CN100364883C - Preparation method of nanocrystalline cubic boron nitride film - Google Patents
Preparation method of nanocrystalline cubic boron nitride film Download PDFInfo
- Publication number
- CN100364883C CN100364883C CNB2006100508279A CN200610050827A CN100364883C CN 100364883 C CN100364883 C CN 100364883C CN B2006100508279 A CNB2006100508279 A CN B2006100508279A CN 200610050827 A CN200610050827 A CN 200610050827A CN 100364883 C CN100364883 C CN 100364883C
- Authority
- CN
- China
- Prior art keywords
- reaction chamber
- boron nitride
- nitride film
- preparation
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 38
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000007789 gas Substances 0.000 claims abstract description 20
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 15
- 239000000460 chlorine Substances 0.000 claims abstract description 14
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 4
- 229910052754 neon Inorganic materials 0.000 claims description 4
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 4
- 230000001143 conditioned effect Effects 0.000 claims 1
- 230000004907 flux Effects 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 29
- 238000000034 method Methods 0.000 abstract description 13
- 230000001681 protective effect Effects 0.000 abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 239000010409 thin film Substances 0.000 abstract description 4
- 238000001947 vapour-phase growth Methods 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 2
- 230000003746 surface roughness Effects 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- DNISYQIZVIFCRA-UHFFFAOYSA-N 4-(1-aminoethyl)-2,6-ditert-butylphenol Chemical compound CC(N)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 DNISYQIZVIFCRA-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000010849 ion bombardment Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开的纳米晶立方氮化硼薄膜的制备方法,步骤如下:1)把衬底表面清洗干净放到气相生长装置的反应室,反应室真空度至少抽到10-3Pa;2)向反应室输入保护气体,加热衬底并控制其温度在300-1100℃,调节反应室压强到0.1-10Pa,在反应室中产生等离子体;3)控制衬底偏压在0-250V,然后依次向反应室输入氮源,氯元素源和硼源,进行薄膜生长。本发明工艺、设备简单,原料易得,所制备的纳米晶立方氮化硼薄膜纯度高、残留压应力低,晶粒尺度小于50纳米,表面粗糙度低、硬度高,适用于制备加工铁基合金的刀具和磨具等,也可以用在光学元件的保护膜,高温电子器件等领域。The preparation method of the nanocrystalline cubic boron nitride thin film disclosed by the present invention has the following steps: 1) Clean the surface of the substrate and put it into the reaction chamber of the vapor phase growth device, and the vacuum degree of the reaction chamber is pumped to at least 10 -3 Pa; Input protective gas into the reaction chamber, heat the substrate and control its temperature at 300-1100°C, adjust the pressure of the reaction chamber to 0.1-10Pa, and generate plasma in the reaction chamber; 3) Control the substrate bias at 0-250V, and then sequentially A nitrogen source, a chlorine element source and a boron source are input into the reaction chamber for film growth. The process and equipment of the invention are simple, and the raw materials are easy to obtain. The prepared nanocrystalline cubic boron nitride film has high purity, low residual compressive stress, grain size less than 50 nanometers, low surface roughness and high hardness, and is suitable for preparing and processing iron-based Alloy knives and grinding tools can also be used in the fields of protective film of optical components, high temperature electronic devices and so on.
Description
技术领域technical field
本发明涉及纳米晶立方氮化硼薄膜的制备方法。The invention relates to a preparation method of a nanocrystalline cubic boron nitride film.
背景技术Background technique
立方氮化硼薄膜的维氏硬度达到5000-6000kg/mm2,在自然界中硬度仅次于金刚石,因为立方氮化硼薄膜甚至在1100℃高温时都不和铁基合金以及空气中的氧气发生反应,可望成为加工钢铁制品的理想刀具材料(金刚石在温度达到700℃时,开始与铁和氧气发生化学反应,不适合加工钢铁材料)。另外,立方氮化硼薄膜在红外和可见区透明、禁带宽度为6.4eV、易于进行p-型和n-型掺杂、有很高的热导率。还可以在光学元件的保护膜、恶劣环境下超大功率机器的自动化控制、以及汽车和电脑等领域得到广泛的应用。The Vickers hardness of the cubic boron nitride film reaches 5000-6000kg/mm 2 , which is second only to diamond in nature, because the cubic boron nitride film does not react with iron-based alloys and oxygen in the air even at a high temperature of 1100°C It is expected to become an ideal tool material for processing steel products (diamond begins to chemically react with iron and oxygen when the temperature reaches 700 ° C, which is not suitable for processing steel materials). In addition, the cubic boron nitride film is transparent in the infrared and visible regions, has a band gap of 6.4eV, is easy to do p-type and n-type doping, and has high thermal conductivity. It can also be widely used in the protective film of optical components, the automatic control of ultra-high-power machines in harsh environments, as well as automobiles and computers.
目前文献报道的立方氮化硼薄膜的制备方法主要有以下三种:(1)等离子体化学气相生长法,(2)物理气相生长法,(3)氟辅助等离子体化学气相生长法。前两种方法的主要原理是:首先形成具有活性的氮源和硼源在衬底上反应,同时利用等离子体产生的离子轰击生长表面,当离子能量足够高时,就能生成含有立方氮化硼的薄膜。由于使用了较高能量的离子轰击,缺少对六方氮化硼的化学刻蚀,所制备的薄膜的立方相纯度较低,残留压应力高。第三种方法是在对生长表面一定能量离子轰击的同时用氟元素化学刻蚀六方相氮化硼,降低了继续生成立方氮化硼所需的轰击离子的能量。虽然第三种方法较好地提高了薄膜的立方相纯度,降低了薄膜的残留压应力,但是由于使用了氟元素,给环境带来了污染。The preparation methods of cubic boron nitride thin films reported in the literature mainly include the following three methods: (1) plasma chemical vapor growth method, (2) physical vapor phase growth method, and (3) fluorine-assisted plasma chemical vapor phase growth method. The main principle of the first two methods is: first form an active nitrogen source and boron source to react on the substrate, and at the same time use the ions generated by the plasma to bombard the growth surface. When the ion energy is high enough, it can generate cubic nitride Thin films of boron. Due to the use of higher energy ion bombardment and the lack of chemical etching of hexagonal boron nitride, the prepared films have low cubic phase purity and high residual compressive stress. The third method is to chemically etch hexagonal boron nitride with fluorine element while bombarding the growth surface with certain energy ions, which reduces the energy of bombarding ions required to continue to generate cubic boron nitride. Although the third method improves the cubic phase purity of the film and reduces the residual compressive stress of the film, it pollutes the environment due to the use of fluorine.
发明内容Contents of the invention
本发明的目的是提供一种对环境温和,低残留压应力、高立方相纯度的纳米晶立方氮化硼薄膜的制备方法。The purpose of the invention is to provide a method for preparing a nanocrystalline cubic boron nitride thin film which is mild to the environment, has low residual compressive stress and high cubic phase purity.
本发明所提供的纳米晶立方氮化硼薄膜制备方法是采用把离子轰击增强立方氮化硼成核生长和氯元素选择性刻蚀六方相氮化硼相结合的等离子体化学气相生长方法,具体步骤如下:The preparation method of the nanocrystalline cubic boron nitride film provided by the present invention is a plasma chemical vapor growth method combining ion bombardment enhanced nucleation and growth of cubic boron nitride and selective etching of hexagonal boron nitride by chlorine element, specifically Proceed as follows:
1)把衬底表面清洗干净后放入到等离子体化学气相生长装置的反应室,反应室的真空度至少抽到10-3Pa;1) After cleaning the surface of the substrate, put it into the reaction chamber of the plasma chemical vapor phase growth device, and the vacuum degree of the reaction chamber is pumped to at least 10 -3 Pa;
2)向反应室输入保护气体,加热衬底并控制其温度在300-1100℃范围内,调节反应室压强到0.1-10Pa,在反应室中产生等离子体;2) Input protective gas into the reaction chamber, heat the substrate and control its temperature within the range of 300-1100°C, adjust the pressure of the reaction chamber to 0.1-10Pa, and generate plasma in the reaction chamber;
3)控制衬底偏压在0--250V范围内,优选-5--100V,然后依次向反应室输入氮源,氯元素源和硼源,进行薄膜生长,控制氮源流量在0.2-10sccm,氯元素源流量在1-10sccm,硼源流量在0.2-12sccm。3) Control the substrate bias voltage in the range of 0--250V, preferably -5--100V, and then input nitrogen source, chlorine element source and boron source to the reaction chamber in sequence to grow the film, and control the nitrogen source flow rate at 0.2-10sccm , the source flow of chlorine element is 1-10sccm, and the flow rate of boron source is 0.2-12sccm.
本发明中,所说的保护气体可以是氢气和氦气、氖气、氩气以及氪气中的一种或几种;所说的氮源气体可以是氮气、氨气和BH3·NH3中的一种或几种;所说的氯元素源是能在等离子体中分解出氯原子的氯气、氯化氢和BCl3气体中的一种或几种;硼源可以是B2H6、BCl3和BH3·NH3中的一种或几种。In the present invention, the protective gas can be one or more of hydrogen, helium, neon, argon and krypton; the nitrogen source gas can be nitrogen, ammonia and BH 3 ·NH 3 One or more of them; said chlorine element source is one or more of chlorine gas, hydrogen chloride and BCl 3 gas that can decompose chlorine atoms in plasma; boron source can be B 2 H 6 , BCl 3 and one or more of BH 3 ·NH 3 .
上述所有气体的纯度均高于99.99%,当输入的气体为二种或二种以上时,则将反应气体在等离子体化学气相生长装置的混和室充分缓冲混和后再输入到反应室。The purity of all the above-mentioned gases is higher than 99.99%. When two or more gases are input, the reaction gases are fully buffered and mixed in the mixing chamber of the plasma chemical vapor growth device before being input into the reaction chamber.
本发明中,所说的衬底可以采用硅、碳化硅、玻璃或蓝宝石等。In the present invention, silicon, silicon carbide, glass or sapphire can be used as the substrate.
在系统中导入氯元素的理由:氯元素具有足够高的选择性优先刻蚀六方氮化硼的能力,可以在薄膜生长表面抑制六方氮化硼的形成,提高立方氮化硼薄膜的纯度,同时降低继续生长立方氮化硼所需要的轰击离子的能量,提高立方氮化硼薄膜的纯度,降低残留压应力。只要在等离子体中能分解出氯原子的气体都可以用来选择性刻蚀六方氮化硼。The reason for introducing chlorine into the system: chlorine has a high enough selectivity to preferentially etch hexagonal boron nitride, which can inhibit the formation of hexagonal boron nitride on the film growth surface and improve the purity of cubic boron nitride films. Reduce the energy of bombardment ions needed to continue growing cubic boron nitride, improve the purity of cubic boron nitride film, and reduce residual compressive stress. Any gas that can decompose chlorine atoms in the plasma can be used to selectively etch hexagonal boron nitride.
本发明的有益效果在于:The beneficial effects of the present invention are:
(1)工艺新颖,所需设备简单,原料易得,对环境温和。(1) The process is novel, the required equipment is simple, the raw materials are easily available, and the environment is mild.
(2)因为把离子轰击增强立方氮化硼成核生长和氯元素对六方相氮化硼的选择性化学刻蚀有机地结合在一起,立方氮化硼生长所需的轰击离子的能量得以降低,所制备的立方氮化硼薄膜的纯度高、残留压应力低,薄膜不剥落。(2) Because the ion bombardment enhances the nucleation and growth of cubic boron nitride and the selective chemical etching of hexagonal boron nitride by chlorine elements, the energy of bombarding ions required for the growth of cubic boron nitride can be reduced. , the prepared cubic boron nitride film has high purity, low residual compressive stress, and the film does not peel off.
(3)所制备的纳米晶立方氮化硼薄膜的晶粒尺度小于50纳米,是纳米结构薄膜,表面粗糙度低、硬度高,适用于制备加工铁基合金的刀具和磨具等,也可以用在光学元件的保护膜,高温电子器件等领域。(3) The grain size of the prepared nanocrystalline cubic boron nitride film is less than 50 nanometers. It is a nanostructured film with low surface roughness and high hardness. It is suitable for preparing tools and abrasive tools for processing iron-based alloys, and can also be used Used in the protective film of optical components, high temperature electronic devices and other fields.
附图说明Description of drawings
附图是根据本发明方法采用的等离子体化学气相生长装置示意图Accompanying drawing is the plasma chemical vapor growth device schematic diagram that adopts according to the inventive method
图中,1为主电源,2为衬底加热电源,3为电极,4为衬底固定夹,5为衬底台,6为衬底, 7为导气管,8为气体混和室,9为质量流量计,10为各种气体的进气管(a,b,c,d和e分别为进气口),11为真空泵,12为衬底加热器,13为衬底偏压控制电源,14为反应真空室。In the figure, 1 is the main power supply, 2 is the substrate heating power supply, 3 is the electrode, 4 is the substrate fixing clip, 5 is the substrate table, 6 is the substrate, 7 is the gas guide tube, 8 is the gas mixing chamber, and 9 is the Mass flowmeter, 10 is the inlet pipe of various gases (a, b, c, d and e are the inlets respectively), 11 is the vacuum pump, 12 is the substrate heater, 13 is the substrate bias control power supply, 14 for the reaction vacuum chamber.
具体实施方式Detailed ways
实施例1Example 1
制备纳米晶立方氮化硼薄膜,包括以下步骤:The preparation of nanocrystalline cubic boron nitride film comprises the following steps:
1)将衬底(此例为硅单晶)表面清洁后置于衬底台并用固定夹固定,用真空泵将反应室抽真空至10-3Pa;1) Clean the surface of the substrate (silicon single crystal in this example) and place it on the substrate table and fix it with clamps, and evacuate the reaction chamber to 10 -3 Pa with a vacuum pump;
2)向反应室输入保护气体氢气和氩气,加热衬底并控制其温度在600℃,调节反应室压强到0.2Pa,在反应室中产生等离子体;2) Input protective gas hydrogen and argon into the reaction chamber, heat the substrate and control its temperature at 600°C, adjust the pressure of the reaction chamber to 0.2Pa, and generate plasma in the reaction chamber;
3)调节衬底偏压到-80V,然后依次向反应室输入氮气,氯气和BCl3,进行薄膜生长,控制氮气流量为2sccm,氯气流量在1sccm,BCl3流量在3sccm。经过30分钟时间沉积,在硅衬底上得到晶粒尺度在5-30纳米的立方氮化硼薄膜。3) Adjust the substrate bias to -80V, and then sequentially input nitrogen, chlorine and BCl 3 into the reaction chamber to grow the film, control the flow of nitrogen to 2 sccm, the flow of chlorine to 1 sccm, and the flow of BCl 3 to 3 sccm. After 30 minutes of deposition, a cubic boron nitride film with a grain size of 5-30 nanometers is obtained on the silicon substrate.
实施例2Example 2
制备纳米晶立方氮化硼薄膜,包括以下步骤:The preparation of nanocrystalline cubic boron nitride film comprises the following steps:
1)将衬底(此例为玻璃)表面清洁后置于衬底台并用固定夹固定;用真空泵将反应室抽真空至10-3Pa后;1) Clean the surface of the substrate (glass in this example) and place it on the substrate table and fix it with a clamp; vacuumize the reaction chamber to 10 -3 Pa with a vacuum pump;
2)向反应室输入保护气体氢气和氖气,加热衬底并控制其温度在500℃,调节反应室压强到2Pa,在反应室中产生等离子体;2) Input protective gas hydrogen and neon into the reaction chamber, heat the substrate and control its temperature at 500°C, adjust the pressure of the reaction chamber to 2Pa, and generate plasma in the reaction chamber;
3)调节衬底偏压到-20V,然后依次向反应室输入氮气、氨气和BCl3,进行薄膜生长,控制氮气流量为2sccm,氨气流量在2sccm,BCl3流量在2sccm。经过20分钟时间沉积,在硅衬底上得到晶粒尺度在5-20纳米的立方氮化硼薄膜。3) Adjust the substrate bias to -20V, and then sequentially input nitrogen, ammonia and BCl 3 into the reaction chamber to grow the film, and control the flow of nitrogen to 2 sccm, the flow of ammonia to 2 sccm, and the flow of BCl 3 to 2 sccm. After 20 minutes of deposition, a cubic boron nitride film with a grain size of 5-20 nanometers is obtained on the silicon substrate.
实施例3Example 3
制备纳米晶立方氮化硼薄膜,包括以下步骤:The preparation of nanocrystalline cubic boron nitride film comprises the following steps:
1)先将衬底(此例为硅单晶)表面清洁后置于衬底台并用固定夹固定;用真空泵将反应室抽真空至10-3Pa;1) Clean the surface of the substrate (silicon single crystal in this example) first, place it on the substrate table and fix it with clamps; use a vacuum pump to evacuate the reaction chamber to 10 -3 Pa;
2)向反应室输入保护气体氢气、氖气和氩气,加热衬底并控制其温度在900℃,调节反应室压强到5Pa,在反应室中产生等离子体;2) Input protective gases hydrogen, neon and argon into the reaction chamber, heat the substrate and control its temperature at 900°C, adjust the pressure of the reaction chamber to 5Pa, and generate plasma in the reaction chamber;
3)调节衬底偏压到-200V,然后依次向反应室输入BH3·NH3和氯化氢,进行薄膜生长,控制BH3·NH3流量为5sccm,氯化氢流量在3sccm,经过60分钟时间沉积,在硅衬底上得到晶粒尺度在20-50纳米的立方氮化硼薄膜。3) Adjust the substrate bias to -200V, and then sequentially input BH 3 ·NH 3 and hydrogen chloride into the reaction chamber for film growth, control the flow rate of BH 3 ·NH 3 to 5 sccm, and the flow rate of hydrogen chloride to 3 sccm, and deposit after 60 minutes. A cubic boron nitride film with a grain size of 20-50 nanometers is obtained on a silicon substrate.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100508279A CN100364883C (en) | 2006-05-19 | 2006-05-19 | Preparation method of nanocrystalline cubic boron nitride film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100508279A CN100364883C (en) | 2006-05-19 | 2006-05-19 | Preparation method of nanocrystalline cubic boron nitride film |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1850589A CN1850589A (en) | 2006-10-25 |
| CN100364883C true CN100364883C (en) | 2008-01-30 |
Family
ID=37132090
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2006100508279A Expired - Fee Related CN100364883C (en) | 2006-05-19 | 2006-05-19 | Preparation method of nanocrystalline cubic boron nitride film |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100364883C (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102212788A (en) * | 2011-06-10 | 2011-10-12 | 北京工业大学 | Method for preparing boron nitride film containing nano-silver particles |
| CN107460447A (en) * | 2017-09-25 | 2017-12-12 | 何军舫 | A kind of production method of the boron nitride plectane with high-flatness |
| CN109020556B (en) * | 2018-06-19 | 2021-09-17 | 杭州格蓝丰纳米科技有限公司 | Preparation method of boron nitride insulating heat dissipation film based on mixed sintering |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1238304A (en) * | 1998-05-14 | 1999-12-15 | 中国科学院金属研究所 | Process for preparing nm-class boron nitride tube |
| US6383465B1 (en) * | 1999-12-27 | 2002-05-07 | National Institute For Research In Inorganic Materials | Cubic boron nitride and its gas phase synthesis method |
-
2006
- 2006-05-19 CN CNB2006100508279A patent/CN100364883C/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1238304A (en) * | 1998-05-14 | 1999-12-15 | 中国科学院金属研究所 | Process for preparing nm-class boron nitride tube |
| US6383465B1 (en) * | 1999-12-27 | 2002-05-07 | National Institute For Research In Inorganic Materials | Cubic boron nitride and its gas phase synthesis method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1850589A (en) | 2006-10-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI446409B (en) | Cluster tool for epitaxial film formation | |
| US10619239B2 (en) | Method and system for preparing polycrystalline group III metal nitride | |
| CN101492835A (en) | Method for extension of plumbago alkene with ultra-thin hexagonal phase silicon carbide membrane on insulated substrate | |
| KR20210047971A (en) | Method and apparatus for precleaning a substrate surface prior to epitaxial growth | |
| TW200943419A (en) | Low wet etch rate silicon nitride film | |
| CN100558933C (en) | A kind of preparation method of cubic boron nitride film | |
| CN103469173A (en) | Preparation method of gallium oxide film with hole-conducting properties and gallium oxide film with hole-conducting properties | |
| CN100364883C (en) | Preparation method of nanocrystalline cubic boron nitride film | |
| CN106868469A (en) | A kind of method that non-metal catalyst in silicon substrate prepares Graphene | |
| KR20180054478A (en) | Hydrogen partial pressure control in a vacuum process chamber | |
| JP2004343094A5 (en) | ||
| Baranov et al. | Synthesis of amorphous silicon films with high growth rate by gas-jet electron beam plasma chemical vapor deposition method | |
| CN1944308B (en) | A method of depositing a hydrogenated amorphous silicon-carbon alloy thin film on a glass substrate | |
| CN105244255A (en) | Silicon carbide epitaxial material and production method thereof | |
| CN100442441C (en) | Method and apparatus for forming an epitaxial layer | |
| CN104328390B (en) | A kind of preparation method of GaN/ diamond film composite sheet | |
| CN101985744B (en) | Preparation method of single crystal cubic carbon nitride film | |
| CN102296278A (en) | A kind of preparation method of aluminum nitride film | |
| CN112885709A (en) | Preparation method of silicon carbide epitaxial structure and semiconductor device | |
| Yamamoto et al. | Synthesis of c-BN films by using a low-pressure inductively coupled BF3–He–N2–H2 plasma | |
| JPH05315269A (en) | Forming method for thin film | |
| WO2013104200A1 (en) | Method for using ald device to grow gallium nitride film | |
| CN103205806B (en) | Preparation method of single crystal cubic carbon nitride film | |
| Kiel et al. | Comparison of the properties of BN films synthesized by inductively coupled rf and microwave plasmas | |
| CN101597759A (en) | Method for preparing cubic boron nitride thin film from boron film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080130 Termination date: 20150519 |
|
| EXPY | Termination of patent right or utility model |