contain the uncertain part For the part of Up, the expression of the analytical redundancy relation ARR of the extracted system is shown in the following formula:
由图2所示,本实施例中,根据机电系统的键合图模型推导出系统的解析冗余关系ARR包括解析冗余关系ARRLFT1和解析冗余关系ARRLFT2,表达式如下所示:As shown in FIG. 2 , in this embodiment, the analytical redundancy relation ARR of the system is derived according to the bond graph model of the electromechanical system, including the analytical redundancy relation ARR LFT1 and the analytical redundancy relation ARR LFT2 , and the expressions are as follows:
式中,ARRLFT1中的Jm、fm、K均为系统中的解析冗余关系ARRLFT1的元件参数,分别表示电机转动惯量、电机机械部分粘性摩擦系数、传动轴的刚度;ARRLFT1中的分别为元件参数Js、fs、K的隔离特征;U为输入的控制电压。In the formula, J m , f m , and K in ARR LFT1 are the component parameters of the analytical redundancy relationship ARR LFT1 in the system, representing the moment of inertia of the motor, the viscous friction coefficient of the mechanical part of the motor, and the stiffness of the transmission shaft; in ARR LFT1 of are the isolation characteristics of component parameters J s , f s , and K, respectively; U is the input control voltage.
ARRLFT2中的Js、fs、K均为系统中的解析冗余关系ARRLFT2的元件参数,分别表示负载转动惯量、负载部分粘性摩擦系数、传动轴的刚度;ARRLFT2中的 分别为元件参数Js、fs、K的隔离特征;ARRLFT1中的K和ARRLFT2中的K是一个的元件参数,其对应的隔离特征也保持一致。J s , f s , and K in ARR LFT2 are the component parameters of the analytical redundancy relationship ARR LFT2 in the system, representing the moment of inertia of the load, the viscous friction coefficient of the load part, and the stiffness of the transmission shaft, respectively ; are the isolation characteristics of component parameters J s , f s , and K, respectively; K in ARR LFT1 and K in ARR LFT2 are one component parameter, and the corresponding isolation characteristics are also consistent.
其中,所述隔离特征为对键合图模型中的传感器信号进行计算得到,元件的隔离特征可由如下公式求得:Wherein, the isolation feature is obtained by calculating the sensor signal in the bond graph model, and the isolation feature of the component can be obtained by the following formula:
式中,下标m表示键合图模型中的第m个参数,m=1,2,3…,n;表示键合图模型中的第m个参数的隔离特征;表示键合图模型中的第m个参数θm的参数项。In the formula, the subscript m represents the mth parameter in the bond graph model, m=1,2,3...,n; represents the isolation feature of the mth parameter in the bond graph model; A parameter term representing the mth parameter θ m in the bond graph model.
步骤S3中,根据解析冗余关系的结构特性得到多故障隔离矩阵,获得每个解析冗余关系中参数的可隔离性,其中,用来得到多故障隔离矩阵的解析冗余关系为还未分离的解析冗余关系,即ARRLFT1和ARRLFT1为未进行标称部分和不确定性部分分离的解析冗余关系;In step S3, a multi-fault isolation matrix is obtained according to the structural characteristics of the analytical redundancy relationship, and the isolation of parameters in each analytical redundancy relationship is obtained, wherein the analytical redundancy relationship used to obtain the multi-fault isolation matrix is not yet separated. The analytic redundancy relationship of ARR LFT1 and ARR LFT1 are analytic redundancy relationships without separation of nominal part and uncertainty part;
本实施例中,获得ARRLFT1的多故障隔离矩阵,ARRLFT1的多故障隔离矩阵如下表所示:In this embodiment, the multi-fault isolation matrix of ARR LFT1 is obtained, and the multi-fault isolation matrix of ARR LFT1 is shown in the following table:
本实施例中,获得ARRLFT2的多故障隔离矩阵,ARRLFT2的多故障隔离矩阵如下表所示:In this embodiment, the multi-fault isolation matrix of ARR LFT2 is obtained, and the multi-fault isolation matrix of ARR LFT2 is shown in the following table:
其中,多故障隔离矩阵的行表示参数,列表示隔离特征,即多故障隔离矩阵中每一行所对应的参数是一致的,每一列所对应的隔离特征是一致的;多故障隔离矩阵中的1表示该行的参数对该列的故障特征敏感,多故障隔离矩阵中的0表示该行的参数对该列的故障特征不敏感,且每个参数在其对应的隔离特征下的值均为1;若某个参数的隔离特征在所有隔离特征中具有唯一性,则除了该参数的隔离特征以外,该参数对其余的隔离特征均不敏感,多故障隔离矩阵该参数行在其余隔离特征列下的值均为0,该参数具有可隔离性。Among them, the rows of the multi-fault isolation matrix represent parameters, and the columns represent the isolation characteristics, that is, the parameters corresponding to each row in the multi-fault isolation matrix are consistent, and the isolation characteristics corresponding to each column are consistent; 1 in the multi-fault isolation matrix Indicates that the parameters of this row are sensitive to the fault characteristics of this column, 0 in the multi-fault isolation matrix means that the parameters of this row are not sensitive to the fault characteristics of this column, and the value of each parameter under its corresponding isolation characteristics is 1 ; If the isolation characteristic of a parameter is unique among all isolation characteristics, the parameter is insensitive to other isolation characteristics except the isolation characteristic of this parameter, and the row of this parameter in the multi-fault isolation matrix is under the column of other isolation characteristics The value of is 0, the parameter is isolated.
步骤S4中,若系统的某个解析冗余关系ARR的残差高于残差阈值时则利用多故障隔离算法对该解析冗余关系ARR中的具有可隔离性的参数进行故障判断,获得故障元件信息,即故障参数;所述残差阈值的大小的确定是根据诊断对象的不同和应用环境的不同而不同,具体的,残差阈值为根据诊断对象和应用环境进行试验来确定。In step S4, if the residual error of a certain analytical redundancy relationship ARR of the system is higher than the residual error threshold, a multi-fault isolation algorithm is used to perform fault judgment on the parameters that can be isolated in the analytical redundancy relationship ARR, and the fault is obtained. Component information, that is, fault parameters; the determination of the residual threshold value is different according to the difference of the diagnosis object and the application environment. Specifically, the residual error threshold value is determined by testing according to the diagnosis object and the application environment.
所述多故障隔离算法为:The multiple fault isolation algorithm is:
S41,对系统中故障元件的个数i进行定义,i=1,2,…,n,n表示系统中所有元件的个数,即系统的解析冗余关系ARR中所有参数的个数;S41, define the number i of faulty components in the system, i=1, 2, . . . , n, n represents the number of all components in the system, that is, the number of all parameters in the analytical redundancy relationship ARR of the system;
S42,确定故障元件的个数为i的情况下的故障集合Fi,故障集合Fi中含有个子集合,且故障集合Fi中的每个子集合fj中均含有个i元件,即故障集合fj中元素的个数为i,表示系统的故障由此集合fj中的此i个元件造成;S42, determine the fault set F i when the number of fault elements is i, and the fault set F i contains subsets, and each subset f j in the fault set Fi contains i elements, That is, the number of elements in the fault set f j is i, indicating that the fault of the system is caused by this i element in the set f j ;
S43,从i=1开始至i=n结束,依次对故障集合Fi中的每个子集合fj进行计算,得到集合Rj中的每个元素rj,并根据集合Rj中的每个元素rj相应的得到集合Conj中每个元素cj的值,若集合Rj中的某个元素rj的对应的数据波动小,则相应的集合Conj中的元素cj=1;若波动集合Rj中的某个元素rj的波动大,则相应的集合Conj中的元素cj=0;所述波动小为波动只在系统正常情况下波动的百分之10之内,反之,则为波动大;若集合Conj中某个元素cj的值为1,则表示系统中的故障由子集合为fj中的元素所产生,系统的故障元件为该子集合为fj中的元素所表示的元件,且系统的故障元件的个数为该子集合为fj中元素的个数;S43, starting from i=1 and ending with i=n, successively calculate each subset f j in the fault set F i , Obtain each element r j in the set R j , and correspondingly obtain the value of each element c j in the set Con j according to each element r j in the set R j , if an element r j in the set R j If the fluctuation of the corresponding data is small, then the element c j in the corresponding set Con j =1; if the fluctuation of an element r j in the fluctuation set R j is large, then the element c j in the corresponding set Con j = 0 ; The small fluctuation means that the fluctuation is only within 10% of the fluctuation of the system under normal conditions, otherwise, the fluctuation is large; if the value of a certain element c j in the set Con j is 1, it means a fault in the system Generated by the subset being the elements in f j , the fault element of the system is the element represented by the element in f j , and the number of fault elements of the system is the number of elements in the subset f j ;
其中,集合Rj中的每个元素rj的计算方式为:Among them, the calculation method of each element r j in the set R j is:
若i=1,从j=1开始至结束,If i=1, start from j=1 to Finish,
若i≠1,从j=1开始至结束,定义ek为子集合fj中的第k个元素,k=1,2,…,i;定义中间变量Mk,Nk,且对中间变量Mk,Nk的初始值进行定义,Nk=N′k-1/Mk;rj=Nk。If i≠1, start from j=1 to At the end, define e k as the kth element in the subset f j , k=1, 2, ..., i; define intermediate variables M k , N k , and define the initial values of the intermediate variables M k , N k , N k =N′ k − 1 /M k ; r j =N k .
具体的,多故障隔离算法算法主要分为两部分,主程序和判断程序,当一个ARR的残差高于残差阈值时,主程序开始运行,若此ARR中有n个元件,从1到n对故障个数进行判定。先假设有一个元件发生故障,调用子程序故障判断程序进行判断,检查返回集合Conj,Conj中的元素的数量与故障集合Fi中的子集合的数量相等,且一一对应。若集合Conj中所有元素cj的和为1,则对应于f中的元件产生故障,主程序跳出结束;若集合Conj中所有元素cj的和为0,则假设从两个元件故障直到所有元件故障,一直循环调用子程序。子程序对故障集合Fi中的子集合fj进行判断,如果故障是由fj中的元素产生,则在集合Conj中的相应位置的元素cj置1,否则置0。Specifically, the multi-fault isolation algorithm is mainly divided into two parts, the main program and the judgment program. When the residual error of an ARR is higher than the residual error threshold, the main program starts to run. If there are n components in this ARR, from 1 to n Determine the number of faults. Suppose that a component fails, call the subroutine fault judgment program to judge, check the returned set Con j , the number of elements in Con j is equal to the number of sub-sets in the fault set Fi , and correspond one-to-one. If the sum of all elements c j in the set Con j is 1, the corresponding element in f is faulty, and the main program jumps out and ends; if the sum of all the elements c j in the set Con j is 0, it is assumed that two components fail The subroutine is called cyclically until all elements fail. The subroutine judges the sub-set f j in the fault set Fi, if the fault is caused by the element in f j, the element c j in the corresponding position in the set Con j is set to 1, otherwise it is set to 0.
多故障隔离算法的伪代码如下所示:The pseudocode of the multiple fault isolation algorithm is shown below:
若系统的ARRLFT2的残差高于残差阈值,由图3(1)、(2)、(3)所示,分别为单故障情况下的rJs、rfs、rk的波动,由于rfs的波动小,因此可判断出系统的故障参数即为fs。If the residual error of the ARR LFT2 of the system is higher than the residual error threshold, as shown in Fig. 3(1), (2), (3), it is the fluctuation of r Js , r fs , and rk under the single fault condition, respectively, because The fluctuation of r fs is small, so it can be judged that the fault parameter of the system is f s .
以上仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811086082.0A CN109241640B (en) | 2018-09-18 | 2018-09-18 | BG-LFT model-based multi-fault isolation method for electromechanical system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811086082.0A CN109241640B (en) | 2018-09-18 | 2018-09-18 | BG-LFT model-based multi-fault isolation method for electromechanical system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109241640A true CN109241640A (en) | 2019-01-18 |
| CN109241640B CN109241640B (en) | 2022-10-18 |
Family
ID=65059695
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811086082.0A Active CN109241640B (en) | 2018-09-18 | 2018-09-18 | BG-LFT model-based multi-fault isolation method for electromechanical system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109241640B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6014598A (en) * | 1996-06-28 | 2000-01-11 | Arcelik A.S. | Model-based fault detection system for electric motors |
| CN105301470A (en) * | 2015-08-12 | 2016-02-03 | 南京航空航天大学 | IGBT fault diagnosis method for traction drive system of CRH5 type high-speed train |
| CN108398637A (en) * | 2018-01-29 | 2018-08-14 | 合肥工业大学 | A Fault Diagnosis Method for Nonlinear Electromechanical Systems |
-
2018
- 2018-09-18 CN CN201811086082.0A patent/CN109241640B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6014598A (en) * | 1996-06-28 | 2000-01-11 | Arcelik A.S. | Model-based fault detection system for electric motors |
| CN105301470A (en) * | 2015-08-12 | 2016-02-03 | 南京航空航天大学 | IGBT fault diagnosis method for traction drive system of CRH5 type high-speed train |
| CN108398637A (en) * | 2018-01-29 | 2018-08-14 | 合肥工业大学 | A Fault Diagnosis Method for Nonlinear Electromechanical Systems |
Non-Patent Citations (2)
| Title |
|---|
| 彭冬梅等: "基于键合图的参数不确定性鲁棒故障诊断", 《电子技术应用》 * |
| 王秋生等: "基于解析冗余关系的动态系统故障检测和隔离", 《哈尔滨工业大学学报》 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109241640B (en) | 2022-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112131760B (en) | CBAM model-based prediction method for residual life of aircraft engine | |
| US20190156474A1 (en) | Appearance inspection device | |
| CN1215405C (en) | Generating a nonlinear model and generating device signals for simulation testing using the same | |
| CN109297689B (en) | Large-scale hydraulic machinery intelligent diagnosis method introducing weight factors | |
| WO2007143405A3 (en) | Automatic fault classification for model-based process monitoring | |
| CN114418146B (en) | Mechanical and electrical equipment fault diagnosis method, system and terminal based on rule engine | |
| US11423321B2 (en) | Method and system for predicting system status | |
| CN116610092A (en) | Method and system for vehicle analysis | |
| CN112633461A (en) | Application assistance system and method, and computer-readable recording medium | |
| JP2022136983A (en) | Automatic generation of integrated test procedures using system test procedures | |
| CN109241640B (en) | BG-LFT model-based multi-fault isolation method for electromechanical system | |
| CN114548178A (en) | Elevator fault detection method and device, computer equipment and storage medium | |
| JP6169302B2 (en) | Specification configuration apparatus and method | |
| CN103412223A (en) | Electrical system fault diagnosis method based on qualitative model | |
| CN107957269B (en) | An Inertial Navigation System Fault Characteristic Judgment and Testability Prediction Method | |
| CN110244563B (en) | Neural network internal model controller model mismatch identification and online updating method | |
| CN109583124B (en) | HMM fault prediction system based on ADRC | |
| CN116028883A (en) | Method, analysis system and computer storage medium for analyzing engine test fault | |
| JP7112270B2 (en) | SYSTEM ABNORMAL OPERATION DETECTION APPARATUS, METHOD AND PROGRAM | |
| Sun et al. | A novel FMEA tool application in semiconductor manufacture | |
| CN118260631B (en) | A method and system for monitoring fault type in a faulty bearing | |
| Berdjag et al. | Abnormal operation diagnosis in human—Machine systems | |
| CN106959609A (en) | Based on the most credible method of estimation of aircraft accident sequence of events for mixing PREDICTIVE CONTROL | |
| JPWO2009075128A1 (en) | Integrated abnormality detection system, integrated abnormality detection device, integrated abnormality detection method and program | |
| US10678645B2 (en) | Dynamic rerouting of the execution for automated server builds |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |