[go: up one dir, main page]

CN109739385B - Method and device for touch finger identification based on capacitance signal and touch screen - Google Patents

Method and device for touch finger identification based on capacitance signal and touch screen Download PDF

Info

Publication number
CN109739385B
CN109739385B CN201910015667.1A CN201910015667A CN109739385B CN 109739385 B CN109739385 B CN 109739385B CN 201910015667 A CN201910015667 A CN 201910015667A CN 109739385 B CN109739385 B CN 109739385B
Authority
CN
China
Prior art keywords
finger
capacitance
data
distribution
fingers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910015667.1A
Other languages
Chinese (zh)
Other versions
CN109739385A (en
Inventor
陈成
詹一飞
杨锋
侯友山
胡宇飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Hefei BOE Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Hefei BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Hefei BOE Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201910015667.1A priority Critical patent/CN109739385B/en
Publication of CN109739385A publication Critical patent/CN109739385A/en
Application granted granted Critical
Publication of CN109739385B publication Critical patent/CN109739385B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The invention discloses a method and a device for identifying a touch finger based on a capacitance signal and a touch screen, wherein the method comprises the following steps: acquiring capacitance distribution acquisition data when a touch screen is pressed by multiple fingers; determining capacitance distribution data generated by the outer finger according to the fringe capacitance data in the acquired data; and after the capacitance distribution data generated by the outer fingers are stripped from the collected data, identifying the middle finger for touch control. By applying the method and the device, the problems of poor touch effect, such as broken lines, jitter and the like, caused by small inter-finger distance or signal disturbance during multi-finger touch can be solved, so that the touch effect and the user experience of a touch product are improved.

Description

基于电容信号进行触控手指识别的方法和装置及触摸屏Method and device for touch finger recognition based on capacitive signal and touch screen

技术领域technical field

本发明涉及触控技术领域,特别是指一种基于电容信号进行触控手指识别的方法和装置及触摸屏。The present invention relates to the technical field of touch control, and in particular, to a method and device for recognizing a touch finger based on a capacitive signal and a touch screen.

背景技术Background technique

电子设备已被广泛使用并可提供各式各样的功能,包括电话通讯、电子讯息传递、处理多媒体信息以及存取网络等功能。随着科技的发展,电子设备朝向更多元且人性化操作的趋势发展。Electronic equipment has been widely used and can provide a variety of functions, including telephony communication, electronic messaging, processing multimedia information, and accessing networks. With the development of science and technology, electronic devices are developing towards a trend of more diverse and user-friendly operation.

为了方便输入信息或减少电子设备尺寸,现今许多电子设备使用触控面板作为使用者界面,例如笔记型计算机的触控面板或是智能型手机的触控屏幕。使用者利用手指或是触控笔接触触控面板,以输入讯号至电子设备。传统上单指单点的手势相当有限,因此后来发展出多指多点的技术。具有多指多点功能的触控面板可以同时辨识感应多个触控点以使输入有更多变化。In order to facilitate inputting information or reduce the size of electronic devices, many electronic devices nowadays use touch panels as user interfaces, such as touch panels of notebook computers or touch screens of smart phones. The user touches the touch panel with a finger or a stylus to input signals to the electronic device. Traditionally, single-finger and single-point gestures were quite limited, so multi-finger, multi-point technology was developed later. The touch panel with multi-finger and multi-point function can recognize and sense multiple touch points at the same time to make the input more varied.

在实际应用中,本发明的发明人发现,现有的触控产品在多指同时划线的时候,有时由于指间距离较近,而出现类似断线或者抖动的状况,影响用户体验乃至产品性能。例如,多指划线操作时的效果示意图如图1所示,多个手指同时工作划线;多指操作时由于距离较小或者信号干扰过大等原因造成的断线或抖动的现象,导致划线不理想的示意图如图2所示。In practical applications, the inventors of the present invention found that when the existing touch products draw lines with multiple fingers at the same time, sometimes due to the short distance between the fingers, a situation similar to disconnection or shaking occurs, which affects the user experience and even the product. performance. For example, the schematic diagram of the effect of multi-finger scribing operation is shown in Figure 1. Multiple fingers work at the same time to scribble; A schematic diagram of suboptimal scribing is shown in Figure 2.

本发明的发明人对现有技术进行分析,发现原因在于,电容类触控在多指划线或工作时,指间距离较近时,由于每一个手指都会向四周积累电容值,而导致不同的手指产生的信号存在互相干扰的问题,从而无法正确的识别信号,导致断线和干扰等问题,影响用户操作以及产品的性能。例如,如图3所示,实际操作时,多指操作会造成手指下的电容会引起以中心向四周的电容值的改变,这使得多指操作且手指距离较近的时候,就会产生手指间的电容值的重叠干扰。图4中利用实际数值展示了一个三指划线操作时的电容值分布数据,从中可以看出,由于相互叠加的电容值,导致三指划线操作实际上只有两个峰值电容的存在,导致误判为只有两个手指进行触控操作,从而产生类似断线和抖动问题的发生,影响用户体验乃至产品性能。The inventor of the present invention analyzes the prior art and finds that the reason is that when the capacitive touch is multi-finger scribing or working, when the distance between the fingers is short, each finger will accumulate capacitance values around, resulting in different There is a problem of mutual interference between the signals generated by the fingers, so that the signals cannot be correctly identified, resulting in problems such as disconnection and interference, which affect the user's operation and the performance of the product. For example, as shown in Figure 3, in actual operation, the multi-finger operation will cause the capacitance under the finger to change the capacitance value from the center to the surrounding. Overlapping interference between capacitance values. Figure 4 shows the capacitance value distribution data of a three-finger scribing operation using actual values. It can be seen from this that due to the superimposed capacitance values, the three-finger scribing operation actually only has two peak capacitances, resulting in The misjudgment is that only two fingers are used for touch operation, resulting in problems such as disconnection and jitter, which affect the user experience and even product performance.

发明内容SUMMARY OF THE INVENTION

本发明提出了一种基于电容信号进行触控手指识别的方法和装置及触摸屏,改善多指触控时由于指间距离较小或者信号扰动导致的较差触控效果,例如断线和抖动等问题,以提升触控产品的触控效果和用户体验。The present invention proposes a method and device for recognizing a touch finger based on a capacitive signal and a touch screen, which can improve the poor touch effect caused by the small distance between fingers or signal disturbance during multi-finger touch, such as disconnection and jitter, etc. to improve the touch effect and user experience of touch products.

基于上述目的,本发明提供一种基于电容信号进行触控手指识别的方法,包括:Based on the above purpose, the present invention provides a method for identifying a touch finger based on a capacitive signal, including:

获取多指按压触摸屏时的电容分布采集数据;Obtain the capacitance distribution collection data when multiple fingers press the touch screen;

根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据;Determine the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data;

从所述采集数据中剥离所述外侧手指产生的电容分布数据后,识别触控的中间手指。After stripping the capacitance distribution data generated by the outer finger from the collected data, the middle finger that touches is identified.

其中,所述外侧手指具体为上/下侧手指;以及Wherein, the outer fingers are specifically upper/lower fingers; and

所述根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据,具体包括:The determining of the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data specifically includes:

根据所述采集数据中的上/下侧手指的上/下边缘电容数据,对称出所述上/下侧手指的下/上边缘电容数据后,得到所述上/下侧手指产生的电容分布数据。According to the upper/lower edge capacitance data of the upper/lower finger in the collected data, after symmetrically calculating the lower/upper edge capacitance data of the upper/lower finger, the capacitance distribution generated by the upper/lower finger is obtained. data.

或者,所述外侧手指具体为左/右侧手指;以及Alternatively, the outer fingers are specifically left/right fingers; and

所述根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据,具体包括:The determining of the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data specifically includes:

根据所述采集数据中的左/右侧手指的左/右边缘电容数据,对称出所述左/右侧手指的右/左边缘电容数据后,得到所述左/右侧手指产生的电容分布数据。According to the left/right edge capacitance data of the left/right finger in the collected data, after symmetrically calculating the right/left edge capacitance data of the left/right finger, the capacitance distribution generated by the left/right finger is obtained. data.

较佳地,在所述获取多指按压触摸屏时的电容分布采集数据后,还包括:Preferably, after the acquisition of the capacitance distribution collection data when multiple fingers press the touch screen, the method further includes:

对所述采集数据作高斯分布扩展获得高斯分布的多指电容数据;以及Expanding the collected data with a Gaussian distribution to obtain Gaussian distributed multi-finger capacitance data; and

所述根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据,具体包括:The determining of the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data specifically includes:

根据所述高斯分布的多指电容数据中的边缘电容数据,确定高斯分布的外侧手指电容数据;According to the edge capacitance data in the multi-finger capacitance data of the Gaussian distribution, determine the outer finger capacitance data of the Gaussian distribution;

对所述高斯分布的外侧手指电容数据做反向高斯处理,得到所述外侧手指产生的电容分布数据。Perform reverse Gaussian processing on the outer finger capacitance data of the Gaussian distribution to obtain capacitance distribution data generated by the outer finger.

本发明还提供一种基于电容信号进行触控手指识别的装置,包括:The present invention also provides a device for identifying a touch finger based on a capacitive signal, comprising:

电容信号采集模块,用于获取多指按压触摸屏时的电容分布采集数据;The capacitive signal acquisition module is used to acquire the capacitive distribution acquisition data when multiple fingers press the touch screen;

外侧手指电容分布确定模块,用于根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据;an outer finger capacitance distribution determination module, configured to determine the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data;

电容数据剥离模块,用于从所述采集数据中剥离所述外侧手指产生的电容分布数据后,识别触控的中间手指。The capacitance data stripping module is used to identify the touch middle finger after stripping the capacitance distribution data generated by the outer finger from the collected data.

进一步,所述装置还包括:Further, the device also includes:

高斯分布扩展模块,用于对所述采集数据作高斯分布扩展获得高斯分布的多指电容数据;以及a Gaussian distribution expansion module, configured to perform Gaussian distribution expansion on the collected data to obtain Gaussian distributed multi-finger capacitance data; and

所述外侧手指电容分布确定模块具体用于根据所述高斯分布的多指电容数据中的边缘电容信号,确定高斯分布的外侧手指电容数据;对所述高斯分布的外侧手指电容数据做反向高斯处理,得到所述外侧手指产生的电容分布数据。The outer finger capacitance distribution determining module is specifically configured to determine the outer finger capacitance data of the Gaussian distribution according to the fringe capacitance signal in the multi-finger capacitance data of the Gaussian distribution; perform a reverse Gaussian operation on the outer finger capacitance data of the Gaussian distribution. processing to obtain the capacitance distribution data generated by the outer finger.

本发明还提供一种触摸屏,包括:如上所述的基于电容信号进行触控手指识别的装置。The present invention also provides a touch screen, comprising: the above-mentioned device for recognizing a touch finger based on a capacitive signal.

本发明的技术方案中,在获取多指按压触摸屏时的电容分布采集数据后,根据所述采集数据中的边缘电容数据就可以确定外侧手指产生的电容分布数据;进而从所述采集数据中剥离所述外侧手指产生的电容分布数据后,有助于多指触控时在指间距离较小或者信号扰动的情况下,更为准确地识别触控手指,尤其是识别出位于两个外侧手指之间的触控的中间手指,从而获得稳定的多指工作轨迹。In the technical solution of the present invention, after acquiring the capacitance distribution collection data when multiple fingers press the touch screen, the capacitance distribution data generated by the outer fingers can be determined according to the edge capacitance data in the collected data; and then stripped from the collected data After the capacitance distribution data generated by the outer fingers, it is helpful to more accurately identify the touch fingers when the distance between the fingers is small or the signal is disturbed during multi-finger touch, especially the two outer fingers are identified. Touch between the middle fingers, so as to obtain a stable multi-finger work trajectory.

进一步,本发明的技术方案中,还对多指按压触摸屏时的电容分布采集数据进行高斯分布扩展,可以获得更为丰富的数据细节,便于做边缘电容数据分析;从而可以更为精确地确定外侧手指产生的电容分布数据;基于更为精确的外侧手指产生的电容分布数据,可以更为准确地识别触控手指,尤其是识别出位于两个外侧手指之间的触控的中间手指,从而获得更为稳定的多指工作轨迹。Further, in the technical solution of the present invention, the Gaussian distribution expansion is also performed on the capacitance distribution collection data when the touch screen is pressed by multiple fingers, so that more abundant data details can be obtained, which is convenient for edge capacitance data analysis; thus, the outer side can be more accurately determined. The capacitance distribution data generated by the fingers; based on the more accurate capacitance distribution data generated by the outer fingers, the touch fingers can be more accurately identified, especially the middle finger of the touch between the two outer fingers, so as to obtain More stable multi-finger work trajectory.

附图说明Description of drawings

图1为现有技术的一种多指划线操作时的效果示意图;1 is a schematic diagram of the effect during a multi-finger scribing operation in the prior art;

图2为现有技术的多指操作时由于距离较小或者信号干扰过大等原因造成的断线或抖动现象的示意图;Fig. 2 is a schematic diagram of disconnection or jitter phenomenon caused by reasons such as small distance or excessive signal interference during multi-finger operation in the prior art;

图3为现有技术的多指操作时手指间的电容值重叠示意图;3 is a schematic diagram of overlapping capacitance values between fingers during a multi-finger operation in the prior art;

图4为现有技术的三指划线操作时的电容值分布数据示意图;4 is a schematic diagram of capacitance value distribution data during a three-finger scribing operation in the prior art;

图5为本发明实施例一提供的一种基于电容信号进行触控手指识别的方法流程图;5 is a flowchart of a method for identifying a touch finger based on a capacitive signal according to Embodiment 1 of the present invention;

图6为本发明实施例一提供的外侧手指的边缘电容数据示意图;6 is a schematic diagram of edge capacitance data of an outer finger according to Embodiment 1 of the present invention;

图7为本发明实施例一提供的一种基于电容信号进行触控手指识别的装置内部结构框图;7 is a block diagram of the internal structure of a device for identifying a touch finger based on a capacitive signal according to Embodiment 1 of the present invention;

图8为本发明实施例二提供的一种基于电容信号进行触控手指识别的方法流程图;8 is a flowchart of a method for identifying a touch finger based on a capacitive signal according to Embodiment 2 of the present invention;

图9a为本发明实施例二提供的对单指产生的电容分别数据做高斯分布扩展的示意图;9a is a schematic diagram of performing Gaussian distribution expansion on the capacitance data generated by a single finger according to Embodiment 2 of the present invention;

图9b为本发明实施例二提供的对获取的多指按压触摸屏时的电容分布采集数据作高斯分布扩展后得到高斯分布的外侧手指电容数据的示意图;FIG. 9b is a schematic diagram of obtaining the capacitance data of the outer fingers of the Gaussian distribution after the acquisition data of the capacitance distribution obtained when the multi-finger presses the touch screen is extended by the Gaussian distribution according to the second embodiment of the present invention;

图10为本发明实施例二提供的一种基于电容信号进行触控手指识别的装置内部结构框图。FIG. 10 is a block diagram of the internal structure of a device for recognizing a touch finger based on a capacitive signal according to Embodiment 2 of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to specific embodiments and accompanying drawings.

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present invention, but not to be construed as a limitation of the present invention.

本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。It will be understood by those skilled in the art that the singular forms "a", "an", "the" and "the" as used herein can include the plural forms as well, unless expressly stated otherwise. It will further be understood that when we refer to an element as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present. Furthermore, "connected" or "coupled" as used herein may include wirelessly connected or wirelessly coupled. As used herein, the term "and/or" includes all or any element and all combination of one or more of the associated listed items.

需要说明的是,本发明实施例中所有使用“第一”和“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本发明实施例的限定,后续实施例对此不再一一说明。It should be noted that all expressions using "first" and "second" in the embodiments of the present invention are for the purpose of distinguishing two entities with the same name but not the same or non-identical parameters. It can be seen that "first" and "second" It is only for the convenience of expression and should not be construed as a limitation to the embodiments of the present invention, and subsequent embodiments will not describe them one by one.

本发明的发明人考虑到,每一个手指触控产生的电容值对其他手指电容值会产生影响,在有限的电容信号信息中,剥离出单个手指产生的电容信号,有助于多指触控时在指间距离较小或者信号扰动的情况下,更为准确地识别触控手指,进而识别出手指触控位置,从而获得稳定的多指工作轨迹。The inventor of the present invention considers that the capacitance value generated by the touch of each finger will affect the capacitance values of other fingers. In the limited capacitance signal information, stripping the capacitance signal generated by a single finger is helpful for multi-finger touch. When the distance between the fingers is small or the signal is disturbed, the touch finger can be more accurately identified, and then the touch position of the finger can be identified, so as to obtain a stable multi-finger working trajectory.

本发明的发明人进一步考虑到,由于每一个手指按压时电容值变化的分布实际上是上下边缘基本对称分布的,或是左右边缘基本对称分布的;因此,在获取一个手指的半边的边缘电容信号分布数据后,就可以对称出该手指另半边的边缘电容信号分布数据,从而得到该手指按压时产生的电容分布数据。由此,在获取多指按压触摸屏时的电容分布采集数据后,根据所述采集数据中的边缘电容数据就可以确定外侧手指产生的电容分布数据;进而从所述采集数据中剥离所述外侧手指产生的电容分布数据后,有助于多指触控时在指间距离较小或者信号扰动的情况下,更为准确地识别触控手指,尤其是识别出位于两个外侧手指之间的触控的中间手指,从而获得稳定的多指工作轨迹。The inventor of the present invention further considers that, since the distribution of the capacitance value change when each finger is pressed is actually basically symmetrically distributed on the upper and lower edges, or basically symmetrically distributed on the left and right edges; therefore, when obtaining the edge capacitance of one half of a finger After the signal distribution data is obtained, the edge capacitance signal distribution data of the other half of the finger can be symmetrically obtained, so as to obtain the capacitance distribution data generated when the finger is pressed. Therefore, after acquiring the capacitance distribution collection data when multiple fingers press the touch screen, the capacitance distribution data generated by the outer finger can be determined according to the edge capacitance data in the collection data; and then the outer finger is stripped from the collection data. The generated capacitance distribution data can help to more accurately identify the touch fingers when the distance between the fingers is small or the signal is disturbed during multi-finger touch, especially the touch between the two outer fingers. Control the middle finger, so as to obtain a stable multi-finger work trajectory.

下面结合附图详细说明本发明实施例的技术方案。本发明具体提供了如下两个实施例。The technical solutions of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The present invention specifically provides the following two embodiments.

实施例一Example 1

本发明实施例一提供的一种基于电容信号进行触控手指识别的方法,具体流程如图5所示,包括如下步骤:The first embodiment of the present invention provides a method for identifying a touch finger based on a capacitive signal. The specific process is shown in FIG. 5 and includes the following steps:

步骤S501:获取多指按压触摸屏时的电容分布采集数据。Step S501: Acquire the capacitance distribution collection data when the touch screen is pressed by multiple fingers.

本步骤中,获取多个手指按压触摸屏时所采集的、由多指按压所产生的电容信号的分布数据,从而得到多指按压触摸屏时的电容分布采集数据。如图6所示,其中按压触摸屏的多个手指中可以包括外侧的按压手指,也可包括位于两个外侧的按压手指之间的中间按压手指。为便于描述,本文中将外侧的按压手指称为外侧手指。对于多指竖排划线的情况,外侧手指可以是排在上、下侧的手指;对于多指横排划线的情况,外侧手指则可以是排在左、右侧的手指。In this step, the distribution data of the capacitance signals generated by the multi-finger pressing and collected when multiple fingers press the touch screen are acquired, so as to obtain the capacitance distribution collection data when the multi-finger presses the touch screen. As shown in FIG. 6 , the multiple fingers pressing the touch screen may include an outer pressing finger, or a middle pressing finger located between two outer pressing fingers. For ease of description, the outer pressing fingers are referred to herein as outer fingers. For the multi-finger vertical line drawing, the outer fingers may be the fingers arranged on the upper and lower sides; for the multi-finger horizontal line drawing, the outer fingers may be the left and right fingers.

步骤S502:根据获取的电容分布采集数据中的边缘电容数据,确定外侧手指产生的电容分布数据。Step S502: Determine the capacitance distribution data generated by the outer finger according to the edge capacitance data in the acquired capacitance distribution collection data.

事实上,电容分布采集数据中分布于边缘的电容数据即边缘电容数据往往是由外侧手指产生,且不受其它手指按压产生的电容的影响,因此,边缘电容的数值是可以吻合于单个手指产生的电容分布数据;由此,依据经验获得的单个手指产生的电容分布数据,可以从多指按压触摸屏时的电容分布采集数据中将符合单个手指产生的电容分布数据的电容数据作为边缘电容数据;据此,本步骤中,可以根据边缘电容数据,再做对称处理后,得到外侧手指产生的电容分布数据。In fact, the capacitance data distributed on the edge in the capacitance distribution acquisition data, that is, the edge capacitance data, is often generated by the outer finger, and is not affected by the capacitance generated by the pressing of other fingers. Therefore, the value of the edge capacitance can be consistent with that generated by a single finger. Therefore, based on the capacitance distribution data generated by a single finger obtained from experience, the capacitance data corresponding to the capacitance distribution data generated by a single finger can be regarded as the edge capacitance data from the capacitance distribution data collected when multiple fingers press the touch screen; Accordingly, in this step, the capacitance distribution data generated by the outer finger can be obtained after performing symmetry processing according to the edge capacitance data.

具体地,如图6所示,对于多指竖排划线的情况,在确定上侧手指产生的电容分布数据时,可以根据获取的电容分布采集数据中未受其它手指按压产生的电容信号干扰的上侧手指的上边缘电容数据,对称出所述上侧手指的下边缘电容数据,从而得到所述上侧手指产生的电容分布数据。Specifically, as shown in FIG. 6 , in the case of vertical lines with multiple fingers, when determining the capacitance distribution data generated by the upper finger, the acquired capacitance distribution data can be collected without interference from capacitance signals generated by pressing by other fingers. The upper edge capacitance data of the upper finger, and the lower edge capacitance data of the upper finger is symmetrical, so as to obtain the capacitance distribution data generated by the upper finger.

在确定下侧手指产生的电容分布数据时,可以根据获取的电容分布采集数据中未受其它手指按压产生的电容信号干扰的下侧手指的下边缘电容数据,对称出所述下侧手指的上边缘电容数据后,得到所述下侧手指产生的电容分布数据。When determining the capacitance distribution data generated by the lower finger, the capacitance data of the lower edge of the lower finger that is not disturbed by the capacitance signal generated by the pressing of other fingers in the acquired capacitance distribution can be collected, and the upper edge of the lower finger can be symmetrically calculated. After the edge capacitance data is obtained, the capacitance distribution data generated by the lower finger is obtained.

同理,对于多指横排划线的情况,在确定左侧手指产生的电容分布数据时,可以根据获取的电容分布采集数据中未受其它手指按压产生的电容信号干扰的左侧手指的左边缘电容数据,对称出所述左侧手指的右边缘电容数据,从而得到所述左侧手指产生的电容分布数据。Similarly, for the multi-finger horizontal line, when determining the capacitance distribution data generated by the left finger, the left finger of the left finger that is not disturbed by the capacitance signal generated by the pressing of other fingers can be collected according to the acquired capacitance distribution data. For the edge capacitance data, the right edge capacitance data of the left finger is symmetrically obtained, so as to obtain the capacitance distribution data generated by the left finger.

在确定右侧手指产生的电容分布数据时,可以根据获取的电容分布采集数据中未受其它手指按压产生的电容信号干扰的右侧手指的右边缘电容数据,对称出所述右侧手指的左边缘电容数据,从而得到所述右侧手指产生的电容分布数据。When determining the capacitance distribution data generated by the right finger, the capacitance data of the right edge of the right finger that is not disturbed by the capacitance signal generated by the pressing of other fingers in the acquired capacitance distribution can be collected, and the left edge of the right finger can be symmetrically calculated. edge capacitance data, so as to obtain the capacitance distribution data generated by the right finger.

步骤S503:从获取的电容分布采集数据中剥离所述外侧手指产生的电容分布数据后,识别触控的中间手指。Step S503 : After stripping the capacitance distribution data generated by the outer finger from the acquired capacitance distribution collection data, identify the touch middle finger.

具体地,从获取的电容分布采集数据中剥离所述外侧手指产生的电容分布数据,得到剩余电容分布数据;即对于同一采集点,将该点处采集的电容数据减去外侧手指产生的电容分布数据中位于该采集点的电容数据,即得到该采集点的剩余电容数据。Specifically, the capacitance distribution data generated by the outer finger is stripped from the acquired capacitance distribution collection data to obtain the remaining capacitance distribution data; that is, for the same collection point, the capacitance distribution generated by the outer finger is subtracted from the capacitance data collected at the point. The capacitance data located at the collection point in the data is the remaining capacitance data of the collection point.

进而,由于剩余电容分布数据中去除了外侧手指对中间手指造成的干扰电容,因此,基于剩余电容分布数据可以更为准确地判断是否还有除所述外侧手指之外的其它手指按压所述触摸屏,具体的识别方法可采用现有的识别方法,例如,判断出剩余电容分布数据中有电容值大于阈值,且大于阈值的电容值所占面积大于设定值,则识别出还有除所述外侧手指之外的其它手指按压所述触摸屏;反之,则判断没有其它手指按压所述触摸屏。在判断出有其它手指按压所述触摸屏时,则可准确地识别出触控的中间手指,进而根据电容的峰值识别出手指的触控位置,从而获得稳定的多指工作轨迹。Furthermore, since the interference capacitance caused by the outer finger to the middle finger is removed from the remaining capacitance distribution data, it can be more accurately judged whether there are other fingers other than the outer finger pressing the touch screen based on the remaining capacitance distribution data. The specific identification method can use the existing identification method. For example, if it is determined that the residual capacitance distribution data has a capacitance value greater than the threshold value, and the area occupied by the capacitance value greater than the threshold value is greater than the set value, it is identified that there are other than the above Fingers other than the outer finger press the touch screen; otherwise, it is determined that no other fingers press the touch screen. When it is determined that another finger is pressing the touch screen, the middle finger of the touch can be accurately identified, and then the touch position of the finger can be identified according to the peak value of the capacitance, thereby obtaining a stable multi-finger working track.

基于上述的方法,本发明实施例一提供的可以设置于触摸屏中的一种基于电容信号进行触控手指识别的装置,内部结构如图7所示,包括:电容信号采集模块701、外侧手指电容分布确定模块702、电容数据剥离模块703。Based on the above method, the first embodiment of the present invention provides a device for recognizing a touch finger based on a capacitive signal that can be installed in a touch screen. The internal structure is shown in FIG. 7 , including: a capacitive signal acquisition module 701 , an outer finger capacitance Distribution determination module 702 , capacitance data stripping module 703 .

电容信号采集模块701用于获取多指按压触摸屏时的电容分布采集数据。The capacitance signal acquisition module 701 is used to acquire the capacitance distribution acquisition data when the touch screen is pressed by multiple fingers.

外侧手指电容分布确定模块702用于根据电容信号采集模块701获取的电容分布采集数据中的边缘电容数据确定外侧手指产生的电容分布数据。具体地,外侧手指电容分布确定模块702可以根据所述采集数据中的上/下侧手指的上/下边缘电容数据,对称出所述上/下侧手指的下/上边缘电容数据后,得到所述上/下侧手指产生的电容分布数据;或者根据所述采集数据中的左/右侧手指的左/右边缘电容数据,对称出所述左/右侧手指的右/左边缘电容数据后,得到所述左/右侧手指产生的电容分布数据。The outer finger capacitance distribution determination module 702 is configured to determine the capacitance distribution data generated by the outer finger according to the edge capacitance data in the capacitance distribution collection data acquired by the capacitance signal collection module 701 . Specifically, the outer finger capacitance distribution determination module 702 can obtain the lower/upper edge capacitance data of the upper/lower finger by symmetry according to the upper/lower edge capacitance data of the upper/lower finger in the collected data, and obtain Capacitance distribution data generated by the upper/lower finger; or according to the left/right edge capacitance data of the left/right finger in the collected data, symmetrically calculate the right/left edge capacitance data of the left/right finger Then, the capacitance distribution data generated by the left/right fingers are obtained.

电容数据剥离模块703用于从所述电容分布采集数据中剥离出外侧手指电容分布确定模块702所确定的所述外侧手指产生的电容分布数据后,识别触控的中间手指。具体地,电容数据剥离模块703可以将所述外侧手指产生的电容分布数据从所述电容分布采集数据中剥离后,得到剩余电容分布数据;基于所述剩余电容分布数据,判断出有其它手指按压所述触摸屏时,识别出触控的中间手指。The capacitance data stripping module 703 is configured to strip out the capacitance distribution data generated by the outer finger determined by the outer finger capacitance distribution determining module 702 from the capacitance distribution acquisition data, and identify the middle finger that touches. Specifically, the capacitance data stripping module 703 can strip the capacitance distribution data generated by the outer finger from the capacitance distribution collection data to obtain the remaining capacitance distribution data; based on the remaining capacitance distribution data, determine that there are other fingers pressing When the touch screen is used, the middle finger that touches the touch screen is identified.

本发明实施例一的技术方案中,由于每一个手指按压时电容值变化的分布实际上是上下边缘基本对称分布的,或是左右边缘基本对称分布的;因此,在获取一个手指的半边的边缘电容信号分布数据后,就可以对称出该手指另半边的边缘电容信号分布数据,从而得到该手指按压时产生的电容分布数据。由此,在获取多指按压触摸屏时的电容分布采集数据后,根据所述采集数据中的边缘电容数据就可以确定外侧手指产生的电容分布数据;进而从所述采集数据中剥离所述外侧手指产生的电容分布数据后,有助于多指触控时在指间距离较小或者信号扰动的情况下,更为准确地识别触控手指,尤其是识别出位于两个外侧手指之间的触控的中间手指,从而获得稳定的多指工作轨迹。In the technical solution of the first embodiment of the present invention, since the distribution of the capacitance value change when each finger is pressed is actually basically symmetrically distributed on the upper and lower edges, or basically symmetrically distributed on the left and right edges; therefore, when obtaining the half edge of a finger After the capacitance signal distribution data is obtained, the edge capacitance signal distribution data of the other half of the finger can be symmetrically obtained, so as to obtain the capacitance distribution data generated when the finger is pressed. Therefore, after acquiring the capacitance distribution collection data when multiple fingers press the touch screen, the capacitance distribution data generated by the outer finger can be determined according to the edge capacitance data in the collection data; and then the outer finger is stripped from the collection data. The generated capacitance distribution data can help to more accurately identify the touch fingers when the distance between the fingers is small or the signal is disturbed during multi-finger touch, especially the touch between the two outer fingers. Control the middle finger, so as to obtain a stable multi-finger work trajectory.

实施例二Embodiment 2

本发明实施例二提供的一种基于电容信号进行触控手指识别的方法,具体流程如图8所示,包括如下步骤:The second embodiment of the present invention provides a method for identifying a touch finger based on a capacitive signal. The specific process is shown in FIG. 8 , including the following steps:

步骤S801:获取多指按压触摸屏时的电容分布采集数据。Step S801: Acquire the capacitance distribution collection data when the touch screen is pressed with multiple fingers.

本步骤中,获取多个手指按压触摸屏时所采集的、由多指按压所产生的电容信号的分布数据,从而得到多指按压触摸屏时的电容分布采集数据。如图6所示,其中按压触摸屏的多个手指中可以包括外侧的按压手指,也可包括位于两个外侧的按压手指之间的中间按压手指。为便于描述,本文中将外侧的按压手指称为外侧手指。对于多指竖排划线的情况,外侧手指可以是排在上、下侧的手指;对于多指横排划线的情况,外侧手指则可以是排在左、右侧的手指。In this step, the distribution data of the capacitance signals generated by the multi-finger pressing and collected when multiple fingers press the touch screen are acquired, so as to obtain the capacitance distribution collection data when the multi-finger presses the touch screen. As shown in FIG. 6 , the multiple fingers pressing the touch screen may include an outer pressing finger, or a middle pressing finger located between two outer pressing fingers. For ease of description, the outer pressing fingers are referred to herein as outer fingers. For the multi-finger vertical line drawing, the outer fingers may be the fingers arranged on the upper and lower sides; for the multi-finger horizontal line drawing, the outer fingers may be the left and right fingers.

步骤S802:对获取的电容分布采集数据作高斯分布扩展,获得高斯分布的多指电容数据。Step S802 : performing Gaussian distribution expansion on the acquired capacitance distribution collection data to obtain Gaussian distributed multi-finger capacitance data.

为了能够在后续步骤中更为清晰地识别出边缘电容数据,可以在本步骤中,对获取的电容分布采集数据进行数据扩展,以获得更为丰富的数据进行分析。例如,图9a示出了对单指产生的电容分别数据做高斯分布扩展的示意图;而图9b中示出了对获取的多指按压触摸屏时的电容分布采集数据作高斯分布扩展后,得到高斯分布的外侧手指电容数据的示意图。从图9b中可以看出,扩展后数据量相当于原采集数据量的2~3倍,更为丰富了数据的细节,便于在后续步骤中获取边缘电容数据。In order to identify the edge capacitance data more clearly in the subsequent steps, in this step, data expansion may be performed on the acquired capacitance distribution collection data to obtain more abundant data for analysis. For example, Fig. 9a shows a schematic diagram of the Gaussian distribution expansion of the capacitance data generated by a single finger; and Fig. 9b shows the Gaussian distribution of the acquired capacitance distribution data obtained when pressing the touch screen with multiple fingers. Schematic representation of distributed outer finger capacitance data. It can be seen from Figure 9b that the expanded data volume is equivalent to 2-3 times the original collected data volume, which enriches the details of the data and facilitates the acquisition of edge capacitance data in subsequent steps.

步骤S803:根据所述高斯分布的多指电容数据中的边缘电容数据,确定高斯分布的外侧手指电容数据;对所述高斯分布的外侧手指电容数据做反向高斯处理,得到所述外侧手指产生的电容分布数据。Step S803: Determine the outer finger capacitance data of the Gaussian distribution according to the fringe capacitance data in the multi-finger capacitance data of the Gaussian distribution; perform reverse Gaussian processing on the outer finger capacitance data of the Gaussian distribution to obtain the outer finger capacitance data. capacitance distribution data.

事实上,由于电容分布采集数据中分布于边缘的电容数据即边缘电容数据往往是由外侧手指产生,且不受其它手指按压产生的电容的影响,因此,电容分布采集数据中的边缘电容数据是可以吻合于单个手指产生的电容分布数据的;而类似地,经过高斯分布扩展后得到高斯分布的多指电容数据中的边缘电容数据是可以吻合于对单个手指产生的电容分布数据经过高斯分布扩展后得到的电容数据;由此,依据对单个手指产生的电容分布数据经高斯分布扩展后得到的高斯分布的单指电容数据,可以从高斯分布的多指电容数据中将符合高斯分布的单指电容数据作为边缘电容数据;据此,本步骤中,从所述高斯分布的多指电容数据中获取分布于边缘的电容数据即边缘电容数据,根据获取的边缘电容数据确定高斯分布的外侧手指电容数据后,对所述高斯分布的外侧手指电容数据做反向高斯处理,得到所述外侧手指产生的电容分布数据。In fact, since the capacitance data distributed on the edge in the capacitance distribution acquisition data, that is, the fringe capacitance data, is often generated by the outer finger, and is not affected by the capacitance generated by the pressing of other fingers. Therefore, the edge capacitance data in the capacitance distribution acquisition data is It can be consistent with the capacitance distribution data generated by a single finger; and similarly, the edge capacitance data in the Gaussian distribution of the multi-finger capacitance data obtained after Gaussian distribution expansion can be consistent with the capacitance distribution data generated by a single finger. Gaussian distribution expansion Therefore, according to the single-finger capacitance data of Gaussian distribution obtained after the capacitance distribution data generated for a single finger is expanded by Gaussian distribution, the single-finger capacitance data that conforms to the Gaussian distribution can be obtained from the multi-finger capacitance data of Gaussian distribution. The capacitance data is used as the edge capacitance data; accordingly, in this step, the capacitance data distributed on the edge, that is, the edge capacitance data, is obtained from the multi-finger capacitance data of the Gaussian distribution, and the outer finger capacitance of the Gaussian distribution is determined according to the obtained edge capacitance data. After the data is obtained, reverse Gaussian processing is performed on the outer finger capacitance data of the Gaussian distribution to obtain capacitance distribution data generated by the outer finger.

例如,如图9b所示,根据所述高斯分布的多指电容数据中的上侧手指的上边缘电容数据,对称出所述高斯分布的多指电容数据中的上侧手指的下边缘电容数据后,得到所述高斯分布的上侧手指电容数据;再对所述高斯分布的上侧手指电容数据做反向高斯处理,得到所述上侧手指产生的电容分布数据。For example, as shown in FIG. 9b, according to the upper edge capacitance data of the upper finger in the Gaussian distributed multi-finger capacitance data, the lower edge capacitance data of the upper finger in the Gaussian distributed multi-finger capacitance data is symmetrically obtained Then, the upper finger capacitance data of the Gaussian distribution is obtained; and then reverse Gaussian processing is performed on the upper finger capacitance data of the Gaussian distribution to obtain the capacitance distribution data generated by the upper finger.

根据所述高斯分布的多指电容数据中的下侧手指的下边缘电容数据,对称出所述高斯分布的多指电容数据中的下侧手指的上边缘电容数据后,得到所述高斯分布的下侧手指电容数据;再对所述高斯分布的下侧手指电容数据做反向高斯处理,得到所述下侧手指产生的电容分布数据。According to the lower edge capacitance data of the lower finger in the multi-finger capacitance data of the Gaussian distribution, after symmetrically calculating the upper edge capacitance data of the lower finger in the multi-finger capacitance data of the Gaussian distribution, the Gaussian distribution is obtained. Capacitance data of the lower finger; and then performing reverse Gaussian processing on the lower finger capacitance data of the Gaussian distribution to obtain the capacitance distribution data generated by the lower finger.

或者,根据所述高斯分布的多指电容数据中的左侧手指的左边缘电容数据,对称出所述高斯分布的多指电容数据中的左侧手指的右边缘电容数据后,得到所述高斯分布的左侧手指电容数据;再对所述高斯分布的左侧手指电容数据做反向高斯处理,得到所述左侧手指产生的电容分布数据。Alternatively, according to the left edge capacitance data of the left finger in the Gaussian distributed multi-finger capacitance data, the Gaussian distribution of the left finger capacitance data in the multi-finger capacitance data is symmetrically obtained, and then the Gaussian distribution is obtained. Distributed left finger capacitance data; and then perform reverse Gaussian processing on the Gaussian distributed left finger capacitance data to obtain capacitance distribution data generated by the left finger.

根据所述高斯分布的多指电容数据中的右侧手指的右边缘电容数据,对称出所述高斯分布的多指电容数据中的右侧手指的左边缘电容数据后,得到所述高斯分布的右侧手指电容数据;再对所述高斯分布的右侧手指电容数据做反向高斯处理,得到所述右侧手指产生的电容分布数据。According to the capacitance data of the right edge of the right finger in the multi-finger capacitance data of the Gaussian distribution, the capacitance data of the left edge of the right finger in the multi-finger capacitance data of the Gaussian distribution is symmetrical, and the Gaussian distribution of the capacitance data is obtained. Right finger capacitance data; and then perform reverse Gaussian processing on the right finger capacitance data of the Gaussian distribution to obtain capacitance distribution data generated by the right finger.

步骤S804:从获取的电容分布采集数据中剥离所述外侧手指产生的电容分布数据后,识别触控的中间手指。Step S804: After stripping the capacitance distribution data generated by the outer finger from the acquired capacitance distribution collection data, identify the middle finger that touches.

具体地,从获取的电容分布采集数据中剥离所述外侧手指产生的电容分布数据,得到剩余电容分布数据;进而,由于剩余电容分布数据中去除了外侧手指对中间手指造成的干扰电容,因此,基于剩余电容分布数据可以更为准确地判断是否还有除所述外侧手指之外的其它手指按压所述触摸屏。在判断出有其它手指按压所述触摸屏时,则可准确地识别出触控的中间手指,进而根据电容的峰值识别出手指的触控位置,从而获得稳定的多指工作轨迹。Specifically, the capacitance distribution data generated by the outer finger is stripped from the acquired capacitance distribution collection data to obtain the remaining capacitance distribution data; further, since the interference capacitance caused by the outer finger to the middle finger is removed from the remaining capacitance distribution data, therefore, Based on the remaining capacitance distribution data, it can be more accurately determined whether there is another finger other than the outer finger pressing the touch screen. When it is determined that another finger is pressing the touch screen, the middle finger of the touch can be accurately identified, and then the touch position of the finger can be identified according to the peak value of the capacitance, thereby obtaining a stable multi-finger working track.

基于本发明实施例二提供的一种基于电容信号进行触控手指识别的方法,本发明实施例二提供的可以设置于触摸屏中的一种基于电容信号进行触控手指识别的装置,内部结构如图10所示,包括:电容信号采集模块1001、高斯分布扩展模块1002、外侧手指电容分布确定模块1003、电容数据剥离模块1004。Based on a method for recognizing a touch finger based on a capacitive signal provided in the second embodiment of the present invention, a device for recognizing a touch finger based on a capacitive signal provided in the second embodiment of the present invention can be provided in a touch screen. The internal structure is as follows: As shown in FIG. 10 , it includes: a capacitance signal acquisition module 1001 , a Gaussian distribution expansion module 1002 , an outer finger capacitance distribution determination module 1003 , and a capacitance data stripping module 1004 .

电容信号采集模块1001用于获取多指按压触摸屏时的电容分布采集数据。The capacitance signal acquisition module 1001 is used to acquire the capacitance distribution acquisition data when the touch screen is pressed with multiple fingers.

高斯分布扩展模块1002用于对电容信号采集模块1001获取的电容分布采集数据作高斯分布扩展,获得高斯分布的多指电容数据;The Gaussian distribution expansion module 1002 is configured to perform Gaussian distribution expansion on the capacitance distribution acquisition data acquired by the capacitance signal acquisition module 1001 to obtain Gaussian distributed multi-finger capacitance data;

外侧手指电容分布确定模块1003用于根据高斯分布扩展模块1002扩展出的所述高斯分布的多指电容数据中的边缘电容信号,确定高斯分布的外侧手指电容数据;对所述高斯分布的外侧手指电容数据做反向高斯处理,得到所述外侧手指产生的电容分布数据。The outer finger capacitance distribution determination module 1003 is configured to determine the outer finger capacitance data of the Gaussian distribution according to the fringe capacitance signal in the Gaussian distributed multi-finger capacitance data expanded by the Gaussian distribution expansion module 1002; The capacitance data is subjected to inverse Gaussian processing to obtain capacitance distribution data generated by the outer finger.

具体地,外侧手指电容分布确定模块1003可以根据所述高斯分布的多指电容数据中的上侧手指的上边缘电容数据,对称出所述高斯分布的多指电容数据中的上侧手指的下边缘电容数据后,得到所述高斯分布的上侧手指电容数据;再对所述高斯分布的上侧手指电容数据做反向高斯处理,得到所述上侧手指产生的电容分布数据;或者根据所述高斯分布的多指电容数据中的下侧手指的下边缘电容数据,对称出所述高斯分布的多指电容数据中的下侧手指的上边缘电容数据后,得到所述高斯分布的下侧手指电容数据;再对所述高斯分布的下侧手指电容数据做反向高斯处理,得到所述下侧手指产生的电容分布数据;或者,根据所述高斯分布的多指电容数据中的左侧手指的左边缘电容数据,对称出所述高斯分布的多指电容数据中的左侧手指的右边缘电容数据后,得到所述高斯分布的左侧手指电容数据;再对所述高斯分布的左侧手指电容数据做反向高斯处理,得到所述左侧手指产生的电容分布数据;或者根据所述高斯分布的多指电容数据中的右侧手指的右边缘电容数据,对称出所述高斯分布的多指电容数据中的右侧手指的左边缘电容数据后,得到所述高斯分布的右侧手指电容数据;再对所述高斯分布的右侧手指电容数据做反向高斯处理,得到所述右侧手指产生的电容分布数据。Specifically, the outer finger capacitance distribution determination module 1003 can symmetrically calculate the lower edge of the upper finger in the Gaussian distributed multi-finger capacitance data according to the upper edge capacitance data of the upper finger in the Gaussian distributed multi-finger capacitance data After the edge capacitance data, obtain the upper finger capacitance data of the Gaussian distribution; then perform reverse Gaussian processing on the upper finger capacitance data of the Gaussian distribution to obtain the capacitance distribution data generated by the upper finger; The lower edge capacitance data of the lower finger in the multi-finger capacitance data of the Gaussian distribution, and the upper edge capacitance data of the lower finger in the multi-finger capacitance data of the Gaussian distribution is symmetrical, and the lower edge of the Gaussian distribution is obtained. finger capacitance data; then perform reverse Gaussian processing on the lower finger capacitance data of the Gaussian distribution to obtain the capacitance distribution data generated by the lower finger; or, according to the left side of the multi-finger capacitance data of the Gaussian distribution For the capacitance data of the left edge of the finger, after symmetric the capacitance data of the right edge of the left finger in the multi-finger capacitance data of the Gaussian distribution, the capacitance data of the left finger of the Gaussian distribution is obtained; Perform reverse Gaussian processing on the capacitance data of the side finger to obtain the capacitance distribution data generated by the left finger; or calculate the Gaussian distribution symmetrically according to the capacitance data of the right edge of the right finger in the multi-finger capacitance data of the Gaussian distribution After the capacitance data of the left edge of the right finger in the multi-finger capacitance data obtained by , obtain the capacitance data of the right finger of the Gaussian distribution; and then perform reverse Gaussian processing on the capacitance data of the right finger of the Gaussian distribution to obtain the Capacitance distribution data generated by the right finger.

电容数据剥离模块1004用于从电容信号采集模块1001获取的电容分布采集数据中剥离外侧手指电容分布确定模块1003得到的外侧手指产生的电容分布数据后,识别触控的中间手指。The capacitance data stripping module 1004 is used to identify the middle finger that touches after stripping the capacitance distribution data generated by the outer finger obtained by the outer finger capacitance distribution determination module 1003 from the capacitance distribution collection data obtained by the capacitance signal collection module 1001 .

本发明实施例二的技术方案中,由于每一个手指按压时电容值变化的分布实际上是上下边缘基本对称分布的,或是左右边缘基本对称分布的;因此,在获取一个手指的半边的边缘电容信号分布数据后,就可以对称出该手指另半边的边缘电容信号分布数据,从而得到该手指按压时产生的电容分布数据。由此,在获取多指按压触摸屏时的电容分布采集数据后,根据所述采集数据中的边缘电容数据就可以确定外侧手指产生的电容分布数据;进而从所述采集数据中剥离所述外侧手指产生的电容分布数据后,有助于多指触控时在指间距离较小或者信号扰动的情况下,更为准确地识别触控手指,尤其是识别出位于两个外侧手指之间的触控的中间手指,从而获得稳定的多指工作轨迹。In the technical solution of the second embodiment of the present invention, since the distribution of the capacitance value change when each finger is pressed is actually basically symmetrically distributed on the upper and lower edges, or basically symmetrically distributed on the left and right edges; therefore, when obtaining the half edge of a finger After the capacitance signal distribution data is obtained, the edge capacitance signal distribution data of the other half of the finger can be symmetrically obtained, so as to obtain the capacitance distribution data generated when the finger is pressed. Therefore, after acquiring the capacitance distribution collection data when multiple fingers press the touch screen, the capacitance distribution data generated by the outer finger can be determined according to the edge capacitance data in the collection data; and then the outer finger is stripped from the collection data. The generated capacitance distribution data can help to more accurately identify the touch fingers when the distance between the fingers is small or the signal is disturbed during multi-finger touch, especially the touch between the two outer fingers. Control the middle finger, so as to obtain a stable multi-finger work trajectory.

进一步,为获得更为准确的识别结果,本发明实施例二的技术方案中,还对多指按压触摸屏时的电容分布采集数据进行高斯分布扩展,可以获得更为丰富的数据细节,便于做边缘电容数据分析;从而可以更为精确地确定外侧手指产生的电容分布数据;基于更为精确的外侧手指产生的电容分布数据,可以更为准确地识别触控手指,尤其是识别出位于两个外侧手指之间的触控的中间手指,从而获得更为稳定的多指工作轨迹。Further, in order to obtain a more accurate identification result, in the technical solution of the second embodiment of the present invention, Gaussian distribution expansion is also performed on the capacitance distribution collected data when the touch screen is pressed by multiple fingers, so that more abundant data details can be obtained, which is convenient for making edges. Capacitance data analysis; thus, the capacitance distribution data generated by the outer fingers can be more accurately determined; based on the more accurate capacitance distribution data generated by the outer fingers, the touch fingers can be more accurately identified, especially those located on the two outer The middle finger of the touch between fingers, so as to obtain a more stable multi-finger work track.

本技术领域技术人员可以理解,本发明中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本发明中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本发明中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。Those skilled in the art can understand that the various operations, methods, steps, measures, and solutions discussed in the present invention may be alternated, modified, combined or deleted. Further, other steps, measures, and solutions in the various operations, methods, and processes that have been discussed in the present invention may also be alternated, modified, rearranged, decomposed, combined, or deleted. Further, steps, measures and solutions in the prior art with various operations, methods, and processes disclosed in the present invention may also be alternated, modified, rearranged, decomposed, combined or deleted.

所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。Those of ordinary skill in the art should understand that the discussion of any of the above embodiments is only exemplary, and is not intended to imply that the scope of the present disclosure (including the claims) is limited to these examples; under the spirit of the present invention, the above embodiments or There may also be combinations between technical features in different embodiments, steps may be carried out in any order, and there are many other variations of the different aspects of the invention as described above, which are not provided in detail for the sake of brevity. Therefore, any omission, modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (8)

1.一种基于电容信号进行触控手指识别的方法,其特征在于,包括:1. A method for identifying a touch finger based on a capacitive signal, comprising: 获取多指按压触摸屏时的电容分布采集数据;Obtain the capacitance distribution collection data when multiple fingers press the touch screen; 根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据,包括:Determine the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data, including: 当所述外侧手指具体为上/下侧手指时,根据所述采集数据中的上/下侧手指的上/下边缘电容数据,对称出所述上/下侧手指的下/上边缘电容数据后,得到所述上/下侧手指产生的电容分布数据;When the outer finger is specifically an upper/lower finger, according to the upper/lower edge capacitance data of the upper/lower finger in the collected data, symmetrically calculate the lower/upper edge capacitance data of the upper/lower finger Then, the capacitance distribution data generated by the upper/lower fingers are obtained; 当所述外侧手指具体为左/右侧手指时,根据所述采集数据中的左/右侧手指的左/右边缘电容数据,对称出所述左/右侧手指的右/左边缘电容数据后,得到所述左/右侧手指产生的电容分布数据;When the outer finger is specifically a left/right finger, according to the left/right edge capacitance data of the left/right finger in the collected data, symmetrically calculate the right/left edge capacitance data of the left/right finger Then, the capacitance distribution data generated by the left/right fingers are obtained; 从所述采集数据中剥离所述外侧手指产生的电容分布数据后,识别触控的中间手指。After stripping the capacitance distribution data generated by the outer finger from the collected data, the middle finger that touches is identified. 2.根据权利要求1所述的方法,其特征在于,在所述获取多指按压触摸屏时的电容分布采集数据后,还包括:2 . The method according to claim 1 , wherein after acquiring the capacitance distribution collection data when multiple fingers press the touch screen, the method further comprises: 2 . 对所述采集数据作高斯分布扩展获得高斯分布的多指电容数据;以及Expanding the collected data with a Gaussian distribution to obtain Gaussian distributed multi-finger capacitance data; and 所述根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据,具体包括:The determining of the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data specifically includes: 根据所述高斯分布的多指电容数据中的边缘电容数据,确定高斯分布的外侧手指电容数据;According to the edge capacitance data in the multi-finger capacitance data of the Gaussian distribution, determine the outer finger capacitance data of the Gaussian distribution; 对所述高斯分布的外侧手指电容数据做反向高斯处理,得到所述外侧手指产生的电容分布数据。Perform reverse Gaussian processing on the outer finger capacitance data of the Gaussian distribution to obtain capacitance distribution data generated by the outer finger. 3.根据权利要求2所述的方法,其特征在于,所述外侧手指具体为上/下侧手指;以及3. The method according to claim 2, wherein the outer fingers are specifically upper/lower fingers; and 所述根据所述高斯分布的多指电容数据中的边缘电容数据,确定高斯分布的外侧手指电容数据,具体包括:The determination of the outer finger capacitance data of the Gaussian distribution according to the edge capacitance data in the multi-finger capacitance data of the Gaussian distribution specifically includes: 根据所述高斯分布的多指电容数据中的上/下侧手指的上/下边缘电容数据,对称出所述高斯分布的多指电容数据中的上/下侧手指的下/上边缘电容数据后,得到所述高斯分布的上/下侧手指电容数据。According to the upper/lower edge capacitance data of the upper/lower fingers in the multi-finger capacitance data of the Gaussian distribution, the lower/upper edge capacitance data of the upper/lower fingers in the multi-finger capacitance data of the Gaussian distribution are symmetrically obtained Then, the upper/lower finger capacitance data of the Gaussian distribution is obtained. 4.根据权利要求2所述的方法,其特征在于,所述外侧手指具体为左/右侧手指;以及4. The method according to claim 2, wherein the outer fingers are specifically left/right fingers; and 所述根据所述高斯分布的多指电容数据中的边缘电容数据,确定高斯分布的外侧手指电容数据,具体包括:The determination of the outer finger capacitance data of the Gaussian distribution according to the edge capacitance data in the multi-finger capacitance data of the Gaussian distribution specifically includes: 根据所述高斯分布的多指电容数据中的左/右侧手指的左/右边缘电容数据,对称出所述高斯分布的多指电容数据中的左/右侧手指的右/左边缘电容数据后,得到所述高斯分布的左/右侧手指电容数据。According to the left/right edge capacitance data of the left/right finger in the Gaussian distributed multi-finger capacitance data, the right/left edge capacitance data of the left/right finger in the Gaussian distributed multi-finger capacitance data is symmetrical Then, the left/right finger capacitance data of the Gaussian distribution is obtained. 5.根据权利要求1-4任一所述的方法,其特征在于,所述从所述采集数据中剥离所述外侧手指产生的电容分布数据后,识别触控的中间手指,具体包括:5. The method according to any one of claims 1-4, wherein after the capacitance distribution data generated by the outer finger is stripped from the collected data, identifying the middle finger of the touch, specifically comprising: 将所述外侧手指产生的电容分布数据从所述采集数据中剥离后,得到剩余电容分布数据;After the capacitance distribution data generated by the outer finger is stripped from the collected data, remaining capacitance distribution data is obtained; 基于所述剩余电容分布数据,判断出有其它手指按压所述触摸屏时,识别出触控的中间手指。Based on the residual capacitance distribution data, when it is determined that another finger presses the touch screen, the middle finger that touches the touch screen is identified. 6.一种基于电容信号进行触控手指识别的装置,其特征在于,包括:6. A device for identifying a touch finger based on a capacitive signal, comprising: 电容信号采集模块,用于获取多指按压触摸屏时的电容分布采集数据;The capacitive signal acquisition module is used to acquire the capacitive distribution acquisition data when multiple fingers press the touch screen; 外侧手指电容分布确定模块,用于根据所述采集数据中的边缘电容数据确定外侧手指产生的电容分布数据,包括:The outer finger capacitance distribution determination module is used to determine the capacitance distribution data generated by the outer finger according to the edge capacitance data in the collected data, including: 当所述外侧手指具体为上/下侧手指时,根据所述采集数据中的上/下侧手指的上/下边缘电容数据,对称出所述上/下侧手指的下/上边缘电容数据后,得到所述上/下侧手指产生的电容分布数据;When the outer finger is specifically an upper/lower finger, according to the upper/lower edge capacitance data of the upper/lower finger in the collected data, symmetrically calculate the lower/upper edge capacitance data of the upper/lower finger Then, the capacitance distribution data generated by the upper/lower fingers are obtained; 当所述外侧手指具体为左/右侧手指时,根据所述采集数据中的左/右侧手指的左/右边缘电容数据,对称出所述左/右侧手指的右/左边缘电容数据后,得到所述左/右侧手指产生的电容分布数据;When the outer finger is specifically a left/right finger, according to the left/right edge capacitance data of the left/right finger in the collected data, symmetrically calculate the right/left edge capacitance data of the left/right finger Then, the capacitance distribution data generated by the left/right fingers are obtained; 电容数据剥离模块,用于从所述采集数据中剥离所述外侧手指产生的电容分布数据后,识别触控的中间手指。The capacitance data stripping module is used to identify the touch middle finger after stripping the capacitance distribution data generated by the outer finger from the collected data. 7.根据权利要求6所述的装置,其特征在于,还包括:7. The apparatus of claim 6, further comprising: 高斯分布扩展模块,用于对所述采集数据作高斯分布扩展获得高斯分布的多指电容数据;以及a Gaussian distribution expansion module, configured to perform Gaussian distribution expansion on the collected data to obtain Gaussian distributed multi-finger capacitance data; and 所述外侧手指电容分布确定模块具体用于根据所述高斯分布的多指电容数据中的边缘电容信号,确定高斯分布的外侧手指电容数据;对所述高斯分布的外侧手指电容数据做反向高斯处理,得到所述外侧手指产生的电容分布数据。The outer finger capacitance distribution determining module is specifically configured to determine the outer finger capacitance data of the Gaussian distribution according to the fringe capacitance signal in the multi-finger capacitance data of the Gaussian distribution; perform a reverse Gaussian operation on the outer finger capacitance data of the Gaussian distribution. processing to obtain the capacitance distribution data generated by the outer finger. 8.一种触摸屏,其特征在于,包括:如权利要求6或7所述的基于电容信号进行触控手指识别的装置。8 . A touch screen, comprising: the device for recognizing a touch finger based on a capacitive signal as claimed in claim 6 or 7 .
CN201910015667.1A 2019-01-08 2019-01-08 Method and device for touch finger identification based on capacitance signal and touch screen Active CN109739385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910015667.1A CN109739385B (en) 2019-01-08 2019-01-08 Method and device for touch finger identification based on capacitance signal and touch screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910015667.1A CN109739385B (en) 2019-01-08 2019-01-08 Method and device for touch finger identification based on capacitance signal and touch screen

Publications (2)

Publication Number Publication Date
CN109739385A CN109739385A (en) 2019-05-10
CN109739385B true CN109739385B (en) 2022-05-24

Family

ID=66363907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910015667.1A Active CN109739385B (en) 2019-01-08 2019-01-08 Method and device for touch finger identification based on capacitance signal and touch screen

Country Status (1)

Country Link
CN (1) CN109739385B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162230B (en) * 2019-05-24 2021-11-02 京东方科技集团股份有限公司 Touch position identification method, device and storage medium
CN112130709B (en) * 2020-09-21 2024-05-17 深圳大学 A human-computer interaction method and interactive system based on capacitive buttons
WO2022061500A1 (en) * 2020-09-22 2022-03-31 深圳大学 Human-computer interaction system and method based on capacitive touch screen
CN112130710B (en) * 2020-09-22 2024-05-17 深圳大学 A human-computer interaction system and interaction method based on capacitive touch screen
CN114741005B (en) * 2022-03-10 2025-10-03 北京小米移动软件有限公司 Method for identifying two-finger operation, device for identifying two-finger operation and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106775302A (en) * 2016-11-29 2017-05-31 努比亚技术有限公司 A kind of terminal screen anti-error-touch device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8913019B2 (en) * 2011-07-14 2014-12-16 Microsoft Corporation Multi-finger detection and component resolution
US9182860B2 (en) * 2012-02-08 2015-11-10 Sony Corporation Method for detecting a contact
CN102750060B (en) * 2012-06-04 2015-06-10 天津昌立微电子技术有限公司 Projection-type capacitive touch screen system time domain noise reduction method by space differentiation
TW201351215A (en) * 2012-06-06 2013-12-16 Areson Technology Corp Method of simulating the touch screen operation by mouse
US20140118281A1 (en) * 2012-10-26 2014-05-01 Cirque Corporation DETERMINING WHAT INPUT TO ACCEPT BY A TOUCH SENSOR AFTER INTENTIONAL AND ACCIDENTAL LIFT-OFF and SLIDE-OFF WHEN GESTURING OR PERFORMING A FUNCTION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106775302A (en) * 2016-11-29 2017-05-31 努比亚技术有限公司 A kind of terminal screen anti-error-touch device and method

Also Published As

Publication number Publication date
CN109739385A (en) 2019-05-10

Similar Documents

Publication Publication Date Title
CN109739385B (en) Method and device for touch finger identification based on capacitance signal and touch screen
CN105573536B (en) Processing method, the device and system of touch-control interaction
CN103186329B (en) Electronic device and touch input control method thereof
TWI450148B (en) Touch screen touch track detection method and detection device
CN104077003B (en) A kind of method and device for merging mobile phone return key, home keys and Menu key
JP2013531305A (en) Touch event determination method and touch sensitive device
CN105005448B (en) Application program launching method, device and terminal device
CN103268184A (en) Method and device for moving text cursor
CN103324325B (en) The detection method of multi-point touch misoperation and terminal
CN103257826A (en) Method and system for mobile terminal to realize navigation key function based on fingerprint recognition
CN105844262A (en) Method and device for judging touch position by combining fingerprints in wet-hand operation mode
CN108874234A (en) A kind of touch control identification method, device and touch control display apparatus
WO2019119361A1 (en) Method for avoiding mistakenly touching edge, touch control device and storage medium
CN107132986A (en) A kind of method and device of virtual key Intelligent adjustment touch-control response region
CN108984096A (en) Touch operation method, device, storage medium and electronic device
CN106383657A (en) Handwriting input control method and handwriting input control device
WO2016082251A1 (en) Touch signal processing method and device
CN104252306B (en) Pen touch display method
WO2019134228A1 (en) Method for deleting application, readable storage medium, terminal apparatus, and device
CN104714675B (en) A kind of gesture identification method and device
CN104142755A (en) Non-linear Gesture Recognition Method
CN113608662B (en) Touch response method, device, terminal equipment and storage medium
WO2016082215A1 (en) Method and terminal for moving screen interface
CN110865736B (en) Touch identification method and device based on double-channel data compensation value and touch display device
CN107005609A (en) The method and mobile terminal of mobile terminal are operated based on blowing action

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant