CN109787370B - Wireless power transmission system with positioning function - Google Patents
Wireless power transmission system with positioning function Download PDFInfo
- Publication number
- CN109787370B CN109787370B CN201810558085.3A CN201810558085A CN109787370B CN 109787370 B CN109787370 B CN 109787370B CN 201810558085 A CN201810558085 A CN 201810558085A CN 109787370 B CN109787370 B CN 109787370B
- Authority
- CN
- China
- Prior art keywords
- power
- resonant
- voltage
- circuit
- transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 168
- 230000006698 induction Effects 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 40
- 230000005674 electromagnetic induction Effects 0.000 claims description 8
- 230000002596 correlated effect Effects 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 2
- 230000000875 corresponding effect Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Near-Field Transmission Systems (AREA)
Abstract
一种具有定位功能的无线电力传输系统,包含:一电力发送端,包含一谐振发送电路,谐振发送电路包括一发送线圈;以及一电力接收端,包含一谐振接收电路,谐振接收电路包括一接收线圈,用以与发送线圈进行电力感应以产生一谐振接收电压;其中,电力发送端根据谐振接收电压的位准,以调整通过谐振发送电路的发送电流,使得谐振接收电压维持于一目标电压位准;其中,无线电力传输系统根据调整后通过谐振发送电路的发送电流,确定电力接收端与电力发送端间的偏移距离。
A wireless power transmission system with positioning function, comprising: a power transmitting end, including a resonance transmitting circuit, the resonance transmitting circuit includes a transmitting coil; and a power receiving end, including a resonance receiving circuit, the resonance receiving circuit includes a receiving The coil is used for power induction with the sending coil to generate a resonant receiving voltage; wherein, the power transmitting end adjusts the sending current through the resonant sending circuit according to the level of the resonant receiving voltage, so that the resonant receiving voltage is maintained at a target voltage level The wireless power transmission system determines the offset distance between the power receiving end and the power transmitting end according to the adjusted transmission current through the resonant transmission circuit.
Description
技术领域technical field
本发明涉及一种具有定位功能的无线电力传输系统与无线电力传输的定位方法。The present invention relates to a wireless power transmission system with positioning function and a positioning method for wireless power transmission.
背景技术Background technique
在无线充电系统中,电力接收端与电力发送端之间具有一最佳相对位置,当电力接收端与电力发送端的相对位置处于最佳相对位置时,可具有最佳的电力传输效率,反之,当电力发送端与电力接收端未对准,也就是当电力接收端与电力发送端当前的相对位置与最佳相对位置存在一偏移距离时,其间的电力传输效率将降低。若提高电力发送端的发送电流,以提高电力接收端的接收电力至目标电压位准,则电力发送端电力传输所产生的热上升,工作温度也随之上升。若因工作温度过高,而启动电池或电子元件保护功能而降低电力发送端的发送电流,则电力接收端的接收电力又会下降,而导致电力传输效率降低。因此,如何侦测前述与最佳相对位置的偏移距离,并提供使用者进行调整电力发送端与电力接收端的相对位置或距离的建议,是非常重要的关键。In the wireless charging system, there is an optimal relative position between the power receiving end and the power transmitting end. When the relative position of the power receiving end and the power transmitting end is in the best relative position, it can have the best power transmission efficiency, otherwise, When the power transmitting end and the power receiving end are misaligned, that is, when the current relative positions of the power receiving end and the power transmitting end are offset by a distance from the optimal relative position, the power transmission efficiency therebetween will decrease. If the transmitting current of the power transmitting end is increased to increase the received power of the power receiving end to the target voltage level, the heat generated by the power transmission of the power transmitting end will increase, and the operating temperature will also increase. If the operating temperature is too high and the protection function of the battery or electronic components is activated to reduce the transmission current of the power transmitting end, the received power of the power receiving end will decrease again, resulting in reduced power transmission efficiency. Therefore, how to detect the offset distance from the optimal relative position and provide suggestions for users to adjust the relative position or distance between the power transmitting end and the power receiving end is very important.
参照图1,其横坐标为电力发送端与电力接收端间当前的相对位置与最佳相对位置的偏移距离,横坐标向右代表偏移距离越大(也就是距离最佳相对位置越远)。纵坐标为电力发送端与电力接收端间电力传输的能量损失,纵坐标向上代表能量损失越高。根据图中的曲线,可知当电力发送端与电力接收端间的偏移距离越大时,其电力发送端与电力接收端间电力传输的能量损失也越高。Referring to Figure 1, the abscissa is the offset distance between the current relative position and the optimal relative position between the power transmitting end and the power receiving end, and the abscissa to the right represents the larger the offset distance (that is, the farther from the optimal relative position). ). The ordinate is the energy loss of power transmission between the power transmitting end and the power receiving end, and the upward direction of the ordinate represents the higher the energy loss. According to the curve in the figure, it can be known that when the offset distance between the power transmitting end and the power receiving end is larger, the energy loss of the power transmission between the power transmitting end and the power receiving end is also higher.
传统上,要让电力发送端与电力接收端对准的方式,例如美国专利案US20160204616所提出的技术,其中电力发送端提供一稳定电力,而电力接收端则根据不同相对位置的感应电压,判断感应电压最高的对准位置,为电力接收端相对于电力发送端的一最佳相对位置。此案的位置侦测功能,实施于发信阶段(ping phase)中。当进入送电阶段(power transfer phase),则无法感测或指示电力接收端是否位于此最佳相对位置。Traditionally, the method of aligning the power transmitting end and the power receiving end, such as the technology proposed in the US patent case US20160204616, in which the power transmitting end provides a stable power, and the power receiving end judges according to the induced voltage at different relative positions. The alignment position with the highest induced voltage is an optimal relative position of the power receiving end relative to the power transmitting end. The location detection function of this case is implemented in the ping phase. When entering the power transfer phase, it is impossible to sense or indicate whether the power receiving end is in the optimal relative position.
另一传统技术,见于美国专利案US 20160094043,其同步比较电力发送端与电力接收端间的电力传输效率,当电力效能间的比较值超过一阈值,而判断电力接收端位于相对于电力发送端的一最佳相对位置。此案的位置侦测的实施,需电力发送端与电力接收端都处于电力传输过程中。如此,当处于发信阶段(ping phase)或协商阶段(negotiationphase)中,无法感测电力接收端是否位于此最佳相对位置,此外,由于需计算电力传输效率,因此需同时感测电力发送端与电力接收端的发送电压、发送电流、接收电压与接收电流,电路设计复杂且生产成本较高。Another conventional technique, see US 20160094043, synchronously compares the power transmission efficiency between the power transmitting end and the power receiving end. When the comparison value between the power efficiencies exceeds a threshold, it is determined that the power receiving end is located at a distance from the power transmitting end. an optimal relative position. The implementation of the location detection in this case requires that both the power transmitting end and the power receiving end are in the process of power transmission. In this way, in the ping phase or the negotiation phase, it is impossible to sense whether the power receiving end is located at this optimal relative position. In addition, since the power transmission efficiency needs to be calculated, it is necessary to sense the power transmitting end at the same time. With respect to the sending voltage, sending current, receiving voltage and receiving current of the power receiving end, the circuit design is complex and the production cost is high.
有鉴于此,本发明即针对上述现有技术的不足,提出一种能够于发信阶段、协商阶段、或送电阶段中,简便与快速找到最佳相对位置的无线电力传输系统与无线电力传输的定位方法。In view of this, the present invention aims at the deficiencies of the above-mentioned prior art, and proposes a wireless power transmission system and wireless power transmission that can easily and quickly find the optimal relative position in the signaling phase, the negotiation phase, or the power transmission phase. positioning method.
发明内容SUMMARY OF THE INVENTION
就其中一观点言,本发明提供了一种无线电力传输系统,包含:一电力发送端,包含一谐振发送电路与一控制单元,该控制单元控制该谐振发送电路,其中该谐振发送电路包括一发送线圈;以及一电力接收端,包含一谐振接收电路,该谐振接收电路包括一接收线圈,用以通过电磁感应的方式与该发送线圈进行电力感应以产生一谐振接收电压,该电力接收端具有相对于该电力发送端的一最佳相对位置;其中,当该谐振发送电路与该谐振接收电路以一当前的相对位置进行电力感应,该电力接收端根据该谐振接收电压的位准,传送一位准状态信号至该控制单元,以调整通过该谐振发送电路的一发送电流,使得该谐振接收电压维持于一目标电压位准;其中,该无线电力传输系统根据调整后通过该谐振发送电路的该发送电流,以确定该电力接收端与该电力发送端的该当前的相对位置与该最佳相对位置的一偏移距离。In one aspect, the present invention provides a wireless power transmission system, comprising: a power transmission end, including a resonance transmission circuit and a control unit, the control unit controls the resonance transmission circuit, wherein the resonance transmission circuit includes a a transmitting coil; and a power receiving end, including a resonant receiving circuit, the resonant receiving circuit including a receiving coil, for performing power induction with the transmitting coil by means of electromagnetic induction to generate a resonant receiving voltage, the power receiving end has an optimal relative position relative to the power transmitting end; wherein, when the resonant transmitting circuit and the resonant receiving circuit perform power induction at a current relative position, the power receiving end transmits a bit according to the level of the resonant receiving voltage A quasi-state signal is sent to the control unit to adjust a transmission current passing through the resonance transmission circuit, so that the resonance reception voltage is maintained at a target voltage level; wherein, the wireless power transmission system passes through the resonance transmission circuit according to the adjusted Sending current to determine an offset distance between the current relative position of the power receiving end and the power transmitting end and the optimal relative position.
在一种较佳的实施型态中,该无线电力传输系统又包含一提示装置,该提示装置用以提示该偏移距离,以提供使用者移动该电力接收端的建议。In a preferred embodiment, the wireless power transmission system further includes a prompting device for prompting the offset distance, so as to provide a suggestion for the user to move the power receiving end.
在一种较佳的实施型态中,前述的调整后通过该谐振发送电路的该发送电流,相关于通过该发送线圈的一发送线圈电流或一发送线圈跨压;或者,该电力发送端又包括与该发送线圈串联的一谐振电容器,前述的调整后通过该谐振发送电路的该发送电流,相关于该谐振电容器的跨压。In a preferred embodiment, the transmission current passing through the resonant transmission circuit after adjustment is related to a transmission coil current or a transmission coil voltage across the transmission coil; or, the power transmission end is again A resonant capacitor is included in series with the transmission coil, and the transmission current passing through the resonant transmission circuit after adjustment is related to the voltage across the resonant capacitor.
在一种较佳的实施型态中,该偏移距离与调整后通过该谐振发送电路的该发送线圈电流或该谐振电容器的跨压的位准大致上为正相关。In a preferred embodiment, the offset distance is substantially positively correlated with the level of the transmitting coil current or the voltage across the resonant capacitor passing through the resonant transmitting circuit after adjustment.
在一种较佳的实施型态中,该电力发送端又包括一反流器,耦接于一第一直流电压与该谐振发送电路之间,该控制单元控制该反流器用以转换该第一直流电压而控制通过该谐振发送电路的该发送电流;或者,该电力发送端还包含一DC/DC转换器,耦接于该反流器,用以转换一第二直流电压以产生该第一直流电压至该反流器而控制通过该谐振发送电路的该发送电流。In a preferred embodiment, the power transmission end further includes an inverter coupled between a first DC voltage and the resonant transmission circuit, and the control unit controls the inverter to convert the first DC voltage. A DC voltage is used to control the transmission current through the resonant transmission circuit; or, the power transmission end further includes a DC/DC converter coupled to the inverter for converting a second DC voltage to generate the first DC voltage A DC voltage is applied to the inverter to control the transmit current through the resonant transmit circuit.
在一种较佳的实施型态中,通过以下方式之一以调整通过该谐振发送电路的该发送电流:调整该反流器的占空比(Duty ratio);或者,调整该反流器的操作频率;或者,该控制单元控制该DC/DC转换器而调整该第一直流电压,以调整该反流器提供给该谐振发送电路的电压。In a preferred embodiment, the sending current through the resonant sending circuit is adjusted by one of the following methods: adjusting the duty ratio of the inverter; or, adjusting the operating frequency; or, the control unit controls the DC/DC converter to adjust the first DC voltage, so as to adjust the voltage provided by the inverter to the resonant transmission circuit.
在一种较佳的实施型态中,该电力发送端又包括一传感器,用以感测该发送线圈电流、该发送线圈电压或该谐振电容器的跨压。In a preferred embodiment, the power transmitting end further includes a sensor for sensing the current of the transmitting coil, the voltage of the transmitting coil or the voltage across the resonant capacitor.
在一种较佳的实施型态中,该传感器还自该控制单元接收一功率相关信号,用以将该发送线圈电流、该发送线圈电压或该谐振电容器的跨压归一化(Normalizing)以确定该偏移距离,其中该功率相关信号相关于该电力发送端的负载。In a preferred embodiment, the sensor further receives a power-related signal from the control unit for normalizing the sending coil current, the sending coil voltage or the voltage across the resonant capacitor to The offset distance is determined, wherein the power related signal is related to the load of the power transmitter.
在一种较佳的实施型态中,该无线电力传输系统又包含一提示装置,该提示装置比较该归一化结果与至少一阈值,以产生一指示信号,以提供用户移动该电力接收端的建议,其中该指示信号对应于该偏移距离。In a preferred embodiment, the wireless power transmission system further includes a prompting device, and the prompting device compares the normalized result with at least a threshold to generate an indication signal to provide the user with a prompt for moving the power receiving end. It is proposed, wherein the indicator signal corresponds to the offset distance.
在一种较佳的实施型态中,该谐振接收电路根据该目标电压位准与该谐振接收电压的差值,产生该位准状态信号。In a preferred embodiment, the resonant receiving circuit generates the level state signal according to the difference between the target voltage level and the resonant receiving voltage.
在一种较佳的实施型态中,该传感器还根据该发送线圈电流及该发送线圈电压或该谐振电容器的跨压产生一有效功率相关信号,用以将该发送线圈电流、该发送线圈电压或该谐振电容器的跨压归一化以确定该偏移距离,其中该有效功率相关信号相关于该电力接收端的负载。In a preferred embodiment, the sensor also generates an effective power related signal according to the sending coil current and the sending coil voltage or the voltage across the resonant capacitor, which is used for the sending coil current and the sending coil voltage Or the voltage across the resonant capacitor is normalized to determine the offset distance, wherein the effective power related signal is related to the load of the power receiving end.
就另一观点而言,本发明提供了一种无线电力传输系统,包含:一电力发送端,包含一谐振发送电路与一控制单元,该控制单元控制该谐振发送电路,其中该谐振发送电路包括一发送线圈以及与该发送线圈串联的一谐振电容器;以及一电力接收端,包含一谐振接收电路,该谐振接收电路包括一接收线圈,用以通过电磁感应的方式与该发送线圈进行电力感应以产生一谐振接收电压,该电力接收端具有相对于该电力发送端的一最佳相对位置;其中,当该谐振发送电路与该谐振接收电路以一当前的相对位置进行电力感应,该电力接收端根据该谐振接收电压的位准,传送一位准状态信号至该控制单元,以调整通过该谐振发送电路的一发送电流,使得该谐振接收电压维持于一目标电压位准;一传感器,用以感测该发送线圈的一发送线圈电流及该发送线圈的一发送线圈电压或该谐振电容器的一跨压以产生一无效功率相关信号;其中,该无线电力传输系统根据该无效功率相关信号,以确定该电力接收端与该电力发送端的该当前的相对位置与该最佳相对位置的一偏移距离。From another point of view, the present invention provides a wireless power transmission system, comprising: a power transmission end, including a resonance transmission circuit and a control unit, the control unit controls the resonance transmission circuit, wherein the resonance transmission circuit includes a transmitting coil and a resonant capacitor connected in series with the transmitting coil; and a power receiving end including a resonant receiving circuit, the resonant receiving circuit including a receiving coil for performing power induction with the transmitting coil by means of electromagnetic induction to A resonant receiving voltage is generated, and the power receiving end has an optimal relative position with respect to the power transmitting end; wherein, when the resonant transmitting circuit and the resonant receiving circuit perform power induction at a current relative position, the power receiving end is based on The level of the resonant receiving voltage sends a level state signal to the control unit to adjust a transmitting current through the resonant transmitting circuit, so that the resonant receiving voltage is maintained at a target voltage level; a sensor for sensing Measure a sending coil current of the sending coil and a sending coil voltage of the sending coil or a voltage across the resonant capacitor to generate a reactive power related signal; wherein the wireless power transmission system determines the reactive power related signal according to the reactive power related signal An offset distance between the current relative position of the power receiving end and the power transmitting end and the optimal relative position.
以下通过具体实施例详加说明,应当更容易了解本发明的目的、技术内容、特点及其所实现的功效。The following describes in detail through specific embodiments, and it should be easier to understand the purpose, technical content, characteristics and effects of the present invention.
附图说明Description of drawings
图1显示电力发送端与电力接收端间的距离,以及其相关能量损失的关系示意图;Figure 1 shows a schematic diagram of the relationship between the distance between the power transmitting end and the power receiving end, and the related energy loss;
图2、3、4显示本发明无线电力传输系统多个实施例的示意图;Figures 2, 3, and 4 show schematic diagrams of multiple embodiments of the wireless power transmission system of the present invention;
图5显示本发明无线电力传输系统中,发送线圈电流与偏移距离的关系示意图;5 is a schematic diagram showing the relationship between the transmission coil current and the offset distance in the wireless power transmission system of the present invention;
图6显示本发明无线电力传输系统中,谐振电容器跨压与偏移距离的关系示意图;6 is a schematic diagram showing the relationship between the voltage across the resonant capacitor and the offset distance in the wireless power transmission system of the present invention;
图7显示本发明无线电力传输系统中,于不同负载下,谐振电容器跨压及归一化曲线相对于偏移距离的关系示意图;7 is a schematic diagram showing the relationship between the cross-voltage of the resonant capacitor and the normalized curve with respect to the offset distance under different loads in the wireless power transmission system of the present invention;
图8、9显示本发明无线电力传输系统两个实施例的示意图;8 and 9 show schematic diagrams of two embodiments of the wireless power transmission system of the present invention;
图10显示本发明无线电力传输系统的等效电路示意图。FIG. 10 shows a schematic diagram of an equivalent circuit of the wireless power transmission system of the present invention.
具体实施方式Detailed ways
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考图式的一较佳实施例的详细说明中,将可清楚地呈现。本发明中的图式均属示意,主要意在表示各装置以及各元件之间的功能作用关系,至于形状、厚度与宽度则并未依照比例绘制。The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. The drawings in the present invention are schematic, mainly intended to represent the functional relationship between each device and each element, and the shape, thickness and width are not drawn according to scale.
请参考图2。就其中一观点言,本发明提供了一种无线电力传输系统100,包含:一电力发送端10,包含一谐振发送电路11与一控制单元12,控制单元12控制谐振发送电路11的操作,其中谐振发送电路11包括一发送线圈111;以及一电力接收端20,包含一谐振接收电路21,谐振接收电路21包括一接收线圈211,接收线圈211可通过电磁感应的方式与发送线圈111进行电力感应以产生一谐振接收电压Vs。谐振接收电路21具有一目标电压位准,此目标电压位准为当进行电力感应时,谐振接收电路21中谐振接收电压Vs欲维持或调节的目标电压位准。在一实施例中,当谐振发送电路11与谐振接收电路21进行电力感应时,电力接收端20根据谐振接收电压Vs的位准,传送一位准状态信号Sv至控制单元12,借以调整通过谐振发送电路11的发送电流It,以使得电力接收端20维持目标电压位准。例如,当谐振接收电压Vs的位准低于目标电压位准,电力接收端20传送位准状态信号Sv至控制单元12,以调高通过谐振发送电路11的发送电流It,使得电力接收端20的谐振接收电压Vs维持于其目标电压位准。其中,位准状态信号Sv可例如由谐振控制电路以有线、无线、声音、或光等方式进行传送。Please refer to Figure 2. In one aspect, the present invention provides a wireless
在一种较佳的实施型态中,谐振接收电路21根据前述的目标电压位准与谐振接收电压位准Vs的差值,产生位准状态信号Sv。位准状态信号Sv传送至控制单元12,以调整通过谐振发送电路11的发送电流It,使得电力接收端20维持目标电压位准。例如,当谐振接收电压位准Vs较大幅度低于目标电压位准时,所产生的位准状态信号Sv,可较大幅度增加通过谐振发送电路11的发送电流It。或者,当谐振接收电压位准Vs较小幅度低于目标电压位准时,所产生的位准状态信号Sv,可较小幅度增加通过谐振发送电路11的发送电流It。所述调整通过谐振发送电路11的发送电流It的方式,容后详述。In a preferred embodiment, the
一般而言,无线电力传输系统中(例如本发明的无线电力传输系统100),电力接收端20与电力发送端10之间可调整其相对位置,且其中具有一最佳相对位置,当电力接收端20与电力发送端10的相对位置处于最佳相对位置时,可具有最佳的电力传输效率,反之,当电力接收端20与电力发送端10未对准,也就是当电力接收端20与电力发送端10当前的相对位置与最佳相对位置存在一偏移距离时,其间的电力传输效率将降低。就一观点而言,所述的“最佳相对位置”也可指具有较佳电力传输效率的一相对位置的范围,例如在“最佳相对位置”的范围内,电力传输效率可达一预设的效率值以上。Generally speaking, in a wireless power transmission system (such as the wireless
继续参阅图2,本发明的无线电力传输系统100可根据调整后通过谐振发送电路11的发送电流It,以确定电力接收端20与电力发送端10间的偏移距离。需说明的是,所述的“调整后”通过谐振发送电路11的发送电流It,指如前述为使电力接收端20的谐振接收电压Vs维持于其目标电压位准,而进行调整的“调整后”通过谐振发送电路11的发送电流It,换言之,所述的“调整后”通过谐振发送电路11的发送电流It,指电力接收端20的谐振接收电压Vs已维持于其目标电压位准时的发送电流It。本文中在其他处出现的“调整后”也相同。Continuing to refer to FIG. 2 , the wireless
参照图3,在一种较佳的实施型态的无线电力传输系统200,又包含一提示装置30,提示装置30用以提示或显示偏移距离,以提供使用者移动电力接收端20的建议,使用者可根据偏移距离的指示,而适当移动或改变电力接收端20与电力发送端10间的相对位置,直到达到最佳相对位置,以获得最佳的电力传输效率。提示装置30可设置于电力发送端10同一侧、或设置于电力接收端20同一侧、或于电力发送端10与电力接收端20之外独立设置,使用者可依据需要而决定其设置方式。此外,可通过显示、文字、声音、光、或颜色等方式,以提示或显示偏移距离。Referring to FIG. 3 , in a preferred embodiment, the wireless
同时参照图4,本实施例的无线电力传输系统300中,电力发送端10又包括与发送线圈111串联的一谐振电容器C。请同时参照图3与图4,在一种较佳的实施型态中,前述的发送电流It,相关于通过发送线圈111的发送线圈电流IL、发送线圈电压VL或谐振电容器C的跨压Vc,换言之,可通过感测及/或调整发送线圈111的发送线圈电流IL或谐振电容器C的跨压Vc,而感测及/或调整通过谐振发送电路11的发送电流It。Referring to FIG. 4 at the same time, in the wireless
在一种较佳的实施型态中,当电力接收端20离最佳相对位置越近时,其电磁感应效率较佳,故对应于目标电压位准的调整后通过发送线圈111的发送线圈电流IL或谐振电容器C的跨压Vc越低。或者,当电力接收端20离最佳相对位置越远时,其电磁感应效率较低,故对应于目标电压位准的调整后通过发送线圈111的发送线圈电流IL或谐振电容器C的跨压Vc越高。换言之,前述的偏移距离与调整后通过发送线圈111的发送线圈电流IL或谐振电容器C的跨压Vc的位准大致为正相关。In a preferred embodiment, when the
图5、6分别显示于电力接收端20为零负载时,发送线圈电流IL或谐振电容器C的跨压Vc对应于偏移距离的关系图。根据图示,当偏移距离越接近零时(也就是电力接收端20离最佳相对位置越近时),对应于目标电压位准的调整后发送线圈电流IL(图5纵坐标)越低、或谐振电容器C的跨压Vc(图6纵坐标)越低。或者,当偏移距离增加时(也就是电力接收端20离最佳相对位置越远时),对应于目标电压位准的调整后发送线圈电流IL越高、或谐振电容器C的跨压Vc越高。值得注意的是,图5、6中所显示的实施例,可对应为发信阶段或协商阶段(此时电力接收端20为零负载或极轻载)的无线电力传输系统的操作特性。由于发送线圈电流IL或跨压Vc的数值与偏移距离大致上具有正相关的关系,因此,可转换发送线圈电流IL或跨压Vc的数值而获得对应的偏移距离,并通过提示装置30以提示或显示偏移距离予用户作为移动电力接收端20的参考,其细节容后详述。5 and 6 respectively show the relationship between the sending coil current IL or the cross-voltage Vc of the resonant capacitor C and the offset distance when the
请继续参照图4,在一种较佳的实施型态中,电力发送端10又包含一传感器16,前述的发送线圈111的发送线圈电流IL、发送线圈电压VL或谐振电容器C的跨压Vc,可通过此传感器16进行感测。Please continue to refer to FIG. 4 , in a preferred embodiment, the
继续参照图4,在一种较佳的实施型态中,传感器16还自控制单元12接收一功率相关信号PRS,用以将发送电流It、发送线圈电流IL、发送线圈电压VL或谐振电容器C的跨压Vc归一化(Normalizing)以确定偏移距离,其中功率相关信号PRS为相关于电力发送端10的负载的信号。此负载例如相关于电力发送端10的供电电压、供电电流或供电功率。就一观点而言,此负载也同时相关于电力接收端20的负载。4, in a preferred embodiment, the
同时参照图7,其中显示两曲线,其分别代表一较高负载的调整后谐振电容器C的跨压Vc1、以及一较低负载的调整后谐振电容器C的跨压Vc2。根据曲线Vc1、Vc2,可知无论低负载或高负载,偏移距离越大(即电力接收端20距离最佳相对位置越远),在同一曲线上谐振电容器C的跨压也相对越高;偏移距离越小(即电力接收端20距离最佳相对位置越近),谐振电容器C的跨压也相对也越低。曲线Vc1、Vc2具有相同的变化趋势,归一化的目的在于去除曲线Vc1、Vc2中与负载相关的成分,以产生一归一化特性曲线(例如图式中虚线曲线VcN),便于后续例如将归一化跨压曲线VcN数值转换为偏移距离的数值,提供使用者参考。需说明的是,图5、6与7中各轴的数值仅为举例,而非限制本发明的范畴。Referring also to FIG. 7 , two curves are shown, which respectively represent the cross-voltage Vc1 of the adjusted resonant capacitor C with a higher load, and the cross-voltage Vc2 of the adjusted resonant capacitor C with a lower load. According to the curves Vc1 and Vc2, it can be known that regardless of the low load or high load, the larger the offset distance (that is, the farther the
根据图5、6与7以及其相关说明,可知无论发信阶段或协商阶段(对应于图5、6,零负载)、或送电阶段(对应于图7各种不同负载情形),都可应用本发明的技术以确定并指示使用者偏移距离,借此方便用户对无线电力传输系统中的电力发送端10与电力接收端20进行适当的定位。According to Figures 5, 6 and 7 and their related descriptions, it can be known that regardless of the signaling stage or negotiation stage (corresponding to Figures 5 and 6, zero load), or the power transmission stage (corresponding to various load situations in Figure 7), it can be The technology of the present invention is applied to determine and instruct the user the offset distance, thereby facilitating the user to properly position the
继续参照图4,一实施例中,提示装置30比较归一化结果VSN(例如对应于前述的VcN)与至少一阈值,以产生一指示信号Sin,以提供用户移动电力接收端20的建议,其中指示信号Sin对应于偏移距离。阈值中,可包含对应最佳相对位置的一第一阈值,以判断电力接收端20是否位于相对于电力发送端10的最佳相对位置。或者,阈值中可包含一第二阈值,以判断电力接收端20是否离最佳电力传输位稍远,以提示使用者改变电力接收端20的位置。又或者,阈值中可包含一第三阈值,以判断电力接收端20是否离最佳相对位置过远,当离最佳相对位置过远时,为避免通过该谐振发送电路的发送电流It过高,可例如发出警告并停止供电。使用者可依据不同需求,而决定所需要的阈值。在一实施例中,指示信号Sin可以例如多段式的LED灯号来对应偏移距离,或是单个LED灯号以不同闪烁速率以对应于不同的偏移距离,在电力接收端为例如手机等实施例中,指示信号也可以通过手机的显示屏幕而表示对应的偏移距离。Continuing to refer to FIG. 4 , in one embodiment, the prompting
从另一观点,根据本发明的无线电力传输系统,其中电力发送端10的操作特性,可通过简化的计算式进行了解。请参阅图10,图中示出对应于本发明无线电力传输系统(例如对应于图4、8与图9)的等效电路图,其中,电力发送端10的互感阻抗Zeq计算式如下:From another viewpoint, in the wireless power transmission system according to the present invention, the operation characteristics of the
其中,ω为操作频率,RL为负载电阻、RS为谐振接收电路21的等效串联电阻,LS为接收线圈211的等效电感,CS为接收线圈211的等效电容。ω is the operating frequency, RL is the load resistance, RS is the equivalent series resistance of the
其中,LP为发送线圈111的等效电感,k为发送线圈111与接收线圈211间的耦合系数。当电力接收端20越接近于前述的最佳相对位置,耦合系数k值越高;当电力接收端20越远离于前述的最佳相对位置,耦合系数k值越低。Wherein, LP is the equivalent inductance of the transmitting
通过谐振发送电路10的发送电流It,其计算式如下:Through the transmission current It of the
其中,CP为谐振电容器C的等效电容,Vin为谐振发送电路11的输入电压。Among them, CP is the equivalent capacitance of the resonance capacitor C, and Vin is the input voltage of the
接收线圈211的谐振接收电压Vs,其计算式如下:The resonant receiving voltage Vs of the receiving
Vs=jωM*ItV s =jωM*It
又,谐振接收电路21的输出电压Vo,其计算式如下:In addition, the output voltage Vo of the
其中,RL为谐振接收电路21的输出负载的等效电阻。Among them, RL is the equivalent resistance of the output load of the
根据前述的计算式中,可知,在调整通过谐振发送电路11的发送电流It,使电力接收端20维持其目标电压位准的前提下,当电力接收端20离最佳相对位置越近时(偏移距离越小),其电磁感应效率较佳,互感阻抗Zeq较高,而调整后发送电流It较低。换言之,即电力接收端20离最佳相对位置越近时,较低的调整后发送电流It,就可使得电力接收端20维持其目标电压位准。相反地,当电力接收端20离最佳相对位置越远时(偏移距离越大),需较高的调整后发送电流It,才可使得电力接收端20维持其目标电压位准。According to the aforementioned calculation formula, it can be known that, on the premise that the transmission current It through the
如此,无论根据图式或计算式,当电力接收端20离最佳相对位置越近时,对应于目标电压位准的调整后通过谐振发送电路10的发送电流It、发送线圈电流IL或谐振电容器C的跨压Vc都越低。或者,当电力接收端20离最佳相对位置越远时,对应于目标电压位准的调整后通过谐振发送电路10的发送电流It、发送线圈电流IL或谐振电容器C的跨压Vc都越高。In this way, no matter according to the diagram or the calculation formula, when the
由于电力接收端20与最佳相对位置的偏移距离与其真实负载状况,可以反映于电力发送端10的互感阻抗Zeq上,具体而言,偏移距离可以反映于电力发送端10的互感阻抗Zeq的电抗上,而真实负载状况,可以反映于电力发送端10的互感阻抗Zeq的电阻上,因此,可通过感测电力发送端10的有效功率(或称实功率)或无效功率(或称虚功率)而取得电力接收端20的偏移距离与其真实负载的信息。Since the offset distance between the
请继续参阅图4、8与图9,在一实施例中,前述的功率相关信号PRS可包括有效功率相关信号PRSR及/或无效功率相关信号PRSI。根据本发明,在一实施例中,如图4、8与图9的传感器16可根据发送线圈电流IL及发送线圈电压VL或谐振电容器的跨压Vc产生一有效功率相关信号(例如对应于图4、8与图9的有效功率相关信号PRSR),用以将发送线圈电流IL、发送线圈电压VL或谐振电容器的跨压Vc归一化以确定偏移距离,其中有效功率相关信号PRSR相关于电力接收端20的负载。Please continue to refer to FIGS. 4 , 8 and 9 , in one embodiment, the aforementioned power related signal PRS may include a real power related signal PRSR and/or a reactive power related signal PRSI. According to the present invention, in one embodiment, the
在一实施例中,根据本发明,如图4、8与图9的传感器16可根据发送线圈电流IL及发送线圈电压VL或谐振电容器的跨压Vc产生一无效功率相关信号(例如对应于图4、8与图9的无效功率相关信号PRSI),其中,本发明的无线电力传输系统(例如300、400或500)可根据无效功率相关信号PRSI,以确定电力接收端20与电力发送端10的当前的相对位置与最佳相对位置的一偏移距离。In one embodiment, according to the present invention, the
参照图8,在一种较佳的实施型态的无线电力传输系统400,电力发送端10又包括一反流器(Invertor)14,耦接于一第一直流电压与谐振发送电路11之间,控制单元12控制反流器14用以转换第一直流电压,进而产生及控制通过谐振发送电路11的发送电流It。其中反流器14并联于发送线圈111与谐振电容器C。或者,参照图9,在一种较佳的实施型态的无线电力传输系统500中,电力发送端10还包含一DC/DC转换器15,用以转换一第二直流电压以产生第一直流电压至反流器14。Referring to FIG. 8 , in a preferred embodiment of the wireless
进一步,在一种较佳的实施型态中,调整通过谐振发送电路11的发送电流It的方式包含:调整反流器14的占空比(Duty ratio),此占空比可提高或降低发送线圈111所产生的发送电磁信号的频谱,也就是改变谐振程度,进而提高或降低电力发送端10对于电力接收端20的电力传输。例如,占空比接近50%时,可提高电力发送端10对于电力接收端20的电力传输;或者,占空比远离50%时,可降低电力发送端10对于电力接收端20的电力传输。或者,一实施例中,调整反流器14的操作频率,此操作频率可提高或降低发送线圈111所产生的发送电磁信号的谐振程度,进而提高或降低电力发送端10对于电力接收端20的电力传输,而调整发送电流It。或者,一实施例中,控制单元12控制DC/DC转换器15而调整第一直流电压,进而调整反流器提供给谐振发送电路的电压,借此调整通过谐振发送电路11的发送电流It。Further, in a preferred embodiment, the method of adjusting the transmission current It through the
以上已针对较佳实施例来说明本发明,但以上所述,仅为使本领域技术人员易于了解本发明的内容,并非用来限定本发明的权利范围。在本发明的相同精神下,本领域技术人员可以思及各种等效变化。凡此种种,都可根据本发明的教示类推而得,因此,本发明的范围应涵盖上述及其他所有等效变化。此外,本发明的任一实施型态不必需实现所有的目的或优点,因此,权利要求的任一项也不应以此为限。另一方面,各实施例的内容可以交互组合运用,任一实施例可以引用其他实施例的细节。The present invention has been described above with respect to the preferred embodiments, but the above description is only for those skilled in the art to easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. Within the same spirit of the present invention, various equivalent changes may be conceived by those skilled in the art. All of these can be derived by analogy according to the teachings of the present invention, so the scope of the present invention should cover the above and all other equivalent changes. In addition, it is not necessary for any embodiment of the present invention to achieve all objects or advantages, and thus neither should any claim be limited thereto. On the other hand, the contents of each embodiment can be used in an interactive combination, and any embodiment can refer to details of other embodiments.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/122,988 US10819166B2 (en) | 2017-11-14 | 2018-09-06 | Wireless power transfer system with positioning function |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762586073P | 2017-11-14 | 2017-11-14 | |
| US62/586,073 | 2017-11-14 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109787370A CN109787370A (en) | 2019-05-21 |
| CN109787370B true CN109787370B (en) | 2022-09-27 |
Family
ID=66496033
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810558085.3A Active CN109787370B (en) | 2017-11-14 | 2018-06-01 | Wireless power transmission system with positioning function |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN109787370B (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104124774A (en) * | 2013-04-28 | 2014-10-29 | 海尔集团技术研发中心 | Wireless electric power transmission method and system |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9148201B2 (en) * | 2011-02-11 | 2015-09-29 | Qualcomm Incorporated | Systems and methods for calibration of a wireless power transmitter |
| US9531441B2 (en) * | 2012-02-21 | 2016-12-27 | Lg Innotek Co., Ltd. | Wireless power receiver and method of managing power thereof |
-
2018
- 2018-06-01 CN CN201810558085.3A patent/CN109787370B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104124774A (en) * | 2013-04-28 | 2014-10-29 | 海尔集团技术研发中心 | Wireless electric power transmission method and system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109787370A (en) | 2019-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI589090B (en) | Resonant non-contact power supply, power receiver and control method | |
| KR101262615B1 (en) | Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power | |
| US10651694B2 (en) | Wireless power transmission method and device therefor | |
| US10530196B2 (en) | Methods and apparatus for power loss calibration in a wireless power system | |
| US9601946B2 (en) | Wireless power transmitter, wireless power receiver and wireless power transmission method | |
| US10103578B2 (en) | Power supply device, integrated circuit, energy transmitter and impedance matching method | |
| US20180138756A1 (en) | Wireless power transmission system and method for driving same | |
| US10381879B2 (en) | Wireless power transmission system and driving method therefor | |
| WO2014203346A1 (en) | Power transmission device, wireless power feeding system, and control method | |
| US9892846B2 (en) | Wireless power transmitter, wireless power receiver and wireless power transmission method | |
| US9680530B2 (en) | Non-contact power supply apparatus and non-contact power supply system | |
| CN108092416A (en) | Wireless power transmitter and method of controlling power therefor | |
| US9419469B2 (en) | High efficiency wireless charging system and its control method | |
| CN102754305A (en) | Resonance frequency control method, power transmission device, and power reception device in magnetic field resonance type power transmission system | |
| TW201601440A (en) | Resonant type non-contact power unit, electricity transmitter and non-contact power supply method | |
| US11949249B2 (en) | Calibration of foreign object detection during changes in operating conditions | |
| CN104716747B (en) | Wireless charging system and control method thereof | |
| US20130140907A1 (en) | Wireless power supplying system and adaptive adjustment method thereof | |
| CN109787370B (en) | Wireless power transmission system with positioning function | |
| CN110495072A (en) | Wireless charging device and method for detecting acceptor device | |
| CN107769396B (en) | Transmitting terminal dynamic tuning device and method based on double DC-DC converters | |
| KR101305657B1 (en) | A wireless power transmission device and trnasmission method | |
| US10819166B2 (en) | Wireless power transfer system with positioning function | |
| KR20130070450A (en) | Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power | |
| KR102152670B1 (en) | Wireless Power Transfer System and Operating method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |