CN109712769B - A kind of MXene-magnetic metal composite material and preparation method thereof - Google Patents
A kind of MXene-magnetic metal composite material and preparation method thereof Download PDFInfo
- Publication number
- CN109712769B CN109712769B CN201910089264.1A CN201910089264A CN109712769B CN 109712769 B CN109712769 B CN 109712769B CN 201910089264 A CN201910089264 A CN 201910089264A CN 109712769 B CN109712769 B CN 109712769B
- Authority
- CN
- China
- Prior art keywords
- mxene
- magnetic metal
- composite material
- metal composite
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明属于纳米磁性复合材料制备领域,公开一种MXene‑磁性金属复合材料及其制备方法。由片状MXene和均匀负载在MXene上的磁性金属纳米颗粒组成。将MXene分散在由乙二醇和水组成的混合液中搅拌均匀,然后加入磁性金属盐并搅拌,接着加入NaOH调节体系pH值至8~14,随后加入水合肼,搅拌均匀;加热至60~120℃并保温0.2~8 h;冷却、分离、洗涤、干燥,即得MXene‑磁性金属复合材料。本发明以乙二醇和水作为溶剂,以MXene为载体,通过磁性阳离子选择性吸附在MXene表面,在60~120℃内加热,在水合肼和乙二醇共同的还原作用下,磁性阳离子逐步被还原成磁性纳米颗粒,最后制备的MXene‑磁性金属复合材料结合了MXene和磁性金属的特性。
The invention belongs to the field of nano-magnetic composite material preparation, and discloses an MXene-magnetic metal composite material and a preparation method thereof. It consists of sheet-like MXene and magnetic metal nanoparticles uniformly supported on MXene. Disperse MXene in a mixed solution composed of ethylene glycol and water and stir evenly, then add magnetic metal salt and stir, then add NaOH to adjust the pH of the system to 8~14, then add hydrazine hydrate, stir evenly; heat to 60~120 ℃ and heat preservation for 0.2-8 h; cooling, separating, washing and drying to obtain the MXene-magnetic metal composite material. In the invention, ethylene glycol and water are used as solvents, MXene is used as a carrier, and magnetic cations are selectively adsorbed on the surface of MXene, heated at 60-120 ° C, and under the joint reduction action of hydrazine hydrate and ethylene glycol, the magnetic cations are gradually reduced by Reduced to magnetic nanoparticles, the finally prepared MXene-magnetic metal composite combines the properties of MXene and magnetic metal.
Description
技术领域technical field
本发明属于纳米磁性复合材料制备领域,具体涉及一种MXene-磁性金属复合材料及其制备方法。The invention belongs to the field of nano-magnetic composite material preparation, in particular to an MXene-magnetic metal composite material and a preparation method thereof.
背景技术Background technique
MXene是通过从称为MAX相的层状碳化物或碳氮化物中提取“A”层而合成的二维材料。MAX相具有通式M n + 1AXn (n =1, 2, 3),其中,M代表过渡金属元素,A代表IIIA或IVA元素(例如Al,Ga,Si或Ge),X代表C和/或N。MAX相在被蚀刻成MXene的过程中,诸如-O, -OH和-F的官能团附着在MXene的表面上,而这些官能团的存在也为其他纳米颗粒的负载提供了可能。MXene具有优异的导电性,通常可以根据需要,负载不同的颗粒进行MXene的改性以提高综合性能。专利CN108091862A公开了一种MXene-金属复合材料及其制备方法,通过将金属盐和MAX分散在HF中搅拌、离心和干燥得到MXene-金属复合材料。MXene-金属复合材料的制备工艺简单,应用于锂电池的性能好,循环率高。MXenes are two-dimensional materials synthesized by extracting "A" layers from layered carbides or carbonitrides called MAX phases. The MAX phase has the general formula M n + 1 AX n (n = 1, 2, 3), where M represents a transition metal element, A represents a IIIA or IVA element (such as Al, Ga, Si or Ge), X represents C and / or N. During the etching of the MAX phase into MXene, functional groups such as -O, -OH and -F were attached to the surface of the MXene, and the presence of these functional groups also provided the possibility for the loading of other nanoparticles. MXene has excellent electrical conductivity and can be modified by loading different particles to improve the comprehensive performance. Patent CN108091862A discloses an MXene-metal composite material and a preparation method thereof. The MXene-metal composite material is obtained by dispersing metal salt and MAX in HF, stirring, centrifuging and drying. The preparation process of the MXene-metal composite material is simple, and the performance of the lithium battery is good and the cycle rate is high.
过渡金属Ni、Co纳米颗粒及其NiCo合金颗粒是典型的磁性材料,其在催化剂、电磁吸波材料、储能、功能涂层材料和高性能电子材料等领域具有着广泛的应用。但是由于磁性材料Ni、Co具有较高的Snoek极限,容易引起团聚造成材料的综合性能不佳。结合以上分析,将磁性粒子Ni和/或Co和/或NiCo合金颗粒负载在MXene上是一个理性的选择。Transition metal Ni and Co nanoparticles and their NiCo alloy particles are typical magnetic materials, which have a wide range of applications in the fields of catalysts, electromagnetic wave absorbing materials, energy storage, functional coating materials and high-performance electronic materials. However, due to the high Snoek limit of magnetic materials Ni and Co, it is easy to cause agglomeration, resulting in poor overall performance of the material. Combined with the above analysis, it is a rational choice to support magnetic particles Ni and/or Co and/or NiCo alloy particles on MXene.
发明内容SUMMARY OF THE INVENTION
本发明的目的旨在提供一种MXene-磁性金属复合材料及其制备方法。The purpose of the present invention is to provide an MXene-magnetic metal composite material and a preparation method thereof.
为实现上述目的,本发明采取的技术方案如下:To achieve the above object, the technical scheme adopted by the present invention is as follows:
一种MXene-磁性金属复合材料,由片状MXene和均匀负载在MXene上的磁性金属纳米颗粒组成。An MXene-magnetic metal composite material consists of sheet-like MXene and magnetic metal nanoparticles uniformly supported on MXene.
较好地,磁性金属纳米颗粒为Ni纳米颗粒、Co纳米颗粒或者NiCo纳米颗粒。Preferably, the magnetic metal nanoparticles are Ni nanoparticles, Co nanoparticles or NiCo nanoparticles.
较好地,所述MXene为厚度在3 nm以内且层数<5层的片层结构。Preferably, the MXene is a lamellar structure with a thickness within 3 nm and a layer number of <5 layers.
制备方法,包括如下步骤:The preparation method includes the following steps:
(1)将MXene分散在由乙二醇和水组成的混合液中搅拌均匀,然后加入磁性金属盐并搅拌,接着加入NaOH调节体系pH值至8~14,随后加入水合肼,搅拌均匀;(1) Disperse MXene in a mixed solution composed of ethylene glycol and water and stir evenly, then add magnetic metal salt and stir, then add NaOH to adjust the pH of the system to 8-14, then add hydrazine hydrate and stir evenly;
(2)将步骤(1)所得混合溶液加热至60~120 ℃并保温0.2~8 h;(2) heating the mixed solution obtained in step (1) to 60-120 °C and keeping the temperature for 0.2-8 h;
(3)将步骤(2)所得溶液冷却、分离、洗涤、干燥,即得MXene-磁性金属复合材料。(3) Cooling, separating, washing and drying the solution obtained in step (2) to obtain the MXene-magnetic metal composite material.
较好地,步骤(1)中,乙二醇和水的体积比为(1~40)∶(1~9)。Preferably, in step (1), the volume ratio of ethylene glycol and water is (1~40):(1~9).
较好地,步骤(1)中,磁性金属盐的添加量保证其所提供的磁性金属的质量与MXene的质量之间的比例为(1~9)∶(1~30)。Preferably, in step (1), the added amount of the magnetic metal salt ensures that the ratio between the mass of the magnetic metal provided by the salt and the mass of the MXene is (1~9):(1~30).
较好地,步骤(1)中,所述磁性金属盐为氯化镍、氯化钴、硝酸镍、硝酸钴、硫酸镍、硫酸钴、乙酸镍、乙酸钴中的一种或几种。Preferably, in step (1), the magnetic metal salt is one or more of nickel chloride, cobalt chloride, nickel nitrate, cobalt nitrate, nickel sulfate, cobalt sulfate, nickel acetate, and cobalt acetate.
较好地,步骤(1)中,水合肼和磁性金属盐的物质的量之比为(1~30)∶(1~3)。Preferably, in step (1), the material ratio of hydrazine hydrate and magnetic metal salt is (1~30):(1~3).
较好地,步骤(1)中,所述MXene由MAX相材料经刻蚀获得,MAX相材料的通式为:Mn + 1AXn,其中,M代表过渡金属元素;A代表IIIA或IVA元素,X代表C和/或N,n =1, 2,或3。Preferably, in step (1), the MXene is obtained by etching a MAX phase material, and the general formula of the MAX phase material is: Mn + 1 AX n , where M represents a transition metal element; A represents IIIA or IVA Element, X represents C and/or N, n = 1, 2, or 3.
较好地,MAX相材料为Ti3AlC2、Ti2AlC、Ti3AlCN或Ti2SiC等MAX相。Preferably, the MAX phase material is a MAX phase such as Ti 3 AlC 2 , Ti 2 AlC, Ti 3 AlCN or Ti 2 SiC.
MXene-磁性金属复合材料的形成原理:含磁性金属阳离子的磁性金属盐均匀地溶解在MXene分散液内,在正负电吸附作用驱动下,磁性金属阳离子选择性地吸附在负电性MXene表面;在适合的碱性环境和温度下中,利用水合肼的还原性,将磁性金属阳离子逐渐被还原成磁性金属单质,最终形成MXene-磁性金属复合材料,该过程中乙二醇较弱的还原性可以与水合肼形成协同还原作用,有助于磁性阳离子的完全还原。The formation principle of MXene-magnetic metal composites: the magnetic metal salts containing magnetic metal cations are uniformly dissolved in the MXene dispersion, and driven by the positive and negative adsorption, the magnetic metal cations are selectively adsorbed on the negatively charged MXene surface; In a suitable alkaline environment and temperature, using the reducibility of hydrazine hydrate, the magnetic metal cation is gradually reduced to a magnetic metal element, and finally the MXene-magnetic metal composite material is formed. Forms a synergistic reduction with hydrazine hydrate, contributing to the complete reduction of magnetic cations.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明以乙二醇和水作为溶剂,以MXene为载体,通过磁性阳离子选择性吸附在MXene表面,在60~120 ℃内加热,在水合肼和乙二醇共同的还原作用下,磁性阳离子逐步被还原成磁性纳米颗粒,最后制备的MXene-磁性金属复合材料结合了MXene和磁性金属的特性,兼具良好导电性和磁性能,可以广泛地应用于传感器、超级电容器、储能、催化剂、电磁波吸收及屏蔽材料等领域。1. In the present invention, ethylene glycol and water are used as solvents, MXene is used as a carrier, and the magnetic cations are selectively adsorbed on the surface of MXene, heated at 60-120 °C, and under the joint reduction of hydrazine hydrate and ethylene glycol, the magnetic cations are removed. It is gradually reduced to magnetic nanoparticles, and the finally prepared MXene-magnetic metal composites combine the properties of MXene and magnetic metals, and have both good electrical conductivity and magnetic properties, which can be widely used in sensors, supercapacitors, energy storage, catalysts, Electromagnetic wave absorption and shielding materials and other fields.
2、本发明具有投资设备少、工艺简单、成本较低等优点,并且不会对环境造成二次污染,能够对磁性纳米颗粒进行形貌和尺寸控制,适宜进行大规模的制备。2. The present invention has the advantages of less investment equipment, simple process, low cost, etc., and will not cause secondary pollution to the environment, can control the morphology and size of magnetic nanoparticles, and is suitable for large-scale preparation.
附图说明Description of drawings
图1:实施例1所得MXene-磁性金属复合材料的扫描电镜图。Figure 1: Scanning electron microscope image of the MXene-magnetic metal composite material obtained in Example 1.
图2:实施例1所得MXene和MXene-磁性金属复合材料的XRD图。Figure 2: XRD patterns of MXene and MXene-magnetic metal composites obtained in Example 1.
图3:实施例1所得MXene-磁性金属复合材料的电磁波屏蔽性能图。Fig. 3: The electromagnetic wave shielding performance diagram of the MXene-magnetic metal composite material obtained in Example 1.
图4:实施例2所得MXene-磁性金属复合材料的扫描电镜图。Figure 4: Scanning electron microscope image of the MXene-magnetic metal composite material obtained in Example 2.
图5:实施例4所得MXene-磁性金属复合材料的扫描电镜图。Figure 5: Scanning electron microscope image of the MXene-magnetic metal composite obtained in Example 4.
图6:实施例5所得MXene-磁性金属复合材料的扫描电镜图。Figure 6: Scanning electron microscope image of the MXene-magnetic metal composite material obtained in Example 5.
图7:实施例6所得MXene-磁性金属复合材料的扫描电镜图。Figure 7: Scanning electron microscope image of the MXene-magnetic metal composite material obtained in Example 6.
图8:对照例1所得MXene-磁性金属复合材料的扫描电镜图。Figure 8: Scanning electron microscope image of the MXene-magnetic metal composite obtained in Comparative Example 1.
图9:对照例2所得MXene-磁性金属复合材料的XRD图。Figure 9: XRD pattern of the MXene-magnetic metal composite obtained in Comparative Example 2.
具体实施方式Detailed ways
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。The technical solutions of the present invention will be further described in detail below with reference to the embodiments, but the protection scope of the present invention is not limited thereto.
实施例1Example 1
一种MXene-磁性金属复合材料的制备方法,步骤如下:A preparation method of MXene-magnetic metal composite material, the steps are as follows:
(1)将2 g MAX相材料置于40 mL盐酸(质量浓度为40%)和2 g氟化锂混合液中,35℃下刻蚀24 h,洗涤、干燥,制得MXene;(1) Place 2 g of MAX phase material in a mixture of 40 mL of hydrochloric acid (40% by mass) and 2 g of lithium fluoride, etch at 35 °C for 24 h, wash and dry to obtain MXene;
(2)将步骤(1)制备的MXene 80 mg分散在乙二醇100 mL和去离子水9 mL的混合液中搅拌均匀,加入1.18 g六水合氯化镍(NiCl2·6H2O)并搅拌,接着加入NaOH调节体系pH值为10,随后加入5 mL水合肼,搅拌均匀;(2) Disperse 80 mg of MXene prepared in step (1) in a mixture of 100 mL of ethylene glycol and 9 mL of deionized water, stir well, add 1.18 g of nickel chloride hexahydrate (NiCl 2 6H 2 O) and Stir, then add NaOH to adjust the pH of the system to 10, then add 5 mL of hydrazine hydrate, and stir evenly;
(3)将步骤(2)所得混合溶液加热至80 ℃并保温1 h;(3) The mixed solution obtained in step (2) was heated to 80 °C and kept for 1 h;
(4)将步骤(3)所得的溶液冷却,分离,分别去离子水洗涤和乙醇洗涤多次,干燥,即得MXene-磁性金属复合材料(计为MXene-Ni)。(4) The solution obtained in step (3) is cooled, separated, washed with deionized water and ethanol for several times, and dried to obtain MXene-magnetic metal composite material (counted as MXene-Ni).
本实施例制备的MXene-磁性金属复合材料的扫描电镜图如图1所示。由图1可知:Ni颗粒被均匀地负载在MXene上,MXene呈薄纱状,说明MXene被剥离地很成功;结果显示:所得MXene-磁性金属复合材料被成功制备,Ni颗粒大小大约在50~200 nm之间。The scanning electron microscope image of the MXene-magnetic metal composite prepared in this example is shown in FIG. 1 . It can be seen from Figure 1 that the Ni particles are uniformly supported on the MXene, and the MXene is in the shape of a gauze, indicating that the MXene has been successfully peeled off. between 200 nm.
本实施例制备的MXene和MXene-磁性金属复合材料的XRD图如图2所示。图2a显示的是MXene的XRD图,可知:本发明产物纯MXene的XRD峰符合已报道的少层或单层的MXene,反映了本发明所进行的步骤(1)很成功,有助于MXene-磁性金属复合材料的合成。图2b显示的是MXene-磁性金属复合材料的XRD图,从图中可以发现:MXene的峰并没有太大的变化,同时,从图2b中还可以发现金属Ni的主要衍射峰,包括(111)、(200)和(220)晶面等;此外,无其他杂峰的出现,说明产物的纯净度复合要求。XRD结果表明:MXene-磁性金属复合材料经本发明方法可被容易地地制备。The XRD patterns of the MXene and MXene-magnetic metal composites prepared in this example are shown in FIG. 2 . Figure 2a shows the XRD pattern of MXene. It can be seen that the XRD peaks of pure MXene of the present invention are consistent with the reported few-layer or single-layer MXene, which reflects that the step (1) carried out in the present invention is very successful, which is helpful for MXene. - Synthesis of magnetic metal composites. Figure 2b shows the XRD pattern of the MXene-magnetic metal composite material. It can be found from the figure that the peaks of MXene do not change much. At the same time, the main diffraction peaks of metal Ni can also be found in Figure 2b, including (111 ), (200) and (220) crystal planes, etc.; in addition, there are no other impurity peaks, indicating the compound requirements of the purity of the product. XRD results show that: MXene-magnetic metal composites can be easily prepared by the method of the present invention.
将本实施例制备的MXene-磁性金属复合材料和石蜡按质量比3∶2共混,压成内径为3.01 mm、外径为7 mm、厚度1.4 mm的环状,用网络矢量分析仪(VNA, Agilent N5234A )测试其电磁波屏蔽性能,结果如图3所示。在2-18 GHz频率范围内,其屏蔽性能维持在30dB,说明本实施例制备的MXene-磁性金属复合材料的电磁波屏蔽性能优异。The MXene-magnetic metal composite material prepared in this example and paraffin were blended in a mass ratio of 3:2, and pressed into a ring with an inner diameter of 3.01 mm, an outer diameter of 7 mm, and a thickness of 1.4 mm. , Agilent N5234A) to test its electromagnetic wave shielding performance, the results are shown in Figure 3. In the frequency range of 2-18 GHz, its shielding performance is maintained at 30 dB, indicating that the MXene-magnetic metal composite prepared in this example has excellent electromagnetic wave shielding performance.
实施例2Example 2
一种MXene-磁性金属复合材料的制备方法,步骤如下:A preparation method of MXene-magnetic metal composite material, the steps are as follows:
(1)将1 g MAX相材料置于20 mL盐酸(质量浓度为40%)和1 g氟化锂混合液中,35℃下刻蚀25 h,洗涤、干燥,制得MXene;(1) 1 g of MAX phase material was placed in a mixture of 20 mL of hydrochloric acid (40% by mass) and 1 g of lithium fluoride, etched at 35 °C for 25 h, washed and dried to obtain MXene;
(2)将步骤(1)制备的MXene 50 mg分散在乙二醇48 mL和去离子水6 mL的混合液中搅拌均匀,加入0.59 g六水合氯化镍(NiCl2·6H2O)并搅拌,接着加入NaOH调节体系pH值为11,随后加入2.5 mL水合肼,搅拌均匀;(2) Disperse 50 mg of MXene prepared in step (1) in a mixture of 48 mL of ethylene glycol and 6 mL of deionized water, stir well, add 0.59 g of nickel chloride hexahydrate (NiCl 2 6H 2 O), and Stir, then add NaOH to adjust the pH of the system to 11, then add 2.5 mL of hydrazine hydrate, and stir evenly;
(3)将步骤(2)所得混合溶液加热至78 ℃并保温1 h;(3) The mixed solution obtained in step (2) was heated to 78 °C and kept for 1 h;
(4)将步骤(3)所得的溶液冷却,分离,分别去离子水洗涤和乙醇洗涤多次,干燥,即得MXene-磁性金属复合材料(计为MXene-Ni)。(4) The solution obtained in step (3) is cooled, separated, washed with deionized water and ethanol for several times, and dried to obtain MXene-magnetic metal composite material (counted as MXene-Ni).
本实施例制备的MXene-磁性金属复合材料的扫描电镜图如图4所示,结果显示:磁性金属Ni纳米颗粒(直径100-300 nm)均匀地浮在MXene表面,SEM结果证实MXene-磁性金属复合材料的成功制备。The scanning electron microscope image of the MXene-magnetic metal composite prepared in this example is shown in Figure 4. The results show that the magnetic metal Ni nanoparticles (100-300 nm in diameter) are evenly floating on the surface of MXene, and the SEM results confirm that the MXene-magnetic metal Successful preparation of composite materials.
实施例3Example 3
一种MXene-磁性金属复合材料的制备方法,步骤如下:A preparation method of MXene-magnetic metal composite material, the steps are as follows:
(1)将1 g MAX相材料置于20 mL盐酸(质量浓度为40%)和1 g氟化锂混合液中,35℃下刻蚀25 h,洗涤、干燥,制得MXene;(1) 1 g of MAX phase material was placed in a mixture of 20 mL of hydrochloric acid (40% by mass) and 1 g of lithium fluoride, etched at 35 °C for 25 h, washed and dried to obtain MXene;
(2)将步骤(1)制备的MXene 100 mg分散在乙二醇51 mL和水5 mL的混合液中搅拌均匀,加入0.5 g六水合硝酸镍(Ni(NO3)2·6H2O)并搅拌,接着加入NaOH调节体系pH值为10,随后加入2 mL水合肼,搅拌均匀;(2) Disperse 100 mg of MXene prepared in step (1) in a mixture of 51 mL of ethylene glycol and 5 mL of water and stir evenly, and add 0.5 g of nickel nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) And stir, then add NaOH to adjust the pH value of the system to 10, then add 2 mL of hydrazine hydrate, stir evenly;
(3)将步骤(2)所得混合溶液加热至78 ℃并保温1 h;(3) The mixed solution obtained in step (2) was heated to 78 °C and kept for 1 h;
(4)将步骤(3)所得的溶液冷却,分离,分别去离子水洗涤和乙醇洗涤多次,干燥,即得MXene-磁性金属复合材料(计为MXene-Ni)。(4) The solution obtained in step (3) is cooled, separated, washed with deionized water and ethanol for several times, and dried to obtain MXene-magnetic metal composite material (counted as MXene-Ni).
实施例4Example 4
一种MXene-磁性金属复合材料的制备方法,步骤如下:A preparation method of MXene-magnetic metal composite material, the steps are as follows:
(1)将2 g MAX相材料置于40 mL盐酸(质量浓度为40%)和2 g氟化锂混合液中,35℃下刻蚀24 h,洗涤、干燥,制得MXene;(1) Place 2 g of MAX phase material in a mixture of 40 mL of hydrochloric acid (40% by mass) and 2 g of lithium fluoride, etch at 35 °C for 24 h, wash and dry to obtain MXene;
(2)将步骤(1)制备的MXene 80 mg分散在乙二醇100 mL和去离子水9 mL的混合液中搅拌均匀,加入1.18 g六水合氯化钴(CoCl2·6H2O)并搅拌,接着加入NaOH调节体系pH值为10,随后加入5 mL水合肼,搅拌均匀;(2) Disperse 80 mg of MXene prepared in step (1) in a mixture of 100 mL of ethylene glycol and 9 mL of deionized water, stir well, add 1.18 g of cobalt chloride hexahydrate (CoCl 2 6H 2 O), and Stir, then add NaOH to adjust the pH of the system to 10, then add 5 mL of hydrazine hydrate, and stir evenly;
(3)将步骤(2)所得混合溶液加热至80 ℃并保温1 h;(3) The mixed solution obtained in step (2) was heated to 80 °C and kept for 1 h;
(4)将步骤(3)所得的溶液冷却,分离,分别去离子水洗涤和乙醇洗涤多次,干燥,即得MXene-磁性金属复合材料(计为MXene-Co)。(4) The solution obtained in step (3) is cooled, separated, washed with deionized water and ethanol for several times, and dried to obtain MXene-magnetic metal composite material (counted as MXene-Co).
本实施例制备的MXene-磁性金属复合材料的扫描电镜图如图5所示,图中揭示Co纳米粒子均匀分布于MXene表面,说明MXene-Co复合材料可利用本发明方法成功地制备。The SEM image of the MXene-magnetic metal composite material prepared in this example is shown in Figure 5, which reveals that Co nanoparticles are uniformly distributed on the surface of MXene, indicating that the MXene-Co composite material can be successfully prepared by the method of the present invention.
实施例5Example 5
一种MXene-磁性金属复合材料的制备方法,步骤如下:A preparation method of MXene-magnetic metal composite material, the steps are as follows:
(1)将2 g MAX相材料置于40 mL盐酸(质量浓度为40%)和2 g氟化锂混合液中,35℃下刻蚀24 h,洗涤、干燥,制得MXene;(1) Place 2 g of MAX phase material in a mixture of 40 mL of hydrochloric acid (40% by mass) and 2 g of lithium fluoride, etch at 35 °C for 24 h, wash and dry to obtain MXene;
(2)将步骤(1)制备的MXene 80 mg分散在乙二醇100 mL和去离子水9 mL的混合液中搅拌均匀,加入0.6 g六水合氯化钴(CoCl2·6H2O)和0.6g六水合氯化镍(NiCl2·6H2O)并搅拌,接着加入NaOH调节体系pH值为10,随后加入5 mL水合肼,搅拌均匀;(2) Disperse 80 mg of MXene prepared in step (1) in a mixture of 100 mL of ethylene glycol and 9 mL of deionized water and stir well, add 0.6 g of cobalt chloride hexahydrate (CoCl 2 6H 2 O) and 0.6g of nickel chloride hexahydrate (NiCl 2 ·6H 2 O) was stirred, then NaOH was added to adjust the pH of the system to 10, then 5 mL of hydrazine hydrate was added, and the mixture was uniformly stirred;
(3)将步骤(2)所得混合溶液加热至80 ℃并保温1 h;(3) The mixed solution obtained in step (2) was heated to 80 °C and kept for 1 h;
(4)将步骤(3)所得的溶液冷却,分离,进行去离子水洗涤和乙醇洗涤多次,干燥,即得MXene-磁性金属复合材料(计为MXene-NiCo)。(4) The solution obtained in step (3) is cooled, separated, washed with deionized water and ethanol for several times, and dried to obtain the MXene-magnetic metal composite material (counted as MXene-NiCo).
本实施例制备的MXene-磁性金属复合材料的扫描电镜图如图6所示,图中揭示NiCo纳米粒子均匀分布于MXene表面,说明MXene-Co复合材料可利用本发明方法成功地制备。The scanning electron microscope image of the MXene-magnetic metal composite material prepared in this example is shown in Figure 6, which reveals that the NiCo nanoparticles are uniformly distributed on the surface of MXene, indicating that the MXene-Co composite material can be successfully prepared by the method of the present invention.
实施例6Example 6
一种MXene-磁性金属复合材料的制备方法,步骤如下:A preparation method of MXene-magnetic metal composite material, the steps are as follows:
(1)将2 g MAX相材料置于40 mL盐酸(质量浓度为40%)和2 g氟化锂混合液中,35℃下刻蚀24 h,洗涤、干燥,制得MXene;(1) Place 2 g of MAX phase material in a mixture of 40 mL of hydrochloric acid (40% by mass) and 2 g of lithium fluoride, etch at 35 °C for 24 h, wash and dry to obtain MXene;
(2)将步骤(1)制备的MXene 80 mg分散在乙二醇100 mL和去离子水9 mL的混合液中搅拌均匀,加入1 g六水合氯化镍(NiCl2·6H2O)并搅拌,接着加入NaOH调节体系pH值为10,随后加入5 mL水合肼,搅拌均匀;(2) Disperse 80 mg of MXene prepared in step (1) in a mixture of 100 mL of ethylene glycol and 9 mL of deionized water, stir well, add 1 g of nickel chloride hexahydrate (NiCl 2 6H 2 O) and Stir, then add NaOH to adjust the pH of the system to 10, then add 5 mL of hydrazine hydrate, and stir evenly;
(3)将步骤(2)所得混合溶液加热至80 ℃并保温1 h;(3) The mixed solution obtained in step (2) was heated to 80 °C and kept for 1 h;
(4)将步骤(3)所得的溶液冷却,分离,进行去离子水洗涤和乙醇洗涤多次,干燥,即得MXene-磁性金属复合材料(计为MXene-Ni)。(4) The solution obtained in step (3) is cooled, separated, washed with deionized water and ethanol for several times, and dried to obtain MXene-magnetic metal composite material (counted as MXene-Ni).
本实施例制备的MXene-磁性金属复合材料的扫描电镜图如图7所示,MXene-磁性金属复合材料也被成功地制备。The scanning electron microscope image of the MXene-magnetic metal composite prepared in this example is shown in Figure 7, and the MXene-magnetic metal composite was also successfully prepared.
实施例7Example 7
一种MXene-磁性金属复合材料的制备方法,步骤如下:A preparation method of MXene-magnetic metal composite material, the steps are as follows:
(1)将1 g MAX相材料置于20 mL盐酸(质量浓度为40%)和1 g氟化锂混合液中,35℃下刻蚀24 h,洗涤、干燥,制得MXene;(1) 1 g of MAX phase material was placed in a mixture of 20 mL of hydrochloric acid (40% by mass) and 1 g of lithium fluoride, etched at 35 °C for 24 h, washed and dried to obtain MXene;
(2)将步骤(1)制备的MXene 50 mg分散在乙二醇48 mL和去离子水6 mL的混合液中搅拌均匀,加入0.3 g六水合氯化钴(CoCl2·6H2O)和0.3g六水合氯化镍(NiCl2·6H2O)并搅拌,接着加入NaOH调节体系pH值为12,随后加入2.5 mL水合肼,搅拌均匀;(2) Disperse 50 mg of MXene prepared in step (1) in a mixture of 48 mL of ethylene glycol and 6 mL of deionized water and stir well, add 0.3 g of cobalt chloride hexahydrate (CoCl 2 6H 2 O) and 0.3 g of nickel chloride hexahydrate (NiCl 2 ·6H 2 O) was stirred, then NaOH was added to adjust the pH of the system to 12, then 2.5 mL of hydrazine hydrate was added, and the mixture was stirred evenly;
(3)将步骤(2)所得混合溶液加热至78 ℃并保温1 h;(3) The mixed solution obtained in step (2) was heated to 78 °C and kept for 1 h;
(4)将步骤(3)所得的溶液冷却、分离、进行去离子水洗涤和乙醇洗涤多次,干燥,即得MXene-磁性金属复合材料(计为MXene-NiCo)。(4) The solution obtained in step (3) is cooled, separated, washed with deionized water and ethanol for several times, and dried to obtain the MXene-magnetic metal composite material (counted as MXene-NiCo).
本发明是利用磁性金属纳米颗粒对MXene进行改性,以提高MXene-磁性金属复合材料的综合性能,扩大复合材料的应用范围。技术的关键在于磁性金属纳米颗粒的粒径均匀,磁性金属纳米颗粒能够均匀负载在MXene上,此外MXene由于在溶液中有水合肼的保护作用,即使在高温作用下仍能保证其不被氧化。然而对于磁性金属纳米颗粒负载MXene是十分困难的,发明人通过不懈的努力,创造发明,最终才得出了本发明的关键技术。当然,根据本发明的适应范围,这种制备的实例也是不胜枚举的。The invention uses magnetic metal nanoparticles to modify MXene, so as to improve the comprehensive performance of the MXene-magnetic metal composite material and expand the application range of the composite material. The key to the technology is that the particle size of the magnetic metal nanoparticles is uniform, and the magnetic metal nanoparticles can be uniformly loaded on MXene. In addition, MXene can not be oxidized even at high temperature due to the protective effect of hydrazine hydrate in the solution. However, it is very difficult for the magnetic metal nanoparticles to load MXene, and the inventor finally came up with the key technology of the present invention through unremitting efforts. Of course, the examples of such preparations are too numerous to enumerate according to the scope of application of the present invention.
对照例1Comparative Example 1
与实施例1的区别在于:步骤(2)中,去离子水的用量为0 mL,即不添加去离子水;其它均同实施例1。The difference from Example 1 is: in step (2), the amount of deionized water is 0 mL, that is, no deionized water is added;
本对照例制备的MXene-磁性金属复合材料的扫描电镜图如图8所示,结果显示:Ni纤维与MXene共存,MXene上并没有被成功均匀地负载磁性Ni纳米颗粒。Ni纤维居多,MXene也出现了团聚现象,不利于磁性Ni纳米颗粒均匀负载在MXene上。通过实施例1和对照例1相对比,可以得出结论:本发明的制备方案为磁性Ni纳米颗粒均匀地负载MXene提供了很好的技术,操作简单成本低,是一种十分具有应用前景的发明。The scanning electron microscope image of the MXene-magnetic metal composite prepared in this control example is shown in Figure 8. The results show that: Ni fibers and MXene coexist, and the magnetic Ni nanoparticles are not successfully and uniformly supported on MXene. Ni fibers are in the majority, and MXene also has agglomeration phenomenon, which is not conducive to the uniform loading of magnetic Ni nanoparticles on MXene. By comparing Example 1 and Comparative Example 1, it can be concluded that the preparation scheme of the present invention provides a good technology for uniformly loading MXene on magnetic Ni nanoparticles, is simple in operation and low in cost, and is a very promising application. invention.
对照例2Comparative Example 2
与实施例1的区别在于:步骤(2)中,乙二醇的用量为0 mL,即不添加乙二醇;其它均同实施例1。The difference with Example 1 is: in step (2), the consumption of ethylene glycol is 0 mL, that is, no ethylene glycol is added;
本对照例制备的MXene-磁性金属复合材料(计为MXene-Ni@ Ni(OH)2)的XRD图如图9所示,结果显示:产物中有Ni(OH)2的存在,不利于Ni离子的还原,而是形成Ni(OH)2沉淀负载在MXene上,并不能形成均匀的磁性Ni纳米颗粒均匀负载在MXene上。通过实施例1和对照例2相对比,可以得出结论:在一定的碱性条件下,需要提供乙二醇的存在,和去离子水进行混溶,才能将Ni离子完全转化为磁性Ni纳米颗粒。The XRD pattern of the MXene-magnetic metal composite (calculated as MXene-Ni@Ni(OH) 2 ) prepared in this control example is shown in Figure 9. The results show that the existence of Ni(OH) 2 in the product is not conducive to Ni(OH) 2 The reduction of ions, but the formation of Ni(OH) 2 precipitation loaded on MXene, can not form uniform magnetic Ni nanoparticles uniformly loaded on MXene. By comparing Example 1 and Comparative Example 2, it can be concluded that under certain alkaline conditions, it is necessary to provide the presence of ethylene glycol and be miscible with deionized water to completely convert Ni ions into magnetic Ni nanoparticles. particles.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910089264.1A CN109712769B (en) | 2019-01-30 | 2019-01-30 | A kind of MXene-magnetic metal composite material and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910089264.1A CN109712769B (en) | 2019-01-30 | 2019-01-30 | A kind of MXene-magnetic metal composite material and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109712769A CN109712769A (en) | 2019-05-03 |
| CN109712769B true CN109712769B (en) | 2020-11-03 |
Family
ID=66263249
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910089264.1A Active CN109712769B (en) | 2019-01-30 | 2019-01-30 | A kind of MXene-magnetic metal composite material and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109712769B (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111470543A (en) * | 2019-01-24 | 2020-07-31 | 中国科学院宁波材料技术与工程研究所 | Composite material of magnetic element composite magnetic MAX phase, its preparation method and application |
| CN110283570B (en) * | 2019-07-17 | 2022-03-25 | 湖南工程学院 | FeCo @ MXene core-shell structure composite wave-absorbing material and preparation method thereof |
| CN110499142A (en) * | 2019-09-25 | 2019-11-26 | 深圳大学 | A kind of high-efficiency shielding electromagnetic interference MXene/metal ion composite material and preparation method thereof |
| CN110628155B (en) * | 2019-09-27 | 2022-01-04 | 中国科学院深圳先进技术研究院 | MXene/metal composite aerogel, preparation method and application thereof, and thermal interface material comprising MXene/metal composite aerogel |
| CN110683586A (en) * | 2019-10-25 | 2020-01-14 | 南昌大学 | Method for synthesizing metal oxide supported transition metal carbide in one step |
| CN110739429A (en) * | 2019-10-29 | 2020-01-31 | 肇庆市华师大光电产业研究院 | Preparation method of functional interlayer of lithium-sulfur battery |
| CN112961723B (en) * | 2021-02-26 | 2022-07-01 | 陕西科技大学 | MXene @ COFs/liquid metal-based lubricating additive, and preparation method, application and composite material thereof |
| CN113380945B (en) * | 2021-05-21 | 2022-10-14 | 电子科技大学 | Magnetic heterostructure based on electric field regulation and control and preparation method thereof |
| CN113316379B (en) * | 2021-05-26 | 2022-09-02 | 湖南工程学院 | Nano composite structure wave absorber material, preparation method and application |
| CN113429820B (en) * | 2021-06-25 | 2022-04-26 | 西安热工研究院有限公司 | Oriented Mxene/Co conductive filler for anti-corrosion coating and preparation method thereof |
| CN113462366B (en) * | 2021-07-23 | 2023-04-18 | 苏州双碳新材料有限公司 | Preparation method of optical energy and magnetic energy dual-drive composite phase change material |
| CN113462367B (en) * | 2021-07-23 | 2023-03-21 | 苏州双碳新材料有限公司 | Optical energy and magnetic energy dual-drive composite phase change material |
| CN114478148B (en) * | 2022-01-10 | 2022-07-19 | 北京理工大学 | Blasting multi-mechanism coupling type energetic electromagnetic damage cloud cluster and preparation method and application thereof |
| CN115036141B (en) * | 2022-07-20 | 2023-09-01 | 山东理工大学 | CoNi-LDH/MXene grid-like array structure composite material and its preparation method and application |
| CN117840446B (en) * | 2023-12-21 | 2025-01-28 | 南京航空航天大学 | A method for preparing single metal Ni nanosphere electromagnetic absorbing material |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105854913A (en) * | 2016-04-07 | 2016-08-17 | 河南理工大学 | Two-dimension carbide loaded metal simple substance nano-powder, and preparation method and application thereof |
| CN108417406A (en) * | 2018-01-30 | 2018-08-17 | 哈尔滨工业大学 | A kind of Ti3C2MXene-Co composite material and preparation method thereof |
| CN108855166A (en) * | 2018-06-20 | 2018-11-23 | 郑州轻工业学院 | A kind of loaded catalyst and preparation method thereof, application |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9193595B2 (en) * | 2011-06-21 | 2015-11-24 | Drexel University | Compositions comprising free-standing two-dimensional nanocrystals |
| CN103922289B (en) * | 2014-04-08 | 2015-08-12 | 河南理工大学 | A kind of two dimensional crystal compound complex metal oxides nano-powder and preparation thereof, application |
| KR102373455B1 (en) * | 2015-09-24 | 2022-03-11 | 삼성전자주식회사 | MXene nanosheet and Manufacturing method thereof |
| CN106971854A (en) * | 2017-04-18 | 2017-07-21 | 西安交通大学 | The two-dimensional layer Ti of transition metal oxide nano particle doping3C2Film nano composite material and preparation method thereof |
| CN108091862B (en) * | 2017-12-15 | 2019-09-03 | 山东大学 | A kind of MXene-metal composite material and preparation method thereof |
-
2019
- 2019-01-30 CN CN201910089264.1A patent/CN109712769B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105854913A (en) * | 2016-04-07 | 2016-08-17 | 河南理工大学 | Two-dimension carbide loaded metal simple substance nano-powder, and preparation method and application thereof |
| CN108417406A (en) * | 2018-01-30 | 2018-08-17 | 哈尔滨工业大学 | A kind of Ti3C2MXene-Co composite material and preparation method thereof |
| CN108855166A (en) * | 2018-06-20 | 2018-11-23 | 郑州轻工业学院 | A kind of loaded catalyst and preparation method thereof, application |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109712769A (en) | 2019-05-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109712769B (en) | A kind of MXene-magnetic metal composite material and preparation method thereof | |
| Cai et al. | Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers | |
| Feng et al. | Development of Fe/Fe3O4@ C composite with excellent electromagnetic absorption performance | |
| Ding et al. | Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings | |
| ur Rehman et al. | Carbonized zeolitic imidazolate framework-67/polypyrrole: a magnetic-dielectric interface for enhanced microwave absorption properties | |
| CN104610913B (en) | A kind of preparation method of the microwave absorbing material with MOFs molecular structure as template | |
| CN102093840B (en) | Carbonized bacterial cellulose/magnetic composite wave-absorbing material and preparation method thereof | |
| CN108154984B (en) | A porous ferric oxide/carbon nanorod-shaped electromagnetic wave absorbing material and its preparation method and application | |
| CN103274396A (en) | Preparation method of grapheme and ferriferrous oxide composite nanometer material | |
| CN105436498B (en) | A kind of porous nickel carbon composite nano-microsphere electromagnetic wave absorbent material and preparation method and application | |
| CN106496554B (en) | A kind of preparation method of graphene/Fe3O4/ polyaniline ternary Wave suction composite materials | |
| CN107949266A (en) | A kind of three-dimensional porous flower-like structure cobalt/carbon nano composite electromagnetic wave absorption material and preparation method thereof | |
| CN115491177A (en) | A kind of MOF-derived carbon-based magnetic nanocomposite electromagnetic wave absorbing material and preparation method thereof | |
| CN102381844A (en) | Method for modifying hollow glass microspheres by chemical precipitation process | |
| CN110577820A (en) | A kind of porous structure Ni/NiO-C composite material and its preparation method and application | |
| CN109054741B (en) | Preparation method of cobalt-nickel alloy particle/reduced graphene composite material with sandwich structure | |
| CN112939083A (en) | Molybdenum disulfide/ferroferric oxide/graphene nanosheet composite wave absorber and preparation method thereof | |
| CN105923625A (en) | Method for preparing single-oxide uniformly-loaded graphene quantum dots | |
| CN101521046A (en) | Graphite sheet surface load magnetic alloy particle wave-absorbing material and preparation method thereof | |
| CN103432973B (en) | A kind of preparation method of graphene-ferric oxide nano-particle composite material | |
| CN114806255A (en) | Magnetic composite wave-absorbing material based on industrial waste rice hull carbon and preparation method thereof | |
| CN107338023B (en) | A kind of nanocomposite microwave absorber and preparation method thereof | |
| CN116656318A (en) | A Co-ZIF-L-based derivative absorbing material and its preparation method | |
| CN104883868B (en) | A kind of preparation method being electromagnetically shielded with magnetic material/graphene paper | |
| CN114614272A (en) | MXene/Co/C composite wave-absorbing material derived from MOF and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |