CN100334837C - A method for assigning path bandwidth in bearing control layer - Google Patents
A method for assigning path bandwidth in bearing control layer Download PDFInfo
- Publication number
- CN100334837C CN100334837C CNB2003101230996A CN200310123099A CN100334837C CN 100334837 C CN100334837 C CN 100334837C CN B2003101230996 A CNB2003101230996 A CN B2003101230996A CN 200310123099 A CN200310123099 A CN 200310123099A CN 100334837 C CN100334837 C CN 100334837C
- Authority
- CN
- China
- Prior art keywords
- bandwidth
- path
- hop
- user
- overhead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
技术领域technical field
本发明涉及有独立承载层的区分服务模型(Diff-serv,DifferentiatedService)技术,尤其涉及一种在有独立承载层的区分服务模型的承载控制层中分配路径带宽的方法。The invention relates to a differentiated service model (Diff-serv, Differentiated Service) technology with an independent bearer layer, in particular to a method for allocating path bandwidth in the bearer control layer of the differentiated service model with an independent bearer layer.
背景技术Background technique
随着互联网(Internet)规模的不断增大,各种服务质量(QoS,Quality ofService)技术应运而生。因此,互联网工程任务组(IETF,Internet EngineeringTask Force)建议了很多服务模型和机制,以满足QoS的需求。目前业界比较认可的是在网络的接入和边缘使用综合服务模型(Int-Serv,Integrated Service),在网络的核心使用区分服务模型(Diff-serv,Differentiated Service)。区分服务模型仅设定优先等级保障QoS措施,该QoS措施虽然有线路利用率高的特点,但具体的效果难以预测。因此,为了进一步完善QoS技术,业界开始为骨干网区分服务模型引入一个独立的承载控制层,建立一套专门的区分服务模型的QoS信令机制。这个区分服务模型被称为有独立承载控制层的区分服务模型。With the increasing scale of the Internet (Internet), various Quality of Service (QoS, Quality of Service) technologies have emerged as the times require. Therefore, the Internet Engineering Task Force (IETF, Internet Engineering Task Force) has suggested many service models and mechanisms to meet the requirements of QoS. At present, the industry generally recognizes that the integrated service model (Int-Serv, Integrated Service) is used at the access and edge of the network, and the differentiated service model (Diff-serv, Differentiated Service) is used at the core of the network. The DiffServ model only sets priority levels to ensure QoS measures. Although this QoS measure has the characteristics of high line utilization, the specific effect is difficult to predict. Therefore, in order to further improve the QoS technology, the industry has begun to introduce an independent bearer control layer for the DiffServ model of the backbone network, and establish a set of QoS signaling mechanisms dedicated to the DiffServ model. This DiffServ model is called the DiffServ model with independent bearer control layer.
图1为有独立的承载控制层的区分服务模型图。如图1所示,在该模型中,承载控制层102置于承载网络103和业务控制层101之间。在业务控制层101中的呼叫代理(CA,Call Agent)为业务服务器,比如软交换、视频点播(VOD)控制服务器、路由网守(GK,Gate Keeper)等,CA接收用户设备的呼叫请求,代理用户设备完成呼叫的请求和交换;在承载控制层102中,承载网资源管理器配置了管理规则和网络拓扑,为客户的业务带宽申请分配资源,本图中只画了三个承载网资源管理器,即承载网资源管理器1、承载网资源管理器2和承载网资源管理器3,但承载网资源管理器的个数不是一定的,各个承载网资源管理器相互之间通过信令传递客户的业务带宽申请请求和结果、以及为业务申请分配的路由路径信息等;在承载网103中,每个承载网资源管理器管理一个特定的承载网区域,这个特定的承载网区域被称为所对应的承载网资源管理器的管理域,本图中为承载网资源管理器1的管理域107、承载网资源管理器2的管理域108和承载网资源管理器3的管理域109,管理域107中包括边缘路由器(ER,EdgeRouter)110、核心路由器111和边界路由器(BR,Border Router)112,其中,ER能够将用户设备的呼叫业务流接入到承载网或引出承载网,管理域108和管理域109中也包括核心路由器和边界路由器。Figure 1 is a diagram of a differentiated service model with an independent bearer control layer. As shown in FIG. 1 , in this model, the
在有独立承载控制层的区分服务模型中,承载网资源管理器为用户的业务连接申请通讯路径,并为申请到的路径分配带宽。在许多有独立的承载控制层的区分服务模型中都有分配带宽的方法,如服务骨干实验网(Qbone,Quality-of-Service backbone)的带宽代理器模型,图2为Qbone的带宽代理器模型图,如图2所示,带宽代理器1、带宽代理器2和带宽代理器3所实现的就是承载网资源管理器的功能,在该模型中,带宽代理器负责处理来自用户主机、业务服务器或者网络维护人员的带宽申请请求,根据该带宽请求以及该带宽管理器内记录着大量信息参数利用流量工程的统计算法获取分配带宽,这些信息参数包括各类配置信息、物理网络的拓扑信息、路由器的配置信息和策略信息、当前的资源预留信息、网络占用状态信息等大量静态或动态的信息。In the differentiated service model with an independent bearer control layer, the bearer network resource manager applies for a communication path for the user's service connection and allocates bandwidth for the applied path. There is a method of allocating bandwidth in many differentiated service models with independent bearer control layers, such as the bandwidth proxy model of the service backbone experimental network (Qbone, Quality-of-Service backbone). Figure 2 shows the bandwidth proxy model of Qbone As shown in Figure 2, bandwidth agent 1, bandwidth agent 2, and bandwidth agent 3 realize the function of bearer network resource manager. In this model, bandwidth agent is responsible for Or the bandwidth application request of network maintenance personnel, according to the bandwidth request and a large number of information parameters recorded in the bandwidth manager, use the statistical algorithm of traffic engineering to obtain the allocated bandwidth. These information parameters include various configuration information, topology information of the physical network, and routers. A large amount of static or dynamic information such as configuration information and policy information, current resource reservation information, network occupation status information, etc.
上述Qbone的带宽代理器分配带宽方案的缺点是:需用大量参数进行计算,且计算程序复杂,计算工作量非常大,对处理器等设备资源的耗费也较大,从而导致成本比较高。The disadvantages of the above-mentioned Qbone bandwidth agent bandwidth allocation scheme are: a large number of parameters are required for calculation, and the calculation program is complicated, the calculation workload is very large, and the consumption of processor and other equipment resources is also large, resulting in relatively high cost.
另外,还有一种NEC公司提出的Rich QoS方案。图3为Rich QoS方案的模型图,如图3所示,QoS服务器301作为关键部件,还包括与QoS服务器相配套的策略服务器302和目录服务器303以及网管监控服务器304,在本方案中,分配带宽的方法为:网管监控服务器304从承载网中的路由器中采集原始网络拓扑数据,并将采集到的拓扑数据存放在目录服务器303中,需要分配带宽时,策略服务器302从目录服务器303中读取相关的数据,并获取带宽,QoS服务器301再从策略服务器302上读取获取的结果,并分配带宽。其中的带宽获取过程为:利用基于多协议标签交换(MPLS,Multiprotocol Lable Switch)的流量工程统计算法来获取带宽,这种方法根据用户数据报文的长度和数据的往返时间等多项参数来获取需要分配的带宽。In addition, there is also a Rich QoS solution proposed by NEC Corporation. Fig. 3 is the model figure of Rich QoS scheme, as shown in Fig. 3,
上述Rich QoS方案中分配路径带宽的缺点为:承载控制层和承载网的网管数据通信量大,承载控制层有较大的带宽计算量,硬件上所涉及的服务器太多,从而耗费大量的设备资源;另外,获取带宽的方法也需大量参数的参与,且程序复杂,计算工作量非常大,对处理器等设备资源的耗费较大,从而导致成本很高,而且,测量往返时间需要耗费时间,所以此种方案的实时性很差。The disadvantages of allocating path bandwidth in the above-mentioned Rich QoS scheme are: there is a large amount of network management data communication between the bearer control layer and the bearer network, the bearer control layer has a large amount of bandwidth calculation, and too many servers are involved in the hardware, which consumes a lot of equipment. resources; in addition, the method of obtaining bandwidth also requires the participation of a large number of parameters, and the program is complex, the calculation workload is very large, and the consumption of device resources such as processors is large, resulting in high cost, and it takes time to measure the round-trip time , so the real-time performance of this scheme is very poor.
发明内容Contents of the invention
有鉴于此,本发明的主要目的是提供一种在承载控制层中分配路径带宽的方法,从而简化分配带宽的步骤,减少无谓的资源浪费,并降低成本。In view of this, the main purpose of the present invention is to provide a method for allocating path bandwidth in the bearer control layer, thereby simplifying the steps of allocating bandwidth, reducing unnecessary waste of resources, and reducing costs.
为了实现上述目的,本发明的技术方案具体是这样实现的:In order to achieve the above object, the technical solution of the present invention is specifically implemented in the following way:
一种在承载控制层中分配路径带宽的方法,其特征在于,所述的方法包括:A method for allocating path bandwidth in the bearer control layer, characterized in that the method comprises:
a:在承载控制层中进行资源请求的过程中,各跳承载网资源管理器收到连接资源申请请求后,根据该连接资源申请请求选择路径,根据该承载网中的最大路径标签栈深度MTD和用户业务原始数据包的总报文头长度获取用户数据在经过该跳路径时的最大新增开销;再根据该最大新增开销、连接资源申请请求中包括的用户所请求的带宽以及用户业务的最大峰值报文长度MPPL获取最大新增开销所占用的带宽;将所获取的最大新增开销所占用的带宽与用户所请求的带宽之和作为带宽值分配给所选择的每跳路径;a: During the resource request process in the bearer control layer, after receiving the connection resource application request, each hop bearer network resource manager selects a path according to the connection resource application request, and according to the maximum path label stack depth MTD in the bearer network and the total packet header length of the original data packet of the user service to obtain the maximum added overhead of the user data passing through the hop path; then according to the maximum added overhead, the bandwidth requested by the user included in the connection resource application request, and the The maximum peak packet length MPPL obtains the bandwidth occupied by the maximum newly added overhead; the sum of the acquired bandwidth occupied by the maximum newly added overhead and the bandwidth requested by the user is assigned to the selected path for each hop as a bandwidth value;
b:当资源请求的源承载网资源管理器根据各跳承载网资源管理器所选择的路径建立起所有路径连接后,各跳承载网资源管理器根据各跳路径的相对路径标签栈深度RTD和用户业务原始数据包的总报文头长度获取用户数据经过各跳路径时的实际新增开销;再根据该实际新增开销、用户所请求的带宽以及MPPL获取用户数据经过各跳路径时的实际新增开销所占用的带宽;并分别将用户数据经过各跳路径时的实际新增开销所占用的带宽与用户所请求的带宽之和作为带宽值替换先前为各跳路径分配的带宽。b: After the source bearer network resource manager of the resource request establishes all path connections according to the path selected by the bearer network resource manager of each hop, the bearer network resource manager of each hop uses the relative path label stack depth RTD and The total header length of the original data packet of the user service obtains the actual added overhead when the user data passes through each hop path; then obtains the actual added overhead when the user data passes through each hop path according to the actual added overhead, the bandwidth requested by the user, and MPPL The bandwidth occupied by the added overhead; and the sum of the bandwidth occupied by the actual added overhead when the user data passes through each hop path and the bandwidth requested by the user is used as the bandwidth value to replace the previously allocated bandwidth for each hop path.
在步骤a中,获取所述最大新增开销的方法为:In step a, the method for obtaining the maximum new overhead is:
将MTD×4×2+用户业务原始数据包的总报文头长度得到的值作为所述的最大新增开销。The value obtained by taking MTD×4×2+the total packet header length of the original data packet of the user service is taken as the maximum added overhead.
在步骤a中,获取所述最大新增开销所占用带宽的方法为:In step a, the method for obtaining the bandwidth occupied by the maximum new overhead is:
将用户所请求的带宽×最大新增开销/MPPL得到的值作为所述最大新增开销所占用的带宽。The value obtained by the bandwidth requested by the user×the maximum added overhead/MPPL is used as the bandwidth occupied by the maximum added overhead.
在步骤b之后,所述的方法还包括以下步骤:After step b, described method also comprises the following steps:
c、当所述各跳承载网资源管理器收到连接资源修改请求时,所述各跳承载网资源管理器根据各跳路径的RTD和用户业务原始数据包的总报文头长度获取用户数据经过各跳路径时的实际新增开销;再根据该实际新增开销、连接资源修改请求中包括的用户所请求的带宽以及MPPL获取用户数据经过各跳路径时的实际新增开销所占用的带宽;将该实际新增开销所占用的带宽与用户所请求的带宽相加,将得到的和值作带宽值替换先前为各跳路径分配的带宽。c. When the bearer network resource managers of each hop receive a connection resource modification request, the bearer network resource managers of each hop obtain user data according to the RTD of each hop path and the total header length of the user service original data packet The actual new overhead when passing through each hop path; then according to the actual new overhead, the bandwidth requested by the user included in the connection resource modification request, and the bandwidth occupied by the actual new overhead when user data passes through each hop path obtained by MPPL ; Add the bandwidth occupied by the actual new overhead to the bandwidth requested by the user, and use the obtained sum value as the bandwidth value to replace the previously allocated bandwidth for each hop path.
所述获取用户数据经过各跳路径时的实际新增开销的方法为:判断用户业务的最大数据包的报文长度是否大于当前跳路径的最大路径传输单元PMTU,如果是,则将当前跳路径的RTD×4×2+用户业务原始数据包的总报文头长度得到的值作为所述用户数据经过各跳路径时的实际新增开销;否则,将当前跳路径的RTD×4得到的值作为所述用户数据经过各跳路径时的实际新增开销。The method for obtaining the actual new overhead when user data passes through each hop path is: judge whether the message length of the largest data packet of the user service is greater than the maximum path transmission unit PMTU of the current hop path, and if so, transfer the current hop path RTD × 4 × 2 + the total header length of the original data packet of the user service as the actual new overhead when the user data passes through each hop path; otherwise, the value obtained by the RTD × 4 of the current hop path As the actual new overhead when the user data passes through each hop path.
所述用户业务的最大数据包的报文长度为:最大峰值报文长度+4×所述各跳路径的RTD。The packet length of the maximum data packet of the user service is: the maximum peak packet length+4×the RTD of each hop path.
获取所述用户数据经过各跳路径时的实际新增开销所占用带宽的方法为:The method for obtaining the bandwidth occupied by the actual new overhead when the user data passes through each hop path is as follows:
将用户所请求的带宽×实际新增开销/最大峰值报文长度得到的值作为所述用户数据经过各跳路径时的实际新增开销所占用带宽。The value obtained by the bandwidth requested by the user × the actual added overhead/the maximum peak packet length is used as the bandwidth occupied by the actual added overhead when the user data passes through each hop path.
所述用户业务原始数据包的总报文头长度为:用户数据包所经过的各层报文头长度之和。所述的各层报文头包括:链路层报文头和IP报文头。The total packet header length of the original user service data packet is: the sum of the packet header lengths of all layers that the user data packet passes through. The message headers of each layer include: a link layer message header and an IP message header.
由于本发明所述方法利用资源网承载器独立分配路径带宽,从而节省了设备资源,而且本发明所述的方法只用报文长度和带宽请求等少量的参数就可比较精确地获取需为各跳路径分配的带宽,大大降低了获取带宽的复杂程度,工作量小,从而节省大量的处理器资源,大大降低了成本;另外,本发明所述方法的速度比较快,也不用去测量数据的往返时间,所以实时性很好。Because the method of the present invention utilizes the resource network bearer to independently allocate the path bandwidth, thereby saving equipment resources, and the method of the present invention can obtain the information required for each The bandwidth allocated by the jump path greatly reduces the complexity of obtaining the bandwidth, and the workload is small, thereby saving a large amount of processor resources and greatly reducing the cost; in addition, the method of the present invention is faster and does not need to measure data Round-trip time, so real-time is good.
附图说明Description of drawings
图1为有独立承载控制层的区分服务模型图;Figure 1 is a diagram of a differentiated service model with an independent bearer control layer;
图2为Qbone的带宽代理器模型图;Fig. 2 is the bandwidth agent model diagram of Qbone;
图3为Rich QoS方案的模型图;Fig. 3 is a model diagram of the Rich QoS scheme;
图4为在承载网中完成资源请求的流程图;FIG. 4 is a flow chart of completing a resource request in a bearer network;
图5为用户业务原始数据包的普通报文格式图;Fig. 5 is a common message format diagram of a user service original data packet;
图6为当(MPPL+4×RTD)<=PMTU时的用户业务数据报文格式图;Fig. 6 is when (MPPL+4*RTD)<=PMTU when the user service data message format diagram;
图7为当(MPPL+4×RTD)>PMTU时的用户业务数据报文格式图。FIG. 7 is a format diagram of user service data packets when (MPPL+4×RTD)>PMTU.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明再作进一步详细的说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
承载控制层在为用户业务连接选择路径时,需要根据用户的资源请求分配路径带宽,本发明所述的方法,主要是在承载网资源管理器上根据用户的报文长度、请求带宽以及路径信息,为选取的路径分配带宽。When the bearer control layer selects a path for a user service connection, it needs to allocate the path bandwidth according to the user's resource request. The method of the present invention is mainly based on the user's message length, requested bandwidth, and path information on the bearer network resource manager. , to allocate bandwidth for the selected path.
本实施例所述的路径是指标签交换路径(LSP,Label Switch Path),承载控制层中的各个承载网资源管理器内部可以为用户请求的业务连接选择该跳承载网管理器所辖管理域中的LSP,并获取在每跳LSP上需分配的带宽资源,并根据获取的结果为每跳LSP分配带宽。The path described in this embodiment refers to a Label Switch Path (LSP, Label Switch Path). Each bearer network resource manager in the bearer control layer can select the management domain under the jurisdiction of the bearer network manager for the service connection requested by the user. LSP in the LSP, obtain the bandwidth resources to be allocated on each hop LSP, and allocate bandwidth for each hop LSP according to the obtained result.
图4为在承载网中完成资源请求的流程图,如图4所示,通常业务连接的申请连接资源或修改调整资源过程包括以下步骤:Figure 4 is a flow chart of completing a resource request in the bearer network. As shown in Figure 4, the process of applying for connection resources or modifying and adjusting resources for a business connection usually includes the following steps:
a:CA向源承载网资源管理器,即承载网资源管理器1发送连接资源申请请求,该连接资源申请请求中包括用户所申请的带宽RB,源承载网资源管理器收到连接资源申请请求后,选择LSP,并在所选择的每条LSP上分配预留带宽,随后向下一跳承载网资源管理器发送连接资源申请请求;a: CA sends a connection resource application request to the source bearer network resource manager, that is, bearer network resource manager 1. The connection resource application request includes the bandwidth RB requested by the user, and the source bearer network resource manager receives the connection resource application request Finally, select an LSP, and allocate reserved bandwidth on each selected LSP, and then send a connection resource application request to the next-hop bearer network resource manager;
b:当前承载网资源管理器收到连接资源申请请求后,选择LSP,并在所选择的每跳LSP上分配预留带宽,如果该当前承载网资源管理器为资源请求的目的承载网资源管理器,即承载网资源管理器n,则向上一跳承载网资源管理器返回连接资源申请响应,执行步骤c;否则,向下一跳承载网资源管理器发送连接资源申请请求,返回步骤b;b: After the current bearer network resource manager receives the connection resource application request, it selects an LSP and allocates reserved bandwidth on each selected LSP hop. If the current bearer network resource manager is the destination bearer network resource manager of the resource request device, that is, the bearer network resource manager n, returns a connection resource application response to the bearer network resource manager of the next hop, and performs step c; otherwise, sends a connection resource application request to the bearer network resource manager of the next hop, and returns to step b;
c:当前承载网资源管理器收到连接资源申请响应,如果该当前承载网资源管理器为资源请求的源承载网资源管理器,则根据资源响应中的LSP信息建立业务连接的所有LSP连接,并向CA返回连接资源申请响应;否则,向上一跳承载网资源管理器返回连接资源申请响应,返回步骤c。c: The current bearer network resource manager receives the connection resource application response. If the current bearer network resource manager is the source bearer network resource manager of the resource request, all LSP connections of the service connection are established according to the LSP information in the resource response. And return a connection resource application response to the CA; otherwise, return a connection resource application response to the bearer network resource manager of the previous hop, and return to step c.
当源承载网资源管理器建立业务连接的所有LSP连接后,需要根据所有LSP的信息先前所预留的带宽进行修改调整;之后,当源承载网资源管理器收到CA的关于对先前所预留的带宽进行修改调整的请求时,需要根据修改调整请求对先前预留的带宽进行修改调整。这两种修改调整带宽的过程相同,具体步骤如下:After the resource manager of the source bearer network establishes all the LSP connections of service connections, it needs to modify and adjust the previously reserved bandwidth according to the information of all LSPs; after that, when the resource manager of the source bearer network receives the When a modification and adjustment request is made for the reserved bandwidth, it is necessary to modify and adjust the previously reserved bandwidth according to the modification and adjustment request. The process of adjusting the bandwidth of these two modifications is the same, and the specific steps are as follows:
d:源承载网资源管理器根据连接资源申请请求中包括的用户所请求的带宽,或者连接资源修改请求中所包括的用户所请求的带宽,为该源承载网资源管理器先前所预留的带宽进行修改调整,并向下一条源承载网资源管理器发送连接资源修改请求;d: The resource manager of the source bearer network, according to the bandwidth requested by the user included in the connection resource application request, or the bandwidth requested by the user included in the connection resource modification request, is previously reserved by the source bearer network resource manager The bandwidth is modified and adjusted, and a connection resource modification request is sent to the next source bearer network resource manager;
e:当前承载网资源管理器收到连接资源修改请求后,为该当前承载网资源管理器先前所预留的带宽进行修改调整,如果该当前承载网资源管理器为资源请求的目的承载网资源管理器,即承载网资源管理器n,则向上一跳承载网资源管理器返回连接资源修改响应,执行步骤f;否则,向下一跳承载网资源管理器发送连接资源修改请求,返回步骤e;e: After the current bearer network resource manager receives the connection resource modification request, it modifies and adjusts the bandwidth previously reserved by the current bearer network resource manager. If the current bearer network resource manager is the destination bearer network resource of the resource request The manager, that is, the bearer network resource manager n, returns a connection resource modification response to the bearer network resource manager of the next hop, and performs step f; otherwise, sends a connection resource modification request to the bearer network resource manager of the next hop, and returns to step e ;
f:当前承载网资源管理器收到连接资源修改响应,如果该当前承载网资源管理器为资源请求的源承载网资源管理器,则向CA返回连接资源修改响应;否则,向上一跳承载网资源管理器返回连接资源修改响应,返回步骤f。f: The current bearer network resource manager receives a connection resource modification response. If the current bearer network resource manager is the source bearer network resource manager of the resource request, it returns a connection resource modification response to the CA; otherwise, it hops up to the bearer network The resource manager returns a connection resource modification response, and returns to step f.
在整个申请资源或修改资源的过程中,承载网资源管理器要为用户的业务连接在每跳LSP上分配带宽,本发明所述的方法就是获取每一跳LSP上需要的带宽,并依此进行带宽分配:In the whole process of applying for resources or modifying resources, the bearer network resource manager should allocate bandwidth on each hop LSP for the user's service connection, and the method of the present invention is to obtain the required bandwidth on each hop LSP, and according to To allocate bandwidth:
本实施例以传输IP报文为例来说明本发明所述的方法,首先,说明由什么确定每一跳LSP所需的带宽,图5为用户业务原始数据包的普通报文格式图,如图5所示,用户业务原始数据包的报文包括:链路层报文头501、IP报文头502和用户业务净负荷数据503。所述的链路层报文头501为链路层的报文头,所述IP报文头502为该报文在经过IP协议层时所加的报文头,所述用户业务净负荷数据503就是用户的业务数据。用户所请求的带宽RB根据上述用户业务原始数据包所占用的带宽来确定。The present embodiment takes IP message transmission as an example to illustrate the method of the present invention. At first, explain what determines the required bandwidth of each hop LSP. FIG. As shown in FIG. 5 , the message of the original data packet of the user service includes: a link
当用户业务数据在承载网络中通过LSP进行传输时,用户业务数据的报文格式相应发生改变,图6为此时的用户业务数据报文格式图,如图6所示,用户数据报文包括:链路层报文头501、LSP标签栈601、IP报文头502和用户业务净负荷数据503。在承载网中,每一跳LSP都有自身的标签,每一跳LSP的自身标签以及前几跳LSP的标签存储在该跳LSP的标签栈601中,LSP标签栈601中存储标签的数量由相对标签栈深度(RTD,Relative path Tag stack Depth)来表示,即在整个LSP集合中,各跳LSP相对于初始CN而言,已经经过的LSP跳数。例如第一跳LSP的RTD为1,第二跳LSP的RTD为2,第三跳LSP的RTD为3,依此类推。在有独立的承载控制层的区分服务模型中,针对承载网资源管理器还有一个规格属性,即最大路径标签栈深度(MTD,Max path Tag stack Depth),MTD表示业务连接在整个LSP集合中,允许经过的最大LSP跳数,MTD的值可根据网络的规模自行定义。When user service data is transmitted through the LSP in the bearer network, the message format of the user service data changes accordingly. Figure 6 is a format diagram of the user service data message at this time. As shown in Figure 6, the user data message includes : link
LSP标签栈601为新增的开销,也要占用带宽,所以在分配带宽时要把LSP标签栈601所占用的带宽包括进来。新增开销所占的字节数为LSP标签栈601的长度,而LSP标签栈601的长度=RTD×每个标签所占的字节数,又由于在用户数据业务报文中,标签栈中每个标签的字节长度为4字节,所以LSP标签栈的长度为RTD×4。The
由于带宽不仅与报文的长度有关,还与报文的传输频率有关,而且每时每刻传输的报文长度也是变化不定的,所以,用最大峰值报文长度(MPPL,MaxPeak Packet Length)来表示在用户的业务连接中,所占带宽最大的报文,所述MPPL为用户的业务连接在峰值带宽情况下最大的单个数据包的报文长度;另外,一跳LSP上所允许传输的最大数据包为最大传输单元(MTU,Max TransferUnit);在CN与CN之间,业务连接所能经过的所有LSP中,MTU值最小的数据包为最大路径传输单元(PMTU,Path Max Transfer Unit)。Since the bandwidth is not only related to the length of the message, but also related to the transmission frequency of the message, and the length of the message transmitted every moment is also variable, so the maximum peak packet length (MPPL, MaxPeak Packet Length) is used to determine Indicates the message that occupies the largest bandwidth in the user's service connection, and the MPPL is the maximum message length of a single data packet under the peak bandwidth of the user's service connection; The data packet is the maximum transmission unit (MTU, Max Transfer Unit); between CN and CN, among all the LSPs that the business connection can pass through, the data packet with the smallest MTU value is the maximum path transmission unit (PMTU, Path Max Transfer Unit).
当在峰值情况下,用户业务的最大数据包的报文长度为:原始报文长度+新增开销长度,即(MPPL+4×RTD)。当(MPPL+4×RTD)<=PMTU时,如图6所示,数据包相对于图5所示的用户原始的普通数据包来说,新增开销为LSP标签栈601,所以获取带宽时要将新增开销所占用的带宽包括进来,这个新增开销为:LSP标签栈601的长度,即RTD×4。In peak conditions, the message length of the largest data packet of the user service is: the original message length + the newly added overhead length, that is, (MPPL+4×RTD). When (MPPL+4×RTD)<=PMTU, as shown in Figure 6, compared to the user's original ordinary data packet shown in Figure 5, the new overhead of the data packet is the
当(MPPL+4×RTD)>PMTU时,则当前LSP不允许用户业务的数据包通过,所以此时,该数据包必须要进行分片处理,即将一个数据包中的用户业务净负荷数据分别装入两个数据包,且这两个数据包能通过当前LSP,如图7所示,用户的原始数据包被分为数据包701和数据包702,数据包701包括:链路层报文头501、LSP标签栈601、IP报文头502和用户业务净负荷数据503的第一部分703;数据包702包括:链路层报文头501、LSP标签栈601、IP报文头502和用户业务净负荷数据503的剩余部分704。与图5所示的用户的原始数据包相比,数据包701中的LSP标签栈601为新增开销1,数据包702中的链路层报文头501、LSP标签栈601和IP报文头502为新增开销2,所以获取带宽时要将这两部分新增开销考虑进去,所以整个数据包的新增开销为:新增开销1+新增开销2=LSP标签栈长度×2+(链路层报头长度+IP报头长度),其中,LSP标签栈长度为:RTD×每个标签所占的字节数,即RTD×4。When (MPPL+4×RTD)>PMTU, the current LSP does not allow the data packet of the user service to pass through, so at this time, the data packet must be fragmented, that is, the payload data of the user service in a data packet is divided into Load two data packets, and these two data packets can pass through the current LSP, as shown in Figure 7, the user's original data packet is divided into
如上所述,在承载网中传送的数据包比用户的原始数据包增加了新的开销,这些新的开销要占用一部分带宽,所以,为当前跳LSP分配的带宽用式(1)来获取:As mentioned above, the data packet transmitted in the bearer network adds new overhead compared with the original data packet of the user, and these new overheads occupy a part of the bandwidth. Therefore, the bandwidth allocated for the current hop LSP is obtained by formula (1):
为当前跳LSP分配的带宽=RB+ΔRB (1)Bandwidth allocated for the current hop LSP = RB+ΔRB (1)
式(1)中,带宽的单位为比特/秒(bps),RB为用户所请求的带宽,ΔRB为新增开销所占用的带宽。由于新增开销在不同的情况下会有所不同,所以在不同情况下ΔRB的值不同,相应的当前LSP带宽也不同,下面分别说明:In formula (1), the unit of bandwidth is bit/second (bps), RB is the bandwidth requested by the user, and ΔRB is the bandwidth occupied by the new overhead. Since the new overhead will be different in different situations, the value of ΔRB is different in different situations, and the corresponding current LSP bandwidth is also different, as follows:
在上述步骤a和步骤b中为所述每跳LSP分配预留带宽时,由于不能完全确定该业务连接的最终所有LSP连接,为了确保为当前跳LSP分配的预留带宽足够使用,所以此时按最大新增开销来获取需要为当前跳LSP预留的带宽,即最大新增开销为:上述的新增开销1与新增开销2之和,且当前跳LSP的标签栈的深度选最大的MTD,如式(2):When allocating reserved bandwidth for each hop LSP in the above step a and step b, since it is impossible to fully determine all the final LSP connections of this service connection, in order to ensure that the reserved bandwidth allocated for the current hop LSP is sufficient for use, so at this time The bandwidth that needs to be reserved for the current hop LSP is obtained according to the maximum new cost, that is, the maximum new cost is: the sum of the above new cost 1 and the new cost 2, and the depth of the label stack of the current hop LSP is the largest MTD, such as formula (2):
ΔRB=RB×最大新增开销/MPPL (2)ΔRB=RB×Maximum new overhead/MPPL (2)
式(2)中,所述的新增开销为最大的新增开销所占用的字节数,即4×MTD×2+(链路层报头长度+IP报头长度)。In formula (2), the added overhead is the number of bytes occupied by the largest added overhead, that is, 4×MTD×2+(link layer header length+IP header length).
当整个LSP建立成功后,则每一跳承载网资源管理器知道了每一跳LSP的RTD,因此会对先前的申请下来的整个LSP集合作一次资源修改调整,即对先前每一跳LSP的预留带宽进行修改调整;或者,由于其他原因要对先前为LSP预留的带宽进行修改调整,例如承载网资源管理器可能收到CA的连接资源修改请求,因此要对原先的带宽进行修改调整。此时,为了更加精确地获取为当前跳LSP分配的带宽,所以按精确新增开销来获取带宽并分配,此时有两种情况:After the entire LSP is established successfully, the bearer network resource manager of each hop knows the RTD of each hop LSP, so it will make a resource modification and adjustment for the entire set of previously applied LSPs, that is, the RTD of each previous hop LSP Modify and adjust the reserved bandwidth; or modify and adjust the previously reserved bandwidth for the LSP due to other reasons, for example, the resource manager of the bearer network may receive a connection resource modification request from the CA, so the original bandwidth needs to be modified and adjusted . At this time, in order to obtain the bandwidth allocated for the current hop LSP more accurately, the bandwidth is obtained and allocated according to the precise new overhead. There are two situations at this time:
若(MPPL+4×RTD)<=PMTU时,则:If (MPPL+4×RTD)<=PMTU, then:
ΔRB=RB×精确新增开销/MPPL (3)ΔRB=RB×accurate new overhead/MPPL (3)
如图6所示,式(3)中所述的新增开销为当前跳LSP的标签栈长度,即,4×RTD。As shown in FIG. 6 , the added overhead described in formula (3) is the length of the label stack of the current hop LSP, that is, 4×RTD.
若(MPPL+4×RTD)>PMTU,则:If (MPPL+4×RTD)>PMTU, then:
ΔRB=RB×精确新增开销/MPPL (4)ΔRB=RB×accurate new overhead/MPPL (4)
如图7所示,式(4)中所述的新增开销为:当前跳LSP的标签栈所占的字节数×2+(链路层报头长度+IP报头长度),即(4×RTD×2+(链路层报头长度+IP报头长度))。As shown in Figure 7, the new overhead described in formula (4) is: the number of bytes occupied by the label stack of the current hop LSP × 2 + (link layer header length + IP header length), that is (4 × RTD×2+(link layer header length+IP header length)).
本实施例中,用户净业务数据在第二层,即IP层,如果用户净业务数据在第三层以及以上层协议中,则上述的IP报头长度应替换为:IP报头长度+三层以及三层以上各层报头之和。In this embodiment, the user's net business data is in the second layer, that is, the IP layer. If the user's net business data is in the third layer and above layer protocols, the above-mentioned IP header length should be replaced by: IP header length+three layers and The sum of headers of layers above three layers.
一般情况下,采用上述实施例所述方法获取并分配路径带宽,但本发明所述的方法也可以只用式(2)来获取新增开销所占带宽,并以此算出所需分配的带宽,之后也不对分配的带宽进行修改调整。这种实施方式虽然比较简单,计算量小,但是精度不高,容易造成带宽资源的浪费。这种实施方式对于时间要求高而带宽要求低的业务是适用的,但一般情况下,不采用这种实施方式。Under normal circumstances, the method described in the above-mentioned embodiments is used to obtain and allocate path bandwidth, but the method described in the present invention can also only use formula (2) to obtain the bandwidth occupied by the new overhead, and calculate the bandwidth to be allocated accordingly , and will not modify and adjust the allocated bandwidth afterwards. Although this implementation manner is relatively simple and has a small amount of calculation, the accuracy is not high, and bandwidth resources are likely to be wasted. This implementation mode is applicable to services with high time requirements and low bandwidth requirements, but generally, this implementation mode is not used.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person familiar with the technology can easily think of changes or replacements within the technical scope disclosed in the present invention. , should be covered within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2003101230996A CN100334837C (en) | 2003-12-24 | 2003-12-24 | A method for assigning path bandwidth in bearing control layer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2003101230996A CN100334837C (en) | 2003-12-24 | 2003-12-24 | A method for assigning path bandwidth in bearing control layer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1633081A CN1633081A (en) | 2005-06-29 |
| CN100334837C true CN100334837C (en) | 2007-08-29 |
Family
ID=34844737
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2003101230996A Expired - Fee Related CN100334837C (en) | 2003-12-24 | 2003-12-24 | A method for assigning path bandwidth in bearing control layer |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100334837C (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104468408A (en) * | 2013-09-22 | 2015-03-25 | 中国电信股份有限公司 | Method for adjusting dynamically service bandwidth and control center server |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100596235C (en) | 2006-12-15 | 2010-03-24 | 华为技术有限公司 | A resource scheduling method and system based on a wireless system |
| CN101414956B (en) * | 2007-10-15 | 2011-08-03 | 华为技术有限公司 | A bandwidth request method, system and device thereof |
| CN108462596B (en) * | 2017-02-21 | 2021-02-23 | 华为技术有限公司 | SLA decomposition method, equipment and system |
| CN112350935B (en) * | 2019-08-08 | 2023-03-24 | 中兴通讯股份有限公司 | Path calculation method and device for path with stack depth constraint |
| CN112699660B (en) * | 2019-10-23 | 2024-08-06 | 阿里巴巴集团控股有限公司 | Data processing method, system and equipment |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10147748A1 (en) * | 2001-09-27 | 2003-04-17 | Siemens Ag | Method and device for adapting label-switched paths in packet networks |
| WO2003065647A2 (en) * | 2002-01-30 | 2003-08-07 | Ericsson Inc. | Method and apparatus for obtaining information about paths terminating at a node |
-
2003
- 2003-12-24 CN CNB2003101230996A patent/CN100334837C/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10147748A1 (en) * | 2001-09-27 | 2003-04-17 | Siemens Ag | Method and device for adapting label-switched paths in packet networks |
| WO2003065647A2 (en) * | 2002-01-30 | 2003-08-07 | Ericsson Inc. | Method and apparatus for obtaining information about paths terminating at a node |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104468408A (en) * | 2013-09-22 | 2015-03-25 | 中国电信股份有限公司 | Method for adjusting dynamically service bandwidth and control center server |
| CN104468408B (en) * | 2013-09-22 | 2018-04-06 | 中国电信股份有限公司 | For dynamically adjusting the method and control centre's server of service bandwidth |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1633081A (en) | 2005-06-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7903553B2 (en) | Method, apparatus, edge router and system for providing QoS guarantee | |
| US7477657B1 (en) | Aggregating end-to-end QoS signaled packet flows through label switched paths | |
| US7319691B2 (en) | Method for providing guaranteed quality of service in IP network and system thereof | |
| US7756056B2 (en) | Apparatus and method for managing quality of service in integrated network of heterogeneous mobile network | |
| US7652989B2 (en) | Method of performing adaptive connection admission control in consideration of input call states in differentiated service network | |
| US20070147243A1 (en) | Method and system for guaranteeing end-to-end quality of service | |
| US7889693B2 (en) | Method and system for providing QoS in broadband convergence network deploying mobile IP | |
| JP2004532545A (en) | Synchronization based on class-specific resource policies between routers in a data network. | |
| JP2004530340A (en) | Edge-based per-flow QoS admission control in data networks | |
| US20080016221A1 (en) | Method for implementing resource applications of multiple service flows | |
| WO2005122493A1 (en) | A method for realizing route transmitting in the network | |
| CN101309229B (en) | Resource admission control method for network of multiple protocol label switch structure | |
| CN100334837C (en) | A method for assigning path bandwidth in bearing control layer | |
| JP2008541555A (en) | Method and configuration for resource reservation in a data network | |
| CN1756186B (en) | A Realization Method of Resource Management | |
| Lin et al. | A QoS model of Next Generation Network based on MPLS | |
| CN100433699C (en) | Method for distributing service mass resource according to signing service level | |
| US20090003194A1 (en) | Resilience Solution for Top Tier Bandwidth Managers | |
| CN100391154C (en) | A Routing Method in Resource Manager | |
| CN100456731C (en) | Method and device for ensuring service QoS in network interworking of different bearer layers | |
| CN100382540C (en) | A Method for Realizing Service Connection Resource Management | |
| CN100450049C (en) | A way to implement resource allocation | |
| CN100396054C (en) | Method for transmitting service flow data packets between inside and outside of universal mobile communication system | |
| CN100396050C (en) | A method of route selection across independent operating networks | |
| CN100394736C (en) | Improvement of multi-medium communication reliability by logic media |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070829 Termination date: 20151224 |
|
| EXPY | Termination of patent right or utility model |