CN109252089B - 一种应变设计管线钢x65钢板及其生产方法 - Google Patents
一种应变设计管线钢x65钢板及其生产方法 Download PDFInfo
- Publication number
- CN109252089B CN109252089B CN201810949447.1A CN201810949447A CN109252089B CN 109252089 B CN109252089 B CN 109252089B CN 201810949447 A CN201810949447 A CN 201810949447A CN 109252089 B CN109252089 B CN 109252089B
- Authority
- CN
- China
- Prior art keywords
- steel plate
- rolling
- steel
- percent
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 70
- 239000010959 steel Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 238000001816 cooling Methods 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000005096 rolling process Methods 0.000 claims description 34
- 238000001953 recrystallisation Methods 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 5
- 238000003303 reheating Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 8
- 229910001563 bainite Inorganic materials 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明提供了一种应变设计管线钢X65钢板及其生产方法。其中,应变设计管线钢X65钢板按重量百分比包括以下组成成分:C:0.030~0.080%,Mn:1.50~1.70%,Si:0.10~0.40%,S≤0.0050%,P:≤0.015%,Nb:0.035~0.060%,Ti:0.008~0.025%,V≤0.10%,Alt:0.020~0.060%,Cr:≤0.20%,Mo:≤0.10%,其余为Fe和不可避免杂质。所述钢板的生产方法中采用层流分段冷却工艺,解决了现有生产工艺中驰豫空冷时间长导致生产效率低下的问题,同时,解决了水冷却时导致钢板长度上性能波动的问题,实现高效率生产性能稳定的管线钢。
Description
技术领域
本发明属于钢铁材料工程技术领域,涉及一种应变设计管线钢X65钢板及其生产工艺,具体的是在炉卷轧机生产线上利用层流分段冷却工艺生产应变设计管线钢X65钢板。
背景技术
输油输气管线工程越来越多的需要在地震带、冻土带等地方进行,这就需要大量的应变设计管线钢。应变设计管线钢要求较高的加工硬化能力和均匀伸长率。近几年,应变设计管线钢在国内得到批量应用。其生产工艺一般为在轧制后进行驰豫空冷,然后在700℃左右再进行快速水冷。这样容易带来轧制后空冷时间较长,增加了生产周期;同时,入水前钢板长度方向的温度差异,也容易带来长度方向上性能的波动,进而影响管线钢伸长率的均匀性。
中国专利文献CN 101914723 B公开了一种热轧抗大变形管线钢,其制备方法中热轧工艺为:粗轧终了温度为1000~1100℃,精轧开始温度为890~920℃,终轧温度为800~850℃;粗轧厚度方向压下率为45~65%;热轧后空冷至700~740℃,空冷驰豫时间为20~100s;空冷后以3~15℃/s水冷至100~300℃,得到热轧抗大变形管线钢。该专利中空冷驰豫时间长,延长了管线钢生产周期,导致生产效率低下。
发明内容
本发明的目的是提供一种应变设计管线钢X65钢板,本发明钢板在长度方向上性能稳定,具有良好的加工硬化能力。
本发明的另一目的是提供一种上述应变设计管线钢X65钢板的生产方法,生产工艺中利用层流分段冷却工艺解决现有生产工艺中驰豫空冷时间长导致生产效率低下的问题,同时,解决水冷却时导致钢板长度上性能波动的问题,实现高效率生产性能稳定的管线钢。
为实现上述目的,本发明采用的技术方案为:
一种应变设计管线钢X65钢板,按重量百分比包括以下组成成分:C:0.030~0.080%,Mn:1.50~1.70%,Si:0.10~0.40%,S≤0.0050%,P:≤0.015%,Nb:0.035~0.060%,Ti:0.008~0.025%,V≤0.10%,Alt:0.020~0.060%,Cr:≤0.20%,Mo:≤0.10%,其余为Fe和不可避免杂质。
作为本发明优选的,一种应变设计管线钢X65钢板,按重量百分比包括以下组成成分:C:0.050~0.070%,Mn:1.50~1.65%,Si:0.10~0.40%,S≤0.0040%,P:≤0.015%,Nb:0.035~0.060%,Ti:0.012~0.025%,V≤0.10%,Alt:0.020~0.060%,Cr:≤0.20%,Mo:≤0.10%,其余为Fe和不可避免杂质。
本发明的应变设计管线钢X65钢板的屈服强度为460~480MPa,抗拉强度为620~650MPa,屈强比低于0.75,均匀伸长率大于12%,-25℃落锤剪切面积比例大于85%。该钢板的综合性能性能优良,满足应变设计管线钢X65的要求。
一种上述应变设计管线钢X65钢板的生产方法,包括以下步骤:
(1)板坯再加热温度为1200~1260℃;
(2)采用两阶段控制轧制,再结晶区轧制温度为1100~1050℃,再结晶区累计压下率大于50%;未再结晶区开轧温度小于等于920℃,未再结晶区累计压下率大于60%,终轧温度为760~810℃;
(3)轧制后层流分段冷却第一段水冷以15~25℃/s的速度冷却到670~710℃,空冷9~12s,然后经第二段水冷以10~30℃/s的速度冷却到360~440℃,在辊道和冷床上空冷到室温。
其中,在步骤(3)后得到的钢组织为铁素体和贝氏体复相结构,铁素体占60~70%,贝氏体占30~40%,该比例为体积占比。
上述生产方法适用于炉卷轧机生产线,也适用具有较长层流冷却的传统中板轧机生产线。另外,在轧制前的步骤属于本领域的现有技术,在本发明中不再赘述。
与现有技术相比,本发明的有益效果为:
(1)本发明应变设计管线钢X65钢板的生产方法采用层流分段冷却工艺可以有效控制钢板的均匀伸长率,具有较高的加工硬化能力。
(2)本发明应变设计管线钢X65钢板的生产方法通过优化控冷工艺参数,大大提高了管线钢的生产效率,降低了能源消耗生产成本。
附图说明
图1为本发明实施例1应变设计管线钢X65钢板的金相组织图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本实施例应变设计管线钢X65热轧平板的化学成分(wt%)见表1。
表1 应变设计管线钢X65钢板的化学成分(wt%)
| 元素 | C | Si | Mn | P | S | Nb | Ti | Alt |
| 含量 | 0.05 | 0.20 | 1.60 | 0.009 | 0.003 | 0.041 | 0.012 | 0.035 |
本实施例中应变设计管线钢X65钢板的生产工艺中轧制工艺及层流分段冷却工艺的具体参数如表2所示。
本实施例中应变设计管线钢X65钢板的生产工艺:再加热温度为1250℃,在炉时间为3小时。采用两阶段控制轧制,具体为,粗轧即再结晶区轧制4道次,开轧温度1100℃,终轧温度1075℃,获得中间坯厚度65mm;精轧即未再结晶区轧制9道次,开轧温度910℃,终轧温度760℃。轧制后采用层流分段冷却工艺冷却至430℃,具体是,轧制后层流分段冷却第一段水冷以25℃/s的速度冷却到690℃,空冷10s,然后经第二段水冷以20℃/s的冷速冷却到430℃,然后在辊道和冷床上冷却至室温,其它参数如表2所示。
表2 本实施例生产工艺中轧制工艺及层流分段冷却工艺的具体参数
本实施例应变设计管线钢X65钢板的金相组织见图1,从图1中可以看出,本实施例制得的是铁素体(62%)和贝氏体(38%)的复相结构。
本实施例应变设计管线钢X65钢板的性能结果见表3。
表3 本实施例生产的应变设计管线钢X65钢板的性能(wt%)
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (1)
1.一种生产应变设计管线钢X65钢板的方法,其特征在于,该生产方法包括以下步骤:
(1)板坯再加热温度为1250℃,在炉时间3h;
(2)采用两阶段控制轧制,粗轧即再结晶区轧制4道次,开轧温度1100℃,终轧温度1075℃,再结晶区累计压下率为55%,获得中间坯厚度65mm;精轧即未再结晶区轧制9道次,开轧温度910℃,终轧温度760℃,未再结晶区累计压下率为71%;
(3)轧制后层流分段冷却第一段水冷以25℃/s的速度冷却到690℃,空冷10s,然后经第二段水冷以20℃/s的速度冷却到430℃,在辊道和冷床上空冷到室温;
该生产方法生产得到的X65钢板按重量百分比包括以下组成成分:C:0.05%,Mn:1.60%,Si:0.20%,S:0.003%,P:0.009%,Nb:0.041%,Ti:0.012%, Alt:0.035%,其余为Fe和不可避免杂质;
该X65钢板厚度为20mm,横向屈服强度为460MPa,纵向屈服强度为410MPa,横向抗拉强度为623MPa,纵向抗拉强度为612MPa,横向屈强比0.74,纵向屈强比0.67,横向延伸率A50为44%,纵向延伸率A50为48%,均匀伸长率14%,-60℃横向冲击功为304J,-60℃纵向冲击功为330J,-25℃落锤剪切面积比例87%。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810949447.1A CN109252089B (zh) | 2018-08-20 | 2018-08-20 | 一种应变设计管线钢x65钢板及其生产方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810949447.1A CN109252089B (zh) | 2018-08-20 | 2018-08-20 | 一种应变设计管线钢x65钢板及其生产方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109252089A CN109252089A (zh) | 2019-01-22 |
| CN109252089B true CN109252089B (zh) | 2020-11-06 |
Family
ID=65050182
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810949447.1A Active CN109252089B (zh) | 2018-08-20 | 2018-08-20 | 一种应变设计管线钢x65钢板及其生产方法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109252089B (zh) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110964991B (zh) * | 2019-12-07 | 2021-02-26 | 江阴兴澄特种钢铁有限公司 | 一种兼具抗hic和抗大变形的管线钢及其制造方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003006699A1 (fr) * | 2001-07-13 | 2003-01-23 | Nkk Corporation | Tube d'acier a resistance elevee, superieure a celle de la norme api x6 |
| CN102392187A (zh) * | 2011-11-21 | 2012-03-28 | 安阳钢铁股份有限公司 | 一种含Cr的管线钢X70热轧平板及生产方法 |
| CN106216412A (zh) * | 2016-07-29 | 2016-12-14 | 安阳钢铁股份有限公司 | 一种利用炉卷机组层流分段冷却控制中厚板相变的方法 |
-
2018
- 2018-08-20 CN CN201810949447.1A patent/CN109252089B/zh active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003006699A1 (fr) * | 2001-07-13 | 2003-01-23 | Nkk Corporation | Tube d'acier a resistance elevee, superieure a celle de la norme api x6 |
| CN102392187A (zh) * | 2011-11-21 | 2012-03-28 | 安阳钢铁股份有限公司 | 一种含Cr的管线钢X70热轧平板及生产方法 |
| CN106216412A (zh) * | 2016-07-29 | 2016-12-14 | 安阳钢铁股份有限公司 | 一种利用炉卷机组层流分段冷却控制中厚板相变的方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109252089A (zh) | 2019-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106077085B (zh) | 一种低屈强比热轧高强度抗震钢筋的生产系统及方法 | |
| US20240253099A1 (en) | Method for rolling high-toughness high-strength low-alloy steel | |
| CN106244924B (zh) | 一种冷轧淬火延性钢及制备方法 | |
| US6846371B2 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
| CN101338400B (zh) | 一种高强度低温用低碳贝氏体钢及其生产工艺 | |
| NO861325L (no) | Kontrollert valseprosess for tofase-staal og anvendelse derav for fremstilling av staver, traad, ark og andre former. | |
| CN102703803B (zh) | 一种球状珠光体型热轧卷板及其生产方法 | |
| CN103627980A (zh) | 低温大壁厚x80hd大变形管线钢及其生产方法 | |
| CN102719753B (zh) | 一种低屈强比高强度钢板及其制造方法 | |
| CN109234612B (zh) | 一种高韧性含b热轧低碳贝氏体钢板及其生产方法 | |
| CN113846266A (zh) | 一种高塑韧性屈服强度1300MPa级调质钢板的生产方法 | |
| CN118147512A (zh) | 一种非微合金hrb400e热轧带肋钢筋普速棒材 | |
| CN101545079B (zh) | 韧性优良的高强度低屈强比x80热轧钢板及其生产方法 | |
| CN112143960B (zh) | 一种超高强度低屈强比的钢板及其制造方法 | |
| CN109252089B (zh) | 一种应变设计管线钢x65钢板及其生产方法 | |
| CN111790754A (zh) | 一种单机架炉卷轧机薄规格x65钢级管线钢及轧制方法 | |
| CN102286696B (zh) | 一种高塑性应变比的超深冲双相钢的制备方法 | |
| CN112410647B (zh) | 一种卷取炉生产低成本、超低温条件下使用的x65抗酸管线钢板的方法 | |
| CN109161813B (zh) | 一种低压缩比管线钢x70钢板及其生产方法 | |
| CN101921954A (zh) | 抗震热轧带肋钢筋及其生产工艺 | |
| JPH09137222A (ja) | 高強度低降伏比鉄筋用鋼材の製造方法 | |
| CN112962022A (zh) | 一种高拉延高扩孔1200MPa级冷轧带钢及生产方法 | |
| CN1680613A (zh) | 一种热轧低碳贝氏体复相材料及其制备工艺 | |
| CN116949372A (zh) | 一种用于冻土环境的抗大变形管线钢及制备方法 | |
| CN112795755B (zh) | 一种柔性生产低合金高强度热轧h型钢的方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |