CN109388063A - Adaptive Kalman filter composite control method - Google Patents
Adaptive Kalman filter composite control method Download PDFInfo
- Publication number
- CN109388063A CN109388063A CN201810980077.8A CN201810980077A CN109388063A CN 109388063 A CN109388063 A CN 109388063A CN 201810980077 A CN201810980077 A CN 201810980077A CN 109388063 A CN109388063 A CN 109388063A
- Authority
- CN
- China
- Prior art keywords
- current
- value
- control method
- motion state
- composite control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 239000002131 composite material Substances 0.000 title claims abstract description 47
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 27
- 238000012937 correction Methods 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims description 44
- 230000001133 acceleration Effects 0.000 claims description 35
- 230000007704 transition Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 5
- 238000005307 time correlation function Methods 0.000 claims description 3
- 230000036962 time dependent Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 6
- 230000001186 cumulative effect Effects 0.000 abstract description 5
- 238000004364 calculation method Methods 0.000 abstract description 4
- 230000005693 optoelectronics Effects 0.000 description 14
- 238000010835 comparative analysis Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供的一种自适应卡尔曼滤波复合控制方法,首先获取当前运动状态值,进一步通过参数调整进行状态修正,获得运动目标信息的自适应预测和估计,最后通过反馈下一时刻的运动状态估计值,进行控制方法的前馈与反馈的复合控制。该复合控制方法,基于当前运动模型以及参数调整,获得修正运动模型,从而在观测信息噪声干扰的情况下也能够实现高精度的复合控制,克服了传统的复合控制方法主要利用测速观测和编码的方法对角度信息进行后续的解算,其提升精度有限的问题;进一步地,本发明在闭环控制过程中引入了运动模型的实时修正,克服了误差累计效应,进一步提高了控制方法的精度。
An adaptive Kalman filter composite control method provided by the present invention firstly obtains the current motion state value, further performs state correction through parameter adjustment, obtains adaptive prediction and estimation of moving target information, and finally feeds back the motion state at the next moment. The estimated value is used for composite control of feedforward and feedback of the control method. The composite control method, based on the current motion model and parameter adjustment, obtains a corrected motion model, so that high-precision composite control can be realized even under the condition of noise interference of observation information, which overcomes the traditional composite control method which mainly uses speed measurement observation and coding. The method performs subsequent calculation on the angle information, which improves the problem of limited accuracy; further, the present invention introduces real-time correction of the motion model in the closed-loop control process, overcomes the cumulative effect of errors, and further improves the accuracy of the control method.
Description
技术领域technical field
本发明涉及卡尔曼滤波技术领域,特别是涉及一种自适应卡尔曼滤波复合控制方法。The invention relates to the technical field of Kalman filtering, in particular to an adaptive Kalman filtering composite control method.
背景技术Background technique
随着光电技术的快速发展,目前光电控制技术广泛的应用在目标跟瞄和光电测控等领域,其中,系统的控制精度以及实时性是系统应用的核心所在,目前的研究中多数都是基于位置控制增益的优化来实现系统的精确控制,这类方法要求系统的先验信息精确已知。但是,在动态时变情况下,由于观测噪声的引入导致信号干扰增强、跟踪精度变差。随着光电技术在各个领域的快速应用和推广,目前对光电控制精度的需求大幅提升、控制条件日益苛刻,因此,传统的方法很难满足现代光电控制系统对精度的要求。传统的光电控制系统主要包括位置和速度两个参量,多数采用如图1所示的原理控制框图,由于无法直接反馈目标的位置信息,普遍采用目标脱靶信息简介获取,但是仍然缺少空间的位置信息,尤其是角度空间信息的缺失,导致角速度和角加速度无法获取,无法实现复合控制。With the rapid development of optoelectronic technology, optoelectronic control technology is widely used in the fields of target tracking and optoelectronic measurement and control. Among them, the control accuracy and real-time performance of the system are the core of the system application. Most of the current research is based on position The optimization of control gain to achieve precise control of the system requires that the prior information of the system be accurately known. However, in the case of dynamic time-varying, due to the introduction of observation noise, the signal interference is enhanced and the tracking accuracy is deteriorated. With the rapid application and promotion of optoelectronic technology in various fields, the current demand for optoelectronic control accuracy has greatly increased, and the control conditions have become increasingly harsh. Therefore, traditional methods are difficult to meet the accuracy requirements of modern optoelectronic control systems. The traditional photoelectric control system mainly includes two parameters, position and speed. Most of them use the principle control block diagram as shown in Figure 1. Since the position information of the target cannot be directly fed back, the target off-target information is generally obtained by brief introduction, but the spatial position information is still lacking. , especially the lack of angular space information, so that the angular velocity and angular acceleration cannot be obtained, and the composite control cannot be realized.
为解决这种问题,研究人员创新性的提出了光电系统复合控制的概念,通过消除速度和加速度滞后误差的方法,实现稳定控制下的精度大幅度提升,成为当前提升光电系统控制性能的主要方法之一。复合控制方法要求能够获取目标的角速度值,实现前馈和反馈环路的复合控制效能,传统的复合控制方法主要是利用测速观测和编码的方法对角度信息进行后续的解算,提升精度有限。尤其是在观测噪声存在的情况下,其控制精度难以满足现代光电控制对精度的要求。In order to solve this problem, the researchers innovatively proposed the concept of composite control of optoelectronic systems. By eliminating the speed and acceleration lag errors, the accuracy under stable control has been greatly improved, and it has become the main method to improve the control performance of optoelectronic systems. one. The composite control method requires that the angular velocity value of the target can be obtained to realize the composite control efficiency of the feedforward and feedback loops. The traditional composite control method mainly uses the method of velocity measurement and coding to perform the subsequent calculation of the angle information, and the improvement accuracy is limited. Especially in the presence of observation noise, its control accuracy is difficult to meet the accuracy requirements of modern optoelectronic control.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对传统的复合控制方法主要利用测速观测和编码的方法对角度信息进行后续的解算,其提升精度有限的问题,提供一种自适应卡尔曼滤波复合控制方法。Based on this, it is necessary to provide an adaptive Kalman filter composite control method to solve the problem that the traditional composite control method mainly uses the method of velocity measurement and coding to solve the angle information, and its improvement accuracy is limited.
本发明提供的一种自适应卡尔曼滤波复合控制方法,包括以下步骤:An adaptive Kalman filter composite control method provided by the present invention includes the following steps:
数据获取步骤,获取运动目标当前时刻的当前运动模型以及当前运动状态估计值;The data acquisition step is to acquire the current motion model of the moving target at the current moment and the estimated value of the current motion state;
预测步骤,根据当前运动模型以及所述当前运动状态估计值计算当前预测运动状态值以及当前预测误差方差矩阵;The predicting step calculates the current predicted motion state value and the current prediction error variance matrix according to the current motion model and the current motion state estimated value;
残差信息序列检测步骤,根据所述当前预测运动状态值以及所述当前预测误差方差矩阵计算当前残差信息序列以及当前系数调节因子;In the residual information sequence detection step, the current residual information sequence and the current coefficient adjustment factor are calculated according to the current predicted motion state value and the current predicted error variance matrix;
参量调整步骤,根据所述当前残差以及所述当前系数调节因子计算当前随机机动频率以及当前加速度残留方差值;A parameter adjustment step, calculating the current random maneuvering frequency and the current acceleration residual variance value according to the current residual error and the current coefficient adjustment factor;
模型修正步骤,根据所述当前残差、所述当前随机机动频率以及所述当前加速度残留方差值对转移矩阵以及过程噪声方差矩阵进行修正获得修正预测误差方差矩阵;The model correction step is to modify the transition matrix and the process noise variance matrix according to the current residual error, the current random maneuver frequency and the current acceleration residual variance value to obtain a corrected prediction error variance matrix;
预测修正步骤,根据所述修正预测误差方差矩阵获得下一时刻预测运动状态值;A prediction correction step, obtaining a predicted motion state value at the next moment according to the corrected prediction error variance matrix;
观测更新步骤,根据所述当前运动状态观测值、所述预测修正误差方差矩阵以及所述下一时刻的预测运动状态值进行观测更新,获取下一时刻的运动状态估计值;The observation update step is to observe and update according to the current motion state observation value, the prediction correction error variance matrix and the predicted motion state value at the next moment, and obtain the motion state estimated value at the next moment;
将所述下一时刻的运动状态估计值循环反馈至所述数据获取步骤,并根据所述下一时刻的运动状态估计值进行实时复合控制。The estimated value of the motion state at the next moment is cyclically fed back to the data acquisition step, and real-time composite control is performed according to the estimated value of the motion state at the next moment.
在其中一个实施例中,所述运动目标的加速度参量a(t)为如式所示的零均值一阶模型,其中,为加速度的均值,为加速度的随机量;所述加速度的随机量的统计特性为时间相关函数形式。In one of the embodiments, the acceleration parameter a(t) of the moving target is as follows The zero-mean first-order model shown, where, is the mean value of acceleration, is a random amount of acceleration; the random amount of said acceleration The statistical properties of are in the form of time-dependent functions.
在其中一个实施例中,所述时间相关函数形式为其中,α为随机的机动频率,为加速度参量方差值。In one of the embodiments, the time correlation function is in the form of where α is the random maneuvering frequency, is the variance value of the acceleration parameter.
在其中一个实施例中,在所述预测步骤中,所述当前预测运动状态值为当前预测误差方差矩阵为 In one of the embodiments, in the predicting step, the current predicted motion state value is The current prediction error variance matrix is
在其中一个实施例中,在所述残差信息序列检测步骤中,所述当前残差信息序列为所述当前系数调节因子为 In one embodiment, in the residual information sequence detection step, the current residual information sequence is The current coefficient adjustment factor is
在其中一个实施例中,在所述参量调整步骤中,所述当前随机机动频率为αk=λkα;In one embodiment, in the parameter adjustment step, the current random maneuvering frequency is α k =λ k α;
所述当前加速度残留方差值为其中,ck=λkc。The current acceleration residual variance value is where c k =λ k c.
在其中一个实施例中,在所述状态修正步骤中,所述修正预测误差方差矩阵为其中, 为修正的转移矩阵,为修正的过程噪声方差矩阵。In one of the embodiments, in the state modification step, the modified prediction error variance matrix is in, is the modified transition matrix, is the corrected process noise variance matrix.
在其中一个实施例中,在所述观测更新步骤中,所述修正预测运动状态值所述修正误差方差矩阵其中, In one of the embodiments, in the observation update step, the revised predicted motion state value The corrected error variance matrix in,
在其中一个实施例中,所述下一时刻的运动状态估计值包括角速度估计值。In one of the embodiments, the estimated value of the motion state at the next moment includes an estimated value of angular velocity.
上述自适应卡尔曼滤波复合控制方法,首先获取当前运动状态值,进一步通过参数调整进行状态修正,获得运动目标信息的自适应预测和估计,最后通过反馈下一时刻的运动状态估计值,进行控制方法的前馈与反馈的复合控制。该复合控制方法,基于当前运动模型以及参数调整,获得修正运动模型,从而在观测信息噪声干扰的情况下也能够实现高精度的复合控制,克服了传统的复合控制方法主要利用测速观测和编码的方法对角度信息进行后续的解算,其提升精度有限的问题;进一步地,本发明在闭环控制过程中引入了运动模型的实时修正,克服了误差累计效应,进一步提高了控制方法的精度。The above-mentioned adaptive Kalman filter composite control method first obtains the current motion state value, further performs state correction through parameter adjustment, obtains adaptive prediction and estimation of moving target information, and finally controls by feeding back the motion state estimate value at the next moment. Feedforward and feedback composite control of the method. The composite control method, based on the current motion model and parameter adjustment, obtains a corrected motion model, so that high-precision composite control can be realized even under the condition of noise interference of observation information, which overcomes the traditional composite control method which mainly uses speed measurement observation and coding. The method performs subsequent calculation on the angle information, which improves the problem of limited accuracy; further, the present invention introduces real-time correction of the motion model in the closed-loop control process, overcomes the cumulative effect of errors, and further improves the accuracy of the control method.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only described in the present invention. For some of the embodiments, those of ordinary skill in the art can also obtain other drawings according to these drawings.
图1为传统的卡尔曼滤波复合控制方法的原理框图;Fig. 1 is the principle block diagram of the traditional Kalman filter compound control method;
图2为本发明的自适应卡尔曼滤波复合控制方法的原理框图;Fig. 2 is the principle block diagram of the adaptive Kalman filter compound control method of the present invention;
图3为本发明的自适应卡尔曼滤波复合控制方法流程示意图;3 is a schematic flowchart of an adaptive Kalman filter composite control method of the present invention;
图4为图3所示的方法原理示意图;FIG. 4 is a schematic diagram of the principle of the method shown in FIG. 3;
图5为本发明实施例一目标运动轨迹示意图;5 is a schematic diagram of a target motion trajectory according to an embodiment of the present invention;
图6为实施例一的运动目标分别采用本发明方法、扩展卡尔曼滤波(EKF)方法和无迹卡尔曼滤波方法获得的跟踪误差曲线。FIG. 6 shows the tracking error curves obtained by the method of the present invention, the extended Kalman filter (EKF) method and the unscented Kalman filter method respectively for the moving target in the first embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below through embodiments and in conjunction with the accompanying drawings. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明自适应卡尔曼滤波复合控制方法的原理如图2所示,针对脱靶的观测数据和仪器相关信息进行位置数据的获取和分析,并在考虑观测信息延时的基础上进行了时间对准分析,在复合控制中基于自适应卡尔曼滤波对运动模型进行实时修正,并将运动状态估计值反馈到复合控制中,实现自适应卡尔曼滤波的复合控制。The principle of the adaptive Kalman filter composite control method of the present invention is shown in FIG. 2 . The position data is acquired and analyzed for the off-target observation data and instrument-related information, and the time alignment is carried out on the basis of considering the delay of the observation information. Analysis, in the composite control, based on the adaptive Kalman filter, the motion model is corrected in real time, and the estimated value of the motion state is fed back to the composite control to realize the composite control of the adaptive Kalman filter.
请参阅图3及图4所示,本发明一实施例的种自适应卡尔曼滤波复合控制方法,包括以下步骤:Please refer to FIG. 3 and FIG. 4 , an adaptive Kalman filter composite control method according to an embodiment of the present invention includes the following steps:
数据获取步骤,获取运动目标当前时刻的当前运动模型以及当前运动状态估计值;The data acquisition step is to acquire the current motion model of the moving target at the current moment and the estimated value of the current motion state;
预测步骤,根据当前运动模型以及当前运动状态估计值计算当前预测运动状态值以及当前预测误差方差矩阵;The prediction step is to calculate the current predicted motion state value and the current prediction error variance matrix according to the current motion model and the current motion state estimated value;
残差信息序列检测步骤,根据当前预测运动状态值以及当前预测误差方差矩阵计算当前残差信息序列以及当前系数调节因子;In the residual information sequence detection step, the current residual information sequence and the current coefficient adjustment factor are calculated according to the current predicted motion state value and the current predicted error variance matrix;
参量调整步骤,根据当前残差以及当前系数调节因子计算当前随机机动频率以及当前加速度残留方差值;The parameter adjustment step is to calculate the current random maneuvering frequency and the current acceleration residual variance value according to the current residual error and the current coefficient adjustment factor;
模型修正步骤,根据当前残差、当前随机机动频率以及当前加速度残留方差值对转移矩阵以及过程噪声方差矩阵进行修正获得修正预测误差方差矩阵;The model correction step is to correct the transition matrix and the process noise variance matrix according to the current residual error, the current random maneuver frequency and the current acceleration residual variance value to obtain a corrected prediction error variance matrix;
预测修正步骤,根据修正预测误差方差矩阵获得下一时刻预测运动状态值;The prediction correction step is to obtain the predicted motion state value at the next moment according to the corrected prediction error variance matrix;
观测更新步骤,根据当前运动状态观测值、预测修正误差方差矩阵以及下一时刻的预测运动状态值进行观测更新,获取下一时刻的运动状态估计值;The observation update step is to perform observation update according to the current motion state observation value, the prediction correction error variance matrix and the predicted motion state value at the next moment, and obtain the motion state estimation value at the next moment;
将下一时刻的运动状态估计值循环反馈至数据获取步骤,并根据下一时刻的运动状态估计值进行实时复合控制。The estimated value of the motion state at the next moment is cyclically fed back to the data acquisition step, and real-time composite control is performed according to the estimated value of the motion state at the next moment.
优选地,运动状态估计值包括角速度估计值。Preferably, the motion state estimate includes an angular velocity estimate.
该实施例的复合控制方法,首先获取当前运动状态值,进一步通过参数调整进行状态修正,获得运动目标信息的自适应预测和估计,最后通过反馈下一时刻的运动状态估计值,进行控制方法的前馈与反馈的复合控制。该复合控制方法,基于当前运动模型以及参数调整,获得修正运动模型,从而在观测信息噪声干扰的情况下也能够实现高精度的复合控制,克服了传统的复合控制方法主要利用测速观测和编码的方法对角度信息进行后续的解算,其提升精度有限的问题;进一步地,本发明在闭环控制过程中引入了运动模型的实时修正,克服了误差累计效应,进一步提高了控制方法的精度。The composite control method of this embodiment firstly obtains the current motion state value, further performs state correction through parameter adjustment, obtains adaptive prediction and estimation of the moving target information, and finally feeds back the motion state estimated value at the next moment to carry out the control method. Composite control of feedforward and feedback. The composite control method, based on the current motion model and parameter adjustment, obtains a corrected motion model, so that high-precision composite control can be realized even under the condition of noise interference of observation information, which overcomes the traditional composite control method which mainly uses speed measurement observation and coding. The method performs subsequent calculation on the angle information, which improves the problem of limited accuracy; further, the present invention introduces real-time correction of the motion model in the closed-loop control process, overcomes the cumulative effect of errors, and further improves the accuracy of the control method.
本发明的运动模型,即当前运动模型是一种统计模型,机动目标跟踪领域应用较多的模型,其基本思想主要是认为运动目标在时间上具有较高的一致性,参量的变化保持在当前模型参量的有限邻域范围内,因此,可选地,将运动目标的加速度参量a(t)表示为如式(1)所示的零均值的一阶模型:The motion model of the present invention, that is, the current motion model, is a statistical model, which is widely used in the field of maneuvering target tracking. Therefore, optionally, the acceleration parameter a(t) of the moving target is expressed as a first-order model with zero mean as shown in equation (1):
其中,为加速度的均值,为加速度的随机量;加速度的随机量的统计特性为时间相关函数形式。in, is the mean value of acceleration, is a random amount of acceleration; a random amount of acceleration The statistical properties of are in the form of time-dependent functions.
进一步可选地,时间相关函数形式如式(2)所示:Further optionally, the time correlation function form is shown in formula (2):
其中,α为随机的机动频率,为加速度参量方差值。where α is the random maneuvering frequency, is the variance value of the acceleration parameter.
在本发明的具体实施例部分,加速度参量方差值采用的瑞利分布计算如式(3)所示:In the specific embodiment part of the present invention, the acceleration parameter variance value The Rayleigh distribution used is calculated as shown in formula (3):
从式(2)中可以看出,本发明采用的运动模型参数主要包括随机的机动频率α和加速度参量方差值加速度参量方差值也可以理解为加速度的极值参量a±max。本发明采用残差信息序列γk对目标的实时变化情况进行反馈控制,调整优化机动参量。It can be seen from formula (2) that the motion model parameters used in the present invention mainly include random maneuvering frequency α and acceleration parameter variance value Acceleration parameter variance value It can also be understood as the extreme value parameter a ±max of the acceleration. The present invention adopts the residual information sequence γ k to feedback control the real-time change of the target, and adjust and optimize the maneuvering parameters.
在卡尔曼滤波方法框架内,当运动目标的实际运动模型与构架的理论模型匹配时,残差信息满足如式(4)所示的特性:In the framework of the Kalman filter method, when the actual motion model of the moving target matches the theoretical model of the frame, the residual information satisfies the characteristics shown in equation (4):
当实际运动模型与理论模型失配时,依据理论模型预测的当前预测运动状态值出现漂移偏差,残差序列不再满足式(4)所示的特性,这种情况下,可以将当前预测误差方差矩阵表示为如式计算为式(5)所示:When the actual motion model does not match the theoretical model, the current predicted motion state value predicted by the theoretical model When drift deviation occurs, the residual sequence no longer meets the characteristics shown in Equation (4). In this case, the current prediction error variance matrix can be expressed as Equation (5):
由于运动目标的状态转移矩阵Φk|k-1和过程噪声方差矩阵Qk同运动模型的参量相关,因此,本发明通过建立残差序列实际统计特性与当前预测误差方差矩阵Pk|k-1的关系对运动模型参数进行实时调整,具体的构建过程如式(6)、(7)(8)(9)所示:Since the state transition matrix Φ k|k-1 of the moving target and the process noise variance matrix Q k are related to the parameters of the motion model, the present invention establishes the actual statistical characteristics of the residual sequence and the current prediction error variance matrix P k|k- The relationship of 1 is used to adjust the parameters of the motion model in real time. The specific construction process is shown in formulas (6), (7) (8) (9):
其中,为统计特性,0≤σ≤1为遗忘因子,λk为调节因子,参数调节如式(10)所示:in, is a statistical characteristic, 0≤σ≤1 is the forgetting factor, λ k is the adjustment factor, and the parameter adjustment is shown in formula (10):
αk=λkα (10)α k =λ k α (10)
同时,将加速度均值表示为当前时刻的预测值,即如式(11)所示:At the same time, the mean acceleration value is expressed as the predicted value at the current moment, as shown in formula (11):
同时,将加速度极值表示为均值的比例形式,即如式(12)所示:At the same time, the acceleration extreme value is expressed as the proportional form of the mean value, that is, as shown in formula (12):
式(12)中,c为比例系数,在状态弱变化的情况下通常取值较小的经验值,当状态变化较大的时候,采用时变调节的方法如式(13)所示:In formula (12), c is the proportional coefficient, which usually takes a smaller empirical value when the state changes weakly. When the state changes greatly, the time-varying adjustment method is used as shown in formula (13):
ck=λkc (13)c k =λ k c (13)
式(13)中,λk为状态突变情况下系数调节因子。In formula (13), λ k is the coefficient adjustment factor in the case of state mutation.
在数据获取步骤中,获取上述的当前运动模型以及当前运动状态估计值。In the data acquisition step, the above-mentioned current motion model and estimated value of the current motion state are acquired.
进一步在预测步骤中,根据当前运动模型以及当前运动状态估计值参照式(14)、(15)计算当前预测运动状态值以及当前预测误差方差矩阵:Further in the prediction step, calculate the current predicted motion state value and the current prediction error variance matrix with reference to formulas (14) and (15) according to the current motion model and the current motion state estimated value:
Pk|k-1=Φk|k-1Pk-1|k-1ΦTk|k-1+Qk (15)P k|k-1 =Φ k|k-1 P k-1|k-1 ΦT k|k-1 +Q k (15)
更进一步可选地,在残差信息序列检测步骤,根据当前预测运动状态值以及当前预测误差方差矩阵计算当前残差信息序列以及当前系数调节因子的方法如式(16)、(17)所示:Further optionally, in the residual information sequence detection step, the method for calculating the current residual information sequence and the current coefficient adjustment factor according to the current predicted motion state value and the current predicted error variance matrix is shown in formulas (16) and (17) :
进一步地,根据当前残差以及当前系数调节因子参照式(18)、(19)、(20)计算当前随机机动频率以及当前加速度残留方差值,实现对模型参量的调整:Further, according to the current residual and the current coefficient adjustment factor, the current random maneuver frequency and the current acceleration residual variance value are calculated with reference to formulas (18), (19), (20) to realize the adjustment of the model parameters:
αk=λkα (18)α k =λ k α (18)
ck=λkc (19)c k =λ k c (19)
进一步基于调整的参数对运动模型进行修正,执行模型修正步骤,根据当前残差、当前随机机动频率以及当前加速度残留方差值对下一时刻的转移矩阵以及过程噪声方差矩阵进行修正获得下一时刻的修正运动模型;Further modify the motion model based on the adjusted parameters, perform the model modification step, and modify the transition matrix and process noise variance matrix at the next moment according to the current residual, the current random maneuver frequency and the current acceleration residual variance value to obtain the next moment. The revised motion model of ;
修正的转移矩阵如式(21)所示:Modified transition matrix As shown in formula (21):
修正的过程噪声方差矩阵如式(22)所示:Modified Process Noise Variance Matrix As shown in formula (22):
进而,修正预测误差方差矩阵如式(23)所示:Then, the corrected prediction error variance matrix As shown in formula (23):
进一步执行预测修正步骤,根据修正预测误差方差矩阵获得下一时刻预测运动状态值。The prediction modification step is further performed, and the predicted motion state value at the next moment is obtained according to the modified prediction error variance matrix.
在预测修正步骤后,执行观测更新步骤,根据当前运动状态观测值、预测修正误差方差矩阵以及下一时刻的预测运动状态值进行观测更新,观测更新方法如式(24)、(25)、(26)所示,获取下一时刻的运动状态估计值;After the prediction correction step, the observation update step is performed, and the observation update is performed according to the current motion state observation value, the prediction correction error variance matrix, and the predicted motion state value at the next moment. The observation update method is as follows: (24), (25), ( 26), obtain the estimated value of the motion state at the next moment;
进一步地,为了说明本发明方法在运动模型构建不精确情况下的具体控制效果,采用如式(27)的运动模型进行复合控跟踪仿真对比分析实验。对比分析实验中分别采用二阶常速运动模型(CV)和三阶常加速(CA)线性运动模型混合构建目标的运动状态,并采用本发明方法进行理论上的自适应建模,取目标的运动参数(位置、速度、加速度)作为系统的状态变量,且系统噪声假设为互不相关的高斯白噪声。为模拟分析跟踪系统的非线性特性,仿真中构建的极坐标模式的离散系统模型如式(27)所示。Further, in order to illustrate the specific control effect of the method of the present invention in the case of inaccurate construction of the motion model, the motion model as shown in formula (27) is used to conduct a composite control tracking simulation comparative analysis experiment. In the comparative analysis experiment, the second-order constant velocity motion model (CV) and the third-order constant acceleration (CA) linear motion model are respectively used to construct the motion state of the target, and the method of the present invention is used to carry out theoretical adaptive modeling, taking the target's motion state. The motion parameters (position, velocity, acceleration) are used as state variables of the system, and the system noise is assumed to be uncorrelated Gaussian white noise. In order to simulate and analyze the nonlinear characteristics of the tracking system, the discrete system model of the polar coordinate mode constructed in the simulation is shown in equation (27).
式(27)中,距离r、方位角α和俯仰角e构成了系统的观测值Z。In formula (27), the distance r, the azimuth angle α and the elevation angle e constitute the observation value Z of the system.
在仿真对比分析实验中,将观测噪声表示为方差的互不相关高斯噪声,数据由Matlab软件构建的系统生成,收集的数据总时间程度为10秒,且采样周期T=0.007。In the simulation comparative analysis experiment, the observation noise is expressed as variance The data is generated by a system constructed by Matlab software, the total time level of the collected data is 10 seconds, and the sampling period T=0.007.
为便于对比分析,同常用于光电非线性系统跟踪的扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)方法进行了对比。为公正起见,不同滤波方法均采用初始参量相同的当前统计模型。For the convenience of comparative analysis, the methods of Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), which are commonly used in optoelectronic nonlinear system tracking, are compared. For the sake of fairness, different filtering methods use the current statistical model with the same initial parameters.
请参阅本发明图5和图6所示,图5为仿真中用于闭环控制跟踪的轨迹,图6为不同方法的跟踪结果。从图6中可以看出,本发明方法优于EKF和UKF方法,经分析可知,主要原因是因为本发明在闭环控制过程中引入了模型误差的实时修正,克服了误差累计效应。而EKF和UKF方法存在误差累计效应,因此,跟踪误差较大。同时,由于EKF对非线性系统采用了二阶截断的线性近似处理,存在阶段误差的影响,只适应弱非线性系统,但是光电跟踪控制系统存在极坐标与笛卡尔坐标的变换处理过程,因此具有较强的非线性,而UKF因采用了Sigma点传播三阶特性的原因,不存在截断误差,因此,跟踪精度要高于EKF算法,但是同样由于存在模型累计误差,因此,跟踪效果要比本发明方法差。Please refer to FIG. 5 and FIG. 6 of the present invention, FIG. 5 is the trajectory used for closed-loop control tracking in the simulation, and FIG. 6 is the tracking results of different methods. As can be seen from FIG. 6 , the method of the present invention is superior to the EKF and UKF methods. The analysis shows that the main reason is that the present invention introduces real-time correction of model errors in the closed-loop control process, which overcomes the cumulative effect of errors. However, the EKF and UKF methods have the error accumulation effect, so the tracking error is larger. At the same time, because the EKF adopts the second-order truncation linear approximation processing for the nonlinear system, there is the influence of stage error, and it is only suitable for weak nonlinear systems, but the photoelectric tracking control system has the transformation process of polar coordinates and Cartesian coordinates, so it has Strong nonlinearity, and UKF has no truncation error due to the use of the third-order characteristics of Sigma point propagation. Therefore, the tracking accuracy is higher than that of the EKF algorithm, but also due to the existence of model cumulative errors, the tracking effect is better than this. The method of invention is poor.
进一步地,从图4可以得出,本发明方法在光电非线性系统跟踪中保持了较高的跟踪精度,为进一步说明本发明方法的稳定性和可靠性,对对比分析实验内容进行了随机的重复处理,分别进行40次重复实验,并计算均值,具体结果如表1所示。Further, it can be concluded from Fig. 4 that the method of the present invention maintains a high tracking accuracy in the tracking of the optoelectronic nonlinear system. Repeat the treatment, carry out 40 repeated experiments respectively, and calculate the mean value. The specific results are shown in Table 1.
表1不同方法的跟踪性能比较Table 1 Comparison of tracking performance of different methods
从表1中可以看出,本发明方法保持了较高的跟踪精度和稳定性,同传统模型参量不修正的方法相比,整体跟踪精度得到了很大的提升,其中距离跟踪精度较EKF提升了75.2%,较UKF提升了54.4%。It can be seen from Table 1 that the method of the present invention maintains high tracking accuracy and stability. Compared with the method in which the traditional model parameters are not corrected, the overall tracking accuracy is greatly improved, and the distance tracking accuracy is improved compared with EKF. increased by 75.2%, which is 54.4% higher than UKF.
观测噪声干扰情况下精确鲁棒的光电系统复合控制技术属于光电目标跟踪领域的重点研究内容之一。本发明针对观测噪声干扰情况下光电系统的精确控制问题展开研究,在考虑模型误差的基础上提出了基于自适应修正的自适应卡尔曼滤波复合控制方法,构建了信息残差序列和模型参量之间的自适应修正关系;实现了角速度的实时估计,并基于估计的角速度构建了反馈和前馈结合的复合控制方案,并通过对比分析实验验证了本发明方法的优越性,能够在保持方法控制稳定的同时实现了精度40%的提升。Accurate and robust optoelectronic system composite control technology under observation noise interference is one of the key research contents in the field of optoelectronic target tracking. The present invention conducts research on the problem of precise control of optoelectronic systems in the case of observation noise interference, proposes an adaptive Kalman filter composite control method based on adaptive correction on the basis of considering model errors, and constructs a relationship between the information residual sequence and model parameters. Real-time estimation of the angular velocity is realized, and a composite control scheme combining feedback and feedforward is constructed based on the estimated angular velocity, and the superiority of the method of the present invention is verified through comparative analysis experiments, which can maintain the control of the method. Stable while achieving a 40% improvement in accuracy.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the patent of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810980077.8A CN109388063A (en) | 2018-08-27 | 2018-08-27 | Adaptive Kalman filter composite control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810980077.8A CN109388063A (en) | 2018-08-27 | 2018-08-27 | Adaptive Kalman filter composite control method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN109388063A true CN109388063A (en) | 2019-02-26 |
Family
ID=65417546
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810980077.8A Pending CN109388063A (en) | 2018-08-27 | 2018-08-27 | Adaptive Kalman filter composite control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109388063A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110569410A (en) * | 2019-08-30 | 2019-12-13 | 广西师范大学 | A distance measurement data processing method, device and computer-readable storage medium |
| CN111523076A (en) * | 2020-03-24 | 2020-08-11 | 中国人民解放军军事科学院评估论证研究中心 | Method, device and system for calculating angular acceleration based on Fal function |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5058836A (en) * | 1989-12-27 | 1991-10-22 | General Electric Company | Adaptive autopilot |
| JP2010242914A (en) * | 2009-04-08 | 2010-10-28 | Sony Corp | Vibration isolation system, vibration isolation method and program |
| CN102721951A (en) * | 2012-05-04 | 2012-10-10 | 西安电子科技大学 | Method for tracking high maneuvering target |
| CN104502851A (en) * | 2014-12-12 | 2015-04-08 | 广西科技大学 | SOC (Stress Optical Coefficient) estimation method based on AUKF (Adaptive Unscented Kalman Filter) algorithm |
| CN107167799A (en) * | 2017-04-26 | 2017-09-15 | 南京理工大学 | Parameter adaptive maneuvering Target Tracking Algorithm based on CS Jerk models |
| CN107169478A (en) * | 2017-06-26 | 2017-09-15 | 北京工商大学 | A kind of adaptive online filtering method |
| CN107885232A (en) * | 2017-10-23 | 2018-04-06 | 上海机电工程研究所 | A kind of filtering method for how tactful maneuver tracking |
-
2018
- 2018-08-27 CN CN201810980077.8A patent/CN109388063A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5058836A (en) * | 1989-12-27 | 1991-10-22 | General Electric Company | Adaptive autopilot |
| JP2010242914A (en) * | 2009-04-08 | 2010-10-28 | Sony Corp | Vibration isolation system, vibration isolation method and program |
| CN102721951A (en) * | 2012-05-04 | 2012-10-10 | 西安电子科技大学 | Method for tracking high maneuvering target |
| CN104502851A (en) * | 2014-12-12 | 2015-04-08 | 广西科技大学 | SOC (Stress Optical Coefficient) estimation method based on AUKF (Adaptive Unscented Kalman Filter) algorithm |
| CN107167799A (en) * | 2017-04-26 | 2017-09-15 | 南京理工大学 | Parameter adaptive maneuvering Target Tracking Algorithm based on CS Jerk models |
| CN107169478A (en) * | 2017-06-26 | 2017-09-15 | 北京工商大学 | A kind of adaptive online filtering method |
| CN107885232A (en) * | 2017-10-23 | 2018-04-06 | 上海机电工程研究所 | A kind of filtering method for how tactful maneuver tracking |
Non-Patent Citations (4)
| Title |
|---|
| 刘高峰,等: "跟踪反舰导弹的机动频率自适应算法", 《计算机仿真》 * |
| 周宏仁: "机动目标"当前"统计模型与自适应跟踪算法", 《航空学报》 * |
| 田俊林,等: "仅有角度观测信息情况下目标机动自适应跟踪算法研究", 《光电工程》 * |
| 郭宁,等: "光电跟踪系统纯角度滤波器的设计", 《光学精密工程》 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110569410A (en) * | 2019-08-30 | 2019-12-13 | 广西师范大学 | A distance measurement data processing method, device and computer-readable storage medium |
| CN111523076A (en) * | 2020-03-24 | 2020-08-11 | 中国人民解放军军事科学院评估论证研究中心 | Method, device and system for calculating angular acceleration based on Fal function |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107832575B (en) | Pseudo-measurement-based maneuvering target asynchronous track fusion algorithm with feedback | |
| CN106646356B (en) | A Nonlinear System State Estimation Method Based on Kalman Filter Positioning | |
| CN105549049B (en) | A kind of adaptive Kalman filter algorithm applied to GPS navigation | |
| CN107728138B (en) | Maneuvering target tracking method based on current statistical model | |
| CN102568004A (en) | Tracking algorithm for high maneuvering targets | |
| CN102721951B (en) | Method for tracking high maneuvering target | |
| CN103383261B (en) | A kind of modified can't harm the indoor moving targets location method of Kalman filtering | |
| CN104713560B (en) | Multi-source distance measuring sensor spatial registration method based on expectation maximization | |
| CN108682023A (en) | Close coupling Unscented kalman tracking filter algorithm based on Elman neural networks | |
| CN104730537B (en) | Infrared/laser radar data fusion target tracking method based on multi-scale model | |
| CN111398984A (en) | Adaptive LiDAR point cloud correction and localization method based on sweeping robot | |
| CN104035083B (en) | A kind of radar target tracking method based on measurement conversion | |
| CN112671373B (en) | Kalman filtering self-adaptive filtering algorithm based on error control | |
| CN106647257B (en) | Feedforward control method based on orthogonal least squares | |
| CN110231620B (en) | Noise-related system tracking filtering method | |
| CN106353722A (en) | RSSI (received signal strength indicator) distance measuring method based on cost-reference particle filter | |
| CN114637956B (en) | Method for realizing target position prediction based on double Kalman filters | |
| CN112986977A (en) | Method for overcoming radar extended Kalman track filtering divergence | |
| CN102706345A (en) | Maneuvering target tracking method based on fading memory sequential detector | |
| CN113779497A (en) | A target tracking method to solve random delay and packet loss in measurement information | |
| CN108762077A (en) | A kind of mobile robot moving horizon estimation method with communication constraint | |
| CN109388063A (en) | Adaptive Kalman filter composite control method | |
| Yi et al. | A UWB location algorithm---Based on adaptive Kalman filter | |
| CN104777465B (en) | Random extended object shape and state estimation method based on B spline function | |
| CN108303095A (en) | Robust volume target cooperative localization method suitable for non-Gaussian filtering |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190226 |
|
| WD01 | Invention patent application deemed withdrawn after publication |