[go: up one dir, main page]

CN109251941B - A kind of Escherichia coli with high production of succinic acid and its application - Google Patents

A kind of Escherichia coli with high production of succinic acid and its application Download PDF

Info

Publication number
CN109251941B
CN109251941B CN201811156449.1A CN201811156449A CN109251941B CN 109251941 B CN109251941 B CN 109251941B CN 201811156449 A CN201811156449 A CN 201811156449A CN 109251941 B CN109251941 B CN 109251941B
Authority
CN
China
Prior art keywords
escherichia coli
succinic acid
ala
pyruvate kinase
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811156449.1A
Other languages
Chinese (zh)
Other versions
CN109251941A (en
Inventor
刘佳
刘立明
罗秋玲
陈修来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Wuxi Chenming Biotechnology Co ltd
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Chenming Biotechnology Co ltd, Jiangnan University filed Critical Wuxi Chenming Biotechnology Co ltd
Priority to CN201811156449.1A priority Critical patent/CN109251941B/en
Publication of CN109251941A publication Critical patent/CN109251941A/en
Application granted granted Critical
Publication of CN109251941B publication Critical patent/CN109251941B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0104Pyruvate kinase (2.7.1.40)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a screening and constructing method of a high-yield succinic acid production strain, belonging to the technical field of biological engineering. According to the invention, a wild strain for producing succinic acid is separated from camel rumen contents, and protein engineering transformation is carried out on pyruvate kinase of the strain, so that the enzyme activity of the pyruvate kinase is reduced, the succinic acid yield of the obtained mutant strain is improved by 26.4% in a shake flask level, the succinic acid yield reaches 80.0g/L, and the succinic acid production strength reaches 1.45g/L/h through anaerobic fermentation in a fermentation tank.

Description

一种高产琥珀酸的大肠杆菌及其应用A kind of Escherichia coli with high production of succinic acid and its application

技术领域technical field

本发明涉及一种高产琥珀酸的大肠杆菌及其应用,属于生物工程技术领域。The invention relates to a high-yielding succinic acid Escherichia coli and its application, belonging to the technical field of bioengineering.

背景技术Background technique

琥珀酸,学名丁二酸,是一种重要的C4平台化合物。作为合成通用化学品的起始原料,琥珀酸在食品、化学、医药以及其他领域有广泛的应用,美国能源部2004年发布的报告中将琥珀酸列为12种最有潜力大宗生物基化学品中的第一位。Succinic acid, scientific name succinic acid, is an important C4 platform compound. As a starting material for the synthesis of general chemicals, succinic acid has a wide range of applications in food, chemistry, medicine and other fields. In a report released by the US Department of Energy in 2004, succinic acid was listed as 12 most potential bulk bio-based chemicals in the first place.

琥珀酸的传统生产方法是化学合成法,主要有石蜡氧化法、氯乙酸甲酯氰化水解法和五氧化二钒催化加氢法等,但由于石油资源的减少和环境污染日益严重等问题,化学合成方法的弊端日益显现。而通过发酵法生产琥珀酸,能够摆脱对不可再生的战略资源石油的依赖,利用可再生资源,固定二氧化碳减轻温室效应,展现出良好的发展前景。目前研究较多的产琥珀酸的菌种有:产琥珀酸放线杆菌、产琥珀酸厌氧螺菌和大肠杆菌。产琥珀酸放线杆菌通常是从自然界中筛选,进行定向改造,能够耐受高浓度的琥珀酸盐,Guettler M等人利用突变株产琥珀酸放线杆菌FZ53生产琥珀酸产量最高,以葡萄糖为碳源,发酵48h产量可以达到最高产量110g/L,关于产琥珀酸放线杆菌菌种的研究较少,需要进一步的对其生理特性、发酵性能和遗传背景进行研究。产琥珀酸厌氧螺菌可以利用的发酵底物比较广泛,例如葡萄糖、乳糖、甘油等,Samuelov等人的研究结果表明,在最适条件下,产琥珀酸厌氧螺菌琥珀酸的产率可以达到1.2mol/1.0mol葡萄糖,最高产量为65.0g/L,但是该菌株发酵需要严格的厌氧环境,工业化应用中很难实现。大肠杆菌作为模式菌株,遗传背景清晰,易操作,能够采用各种分子生物学的技术对菌种进行改造,所以采用大肠杆菌发酵琥珀酸已经成为一个热点,研究也取得了众多进展,Vemuri G N利用重组大肠杆菌AFP111进行两步法发酵76h,琥珀酸的最终浓度可达到99.2g/L。The traditional production method of succinic acid is chemical synthesis method, mainly including paraffin oxidation method, methyl chloroacetate cyanidation hydrolysis method and vanadium pentoxide catalytic hydrogenation method, etc., but due to problems such as the reduction of petroleum resources and the increasingly serious environmental pollution, The disadvantages of chemical synthesis methods are increasingly apparent. The production of succinic acid by fermentation can get rid of the dependence on non-renewable strategic resource petroleum, use renewable resources, fix carbon dioxide to reduce the greenhouse effect, and show a good development prospect. At present, the most studied succinic acid-producing strains are: Actinomyces succinic acid-producing, Anaerobic spirochetes succinic acid-producing and Escherichia coli. Actinobacillus succinate producing is usually screened from nature and directional transformation is carried out to tolerate high concentrations of succinate. Guettler M et al. used the mutant Actinobacter succinate producing FZ53 to produce the highest yield of succinic acid, using glucose as the Carbon source, the maximum yield of 48h fermentation can reach 110g/L. There are few studies on the species of Actinobacter succinates, and further research is needed on its physiological characteristics, fermentation performance and genetic background. Anaerobes succinates can utilize a wide range of fermentation substrates, such as glucose, lactose, glycerol, etc. The research results of Samuelov et al. It can reach 1.2mol/1.0mol glucose, and the maximum yield is 65.0g/L, but the fermentation of this strain requires strict anaerobic environment, which is difficult to achieve in industrial application. As a model strain, Escherichia coli has a clear genetic background and is easy to operate. Various molecular biology techniques can be used to transform the strain. Therefore, the use of Escherichia coli to ferment succinic acid has become a hot spot, and many research progress has been made. Vemuri GN uses Recombinant Escherichia coli AFP111 was fermented in two steps for 76h, and the final concentration of succinic acid could reach 99.2g/L.

目前大肠杆菌发酵的生产效率较低,最高为1.3g/L/h,发酵液中通常有乙酸、乙醇等副产物,以及不能耐受高浓度糖发酵等。为了获得高性能的生产菌株,通常需要利用传统选育手段、各种组学分析与分子生物学改造相结合的方法。At present, the production efficiency of E. coli fermentation is low, the highest is 1.3g/L/h, and the fermentation broth usually contains by-products such as acetic acid and ethanol, and cannot tolerate high-concentration sugar fermentation. In order to obtain high-performance production strains, it is usually necessary to combine traditional breeding methods, various omics analysis and molecular biology transformation.

发明内容SUMMARY OF THE INVENTION

本发明的第一个目的是提供一种大肠杆菌在生产琥珀酸中的应用,是通过抑制大肠杆菌中丙酮酸激酶的活性,提高大肠杆菌产琥珀酸的能力,具体步骤包括:The first object of the present invention is to provide a kind of application of Escherichia coli in producing succinic acid, which is to improve the ability of Escherichia coli to produce succinic acid by inhibiting the activity of pyruvate kinase in Escherichia coli, and the concrete steps include:

(1)克隆大肠杆菌中的丙酮酸激酶基因pykA;(1) clone the pyruvate kinase gene pykA in Escherichia coli;

(2)以克隆得到的丙酮酸激酶基因pykA作为亲本,构建酶活下降的丙酮酸激酶突变体;(2) Using the cloned pyruvate kinase gene pykA as a parent, construct a pyruvate kinase mutant with decreased enzyme activity;

(3)将大肠杆菌的丙酮酸激酶基因pykA替换为丙酮酸激酶突变体基因,得到重组大肠杆菌;(3) replacing the pyruvate kinase gene pykA of Escherichia coli with a pyruvate kinase mutant gene to obtain a recombinant Escherichia coli;

(4)在种子培养基中活化重组菌;(4) activating the recombinant bacteria in the seed medium;

(5)接种活化后的重组菌到发酵培养基中发酵。(5) inoculating the activated recombinant bacteria into the fermentation medium for fermentation.

在本发明的一种实施方式中,所述大肠杆菌包括大肠杆菌FMME-SuA(Escherichiacoli),所述大肠杆菌已于2018年8月27日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 2018568,保藏地址为中国湖北武汉,武汉大学。In one embodiment of the present invention, the Escherichia coli includes Escherichia coli FMME-SuA (Escherichiacoli), and the Escherichia coli has been deposited in the China Center for Type Culture Collection on August 27, 2018, and the deposit number is CCTCC NO :M 2018568, deposited at Wuhan University, Wuhan, Hubei, China.

在本发明的一种实施方式中,步骤(3)中所述的丙酮酸激酶突变体包括pykA(N22A/N23A),编码该酶突变体的核苷酸序列如SEQ ID NO.9所示。In one embodiment of the present invention, the pyruvate kinase mutant described in step (3) includes pykA (N22A/N23A), and the nucleotide sequence encoding the enzyme mutant is shown in SEQ ID NO.9.

在本发明的一种实施方式中,步骤(3)中重组大肠杆菌构建方法包括用Red同源重组技术将原始菌株中的丙酮酸激酶基因pykA替换为酶活下降的丙酮酸激酶突变体基因。In one embodiment of the present invention, the recombinant Escherichia coli construction method in step (3) comprises using Red homologous recombination technology to replace the pyruvate kinase gene pykA in the original strain with a pyruvate kinase mutant gene with reduced enzymatic activity.

在本发明的一种实施方式中,步骤(4)所述的活化是将重组大肠杆菌在30-40℃,200rpm振荡培养12-14h。In one embodiment of the present invention, the activation in step (4) is to shake the recombinant Escherichia coli at 30-40° C. and 200 rpm for 12-14 hours.

在本发明的一种实施方式中,步骤(5)所述的发酵是按10-25%的接种量接种种子液至发酵培养基中,30-40℃下搅拌100-150rpm,厌氧发酵50-65h。In one embodiment of the present invention, the fermentation described in step (5) is to inoculate the seed liquid into the fermentation medium according to the inoculum amount of 10-25%, stir at 100-150 rpm at 30-40 ° C, and anaerobic fermentation for 50 -65h.

在本发明的一种实施方式中,步骤(5)所用发酵培养基中包括:葡萄糖90-120g/L,玉米浆4-10g/L,Na2HPO4·12H2O 1-2g/L,NaH2PO4·2H2O 2-3g/L,MgSO4·7H2O 0.2-0.3g/L,CaCl2 0.1-0.2g/L。In one embodiment of the present invention, the fermentation medium used in step (5) includes: glucose 90-120 g/L, corn steep liquor 4-10 g/L, Na 2 HPO 4 12H 2 O 1-2 g/L, NaH 2 PO 4 ·2H 2 O 2-3g/L, MgSO 4 ·7H 2 O 0.2-0.3g/L, CaCl 2 0.1-0.2g/L.

本发明的第二个目的是提供一种大肠杆菌FMME-SuA(Escherichia coli),其特征在于,所述大肠杆菌已于2018年8月27日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 2018568,保藏地址为中国湖北武汉,武汉大学。The second object of the present invention is to provide a kind of Escherichia coli FMME-SuA (Escherichia coli), characterized in that, the Escherichia coli has been deposited in the China Center for Type Culture Collection on August 27, 2018, and the deposit number is CCTCC NO:M 2018568, the deposit address is Wuhan University, Wuhan, Hubei, China.

本发明的第三个目的是提供一种重组大肠杆菌,其特征在于,是以大肠杆菌FMME-SuA为出发菌株,采用Red同源重组方法,将如SEQ ID NO.9所示的pykA(N22A/N23A)基因的DNA片段导入大肠杆菌FMME-SuA中,替换大肠杆菌FMME-SuA中的丙酮酸激酶基因pykA得到的。The third object of the present invention is to provide a kind of recombinant Escherichia coli, which is characterized in that, with Escherichia coli FMME-SuA as the starting strain, using the Red homologous recombination method, pykA (N22A shown in SEQ ID NO. /N23A) gene DNA fragment was introduced into Escherichia coli FMME-SuA and obtained by replacing the pyruvate kinase gene pykA in Escherichia coli FMME-SuA.

本发明的第四个目的是提供上述重组大肠杆菌在生产琥珀酸中的应用。The fourth object of the present invention is to provide the application of the above-mentioned recombinant Escherichia coli in the production of succinic acid.

本发明的第五个目的是提供上述大肠杆菌FMME-SuA在生产琥珀酸中的应用。The fifth object of the present invention is to provide the application of the above-mentioned Escherichia coli FMME-SuA in the production of succinic acid.

本发明的有益之处:Advantages of the present invention:

1.通过从骆驼瘤胃中自主筛选琥珀酸高产菌株,进一步利用蛋白质工程手段降低丙酮酸激酶PykA的酶活,可以显著提高琥珀酸产酸效率,使琥珀酸的生产强度达到1.45g/(L·h),还可以降低杂酸率,有利于产品的下游纯化。1. By self-selecting high-yielding strains of succinate from camel rumen, and further using protein engineering methods to reduce the enzymatic activity of pyruvate kinase PykA, the acid production efficiency of succinate can be significantly improved, and the production intensity of succinate can reach 1.45g/(L· h), it can also reduce the rate of impurity acid, which is beneficial to the downstream purification of the product.

2.自主筛选的大肠杆菌可以耐受高浓度葡萄糖,发酵过程中不需要补加葡萄糖,该菌株突变株可以利用廉价易得的玉米浆和葡萄糖厌氧发酵,实现琥珀酸的高效生产。2. The self-selected Escherichia coli can tolerate high concentrations of glucose, and do not need to add glucose during the fermentation process. The mutant strain of this strain can utilize cheap and readily available corn steep liquor and glucose for anaerobic fermentation to achieve efficient production of succinic acid.

生物材料保藏biological material preservation

大肠杆菌FMME-SuA于2018年8月27日保藏于中国典型培养物保藏中心,保藏地址为中国湖北武汉武汉大学,保藏编号为CCTCC NO:M 2018568。Escherichia coli FMME-SuA was deposited in the China Center for Type Culture Collection on August 27, 2018, and the deposit address is Wuhan University, Wuhan, Hubei, China, and the deposit number is CCTCC NO:M 2018568.

附图说明Description of drawings

图1利用Red同源重组将PykA基因替换为pykA(N22A/N23A)基因的流程图。Figure 1 is a flow chart of replacing the PykA gene with the pykA (N22A/N23A) gene using Red homologous recombination.

具体实施方式Detailed ways

下述实施例中,没有多作说明的都是采用常规的实验方法,实施材料均从商业途径可得。In the following examples, conventional experimental methods are adopted without further explanation, and implementation materials are all available from commercial sources.

下述实施例中,以大肠杆菌FMME-SuA为出发菌株,也可利用大肠杆菌衍生菌株或其他修饰后可以生产琥珀酸的大肠杆菌作为出发菌株。In the following examples, Escherichia coli FMME-SuA is used as the starting strain, and Escherichia coli derived strains or other modified Escherichia coli that can produce succinic acid can also be used as starting strains.

(一)丙酮酸激酶酶活检测(1) Pyruvate kinase enzyme activity detection

使用安捷伦丙酮酸激酶试剂盒进行检测。Detection was performed using the Agilent Pyruvate Kinase Kit.

(二)琥珀酸、乙酸与乙醇含量的测定(2) Determination of succinic acid, acetic acid and ethanol content

琥珀酸和乙酸:高效液相色谱法,色谱柱:Aminex HPX-87H;流动相:5mmol/LH2SO4;流速:0.6mL/min;温度:35℃;进样量:10μL;检测器:紫外检测器。Succinic acid and acetic acid: high performance liquid chromatography, chromatographic column: Aminex HPX-87H; mobile phase: 5mmol/LH 2 SO 4 ; flow rate: 0.6 mL/min; temperature: 35°C; injection volume: 10 μL; detector: UV detector.

乙醇:高效液相色谱法,色谱柱:Aminex HPX-87H;流动相:5mmol/L H2SO4;流速:0.6mL/min;温度:35℃;进样量:10μL;检测器:示差折光检测器。Ethanol: high performance liquid chromatography, chromatographic column: Aminex HPX-87H; mobile phase: 5mmol/LH 2 SO 4 ; flow rate: 0.6mL/min; temperature: 35°C; injection volume: 10μL; detector: differential refractive index detection device.

(三)葡萄糖测定方法(3) Glucose determination method

使用SBA-40生物传感传感分析仪进行分析。Analysis was performed using an SBA-40 Biosensing Sensing Analyzer.

(四)培养基(4) Culture medium

富集培养基:酵母粉20g/L,葡萄糖25g/L,富马酸钠8g/L,CaCO3 2.0g,pH 4.5-5.5。Enrichment medium: yeast powder 20g/L, glucose 25g/L, sodium fumarate 8g/L, CaCO 3 2.0g, pH 4.5-5.5.

平板分离培养基:牛肉膏3g/L,蛋白胨5g/L,NaCl 5g/L,琼脂20g/L,溴甲酚绿2g/L,pH 7.0。Plate separation medium: beef extract 3g/L, peptone 5g/L, NaCl 5g/L, agar 20g/L, bromocresol green 2g/L, pH 7.0.

种子培养基:牛肉膏3g/L,蛋白胨5g/L,NaCl 5g/L。Seed medium: beef extract 3g/L, peptone 5g/L, NaCl 5g/L.

摇瓶发酵培养基:玉米浆20g/L,葡萄糖70g/L,Na2HPO4 2.5g/L,MgCl2 0.5g/L,CaCO33.0g,pH 4.5-5.5。Shake flask fermentation medium: corn steep liquor 20 g/L, glucose 70 g/L, Na 2 HPO 4 2.5 g/L, MgCl 2 0.5 g/L, CaCO 3 3.0 g, pH 4.5-5.5.

(五)生产强度的计算公式(5) Calculation formula of production intensity

生产强度(g/L/h)=琥珀酸产量(g/L)/发酵时间(h)。Production intensity (g/L/h) = succinic acid production (g/L)/fermentation time (h).

(六)葡萄糖得率的计算公式(6) Calculation formula of glucose yield

葡萄糖得率(%)=琥珀酸产量(g/L)/葡萄糖的添加量(g/L)×100Glucose yield (%) = succinic acid yield (g/L) / glucose added (g/L) × 100

实施例1:琥珀酸生产菌株的筛选Example 1: Screening of succinic acid producing strains

1.菌株的富集培养1. Enrichment culture of strains

取新鲜的骆驼瘤胃内含物10g,加入到有玻璃珠的无菌生理盐水中震荡10min,然后转至总体积为200mL的富集培养基中,32-37℃厌氧培养24h后按照30%接种量转接一次。Take 10 g of fresh camel rumen contents, add it to sterile physiological saline with glass beads and shake for 10 minutes, then transfer it to enriched medium with a total volume of 200 mL, and culture at 32-37 °C for 24 hours at a rate of 30% The inoculum is transferred once.

2.菌株的初筛2. Primary screening of strains

将富集培养后的菌液梯度稀释,涂布于含溴甲酚绿琼脂培养基,32-37℃厌氧培养,24-36h后部分菌落周围的平板颜色变为黄色,挑取黄色变色圈大的菌株进行菌种保藏和进一步厌氧发酵;Gradient dilution of the enriched bacterial liquid, spread on agar medium containing bromocresol green, anaerobic cultivation at 32-37 ℃, after 24-36h, the color of the plate around some colonies turns yellow, pick out the yellow discoloration circle Large strains are used for strain preservation and further anaerobic fermentation;

3.菌株的复筛3. Rescreening of strains

对初筛变色圈较大的菌株756株接种于24深孔板的种子培养基中37℃震荡培养24h,按照10%接种量转接于24深孔板中的发酵培养基中,32-37℃厌氧发酵48-64h,使用薄层层析法(TCL)定量检测琥珀酸,共计134株菌可以生产琥珀酸,进一步使用高效液相色谱(HPLC)检测生产琥珀酸的含量,得到一株高产琥珀酸的菌株F-121,琥珀酸产量达到31.9g/L。The 756 strains with larger discoloration circles in the primary screening were inoculated into the seed medium of the 24 deep-well plate for 24 hours with shaking at 37°C, and transferred to the fermentation medium in the 24-deep-well plate according to 10% of the inoculum, 32-37 Anaerobic fermentation at ℃ for 48-64h, using thin layer chromatography (TCL) to quantitatively detect succinic acid, a total of 134 strains can produce succinic acid, and further use high performance liquid chromatography (HPLC) to detect the content of succinic acid produced, and get one strain The strain F-121 with high succinic acid production reached 31.9 g/L of succinic acid.

实施例2:琥珀酸生产菌株的鉴定Example 2: Identification of succinic acid producing strains

(1)菌落特征及菌体形态(1) Colony characteristics and cell morphology

菌株F-121梯度稀释涂布于LB营养琼脂培养基,培养过夜后形成圆形微凸起、表面光滑湿润、边缘整齐的白色单菌落。镜检显示菌体为短小杆状,无芽孢,革兰氏染色为阴性。Strain F-121 was diluted and spread on LB nutrient agar medium, and after overnight culture, white single colonies with circular micro-convex, smooth and moist surface and neat edges were formed. Microscopic examination showed that the cells were short rods without spores, and Gram staining was negative.

(2)生理生化特征(2) Physiological and biochemical characteristics

对筛选菌株进行常规生理生化特征鉴定,结果显示:该菌株发酵葡萄糖产酸产气,发酵乳糖、麦芽糖、木糖、甘露醇、阿拉伯糖,不发酵肌醇、纤维素;动力实验、M-P实验、吲哚实验、触酶实验呈阳性;柠檬酸实验、V-P实验和脲酶实验呈阴性,与大肠埃希氏菌的生化性质相吻合The screening strains were identified by routine physiological and biochemical characteristics, and the results showed that: the strains fermented glucose to produce acid and gas, fermented lactose, maltose, xylose, mannitol, arabinose, but did not ferment inositol and cellulose; kinetic experiments, M-P experiments, Indole test, catalase test were positive; citric acid test, V-P test and urease test were negative, consistent with the biochemical properties of Escherichia coli

(3)16S rDNA序列分析(3) 16S rDNA sequence analysis

使用DNA提取按细菌DNA提取试剂盒的说明提取基因组DNA,以基因组DNA为模板,用细菌16S rDNA通用引物进行PCR扩增,扩增产物送至公司进行测序,测序结果在NCBI中进行Blast比对,结果显示该菌株为大肠杆菌。Use DNA extraction to extract genomic DNA according to the instructions of the bacterial DNA extraction kit. Using genomic DNA as a template, PCR amplification is performed with bacterial 16S rDNA universal primers. The amplified products are sent to the company for sequencing, and the sequencing results are Blast compared in NCBI , the results showed that the strain was Escherichia coli.

正向引物P16s8:序列如SEQ ID NO.1所示;反向引物P16s-1492:序列如SEQ IDNO.2所示。The forward primer P16s8: the sequence is shown in SEQ ID NO.1; the reverse primer P16s-1492: the sequence is shown in SEQ ID NO.2.

综合菌落形态特征、生理生化检测以及16S rRNA分析,确认该菌株为大肠杆菌,命名为FMME-SuA。该菌株已经提交并保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 2018568,保藏日期为2018年8月27日,保藏地址为中国湖北武汉,武汉大学。进一步检测琥珀酸生产过程中关键路径的酶活,其中乳酸脱氢酶(LDH)、乙酸激酶(ACK)和丙酮酸甲酸裂解酶(PFL)酶活检测均为阴性。Comprehensive colony morphological characteristics, physiological and biochemical detection and 16S rRNA analysis confirmed that the strain was Escherichia coli and named FMME-SuA. The strain has been submitted and deposited in the China Center for Type Culture Collection, the preservation number is CCTCC NO:M 2018568, the preservation date is August 27, 2018, and the preservation address is Wuhan University, Hubei, China. The enzyme activities of key pathways in the production of succinate were further detected, and the enzyme activities of lactate dehydrogenase (LDH), acetate kinase (ACK) and pyruvate formate lyase (PFL) were all negative.

实施例3:丙酮酸激酶的蛋白质工程改造Example 3: Protein Engineering of Pyruvate Kinase

(1)使用引物探针pykA-S(序列如SEQ ID NO.3所示)和pykA-A(序列如SEQ IDNO.4所示)从筛选到的大肠杆菌FMME-SuA克隆得到pykA基因,测序后得到基因序列为SEQID NO.5,氨基酸序列为SEQ ID NO.6,与大肠杆菌K12来源的丙酮酸激酶基因序列一致。(1) Use primer probes pykA-S (sequence shown in SEQ ID NO. 3) and pykA-A (sequence shown in SEQ ID NO. 4) to clone the pykA gene from the screened Escherichia coli FMME-SuA, and sequence The obtained gene sequence is SEQ ID NO.5, and the amino acid sequence is SEQ ID NO.6, which are consistent with the pyruvate kinase gene sequence derived from Escherichia coli K12.

(2)使用引物pykA-S1(序列如SEQ ID NO.7所示)和pykA-A1(序列如SEQ ID NO.8所示)和易错PCR试剂盒克隆得到pykA基因片段,利用琼脂糖凝胶电泳,割胶回收目的片段。使用NdeI和HindIII双酶切目的条带和pET28a质粒,使用T4连接酶连接过夜,转化大肠杆菌BL21感受态细胞,涂布含有100mg/L卡那霉素的固体LB平板,筛选阳性转化子,构建完成丙酮酸激酶突变体库。(2) Use primers pykA-S1 (sequence shown in SEQ ID NO. 7) and pykA-A1 (sequence shown in SEQ ID NO. 8) and error-prone PCR kit to clone the pykA gene fragment, use agarose gel Gel electrophoresis, and gel tapping to recover the target fragment. The target band and pET28a plasmid were double digested with NdeI and HindIII, ligated overnight with T4 ligase, transformed into E. coli BL21 competent cells, coated on solid LB plates containing 100 mg/L kanamycin, screened for positive transformants, and constructed Complete the pyruvate kinase mutant library.

(3)使用pykA-S和pykA-A引物PCR验证阳性转化子,PCR验证结果为阳性的菌落接种在LB培养基中进行发酵培养,在37℃,200rpm条件下震荡培养至OD600到0.8-1.0,加入0.4mmol/L IPTG,温度降至25℃继续培养8-10h,诱导丙酮酸激酶表达,使用丙酮酸激酶检测试剂盒检测不同突变体的酶活,筛选得到pykA(N22A/N23A)突变体酶活显著降低。测序后得到基因序列为SEQ ID NO.9,氨基酸序列为SEQ ID NO.10,与原始氨基酸序列相比,其22和23位的天冬酰胺均突变为丙氨酸,如表1中显示,突变后的酶活下降了2.1倍。(3) Use pykA-S and pykA-A primers to verify the positive transformants by PCR, inoculate the positive colonies in the LB medium for fermentation culture, and shake them to OD600 to 0.8-1.0 at 37°C and 200rpm. , adding 0.4 mmol/L IPTG, and the temperature was lowered to 25 °C for 8-10 h to induce the expression of pyruvate kinase. The enzyme activity of different mutants was detected by pyruvate kinase detection kit, and the pykA(N22A/N23A) mutant was obtained by screening. Enzyme activity was significantly reduced. The gene sequence obtained after sequencing is SEQ ID NO.9, and the amino acid sequence is SEQ ID NO.10. Compared with the original amino acid sequence, the asparagine at positions 22 and 23 are all mutated to alanine, as shown in Table 1, The enzyme activity after mutation decreased by 2.1 times.

表1突变体酶活测定Table 1 Mutant enzyme activity assay

Figure BDA0001819042330000051
Figure BDA0001819042330000051

实施例4:重组菌株FMME-SuAP的构建Example 4: Construction of recombinant strain FMME-SuAP

以筛选到的大肠杆菌FMME-SuA为出发菌株,用Red同源重组方法将原始菌株中pykA基因替换为pykA(N22A/N23A)基因,具体流程如图1,采用Red同源重组技术将带有同源臂、kan基因和pykA(N22A/N23A)基因的DNA片段1导入带有pKD46质粒的大肠杆菌FMME-SuA中,进行同源重组替换大肠杆菌FMME-SuA中的丙氨酸激酶pykA基因,使用pCP20质粒消除kan抗性得到突变菌FMME-SuAP。Taking the screened Escherichia coli FMME-SuA as the starting strain, the pykA gene in the original strain was replaced by the pykA (N22A/N23A) gene with the Red homologous recombination method. DNA fragment 1 of homology arm, kan gene and pykA (N22A/N23A) gene was introduced into Escherichia coli FMME-SuA with pKD46 plasmid, and homologous recombination was performed to replace the alanine kinase pykA gene in Escherichia coli FMME-SuA, The mutant strain FMME-SuAP was obtained by eliminating kan resistance using pCP20 plasmid.

实施例5:在摇瓶水平原始菌株FMME-SuA和重组菌株FMME-SuAP发酵生产琥珀酸Example 5: Fermentation of original strain FMME-SuA and recombinant strain FMME-SuAP for succinic acid production at shake flask level

在摇瓶水平使用原始菌株FMME-SuA和突变株FMME-SuAP发酵生产琥珀酸,种子液在37℃,200rpm震荡培养12-14h,按照10%接种量接种至发酵培养基,厌氧培养50h后结束发酵,取样品检测发酵液中葡萄糖残留和琥珀酸的产量。结果如表2所示,发酵50h,FMME-SuA和FMME-SuAP的琥珀酸产量分别为33.0g/L和41.7g/L,突变株产量提高了26.4%。The original strain FMME-SuA and the mutant strain FMME-SuAP were used to ferment succinic acid at the shake flask level. The seed solution was shaken at 37°C and cultured at 200 rpm for 12-14 hours, and then inoculated into the fermentation medium according to 10% of the inoculum. After anaerobic culture for 50 hours After the fermentation, samples were taken to detect the residual glucose and the production of succinic acid in the fermentation broth. The results are shown in Table 2. After 50 h of fermentation, the succinic acid yields of FMME-SuA and FMME-SuAP were 33.0 g/L and 41.7 g/L, respectively, and the yield of mutant strains increased by 26.4%.

表2厌氧条件下原菌与重组菌发酵生产琥珀酸Table 2 Fermentation of original bacteria and recombinant bacteria to produce succinic acid under anaerobic conditions

Figure BDA0001819042330000061
Figure BDA0001819042330000061

实施例5:厌氧条件下原始菌株FMME-SuA和重组菌株FMME-SuAP发酵生产琥珀酸1Example 5: Fermentation of original strain FMME-SuA and recombinant strain FMME-SuAP to produce succinic acid 1 under anaerobic conditions

(1)7.5L发酵培养基配方:葡萄糖100g/L,玉米浆4g/L,Na2HPO4·12H2O 1-2g/L,NaH2PO4·2H2O 2-3g/L,MgSO4·7H2O 0.2-0.3g/L,CaCl2 0.1g/L。(1) 7.5L fermentation medium formula: glucose 100g/L, corn steep liquor 4g/L, Na 2 HPO 4 12H 2 O 1-2g/L, NaH 2 PO 4 2H 2 O 2-3g/L, MgSO 4.7H 2 O 0.2-0.3g/L, CaCl 2 0.1g/L.

(2)从斜面分别挑取原始菌株FMME-SuA和重组菌株FMME-SuAP接种于种子培养基中,37℃,200rpm振荡培养12h,摇瓶种子液分别按照10%接种量接种于7.5L搅拌发酵罐中厌氧发酵,发酵培养基装液量为5.0L,温度37℃,搅拌100rpm,通入气体为过滤除菌的CO2,通气量为1-1.5vvm,控制出气口压力为0.05Mpa,4mol/L NaOH控制pH为5.0-5.5。(2) The original strain FMME-SuA and the recombinant strain FMME-SuAP were respectively picked from the slant and inoculated into the seed medium, 37°C, 200 rpm shaking culture for 12 hours, and the shake flask seed liquid was inoculated into 7.5 L of stirring fermentation according to 10% of the inoculum respectively. Anaerobic fermentation is carried out in the tank, the liquid volume of the fermentation medium is 5.0L, the temperature is 37°C, the stirring is 100rpm, the gas is filtered and sterilized CO 2 , the ventilation volume is 1-1.5vvm, and the pressure of the control gas outlet is 0.05Mpa, 4mol/L NaOH controls the pH to be 5.0-5.5.

(3)65h时发酵停止,检测重组菌株FMME-SuAP发酵液中葡萄糖和琥珀酸的浓度,葡萄糖残留3.10g/L,琥珀酸产量为70.2g/L,葡萄糖得率为72.4%,琥珀酸生产强度为1.40g/L/h。经检测,发酵液中不含乙酸、乙醇等副产物。原始菌株FMME-SuA葡萄糖残留5.32g/L,琥珀酸产量为57.2g/L,葡萄糖得率为72.4%,琥珀酸生产强度为1.40g/L/h。结果如表3所示。(3) The fermentation was stopped at 65h, and the concentration of glucose and succinic acid in the fermentation broth of the recombinant strain FMME-SuAP was detected. The residual glucose was 3.10 g/L, the output of succinic acid was 70.2 g/L, and the yield of glucose was 72.4%. The production of succinic acid The strength was 1.40 g/L/h. After testing, the fermentation broth does not contain by-products such as acetic acid and ethanol. The original strain FMME-SuA had a glucose residue of 5.32 g/L, a succinic acid yield of 57.2 g/L, a glucose yield of 72.4%, and a succinic acid production intensity of 1.40 g/L/h. The results are shown in Table 3.

实施例6:厌氧条件下原始菌株FMME-SuA和重组菌株FMME-SuAP发酵生产琥珀酸2Example 6: Fermentation of original strain FMME-SuA and recombinant strain FMME-SuAP to produce succinic acid 2 under anaerobic conditions

(1)7.5L发酵培养基配方:葡萄糖110g/L,玉米浆8g/L,Na2HPO4·12H2O 1-2g/L,NaH2PO4·2H2O 2-3g/L,MgSO4·7H2O 0.2-0.3g/L,CaCl2 0.1g/L。(1) 7.5L fermentation medium formula: glucose 110g/L, corn steep liquor 8g/L, Na 2 HPO 4 12H 2 O 1-2g/L, NaH 2 PO 4 2H 2 O 2-3g/L, MgSO 4.7H 2 O 0.2-0.3g/L, CaCl 2 0.1g/L.

(2)从斜面分别挑取原始菌株FMME-SuA和重组菌株FMME-SuAP接种于种子培养基中,37℃,200rpm振荡培养12h,摇瓶种子液分别按照20%接种量接种于7.5L搅拌发酵罐中,发酵培养基装液量为5.5L,温度37℃,搅拌200rpm,通入气体为过滤除菌的CO2,通气量为1-1.5vvm,控制出气口压力为0.05MPa,4mol/L NaOH控制pH为5.0-5.5。(2) The original strain FMME-SuA and the recombinant strain FMME-SuAP were respectively picked from the slant and inoculated into the seed medium, 37°C, 200 rpm shaking culture for 12 h, and the shake flask seed liquid was inoculated into 7.5 L of stirring fermentation according to 20% of the inoculum respectively. In the tank, the filling volume of the fermentation medium is 5.5L, the temperature is 37°C, the stirring is 200rpm, the gas is filtered and sterilized CO 2 , the ventilation volume is 1-1.5vvm, and the pressure of the control air outlet is 0.05MPa, 4mol/L NaOH controls the pH to 5.0-5.5.

(3)55h时发酵停止,分别检测发酵液中葡萄糖和琥珀酸的浓度,重组菌发酵液中葡萄糖残留6.11g/L,琥珀酸产量为77.8g/L,葡萄糖得率为74.9%,琥珀酸生产强度为1.41g/L/h。经检测,发酵液中不含乙酸、乙醇等副产物。原始菌株FMME-SuA葡萄糖残留11.2g/L,琥珀酸产量为60.1g/L,葡萄糖得率为60.8%,琥珀酸生产强度为1.09g/L/h。,结果如表3所示。(3) Fermentation was stopped at 55h, and the concentrations of glucose and succinic acid in the fermentation broth were detected respectively. The residual glucose in the recombinant bacterial fermentation broth was 6.11 g/L, the output of succinic acid was 77.8 g/L, the yield of glucose was 74.9%, and the yield of succinic acid was 74.9%. The production intensity was 1.41 g/L/h. After testing, the fermentation broth does not contain by-products such as acetic acid and ethanol. The original strain FMME-SuA had a glucose residue of 11.2 g/L, a succinic acid yield of 60.1 g/L, a glucose yield of 60.8%, and a succinic acid production intensity of 1.09 g/L/h. , the results are shown in Table 3.

实施例7:重组菌株FMME-SuAP对高葡萄糖浓度的耐受性Example 7: Tolerance of recombinant strain FMME-SuAP to high glucose concentrations

(1)7.5L发酵培养基配方:葡萄糖120g/L,玉米浆8g/L,Na2HPO4·12H2O 1-2g/L,NaH2PO4·2H2O 2-3g/L,MgSO4·7H2O 0.2-0.3g/L,CaCl2 0.1g/L。(1) 7.5L fermentation medium formula: glucose 120g/L, corn steep liquor 8g/L, Na 2 HPO 4 12H 2 O 1-2g/L, NaH 2 PO 4 2H 2 O 2-3g/L, MgSO 4.7H 2 O 0.2-0.3g/L, CaCl 2 0.1g/L.

(2)分别从斜面挑取原始菌株FMME-SuA和FMME-SuAP接种于种子培养基中,37℃,200rpm振荡培养12h,摇瓶种子液分别按照20%接种量接种于7.5L搅拌发酵罐中,发酵培养基装液量为5.5L,温度37℃,搅拌200rpm,通入气体为过滤除菌的CO2,通气量为1-1.5vvm,控制出气口压力为0.05Mpa,4mol/L NaOH控制pH为5.0-5.5。(2) The original strains FMME-SuA and FMME-SuAP were respectively picked from the slant and inoculated into the seed medium, 37 ° C, 200 rpm shaking culture for 12 h, and the shake flask seed liquid was respectively inoculated into a 7.5 L stirring fermenter according to 20% of the inoculum amount. , the filling volume of the fermentation medium is 5.5L, the temperature is 37°C, the stirring is 200rpm, the gas is filtered and sterilized CO 2 , the ventilation volume is 1-1.5vvm, the control air outlet pressure is 0.05Mpa, 4mol/L NaOH control The pH is 5.0-5.5.

(3)55h时发酵停止,分别检测发酵液中葡萄糖和琥珀酸的浓度以及乙酸、乙醇含量。(3) The fermentation was stopped at 55 h, and the concentrations of glucose and succinic acid, and the contents of acetic acid and ethanol in the fermentation broth were detected respectively.

结果表明,在发酵培养基中葡萄糖浓度很高的情况下,重组菌株发酵后葡萄糖残留5.98g/L,琥珀酸产量为80.0g/L,而原始菌株发酵后葡萄糖残留13.8g/L,琥珀酸产量为60.5g/L。证明重组菌株FMME-SuAP在葡萄糖浓度为100-120g/L时均能保持琥珀酸的高效生产,生产强度达到1.40-1.45g/L/h,显著高于目前大肠杆菌产琥珀酸的最高生产强度(1.30g/L/h),该菌株对高葡萄糖浓度具有较强的耐受性,发酵过程中不需要补加葡萄糖,几乎没有副产物,简化了生产工艺。The results showed that in the case of high glucose concentration in the fermentation medium, the recombinant strain had a residual glucose of 5.98 g/L and a succinic acid yield of 80.0 g/L, while the original strain had a residual glucose of 13.8 g/L and a succinic acid yield of 80.0 g/L. The yield was 60.5 g/L. It is proved that the recombinant strain FMME-SuAP can maintain the efficient production of succinic acid when the glucose concentration is 100-120 g/L, and the production intensity reaches 1.40-1.45 g/L/h, which is significantly higher than the current maximum production intensity of succinic acid produced by Escherichia coli (1.30g/L/h), the strain has a strong tolerance to high glucose concentration, does not need to add glucose during the fermentation process, has almost no by-products, and simplifies the production process.

表3厌氧条件下原菌与重组菌发酵生产琥珀酸Table 3 Fermentation of original bacteria and recombinant bacteria to produce succinic acid under anaerobic conditions

Figure BDA0001819042330000071
Figure BDA0001819042330000071

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 江南大学<110> Jiangnan University

<120> 一种高产琥珀酸的大肠杆菌及其应用<120> A kind of Escherichia coli with high production of succinic acid and its application

<160> 10<160> 10

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工合成<213> Synthetic

<400> 1<400> 1

agagtttgat cctggctcag 20agagtttgat cctggctcag 20

<210> 2<210> 2

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工合成<213> Synthetic

<400> 2<400> 2

ggctaccttg ttacgactt 19ggctaccttg ttacgactt 19

<210> 3<210> 3

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工合成<213> Synthetic

<400> 3<400> 3

atgtccagaa ggcttcgcag aac 23atgtccagaa ggcttcgcag aac 23

<210> 4<210> 4

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工合成<213> Synthetic

<400> 4<400> 4

ttactctacc gttaaaatac gc 22ttactctacc gttaaaatac gc 22

<210> 5<210> 5

<211> 1443<211> 1443

<212> DNA<212> DNA

<213> Escherichia coli<213> Escherichia coli

<400> 5<400> 5

atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60

gataataatc ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120gataataatc ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120

cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180

ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240

tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300

ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360

gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420

gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480

ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540

gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600

ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660

gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720

ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780

gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840

atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900

gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960

actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020

gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080

gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140

gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200

ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260

cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320

gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380

cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440

taa 1443taa 1443

<210> 6<210> 6

<211> 480<211> 480

<212> PRT<212> PRT

<213> Escherichia coli<213> Escherichia coli

<400> 6<400> 6

Met Ser Arg Arg Leu Arg Arg Thr Lys Ile Val Thr Thr Leu Gly ProMet Ser Arg Arg Leu Arg Arg Thr Lys Ile Val Thr Thr Leu Gly Pro

1 5 10 151 5 10 15

Ala Thr Asp Arg Asp Asn Asn Leu Glu Lys Val Ile Ala Ala Gly AlaAla Thr Asp Arg Asp Asn Asn Leu Glu Lys Val Ile Ala Ala Gly Ala

20 25 30 20 25 30

Asn Val Val Arg Met Asn Phe Ser His Gly Ser Pro Glu Asp His LysAsn Val Val Arg Met Asn Phe Ser His Gly Ser Pro Glu Asp His Lys

35 40 45 35 40 45

Met Arg Ala Asp Lys Val Arg Glu Ile Ala Ala Lys Leu Gly Arg HisMet Arg Ala Asp Lys Val Arg Glu Ile Ala Ala Lys Leu Gly Arg His

50 55 60 50 55 60

Val Ala Ile Leu Gly Asp Leu Gln Gly Pro Lys Ile Arg Val Ser ThrVal Ala Ile Leu Gly Asp Leu Gln Gly Pro Lys Ile Arg Val Ser Thr

65 70 75 8065 70 75 80

Phe Lys Glu Gly Lys Val Phe Leu Asn Ile Gly Asp Lys Phe Leu LeuPhe Lys Glu Gly Lys Val Phe Leu Asn Ile Gly Asp Lys Phe Leu Leu

85 90 95 85 90 95

Asp Ala Asn Leu Gly Lys Gly Glu Gly Asp Lys Glu Lys Val Gly IleAsp Ala Asn Leu Gly Lys Gly Glu Gly Asp Lys Glu Lys Val Gly Ile

100 105 110 100 105 110

Asp Tyr Lys Gly Leu Pro Ala Asp Val Val Pro Gly Asp Ile Leu LeuAsp Tyr Lys Gly Leu Pro Ala Asp Val Val Pro Gly Asp Ile Leu Leu

115 120 125 115 120 125

Leu Asp Asp Gly Arg Val Gln Leu Lys Val Leu Glu Val Gln Gly MetLeu Asp Asp Gly Arg Val Gln Leu Lys Val Leu Glu Val Gln Gly Met

130 135 140 130 135 140

Lys Val Phe Thr Glu Val Thr Val Gly Gly Pro Leu Ser Asn Asn LysLys Val Phe Thr Glu Val Thr Val Gly Gly Pro Leu Ser Asn Asn Lys

145 150 155 160145 150 155 160

Gly Ile Asn Lys Leu Gly Gly Gly Leu Ser Ala Glu Ala Leu Thr GluGly Ile Asn Lys Leu Gly Gly Gly Leu Ser Ala Glu Ala Leu Thr Glu

165 170 175 165 170 175

Lys Asp Lys Ala Asp Ile Lys Thr Ala Ala Leu Ile Gly Val Asp TyrLys Asp Lys Ala Asp Ile Lys Thr Ala Ala Leu Ile Gly Val Asp Tyr

180 185 190 180 185 190

Leu Ala Val Ser Phe Pro Arg Cys Gly Glu Asp Leu Asn Tyr Ala ArgLeu Ala Val Ser Phe Pro Arg Cys Gly Glu Asp Leu Asn Tyr Ala Arg

195 200 205 195 200 205

Arg Leu Ala Arg Asp Ala Gly Cys Asp Ala Lys Ile Val Ala Lys ValArg Leu Ala Arg Asp Ala Gly Cys Asp Ala Lys Ile Val Ala Lys Val

210 215 220 210 215 220

Glu Arg Ala Glu Ala Val Cys Ser Gln Asp Ala Met Asp Asp Ile IleGlu Arg Ala Glu Ala Val Cys Ser Gln Asp Ala Met Asp Asp Ile Ile

225 230 235 240225 230 235 240

Leu Ala Ser Asp Val Val Met Val Ala Arg Gly Asp Leu Gly Val GluLeu Ala Ser Asp Val Val Met Val Ala Arg Gly Asp Leu Gly Val Glu

245 250 255 245 250 255

Ile Gly Asp Pro Glu Leu Val Gly Ile Gln Lys Ala Leu Ile Arg ArgIle Gly Asp Pro Glu Leu Val Gly Ile Gln Lys Ala Leu Ile Arg Arg

260 265 270 260 265 270

Ala Arg Gln Leu Asn Arg Ala Val Ile Thr Ala Thr Gln Met Met GluAla Arg Gln Leu Asn Arg Ala Val Ile Thr Ala Thr Gln Met Met Glu

275 280 285 275 280 285

Ser Met Ile Thr Asn Pro Met Pro Thr Arg Ala Glu Val Met Asp ValSer Met Ile Thr Asn Pro Met Pro Thr Arg Ala Glu Val Met Asp Val

290 295 300 290 295 300

Ala Asn Ala Val Leu Asp Gly Thr Asp Ala Val Met Leu Ser Ala GluAla Asn Ala Val Leu Asp Gly Thr Asp Ala Val Met Leu Ser Ala Glu

305 310 315 320305 310 315 320

Thr Ala Ala Gly Gln Tyr Pro Ser Glu Thr Val Ala Ala Met Ala ArgThr Ala Ala Gly Gln Tyr Pro Ser Glu Thr Val Ala Ala Met Ala Arg

325 330 335 325 330 335

Val Cys Leu Gly Ala Glu Lys Ile Pro Ser Ile Asn Val Ser Lys HisVal Cys Leu Gly Ala Glu Lys Ile Pro Ser Ile Asn Val Ser Lys His

340 345 350 340 345 350

Arg Leu Asp Val Gln Phe Asp Asn Val Glu Glu Ala Ile Ala Met SerArg Leu Asp Val Gln Phe Asp Asn Val Glu Glu Ala Ile Ala Met Ser

355 360 365 355 360 365

Ala Met Tyr Ala Ala Asn His Leu Lys Gly Val Thr Ala Ile Ile ThrAla Met Tyr Ala Ala Asn His Leu Lys Gly Val Thr Ala Ile Ile Thr

370 375 380 370 375 380

Met Thr Glu Ser Gly Arg Thr Ala Leu Met Thr Ser Arg Ile Ser SerMet Thr Glu Ser Gly Arg Thr Ala Leu Met Thr Ser Arg Ile Ser Ser

385 390 395 400385 390 395 400

Gly Leu Pro Ile Phe Ala Met Ser Arg His Glu Arg Thr Leu Asn LeuGly Leu Pro Ile Phe Ala Met Ser Arg His Glu Arg Thr Leu Asn Leu

405 410 415 405 410 415

Thr Ala Leu Tyr Arg Gly Val Thr Pro Val His Phe Asp Ser Ala AsnThr Ala Leu Tyr Arg Gly Val Thr Pro Val His Phe Asp Ser Ala Asn

420 425 430 420 425 430

Asp Gly Val Ala Ala Ala Ser Glu Ala Val Asn Leu Leu Arg Asp LysAsp Gly Val Ala Ala Ala Ser Glu Ala Val Asn Leu Leu Arg Asp Lys

435 440 445 435 440 445

Gly Tyr Leu Met Ser Gly Asp Leu Val Ile Val Thr Gln Gly Asp ValGly Tyr Leu Met Ser Gly Asp Leu Val Ile Val Thr Gln Gly Asp Val

450 455 460 450 455 460

Met Ser Thr Val Gly Ser Thr Asn Thr Thr Arg Ile Leu Thr Val GluMet Ser Thr Val Gly Ser Thr Asn Thr Thr Arg Ile Leu Thr Val Glu

465 470 475 480465 470 475 480

<210> 7<210> 7

<211> 36<211> 36

<212> DNA<212> DNA

<213> 人工合成<213> Synthetic

<400> 7<400> 7

ggaattccat atgatgtcca gaaggcttcg cagaac 36ggaattccat atgatgtcca gaaggcttcg cagaac 36

<210> 8<210> 8

<211> 31<211> 31

<212> DNA<212> DNA

<213> 人工合成<213> Synthetic

<400> 8<400> 8

cccaagcttt tactctaccg ttaaaatacg c 31cccaagcttt tactctaccg ttaaaatacg c 31

<210> 9<210> 9

<211> 1443<211> 1443

<212> DNA<212> DNA

<213> 人工合成<213> Synthetic

<400> 9<400> 9

atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60

gatgcagcac ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120gatgcagcac ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120

cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180

ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240

tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300

ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360

gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420

gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480

ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540

gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600

ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660

gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720

ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780

gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840

atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900

gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960

actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020

gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080

gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140

gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200

ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260

cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320

gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380

cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440

taa 1443taa 1443

<210> 10<210> 10

<211> 480<211> 480

<212> PRT<212> PRT

<213> 人工合成<213> Synthetic

<400> 10<400> 10

Met Ser Arg Arg Leu Arg Arg Thr Lys Ile Val Thr Thr Leu Gly ProMet Ser Arg Arg Leu Arg Arg Thr Lys Ile Val Thr Thr Leu Gly Pro

1 5 10 151 5 10 15

Ala Thr Asp Arg Asp Ala Ala Leu Glu Lys Val Ile Ala Ala Gly AlaAla Thr Asp Arg Asp Ala Ala Leu Glu Lys Val Ile Ala Ala Gly Ala

20 25 30 20 25 30

Asn Val Val Arg Met Asn Phe Ser His Gly Ser Pro Glu Asp His LysAsn Val Val Arg Met Asn Phe Ser His Gly Ser Pro Glu Asp His Lys

35 40 45 35 40 45

Met Arg Ala Asp Lys Val Arg Glu Ile Ala Ala Lys Leu Gly Arg HisMet Arg Ala Asp Lys Val Arg Glu Ile Ala Ala Lys Leu Gly Arg His

50 55 60 50 55 60

Val Ala Ile Leu Gly Asp Leu Gln Gly Pro Lys Ile Arg Val Ser ThrVal Ala Ile Leu Gly Asp Leu Gln Gly Pro Lys Ile Arg Val Ser Thr

65 70 75 8065 70 75 80

Phe Lys Glu Gly Lys Val Phe Leu Asn Ile Gly Asp Lys Phe Leu LeuPhe Lys Glu Gly Lys Val Phe Leu Asn Ile Gly Asp Lys Phe Leu Leu

85 90 95 85 90 95

Asp Ala Asn Leu Gly Lys Gly Glu Gly Asp Lys Glu Lys Val Gly IleAsp Ala Asn Leu Gly Lys Gly Glu Gly Asp Lys Glu Lys Val Gly Ile

100 105 110 100 105 110

Asp Tyr Lys Gly Leu Pro Ala Asp Val Val Pro Gly Asp Ile Leu LeuAsp Tyr Lys Gly Leu Pro Ala Asp Val Val Pro Gly Asp Ile Leu Leu

115 120 125 115 120 125

Leu Asp Asp Gly Arg Val Gln Leu Lys Val Leu Glu Val Gln Gly MetLeu Asp Asp Gly Arg Val Gln Leu Lys Val Leu Glu Val Gln Gly Met

130 135 140 130 135 140

Lys Val Phe Thr Glu Val Thr Val Gly Gly Pro Leu Ser Asn Asn LysLys Val Phe Thr Glu Val Thr Val Gly Gly Pro Leu Ser Asn Asn Lys

145 150 155 160145 150 155 160

Gly Ile Asn Lys Leu Gly Gly Gly Leu Ser Ala Glu Ala Leu Thr GluGly Ile Asn Lys Leu Gly Gly Gly Leu Ser Ala Glu Ala Leu Thr Glu

165 170 175 165 170 175

Lys Asp Lys Ala Asp Ile Lys Thr Ala Ala Leu Ile Gly Val Asp TyrLys Asp Lys Ala Asp Ile Lys Thr Ala Ala Leu Ile Gly Val Asp Tyr

180 185 190 180 185 190

Leu Ala Val Ser Phe Pro Arg Cys Gly Glu Asp Leu Asn Tyr Ala ArgLeu Ala Val Ser Phe Pro Arg Cys Gly Glu Asp Leu Asn Tyr Ala Arg

195 200 205 195 200 205

Arg Leu Ala Arg Asp Ala Gly Cys Asp Ala Lys Ile Val Ala Lys ValArg Leu Ala Arg Asp Ala Gly Cys Asp Ala Lys Ile Val Ala Lys Val

210 215 220 210 215 220

Glu Arg Ala Glu Ala Val Cys Ser Gln Asp Ala Met Asp Asp Ile IleGlu Arg Ala Glu Ala Val Cys Ser Gln Asp Ala Met Asp Asp Ile Ile

225 230 235 240225 230 235 240

Leu Ala Ser Asp Val Val Met Val Ala Arg Gly Asp Leu Gly Val GluLeu Ala Ser Asp Val Val Met Val Ala Arg Gly Asp Leu Gly Val Glu

245 250 255 245 250 255

Ile Gly Asp Pro Glu Leu Val Gly Ile Gln Lys Ala Leu Ile Arg ArgIle Gly Asp Pro Glu Leu Val Gly Ile Gln Lys Ala Leu Ile Arg Arg

260 265 270 260 265 270

Ala Arg Gln Leu Asn Arg Ala Val Ile Thr Ala Thr Gln Met Met GluAla Arg Gln Leu Asn Arg Ala Val Ile Thr Ala Thr Gln Met Met Glu

275 280 285 275 280 285

Ser Met Ile Thr Asn Pro Met Pro Thr Arg Ala Glu Val Met Asp ValSer Met Ile Thr Asn Pro Met Pro Thr Arg Ala Glu Val Met Asp Val

290 295 300 290 295 300

Ala Asn Ala Val Leu Asp Gly Thr Asp Ala Val Met Leu Ser Ala GluAla Asn Ala Val Leu Asp Gly Thr Asp Ala Val Met Leu Ser Ala Glu

305 310 315 320305 310 315 320

Thr Ala Ala Gly Gln Tyr Pro Ser Glu Thr Val Ala Ala Met Ala ArgThr Ala Ala Gly Gln Tyr Pro Ser Glu Thr Val Ala Ala Met Ala Arg

325 330 335 325 330 335

Val Cys Leu Gly Ala Glu Lys Ile Pro Ser Ile Asn Val Ser Lys HisVal Cys Leu Gly Ala Glu Lys Ile Pro Ser Ile Asn Val Ser Lys His

340 345 350 340 345 350

Arg Leu Asp Val Gln Phe Asp Asn Val Glu Glu Ala Ile Ala Met SerArg Leu Asp Val Gln Phe Asp Asn Val Glu Glu Ala Ile Ala Met Ser

355 360 365 355 360 365

Ala Met Tyr Ala Ala Asn His Leu Lys Gly Val Thr Ala Ile Ile ThrAla Met Tyr Ala Ala Asn His Leu Lys Gly Val Thr Ala Ile Ile Thr

370 375 380 370 375 380

Met Thr Glu Ser Gly Arg Thr Ala Leu Met Thr Ser Arg Ile Ser SerMet Thr Glu Ser Gly Arg Thr Ala Leu Met Thr Ser Arg Ile Ser Ser

385 390 395 400385 390 395 400

Gly Leu Pro Ile Phe Ala Met Ser Arg His Glu Arg Thr Leu Asn LeuGly Leu Pro Ile Phe Ala Met Ser Arg His Glu Arg Thr Leu Asn Leu

405 410 415 405 410 415

Thr Ala Leu Tyr Arg Gly Val Thr Pro Val His Phe Asp Ser Ala AsnThr Ala Leu Tyr Arg Gly Val Thr Pro Val His Phe Asp Ser Ala Asn

420 425 430 420 425 430

Asp Gly Val Ala Ala Ala Ser Glu Ala Val Asn Leu Leu Arg Asp LysAsp Gly Val Ala Ala Ala Ser Glu Ala Val Asn Leu Leu Arg Asp Lys

435 440 445 435 440 445

Gly Tyr Leu Met Ser Gly Asp Leu Val Ile Val Thr Gln Gly Asp ValGly Tyr Leu Met Ser Gly Asp Leu Val Ile Val Thr Gln Gly Asp Val

450 455 460 450 455 460

Met Ser Thr Val Gly Ser Thr Asn Thr Thr Arg Ile Leu Thr Val GluMet Ser Thr Val Gly Ser Thr Asn Thr Thr Arg Ile Leu Thr Val Glu

465 470 475 480465 470 475 480

Claims (7)

1. The application of Escherichia coli in succinic acid production is characterized in that the succinic acid production capacity of Escherichia coli is improved by inhibiting the activity of pyruvate kinase in Escherichia coli, and the specific steps comprise:
(1) cloning the pyruvate kinase gene pykA in Escherichia coli;
(2) constructing a pyruvate kinase mutant with reduced enzyme activity by using the cloned pykA as a parent;
(3) replacing pyruvate kinase gene pykA of the escherichia coli with pyruvate kinase mutant gene to obtain recombinant escherichia coli;
(4) activating the recombinant bacteria in a seed culture medium;
(5) inoculating the activated recombinant bacteria into a fermentation culture medium for fermentation;
the Escherichia coli is Escherichia coli FMME-SuA, which has been preserved in China center for type culture Collection in 2018, 8 and 27 months, with the preservation number of CCTCC NO: M2018568, and the preservation address of Wuhan university, Hubei, China;
the pyruvate kinase mutant in the step (3) is pykA, and the nucleotide sequence for coding the pyruvate kinase mutant is shown as SEQ ID NO. 9;
the construction method of the recombinant escherichia coli in the step (3) comprises the step of replacing the pyruvate kinase gene pykA in the original strain with a pyruvate kinase mutant gene with reduced enzyme activity by using a Red homologous recombination technology.
2. The use of claim 1, wherein the activation in step (4) is performed by culturing the recombinant E.coli strain at 30-40 ℃ for 12-14h with shaking at 200 rpm.
3. The use as claimed in claim 1, wherein the fermentation in step (5) is carried out by inoculating the seed solution into the fermentation medium at an inoculum size of 10-25%, stirring at 150rpm at 30-40 ℃ and carrying out anaerobic fermentation for 50-65 h; the culture medium used comprises: glucose 90-120g/L, corn steep liquor 4-10g/L, Na2HPO4·12H2O 1-2g/L,NaH2PO4·2H2O 2-3g/L,MgSO4·7H2O 0.2-0.3g/L,CaCl20.1-0.2g/L。
4. Escherichia coli FMME-SuA capable of producing succinic acid is preserved in China Center for Type Culture Collection (CCTCC) No. M2018568 in 8 months and 27 days in 2018, and the preservation address is Wuhan university in Hubei of China.
5. A recombinant Escherichia coli, characterized in that, the Escherichia coli FMME-SuA of claim 4 is used as the starting strain, DNA fragment of pykA gene shown as SEQ ID NO.9 is introduced into Escherichia coli FMME-SuA by Red homologous recombination method, and pyruvate kinase gene pykA in Escherichia coli FMME-SuA is replaced to obtain the recombinant Escherichia coli.
6. Use of the Escherichia coli strain according to claim 4 for producing succinic acid.
7. Use of the recombinant E.coli of claim 5 for the production of succinic acid.
CN201811156449.1A 2018-09-30 2018-09-30 A kind of Escherichia coli with high production of succinic acid and its application Active CN109251941B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811156449.1A CN109251941B (en) 2018-09-30 2018-09-30 A kind of Escherichia coli with high production of succinic acid and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811156449.1A CN109251941B (en) 2018-09-30 2018-09-30 A kind of Escherichia coli with high production of succinic acid and its application

Publications (2)

Publication Number Publication Date
CN109251941A CN109251941A (en) 2019-01-22
CN109251941B true CN109251941B (en) 2020-11-06

Family

ID=65045375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811156449.1A Active CN109251941B (en) 2018-09-30 2018-09-30 A kind of Escherichia coli with high production of succinic acid and its application

Country Status (1)

Country Link
CN (1) CN109251941B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239738B (en) * 2020-10-29 2022-11-25 江南大学 A strain of Escherichia coli producing succinic acid and its application
CN112280725B (en) * 2020-10-29 2022-08-30 江南大学 Recombinant escherichia coli for efficiently producing succinic acid and construction method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044245B (en) * 2004-08-27 2012-05-02 莱斯大学 Mutant E. coli strains with increased succinic acid production
CN101300356A (en) * 2005-09-09 2008-11-05 基因组股份公司 Methods and organisms for the growth-coupled production of succinate
CN101240259B (en) * 2008-01-16 2010-12-08 南京工业大学 Newly constructed high-yield fumaric acid genetically engineered bacteria and method for producing fumaric acid
EP2501797A4 (en) * 2009-11-18 2013-04-17 Myriant Corp Engineering microbes for efficient production of chemicals
CN102174455B (en) * 2011-01-28 2012-11-21 天津工业生物技术研究所 Escherichia coli genetic engineering bacteria for producing succinic acid and construction method as well as application thereof
CN104974946B (en) * 2014-04-08 2019-01-11 中国科学院天津工业生物技术研究所 Recombination bacillus coli resistant to high osmotic pressure and its application
CN107287143B (en) * 2016-04-05 2025-06-17 中国科学院微生物研究所 Genetically engineered Escherichia coli with high butanol production and its construction method and application

Also Published As

Publication number Publication date
CN109251941A (en) 2019-01-22

Similar Documents

Publication Publication Date Title
CN106167780B (en) A kind of acetic acid bacteria of heat-resisting, resistance to ethyl alcohol, resistance to acetic acid
CN111979163B (en) Recombinant Roche bacterium, preparation method and application thereof
CN107475281B (en) Bioconversion methanol metabolic pathway
CN113549609B (en) Carbonic anhydrase SaCA and coding gene and application thereof
CN111004787B (en) Streptomyces phospholipase D mutant, transformation method and application thereof
CN102533612B (en) Clostridium beijerinckii strain and screening method and use thereof
CN109251941B (en) A kind of Escherichia coli with high production of succinic acid and its application
CN110484479A (en) One plant of Paracoccus kondratievae and its application in degradation of white spirit nocuousness ester
CN115851497B (en) Ox bile-resistant bezoar transformation strain and application thereof
CN114736881B (en) Glucose oxidase GoxM10 mutant A4D with improved acid stability and its derivative mutants and applications
CN111690585A (en) recombinant serratia marcescens with rcsB gene deletion and application thereof
CN116463309A (en) Caffeic acid-O-methyltransferase mutant, recombinant vector, recombinant bacteria, preparation method and application thereof
CN103756949B (en) A kind of produce superelevation optical purity R, R-2,3-butyleneglycol genetic engineering bacterium and construction process thereof and application
CN102363757A (en) Screening method of a 2-keto-D-gluconic acid high-yielding strain and fermentation method of the strain
CN101921723B (en) Chryseobacterium rhizosphaerae and application thereof
CN104099350A (en) Method for synthetizing D-phenyllactic acid through recombinant Escherichia coli
CN112063532A (en) Geotrichum forest and its application in preparing (S)-1-(2-trifluoromethylphenyl)ethanol
CN117230099A (en) Construction method of bacillus capable of efficiently expressing 5-aminolevulinic acid
CN113684192B (en) D-lactate dehydrogenase SaDLD and coding gene and application thereof
CN101519638B (en) Method for producing alcohol and dedicated Candida Krusei strain thereof
CN116622565A (en) A kind of bacillus coagulans and its application
CN112226428B (en) Oleate hydratase mutant and its application in the preparation of 10-hydroxystearic acid
CN115927332A (en) Promoter for over-expression protease, streptomycete recombinant strain, and construction method and application thereof
CN114854658A (en) A method for enhancing the utilization of acetic acid and improving the fermentation production of L-arginine by Escherichia coli
WO2021128432A1 (en) L-arabinose isomerase isomer and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240830

Address after: No. 1800 road 214122 Jiangsu Lihu Binhu District City of Wuxi Province

Patentee after: Jiangnan University

Country or region after: China

Address before: No. 1800 Lihu Avenue, Wuxi City, Jiangsu Province

Patentee before: Jiangnan University

Country or region before: China

Patentee before: WUXI CHENMING BIOTECHNOLOGY CO.,LTD.

TR01 Transfer of patent right